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ABSTRACT 

Biodiesel is a renewable alternative fuel that produces 

lower exhaust emissions with the exception of nitrogen oxides 

(NOx) when compared to conventional diesel fuel. Fuel blend 

information is useful during engine operation for optimizing 

emissions and performance.  Therefore, online estimation of 

biofuel content is a critical step in allowing diesel engines to 

maintain performance while simultaneously meeting emission 

requirements when operating on biodiesel blends. Presented 

in this paper is a model-based biodiesel blend estimation 

strategies using crankshaft torsionals. A sensitivity analysis 

investigation is conducted for the method to quantify 

robustness of the proposed fuel blend estimation methods. 

INTRODUCTION 

Biodiesel usage has a direct impact on reducing tailpipe 

emissions. Specifically, Carbon Monoxide (CO), 

Hydrocarbons (HC) and Particulate Matters (PM) decrease by 

about 50%, 50% and 65% on average, respectively. In spite of 

all these environmental benefits, there is an increase of 10% in 

NOx formation approximately. Such an increase in NOx 

emission is counterproductive in meeting ever restricting EPA 

requirements. Solutions to NOx reduction have been proposed 

as using exhaust gas recirculation (EGR) systems or adding 

chemicals to biodiesel fuel. Regardless of the NOx reduction 

approach, there is a need for accurate estimate of the 

biocontent of the fuel in real‒time. This information is useful 

in optimization of the engine control parameters after each 

tank refill to mitigate the negative aspects of using 

biodiesel  [1]. 

 Biodiesel content can be estimated utilizing the 

differences between its chemical properties and those of the 

conventional diesel fuel. There have been studies on biodiesel 

blend estimation in the past decade  [2] [3] [4] [5][11]. Some of 

these studies propose laboratory‒based method to measure the 

biodiesel blend [2][3], and other are oriented towards 

application for automotive industry [4] [5]. 

The first proposed method in the literature is using fiber‒

optic Near‒Infrared (NIR) spectroscopy and H nuclear 

magnetic resonance spectroscopy for biodiesel blend 

estimation  [4]. The author claims that the NIR spectroscopy is 

an easy method providing that the hardware is available for 

monitoring biodiesel production transesterification. Near‒

infrared spectroscopy (NIRS) uses the near‒infrared region of 

the electromagnetic spectrum (from about 800 nm to 2500 

nm). Typical applications include pharmaceutical, medical 

diagnostics (including blood sugar and oximetry), food and 

agrochemical quality control, and combustion research, as 

well as cognitive neuroscience research. The spectrum of the 
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fuel is used to determine the blend. Two different methods are 

investigated and the consistency of the results is shown 

through comparison [4]. In the same year, a biodiesel blend 

estimation method was proposed by M. Tat et al. [2] using a 

commercial flexible fuel composition sensor. This kind of 

sensor is used to measure the fuel blend for gasoline engines 

or determine the quality of gasoline fuel. There are two 

different types of fuel composition sensors. The first type 

works based on optical method and second type is based on 

measuring the dielectric of the material. Interested reader is 

referred to [2] for further information. The output frequency of 

the sensor shows a difference of about 7 Hz for switching 

from diesel to biodiesel. The method is tested for different 

types of diesel and biodiesel types and is reported to be able to 

estimate the blend with up to 10% error. There is no 

uncertainty or sensitivity analysis of the method against 

operating condition and the model variations. 

Ultra violet (UV) absorption method has been also 

ptoposed for biodiesel blend estimation [3]. Unlike NIR 

spectroscopy that uses invisible beams (with much higher 

wavelengths) UV absorption uses visible beams for 

spectroscopy. The root mean square error (RMSE) of the 

method is reported to be 2.88%. However, the method is too 

complicated to be applied to automotive application. A recent 

biodiesel blend estimation study belongs to Snyder et al. [5] 

which is based on the oxygen content of biodiesel. They 

estimated the blend using an exhaust path oxygen sensor 

measurement. Based on the chemical content of the biodiesel, 

there is about 10% oxygen in biodiesel combination while 

diesel fuel is oxygen free. This difference in oxygen content 

will affect the amount of oxygen in the combustion chamber 

and exhaust path. A universal exhaust gas oxygen (UEGO) 

sensor is used for this method. The fuel fraction of the fuel and 

air mixture in the combustion chamber along with the exhaust 

path oxygen content measurement is used in this method. The 

method is reported to be able to determine the blend within 

4% of the actual blend. The method is very sensitive to the 

operating condition and the estimation error is very large for 

small mixture fractions. The work is completed by adding a 

Kalman Filter in the system to mitigate the large errors in 

some operating conditions [6]. The main drawback of this 

method is the need of an additional UEGO sensor in the 

exhaust path. 

The mentioned biomass fuel estimation methods and 

concepts are not attractive for the engine manufacturers due to 

the following reasons: 

• Complexity of the methods 

• Addition of a new sensor 

• Robustness against model variation 

• Sensitivity to measurement errors. 

Complexity of some of the proposed method prevents 

their real application in the engine industry. As mentioned 

before, adding a new sensor to the diesel engine will increase 

the production and maintenance cost resulting in an increase in 

the final product price and complexity of the periodic 

maintenance. In addition, new sensor requires diagnosis and it 

makes the on board diagnosis (OBD) system more 

complicated. The inclusion of a new sensor also introduces 

robustness and sensitivity issues with regards to ambient 

environmental changes and reliability challenges. 

A robust applicable estimation method is required to 

address all of the above issues. A new fuel blend estimation 

methods using crankshaft position sensor measurements are 

presented in this study [7]. The approach utilizes the produced 

torque of the engine as manifested in the crankshaft torsionals. 

The fundamental principle driving the proposed method is the 

difference between the energy content of conventional diesel 

and biodiesel fuels. 

A model-based estimation method is used for the method 

to address the robustness of the method against measurement 

errors and model variations. The method is explained in 

details in the following sections. 

MODEL‒BASED ESTIMATION AND REAL-TIME 

ADAPTATION 

The proposed biodiesel blend estimation method is based 

on an online adaptive model [12][13] whose parameters 

depend on the fuel type in the combustion chamber. To 

illustrate this approach, assume that the following equation is 

representing the parametric model 

� = �������, … , �
� + �
�
���, … , �
�

+ �������, … , �
� 
(1) 

where � is the output and ��, … , �
 are the inputs of the 

model. The ��’s are the regressors of the model and ��’s are the 

coefficients (Fig. 2-1). The objective is to compare the output 

of the model with the measurement from the engine and adapt 

the coefficients (��’s) based on the error � = � − ��. For the 

nominal system, the coefficients are ���
 �

 ��
� and the 

difference between the set of the online estimated model 

coefficients and set of nominal model coefficients results in a 

parameter variation vector represented by �∆�� ∆�
 ∆����. 

This vector is represented in Figure 2. The parameter variation 

vector that corresponds to the nominal model is the null 

vector, but in case of any discrepancy or model mismatch with 

the nominal model, there would be a non-zero vector as shown 

in Figure 2. For biodiesel blend estimation, the model 
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representing the conventional diesel fuel is considered to be 

the nominal model. Any biodiesel blend in the fuel leads to a 

nonzero parameter variation vector due to a change in the 

coefficients of the model. The length of this non-zero 

parameter variation vector can provide information on 

biodiesel blend content. 

The proposed model‒based approach is used for all of the 

proposed biodiesel blend estimation methods in the next 

sections. The goal is to drive the appropriate model from the 

principal equations of the internal combustion engines and 

tune it for the specific method and construct the final 

estimator. 

 

FIGURE 1 MODEL WITH ADAPTIVE COEFFICIENTS 

Crankshaft torsionals method 

The energy content of biodiesel is almost 12% less than 

that of the conventional diesel fuel. This difference leads to a 

reduction in torque production from the engine since the 

energy release of the fuel is converted to mechanical torque. 

This difference between produced torque of the hydrocarbon 

diesel fuel and biodiesel fuel can exploited for biomass 

content estimation provided that engine torque can be 

estimated. Concerning the torque estimation, the crankshaft 

torsionals due to the engine firing event can be employed [8]. 

This estimation method is based on the fact that the crankshaft 

twist during a power stroke is directly related to the engine 

brake torque. However, instead of estimating the torque as in 

[8], the twist of the crankshaft during a power stroke will be 

directly used in our approach.  This torque estimation 

methodology is explained in details in the next section. 

Combining the crankshaft twist with nominal engine speed 

and the mass of fueling command from the engine control 

enables the biomass content estimation.  

Torque estimation and notch filtering 

The estimation of the brake torque of the internal 

combustion engines has been widely reported in the literature. 

Franco et al. [8] showed that the frequency content of the 

engine speed signal is strongly correlated with the engine load. 

The Fast Fourier transform (FFT) of the engine speed signal 

for the developed model in the previous chapter is shown in 

Figure 3. As it is shown in the figure, the value for 6 

events/engine cycle is dominant for the whole frequency 

range. This value is related to the engine load. The value 

increases as the load on the engine increases. 

 

 

FIGURE 2 BIODIESEL BLEND ESTIMATION USING 
PARAMETER VARIATION VECTOR SYNTHESIS 

 
FIGURE 3 FREQUENCY CONTENT OF THE 

INSTANTANEOUS ENGINE SPEED SIGNAL AT 1500 RPM 

Digital Fourier Transform (DFT) computation is really 

expensive online and must be replaced by simple filtering 

approaches. To extract different components of the engine 

speed frequency, we use an infinite impulse response (IIR) 

notch filter [15]. The notch filter has zero response for the 

frequency of interest and nonzero response for all other 

frequencies. Ideally a finite impulse response (FIR) filter is 

used to extract one frequency of interest. FIR filter has 

nonzero response for the frequency of interest and zero 

response for all other frequencies. The disadvantage of using 
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this type of filter in our application is the phase shift of the 

filter which causes problems in the real‒time implementation 

of the filter. The phase shift of IIR notch filter is minimum 

compared to FIR filter. The desired notch filter can be easily 

obtained by placing two complex conjugate poles at the 

frequency of interest and two complex conjugate zeroes on the 

unit circle at the same frequency [13]. The transfer function of 

the filter in crank angle domain is 

����� = ��

1 − 2. cos�!
� . ��
"� + ��

"


1 − 2. #. cos�!
� . ��
"� + #
. ��

"

 

( 0-2) 

where �� is the z‒transform parameter in crank domain, # is 

the radial location of the filter poles, ��  is the filter static unity 

gain, and !
 is defined as 

!
 =
2$

�%

�
 
(3) 

where �% is the sampling frequency in samples per engine 

cycle and �
 is the frequency of interest. The filter frequency 

diagram is shown in Figure 4 for two different values of #. 

The configuration of notch filtering is shown in Figure 5. The 

notch filter output is subtracted from the original signal and 

the result is the frequency of interest wave.  

 

FIGURE 4 NOTCH FILTER FREQUENCY DIAGRAM (SOLID: 
R=0.9, DASHED: R=0.99) [8] 

Theoretical background 

The relation between produced power and torque in an 

internal combustion engine is 

& = 2$'( (4) 

where & is the engine power (in kW), ' is the engine 

rotational speed (in rev/s) and ( is  the produced torque (in 

N.m) [9]. The power in (4) is called brake power. A measure 

of fuel efficiency is the fuel conversion efficiency )� defined 

by 

)� =
&

*�+ ,-.

 (5) 

where *�+  is fuel rate injected per cycle (in kg/sec) and ,-.  is 

the heating value of the fuel (in kJ/kg). It is shown that the 

heating value of the fuel linearly depends on the biodiesel 

blend [10]. This efficiency measure is determined in a 

standardized test procedure in which a known mass of fuel is 

fully burned with air, and the thermal energy released by the 

combustion process is absorbed by a calorimeter as the 

combustion products cool down to their original temperature 

[9]. From (4) and (5)  

,-. =
2$

)�

'(

*+ �
 (6) 

which indicates the relation between heating value of the fuel 

and a combination of torque and fuel consumption. The final 

model after some mathematical approximation is as follows 

/0 1 ��*2�
+ + �
*2�

+ '3 + �� (7) 

 
FIGURE 5 NOTCH FILTERING CONFIGURATION 

Further details about the model derivation are derived in 

[7][14]. The block diagram of the estimation approach is 

shown in Figure 6. As shown in this figure, the inputs to the 

model are fueling rate and average engine speed signal and the 

output is the crankshaft torsionals which is an indicator of 

produced brake torque of the engine. Equation (7) is valid in 

steady‒state conditions and the coefficients carry the 

information on the heating value of the fuel that we seek to 

determine the biodiesel blend.  

 

FIGURE 6 BLOCK DIAGRAM OF THE ROBUST 
ESTIMATION STRATEGY 
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 EXPERIMENTAL SETUP 

To validate the proposed concepts in biodiesel blend 

estimation methods, we test the performance of the designed 

estimators in the real engine applications. All of the tests are 

done in the Engine Control Research Laboratory at the 

University of Houston. The lab is equipped with a diesel 

engine, water brake dynamometer, data acquisition system 

(dSpace), Fast NOx analyzer, and Claterm III to control the 

engine. Every part is described in the following subsections. 

The engine is shown in Figure 7. 

 

 

FIGURE 7 CUMMINS DIESEL ENGINE 

Experimental results 

The difference in energy content is used to develop the 

crankshaft torsionals approach for biodiesel blend estimation. 

Every operating point has been tested for four different 

biodiesel blends {B0, B20, B50, B100}. Moreover, the whole 

experiment has been repeated several times to compensate the 

effect of any uncertainty in diesel engine system, 

dynamometer, and measuring devices. 

The following model is derived for this method 

/0 1 ��*2�
+ + �
*2�

+ '3 + ��. (8) 

The engine is run in different speed and load operating points 

and the data is collected from crankshaft position sensor and 

fueling rate (Calterm) in steady-state and is averaged in 5 

seconds to avoid small fluctuations of data in steady-state. The 

model structure for coefficient adaptation is shown in Figure 

8. The coefficients of the model (8 are shown in Table 1. 

These coefficients are obtained from experimental results data. 

The M6 component and average engine speed is calculated 

offline and used for the model adaptation. This test has been 

repeated for all of the blends (B0, B20, B50, and B100). Then, 

least squares method has been used to achieve the coefficients 

in Table 1. The one difference between simulation and 

experiment is that in simulation the engine speed signal is one 

of the outputs of the diesel engine model but it must be 

calculated from the crankshaft position sensor raw data in the 

experiment.  

 

FIGURE 8 ADAPTIVE MODEL FOR CRANKSHAFT 
TORSIONALS APPROACH 

TABLE 1 MODEL (8 COEFFICIENTS FOR DIFFERENT 
BLENDS 

Biodiesel blend 45 46 47 

B0 -4.06 1.91 1.97 

B20 -3.82 1.80 1.77 

B50 -3.42 1.52 1.90 

B100 -2.14 1.00 1.70 

As mentioned before, the first two terms coefficients of 

the model (7) are used for biodiesel blend estimation. The 

parameter variation vectors (variation from the vector B0) are 

shown in Figure 9.  

 

FIGURE 9 MODEL (7) PARAMETER VARIATION VECTORS 
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  For the biodiesel blend estimation purposes, we calculate 

the projection of all parameter variation vectors on the largest 

vector (which is related to B100) and for each vector, we just 

use the first two coefficients (the projection of all vectors on 

the plane �� − �
). The length of the projected vectors is 

plotted in Figure 10. The values are given in Table 2. As 

observed from this figure, a second order polynomial can be 

fitted to this set of points. The equation of the line plotted in 

Figure 10 is 

89 = −23.42<
 + 175.52 < − 1.98 (9) 

where < is the length of the projected parameter variation 

vectors on the reference vector (solid line in Figure 9) 

< =
AB. AB�CC

|AB�CC|
 (10) 

with  

AB = ��� − ��,EC
�F �
 − �
,EC

�F �� (11) 

and  

AB�CC = ���,E�CC
�F − ��,EC

�F �
,E�CC
�F − �
,EC

�F �� (12) 

where “TF” stands for crankshaft torsionals and fueling 

method. 

 

FIGURE 10 LENGTH OF THE PROJECTION OF THE 
PARAMETER VARIATION VECTORS VS. BIODIESEL 

BLEND 

To validate the designed biodiesel blend estimator, we run 

B70 biodiesel blend on the engine and estimate the blend 

using the collected data from the engine and the estimator (9). 

The parameter variation vector for B70 is shown in Figure 11. 

The coefficients of the model adapted for this blend are 

���,EGC
�F �
,EGC

�F ��,EGC
�F � =

�−2.97 1.37 1.79�. 

(13) 

Using equation (10) to (12), the length of the projection of 

the vector in Figure 11 is calculated 

<|EGC = 1.22. (14) 

Then the estimated blend from (9) is “73.5”. 

 

TABLE 2 LENGTH OF THE PROJECTED VECTOR ON THE 
REFERENCE VECTOR FOR DIFFERENT BIODIESEL 
BLENDS (CRANKSHAFT TORSIONALS APPROACH) 

coefficients Projected vector length 

B0 0 

B20 0.26 

B50 0.75 

B100 2.13 

 

FIGURE 11 PARAMETER VARIATION VECTOR 
(CRANKSHAFT TORSIONALS APPROACH) FOR B70 (RED) 
COMPARED TO THE VECTORS USED FOR ESTIMATOR 

DESIGN 

CONCLUSIONS 

An adaptive model estimation approach for biodiesel 

blend estimation in diesel engines is presented in this paper. 

The proof of concept using a diesel engine model developed in 

GT-Power is presented in a previous paper by the authors [7]. 

Experimental results are shown to validate the concepts 

proposed in the simulation. Crankshaft torsionals method uses 

the current sensor set of the engine and shows the best 

estimation results. The parameter variation vectors are plotted 

and it has been shown that the vector length is related to 

biodiesel blend. A second order regression is used to relate the 

biodiesel blend to the length of the vector.  

Experiment and simulations show promising results for 

biodiesel blend estimation. One of the most important features 

of a biodiesel blend estimator is its performance for various 
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biodiesel feed stocks. According to the literature [11], the 

heating value of most biofuels is almost within the same 

range. Conducting a series of tests using different types of 

biodiesels is interesting to check the ability of the methods in 

handling the estimation for different fuels. 
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