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Hydrocarbons, carbon monoxide and some of other polluting emissions produced by diesel engines are usually
lower than those produced by gasoline engines. While great strides have been made in the exhaust aftertreatment
of vehicular pollutants, the elimination of nitrogen oxide (NOx) from diesel vehicles is still a challenge. The
primary reason is that diesel combustion is a fuel-lean process, and hence there is significant unreacted oxygen in
the exhaust. Selective catalytic reduction (SCR) is a well-developed technology for power plants and has been
recently employed for reducing NOx emissions from automotive sources and in particular, heavy-duty diesel
engines. In this article, we develop a linear parameter-varying (LPV) feedforward/feedback control design
method for the SCR aftertreatment system to decrease NOx emissions while keeping ammonia slippage to a
desired low level downstream the catalyst. The performance of the closed-loop system obtained from the
interconnection of the SCR system and the output feedback LPV control strategy is then compared with other
control design methods including sliding mode, and observer-based static state-feedback parameter-varying
control. To reduce the computational complexity involved in the control design process, the number of LPV
parameters in the developed quasi-LPV (qLPV) model is reduced by applying the principal component analysis
technique. An LPV feedback/feedforward controller is then designed for the qLPV model with reduced number
of scheduling parameters. The designed full-order controller is further simplified to a first-order transfer function
with a parameter-varying gain and pole. Finally, simulation results using both a low-order model and a high-
fidelity and high-order model of SCR reactions in GT-POWER interfaced with MATLAB/SIMULINK illustrate
the high NOx conversion efficiency of the closed-loop SCR system using the proposed parameter-varying
control law.
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1. Introduction

The lean burn conditions of combustion in automotive
diesel engines that yield improved efficiency produce
an exhaust containing an excess of oxygen. While this
net-oxidising exhaust enables the comparatively
straightforward oxidation of hydrocarbons and
carbon monoxide (CO) on precious metal catalysts, it
complicates the chemical reduction of nitrogen oxide
(NOx) to N2. This scenario has led to the vigorous
development of technologies for NOx reduction to
meet the stringent NOx exhaust limits mandated by US
and European agencies. The NOx emissions are one of
the main air pollutants that are responsible for ozone
depletion and photochemical smog formation causing
severe respiratory problems to humans. Selective
catalytic reduction (SCR) is a well-proven technology
used in power generation for more than 30 years.
The use of SCR technology has been also favoured by
automotive industry in recent years due to its lower

cost compared to other NOx reduction aftertreatment
systems. SCR technology has been used in Europe

since 2008 and introduced in the US in 2010
(Johnson 2010). It is important to note that stationary
power generation involves very slow variation of

operating conditions allowing simple open-loop con-
trollers to efficiently tackle the SCR control design

problem. However, automobile engines work in a
broad envelope of fast varying conditions necessitating

the use of advanced closed-loop SCR control
techniques.

The basic operating principle of the closed-loop
SCR system is as follows: a urea injector, driven by a

command signal from the controller, pumps the
aqueous urea solution into the exhaust stream through

a nozzle. Ammonia (NH3) and carbon dioxide (CO2)
are formed as a result of urea decomposition and

HNCO hydrolysis upstream the SCR catalyst
(Koebel, Elsener, and Kleemann 2000). The mixture
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of ammonia, CO2, remaining urea, and the exhaust

then enters the SCR catalyst, where NH3 reacts with

NOx from the exhaust producing nitrogen and water.

As shown in Figure 1, a sensor placed at the catalyst

outlet measures concentration of the unreacted NOx

and supplies this information to the controller, thereby

closing the loop. The control problem consists of

achieving the appropriate regulation of the urea

injection to minimise NOx emissions without signifi-

cant ammonia slip.
The key requirement for an SCR catalyst is to

selectively reduce NOx to N2 in the presence of

ammonia. SCR washcoats contain base metals such

as copper (Cu), iron (Fe) and zeolites (Ze) that store

ammonia to enable NOx reduction. The overall SCR

chemistry is generally well-understood and qualita-

tively similar for Cu–Ze and Fe–Ze catalysts.

Ammonia is obtained by the thermal decomposition

and hydrolysis of externally supplied aqueous urea.

The three key reactions involved in the SCR NOx

reduction process are the following (Tronconi and

Forzatti 1992):

4NH3 þ 4NOþO2�! 4N2 þ 6H2O,

4NH3 þ 3NO2�! 7=2N2 þ 6H2O,

4NH3 þ 2NOþ 2NO2�! 4N2 þ 6H2O:

The first and second reactions are referred to as the

‘standard SCR reaction’ and the ‘slow SCR reaction’,

respectively. The third reaction involves both NO and

NO2 at equimolar amounts, and is much faster than

the first reaction with only NO and is referred to as the

‘fast SCR reaction’. It is also important to note that

several side reactions can occur along with the

standard and fast SCR reactions, the most important

of which is the ammonia oxidation:

4NH3 þ 3O2�! 2N2 þ 6H2O,

2NH3 þ 5=2O2�! 2NOþ 3H2O:

These reactions are not desired since they involve the
consumption of the ammonia reductant (Nova,
Ciardelli, Tronconi, Chatterjee, and Bandl-Konrad
2006; Metkar, Salazar, Muncrief, Balakotaiah, and
Harold 2011). The extent of byproduct formation
varies with the operating conditions, such as tempera-
ture and feed composition. In fact, the NOx conversion
is improved by the presence of NO2 except at high
temperatures where ammonia oxidation limits NOx

conversion.
There have been some efforts in lumped parameter

modelling of the SCR reactions in the literature. These
simplified models are appropriate for model-based
control, since they reduce the complexity of the design.
Tronconi and Forzatti (1992) developed one- and two-
dimensional steady-state isothermal models of SCR for
different geometries of the catalyst. Upahhyay and van
Nieuwstadt (2002) derived a lumped parameter model
of SCR by first assuming that the catalyst behaves as
an isothermal continuously stirred tank reactor and
neglecting mass transfer, and subsequently using the
method of weighted residuals. The reaction mechanism
involves the DeNOx reaction, adsorption/desorption of
NH3 and NH3 oxidation. This model considers the
reduction of only NO by ammonia. Since, in Fe–Ze
catalyst NO2-based reactions are highly favoured, and
NO2 is more toxic compared to NO, Devarakonda,
Parker, Johnson, Strots, and Santhanam (2008) pre-
sented a set of ordinary differential equations (ODEs)
to model the SCR reactions considering both the fast
SCR reaction involving NO2 and the standard SCR
reaction.

Model-based control and optimisation of the SCR
system have been the focus of few recent publications.
Upahhyay and van Nieuwstadt (2006) presented a
model-based control strategy using a sliding mode
control approach. A nonlinear observer is designed
using the measured NOx concentration downstream
the SCR catalyst for the estimation of the surface
coverage fraction and ammonia slip concentration.
A similar control design method which incorporates
both the NO and NO2 conversion efficiency in addition
to ammonia slip is proposed in Devarakonda, Parker,
Johnson, Strots, and Santhanam (2008). Schar, Onder,
and Geering (2006) used a similar model as in
Upahhyay and van Nieuwstadt (2002) and designed
a model-based feedforward controller to limit the
ammonia slip and a PI feedback controller for
disturbance rejection. Chi and Dacosta (2005) pre-
sented a more advanced SCR model where the catalyst

Figure 1. SCR operating principle (source: http://
www.bosch.com).
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channel is discretised axially and radially. A simplified
first-order model of the system is then used in Chi and
Dacosta (2005) for control design purposes, where the
parameters are estimated in real-time using a model
reference adaptive controller. In Hsieh and Wang
(2009), a PID-nonlinear model predictive controller is
designed and experimentally validated for a urea-SCR
system.

The lumped parameter model of the SCR reactions
we use in this article for control design purposes is a
nonlinear model corresponding to the ammonia
adsorption and desorption, standard SCR reduction, as
well as ammonia oxidation to NO. It is noted that the
general design approaches presented in this article can
be extended to the fast SCR reaction, where ammonia
reacts with both NO and NO2, considering the 4-state
lumped parameter model developed in Devarakonda
et al. (2008). Traditional gain-scheduling control
methods for nonlinear systems are based on inter-
polated, linear controllers that are scheduled based on
a function of varying parameters. These methods are
inherently ad hoc and the resulting controllers provide
no stability or performance guarantees for rapid
changes in the scheduling variables (Rugh and
Shamma 2000). These issues are the main motivation
for recent research efforts on multi-variable robust
gain-scheduled control techniques in the context of
linear parameter-varying (LPV) systems (Apkarian
and Gahinet 1995; Apkarian and Adams 1998; Rugh
and Shamma 2000). LPV systems are linear systems
whose state-space description is a known function of
time-varying parameters. The time variation of the
LPV parameters is not known a priori, but is assumed
to be measurable in real-time. For such systems, the
controller is designed to be an LPV system, whose
state-space entries depend causally on the parameters’
history. Stabilisation and more realistic problems
involving closed-loop performance objectives while
exploiting known bounds on the LPV parameters’
variation rate can also be posed in the LPV design
framework. The LPV control design problem can be
efficiently solved by formulating the problem into
either: (i) a finite-dimensional, convex feasibility
problem which can be solved exactly, or (ii) an
infinite-dimensional convex feasibility problem which
can be solved approximately. Quasi-LPV (qLPV)
systems represent a special class of LPV systems
where the scheduling variables contain system states
(Shamma and Cloutier 1993).

The main contribution of this work is threefold:
(i) this is the first attempt to apply LPV control
methodology to cope with the nonlinearities and
operating condition variability (as seen later, tempera-
ture and catalyst surface coverage fraction) in the SCR
system dynamics; (ii) in some cases, the LPV modelling

process will be shown to present challenges specifically

due to the number of LPV parameters, which will be

addressed by making use of the principal component

analysis (PCA) method; (iii) finally, a closed-form

solution to the design of a parameter-varying feedfor-

ward controller will be proposed to ensure a limit on

the ammonia slip that would not otherwise be possible

using only feedback control. The proposed control

design methods of this article will be validated on a

low-order SCR reaction model, as well as, a high-

fidelity and high-order model of SCR reactions

developed in GT-POWER.
The qLPV model we develop for the SCR system

in this article includes several scheduling parameters

and may not be practical in its initial LPV representa-

tion for control implementation purposes. A remedy to

reduce the number of scheduling parameters is the

use of the PCA method, as an effective method to

reduce the dimensionality of a data set consisting of a

large number of interrelated variables, while retaining

as much as possible of the variation present

(Jolliffe 2002). This technique has been recently

extended to LPV models in Kwiatkowski and Werner

(2008) to reduce the number of scheduling parameters.

We take advantage of this method for our SCR model,

where the catalyst temperature is varying. An addi-

tional benefit of using PCA for reducing the number

of LPV scheduling parameters is that the LPV system

with the new set of LPV parameters is in affine form.

Systems with affine dependency on the LPV

parameters are computationally tractable in terms of

the solution to the optimisation problem correspond-

ing to the control design procedure. It is noted that in

order to simplify the presentation and the design

process, this first attempt of LPV control design for

the SCR process does not include exhaust flow as

scheduling parameter. Some of the variability of

exhaust flow is indirectly taken into account in the

variability of the surface coverage fraction estimate.

Future efforts will include exhaust flow as an

additional scheduling parameter using the the PCA-

based LPV parameter reduction method described in

this article.
In this article, we use a third-order nonlinear model

developed in Upahhyay and van Nieuwstadt (2002) and

design a reduced order gain-scheduled LPV controller

to improve the NO conversion efficiency while the

ammonia slip is kept around a desired value. The

simulation results of this article illustrate a comparison

between the performance of the developed output

feedback parameter-varying controller with those of

an observer-based static state-feedback parameter-

varying controller and a sliding mode observer-based

controller.
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2. SCR system lumped parameter model and its

qLPV representations

In this article, our objective is to utilise a previously

developed zero-dimensional (i.e. lumped parameter)

model of the SCR aftertreatment system in Upahhyay

and van Nieuwstadt (2002) to design a self-scheduled

LPV controller. The lumped parameter model devel-

oped in Upahhyay and van Nieuwstadt (2002) includes

a set of three ODEs where the NO and NH3

concentrations, as well as ammonia surface coverage

fraction are the three states of the resulting dynamic

equations. The ammonia coverage fraction is defined

as the ratio of the number of stored sites filled with

NH3 to the total number of storage sites in the catalyst.

The model below is associated with the first reaction,

i.e. standard SCR, described above. The complete

model is as follows:
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�
þ kox�SC�,
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þ kadsCNH3
,

f3 ¼ �CNH3
�SCkadsð1� �Þ þ

F

V

� �
þ�SCkdes�,

ð1Þ

where CNO and CNH3
are concentrations of NO and

NH3 downstream the catalyst in mol/m3, respectively.

The reaction rate constant for reaction i is represented

by ki ¼ Ai expð
�Ei

RT Þ, i ¼ ads, des, red, ox where Ei is the

activation energy and Ai is the pre-exponential term for

the corresponding reaction. The parameter �SC is the

maximum ammonia storage capacity and � is the
surface coverage fraction. The parameters F, V, R and
T represent the flow rate through catalyst, catalyst
volume, universal gas constant and catalyst surface
temperature, respectively. The input u is the concen-
tration of ammonia entering the catalyst and is the

only controllable variable. The input d is the NO
concentration upstream the catalyst treated as an
external disturbance. The only available measurement
for control design purposes is the concentration of
NO downstream the catalyst denoted by y.
Observability and controllability of the system (1) are
discussed in Upahhyay and van Nieuwstadt (2006).
The numerical values of the reaction rate constants
parameters (Ai and Ei) corresponding to the model
described above that we used in this article are listed in
Table 1.

It should be noted that the lumped parameter
model described above has a number of limitations,
some of which have been discussed in Upahhyay and
van Nieuwstadt (2002). Some of these assumptions are
well-justified, others are important to keep the com-
plexity of the model low but may limit the ability of the
model to capture some of the catalyst behaviours. The
assumptions made to develop the model are as follows:

. The dynamics of NOx sensor is not considered
mainly due to the fact that it is faster
compared to the SCR reactions.

. Breakthrough time is ignored. This is the time
that it takes for the ammonia to be adsorbed
into the catalyst surface leading to a time
delay between when the ammonia is injected
and when ammonia slip is observed. The
breakthrough time can be calculated from
the shock velocity of the NOx adsorption wave
estimated by the Rhee equation (Sharma,
Harold, and Balakotaiah 2005).

. Dependence of the storage capacity �SC on
the temperature is ignored, and a constant
value of �SC¼ 36.36mol/m3 is considered
throughout this article.

2.1 LPV model for constant temperature case

The dynamic model of the SCR system introduced
above can be transformed to a qLPV form as follows:

where x1 ¼ CNO, x2 ¼ �, x3 ¼ CNH3
are the three states

corresponding to the above state-space representation.
As observed, for the case with constant temperature,
and hence invariant rate constants, the system
matrix A is affinely dependent on the second state,
i.e. surface coverage fraction �, and therefore �
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is considered as the scheduling parameter in the

above qLPV model provided that it is known in

real-time. In the state-space representation above,

the system matrix A can be represented as

A(�)¼A0þ �A1 and the rest of the system matrices

are parameter-independent.

2.2 LPV model for temperature-varying case

In the previous section, the catalyst temperature

was assumed to remain constant. In this section,

we modify the control-oriented LPV model of the

SCR system to account for the variability of the

exhaust temperature as a result of different engine

speeds and loads. It has been reported that there

is a small difference between the exhaust temperature

and the catalyst downstream temperature

(Devarakonda et al. 2008), and the catalyst operating

temperature can be considered as the average of these

two temperatures.
When trying to develop a qLPV model for the

temperature-varying case, a challenge is the large

number of LPV parameters that appear in the model

since the reaction rate constants are now dependent on

the catalyst temperature. In this article, we use the

PCA method to reduce the number of LPV parameters

to achieve a reasonably complex model useful for the

synthesis of LPV gain-scheduling controllers. This

method enables a systematic trade-off between the

number of reduced parameters and the desired model

accuracy (Kwiatkowski and Werner 2008). In this

section, we briefly describe the process involved and

present the results of applying the PCA method to the

SCR system model discussed earlier where the schedul-

ing parameters �̂ and T are estimated and measured,

respectively (i.e. � ¼ �̂ T
� �T

). For the temperature-

varying case, the system matrices can be parameterised

as a function of a time-varying parameter vector �(t)
that depends on the scheduling parameter vector �(t)
as follows:

�1 ¼ kred�̂, �2 ¼ kox, �3 ¼ kdes, �4 ¼ kads, �5 ¼ kads�̂:

ð3Þ

Using this parameter vector selection, the system

matrix A becomes

A ¼

�
F

V
��sc�1 �sc�2 0

��1 ��3 � �2 �4 � �5

0 �sc�3 ��sc�4 þ�sc�5 �
F

V

2
6664

3
7775,

which is now affine in terms of �i’s. Assume that

� ¼ �1 � � � �p
� �T

, where p¼ 5 in our case. We

generate typical data for the scheduling signals and

construct the data matrix

E ¼ �ð0Þ, . . . , �ððN� 1ÞTsÞ
� �

,

where Ts is the sampling time and N is the number of

samples. This data matrix is then normalised to achieve

scaled zero-mean values denoted by E n, i.e. E n
¼N (E)

where N is a row-wise scaling. Next, a singular value

decomposition (SVD) is performed on E n as follows:

En ¼ Um Uk

� � �m 0 0

0 �k 0

� �
VT

m

VT
k

" #
:

The basic idea behind the PCA is that if the data are

correlated, some of the singular values are smaller

compared to others (Jolliffe 2002). Therefore, the k

smaller singular values can be neglected and the

reduced parameter vector becomes

�ðtÞ ¼ qð�ðtÞÞ ¼ UT
mNð�ðtÞÞ 2 R

m, ð4Þ

where m5 p and �(t) can be reconstructed from the

data only corresponding to the m largest singular

values as

Ê n ¼ Um�mV
T
m � En,

where Ê n is an approximation of the original data. For

quantifying this approximation accuracy the fraction

of total variation is defined as

� ¼

Pm
i¼1 �

2
iPp

i¼1 �
2
i

,

where � close to 1 shows a better accuracy. Note that

there is a trade-off between the accuracy and model

complexity. Keeping a higher number of singular

values leads to a better accuracy but not necessarily

an appropriate parameter reduction. The bounds on

�(t) are determined as follows:

�
i
¼ min

j
qið�ð jTsÞÞ, ��i ¼ max

j
qið�ð jTsÞÞ: ð5Þ

The approximation of the parameter vector �(t) in

terms of the reduced parameter vector at any given

Table 1. Numerical values corresponding to the system (1).

Reaction A E (K J/mol)

Standard SCR 3.2Eþ09m3/mol s 85
NH3 oxidation 4.3Eþ06 1/s 112
NH3 adsorption 2.1Eþ07m3/mol s 42
NH3 desorption 3.3Eþ11 1/s 113
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time is then computed by

�̂ðtÞ ¼ N
�1
ðUm�ðtÞÞ: ð6Þ

Finally, the approximation of the parameter-depen-

dent matrices of the LPV model in the control design

procedure are reconstructed using the above �̂ðtÞ. As

mentioned earlier the only parameter-dependent

matrix of the SCR qLPV model is the matrix A

which is affine in terms of �. Therefore, it suffices to

solve the corresponding LMIs for the LPV control

design only at the vertices in (5).

3. LPV control design approach for SCR system

In this section, we present a SCR control design

method based on the qLPV model described in Section

2. For control design purposes, we use the H1-norm as

the performance measure. The rationale to use the

H1-norm as the performance measure is its ability in

attenuating the effect of disturbance inputs with

bounded energy. The H1-norm of a single-input

single-output LTI system G(s) is defined as the peak

value of its frequency response amplitude jG( j!)j. For
an LPV system represented by Tzd, the operator that

maps the energy-bounded input d(t) to the output z(t),

the H1-norm is defined as (Apkarian and Adams

1998)

kTzdk1 ¼ sup
�2�

sup
d2L2�f0g

kzk2
kd k2

,

where k�k2 is the vector’s two norm and � is the set of

LPV parameters allowable variation set.
The control design objective is to minimise the

H1-norm from the disturbance input (NO concentra-

tion upstream the SCR catalyst) to an appropriately

defined control output, which is a weighted combina-

tion of NO concentration downstream the catalyst and

ammonia slip as

z ¼ a1x1 þ a3x3, ð7Þ

where a1 and a3 are the positive scalar weights.

The proposed control design method combines a
parameter-dependent feedforward control law with a
parameter-dependent feedback action (Figure 2). Two
parameter-dependent feedback control methods are
examined where the parameter-varying feedback con-
trol gains are determined as: (i) a dynamic output
feedback control law which will be further simplified to
result in a reduced-order controller, or (ii) a static
state-feedback control law augmented with a state
estimator.

In a typical SCR system, the only measurement
available is the NOx concentration downstream the
catalyst. In this article, we also assume that

y ¼ CNO: ð8Þ

There have been recent efforts on the development and
use of ammonia sensors for SCR closed-loop control

(Herman, Wu, Cabush, and Shost 2009), which are not
wide-spread due to their cost and will not be pursued in
this article. Our control design objective is to increase
the NO conversion efficiency, decrease the amount of
injected ammonia and keep the ammonia slip at a
desired level. For design purposes, we consider
ammonia concentration as the control input; however,
it is noted that in an actual SCR system, the
concentration of urea is the control variable.

3.1 LPV output feedback control design approach

We first consider the system dynamics (2), (7) and (8) is
represented in state-space form by the following
equations:

_x ¼ Axþ B1dþ B2u,

z ¼ C1x,

y ¼ C2x,

ð9Þ

where A is dependent on � and the system matrices A,
B1, B2, C1 and C2 are appropriately defined. The
objective is to design a gain-scheduling output

Figure 2. Schematic of the LPV control strategy for ammonia-SCR system.
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feedback controller represented with the following

state-space formulation

_xk ¼ Akð�Þxk þ Bkð�Þ y,

u ¼ Ckð�Þxk þDkð�Þ y,
ð10Þ

where xk represents the state vector corresponding

to the feedback controller. As discussed earlier, the

surface coverage fraction � is assumed to be the

scheduling parameter. However, the value of � is not

measurable in practice and must be estimated in real-

time. Here, we estimate � using the method described

below to prevent the use of a state observer. We

demonstrate that the proposed approximation is good

enough for our control design purposes. Considering

the reaction rates and activation energies correspond-

ing to the adsorption and reduction in Table 1, it can

be verified that the NO concentration dynamics is

slower than the ammonia concentration dynamics at

lower surface coverage fraction. For the latter state-

ment to be true, the following condition should

hold true:

�SCkred� þ
F

V
� �SCkadsð1� �Þ þ

F

V
:

This is determined from (1) and results in the condition

� �
kads

kads þ kred
: ð11Þ

Based on the values given in Table 1, the right-hand

side of the inequality (11) varies in [0.840, 0.997] for

temperature range of [200�C, 500�C] and hence the

inequality (11) holds true due to the low surface

coverage fraction. Finally, since the condition (11) is

met, the following holds:

�CNO

�
�SCkred� þ

F

V

�
þ kox�SC� þ

F

V
d ¼ 0

and hence, � can be estimated by

�̂ ¼
F
V ðCNO � d Þ

�CNO�SCkred þ kox�SC
, ð12Þ

which implies that the knowledge of inlet and outlet

NO concentration is sufficient to estimate � at each

time instant. It is important to note that the

disturbance term d (NO concentration upstream

the catalyst) is assumed to be measurable to allow

the calculation of the approximation in (12). There are

alternative but more complicated methods to estimate

the catalyst ammonia coverage ratio such as with the

use of a Kalman filter as in Hsieh and Wang (2010) or

a state estimator as described in Section 3.2.
We use the basic characterisation of the gain-

scheduling control design with guaranteed stability and

H1-performance as described in Apkarian and Adams

(1998) for the qLPV model represented by (2). Since

the dependence on the scheduling parameter � is affine
the synthesis LMIs need to be solved only at the two

corners (i.e. maximum and minimum allowable values

for �). The range of variation for � is between 0 and 1.

For simplicity we consider constant basis functions for

the Lyapunov functions R(�) and S(�) and the auxiliary

controller matrices Âk, B̂k, Ĉk and Dk in the

corresponding synthesis LMIs (Apkarian and Adams

1998). Therefore, we obtain a finite number of decision

variables to optimise. Taking into account the

above structure for the decision variables, the only

parameter-dependent controller matrix is Ak charac-

terised by

Akð�̂Þ ¼ Ak0 þ �̂Ak1 : ð13Þ

The resulting controller is a full-order one; how-

ever, it was observed that the dominant pole of this

system is constant for a fixed temperature and over the

full range of variation of the LPV parameter �̂.
Therefore, we calculated a reduced order controller

that has the same DC gain as the original full-order

controller. We determined that the reduced order

controller is a first-order transfer function

represented by

CðsÞ ¼
�ð�̂Þ

sþ p
, ð14Þ

where �p is the dominant pole of the obtained

controller. In order to have equal DC gains for both

full-order and reduced order controllers, the following

should hold

�ð�̂Þ

p
¼ �CkA

�1
k ð�̂ÞBk, ð15Þ

which indicates that the knowledge of p provides the

controller gain parameter � scheduled based on �̂.
Interestingly, it was observed that in the temperature

range of SCR operation (200�–500� C) a straight line

well-represents the dependence of the DC gain � on the

scheduling parameter �̂. This will be demonstrated in

the following section.
The use of combined feedforward and feedback

control can significantly improve the closed-loop

performance over simple feedback control whenever

there is a major disturbance that can be measured

before it affects the system output. In the ideal

situation, feedforward control can completely elimi-

nate the effect of the measured disturbance on the

system output. Even when there are modelling errors,

feedforward control can often reduce the effect of the

measured disturbance on the output better than that
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achieved by feedback control by itself (Skogestad and

Postlethwaite 2005). Our objective of adding a

feedforward control as illustrated in Figure 2 is to

deal with a known disturbance, i.e. NO concentration

upstream the catalyst, rather than modelling errors.

The feedforward component of the control input is

used here to ensure that the ammonia slip reaches a

desired level at steady state. This is done using the

known disturbance input in calculating the estimate

of the coverage surface fraction �̂ as in (12). The

corresponding feedforward control to achieve the

desired objective is calculated using the following law:

uff¼
V

F

�
CNH3,desired �SCkadsð1� �̂Þþ

F

V

� �
��SCkdes�̂

�
,

ð16Þ

where CNH3,desired is the desired ammonia slip and �̂ is

the real-time estimate of the LPV parameter using (12).

3.1.1 Temperature effect on reduced order
control design

As discussed earlier, the dominant pole of the full-

order LPV output feedback controller (at a fixed

operating point) was found out to be a function of

temperature over the range of variation of the

parameter �̂. Therefore, the reduced order controller

will now be considered in the following form:

CðsÞ ¼
�ðT, �̂Þ

sþ pðT Þ
ð17Þ

and the DC gain of the controller is calculated as

�ðT, �̂Þ

pðT Þ
¼ �CkA

�1
k ð�̂ÞBk: ð18Þ

As mentioned earlier the term �CkA
�1
k ð�̂ÞBk has an

approximate affine dependency on the scheduling

parameter �̂. Therefore, we have

�CkA
�1
k ð�̂ÞBk ¼ g1ðT Þ�̂ þ g2ðT Þ ð19Þ

in which the linear characteristic changes with respect to

the operating temperature. The parameters p(T ), g1(T )

and g2(T ) are mappings that are determined offline.

Using the data generated from the simulation model, we

found out that these parameters can be estimated by

polynomials of second and third order. The algorithm

uses the exhaust gas temperature to calculate the

controller dominant pole. Further simulation studies

revealed that this dependence is logarithmic, i.e.

log pðT Þ ¼ 	0 þ 	1Tþ 	2T
2 ð20Þ

as illustrated in Figure 3 as a function of temperature.

The parameters g1(T ) and g2(T ) and their estimates

are also shown in Figure 4.
The SCR feedback control method proposed in this

article relies on the consistent and precise measurement

of NO concentration which sometimes is not a valid

assumption as NOx sensors have significant cross-

sensitivity to ammonia (Schar et al. 2006; Willems et al.

2007). The remedy for this issue can be: (i) utilising a

factory provided cross-sensitivity correction to com-

pensate for the error in the NOx sensor reading, or

(ii) the use of an estimation approach to approximate

the actual NOx concentration and ammonia cross-

sensitivity factor if a post-catalyst ammonia sensor is

available (Hsieh and Wang 2010). This issue of cross-

sensitivity is beyond the scope of this article and will

not be pursued here.

3.2 LPV state-feedback control design approach

For comparison purposes, in this section we propose to

design an LPV state-feedback controller combined

with an LPV observer to minimise the H1-norm of the

closed-loop system as the performance measure.

A benefit of this approach is the reduced design

complexity compared to the output feedback method

of Section 3.1. Considering the LPV system model

described by (9), the following state-space representa-

tion for the LPV observer is considered:

_̂x ¼ Ax̂þ B1dþ B2uþ Lð y� ŷÞ,

ŷ ¼ C2x̂,

ẑ ¼ C1x̂,

ð21Þ

450 500 550 600 650
0

100

200

300

400

500

600

R
ed

uc
ed

 o
rd

er
 c

on
tr

ol
le

r 
po

le
 lo

ca
tio

n

Operating temperature (K)

Dominant pole location
Estimated dominant pole

Figure 3. The absolute value of the temperature-varying
controller pole p(T ): solid line is the actual pole and dotted
line is the approximation using (20).
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where L is the observer gain designed such that the

error system is stable and satisfies the specified

performance criterion. Substituting u ¼ Kð�̂Þx̂ and

e ¼ x� x̂ in the above equations result in

_̂x ¼ ðAþ B2KÞx̂þ B1dþ LC2e,

_e ¼ ðA� LC2Þe:
ð22Þ

The augmented system of the plant and the observer

then becomes

_
 ¼ A
 þ Bd,

ẑ ¼ C
,
ð23Þ

where

A ¼
Aþ B2K LC2

0 A� LC2

� �
, B ¼

B1

0

� �
,

C ¼ C1 0
� �

, 
 ¼
x̂

e

� �
:

It is noted that since the disturbance term d is

measurable as discussed earlier, it has been included in

the observer state-space representation (21). The

following lemma presents a synthesis condition to

design the observer and a parameter-dependent state-

feedback controller to guarantee the closed-loop

system stability and H1-performance.

Lemma 1: For the LPV system represented by (9) with

j _�j � � and a positive scalar �, there exist an LPV

observer (21) and a state-feedback controller such that

the closed-loop system is stable and a prescribed level of

H1-performance 	 is guaranteed if parameter-depen-

dent matrices R(�)4 0, P1(�)4 0, P2(�)4 0, S(�) and
Q(�) exist that satisfy the following set of LMIs:

ATRþ RA� CT
1S

T � SC1 þ 2�R5 0, ð24Þ

AP1þB2Q

þð�Þ� _P1

� 	
LC2P2 B1 P1C

T
1

ð?Þ
AP2�LC2P2

þð�Þ� _P2

� 	
0 0

ð?Þ ð?Þ �	I 0

ð?Þ ð?Þ ð?Þ �	I

2
666666664

3
777777775
50,

ð25Þ

P1 0

0 P2

� �
4 0: ð26Þ

Then, the LPV observer gain and the feedback controller

gain are determined by

Lð�Þ ¼ R�1ð�ÞSð�Þ, ð27aÞ

Kð�Þ ¼ Qð�ÞP�11 ð�Þ: ð27bÞ

In the above formulation (�) denotes the transpose of the

terms it proceeds and (?) is used to denote the sub-

matrices lying under the main diagonal.
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Figure 4. The temperature-dependent functions g1 and g2 in (19): solid line is the actual value and dashed line is the one
approximated using a polynomial function.

122 M. Meisami-Azad et al.



Proof of the result is based on the bounded real
lemma formulation corresponding to the H1-norm of
the closed-loop system (23). To avoid the bilinear
terms in the matrix inequality associated with the
closed-loop system, a block-diagonal structure is
enforced on the Lyapunov matrix as in (26). The
algebra led to the LMIs (24) and (25) is omitted for
brevity. It is noted that due to the cross-product of the
observer gain L and the Lyapunov matrix in (25),
the LMI (24) is solved first independently to determine
the observer gain.

Remark 1: The derivative terms _P1 and _P2 in (25)
can be substituted by _Pj ¼ 	ð�

@Pj

@� Þ ( for j¼ 1, 2). The
notation 	(�) is used to indicate that both þ and �
should be included in the LMI condition since due to
the dependency of the LMI on _� affinely, it needs to be
solved only at the vertices of _�.

Remark 2: It is noted that the term 2�R in (24) is
added for placing the poles of the error system
dynamics at the left hand side of the vertical line
s¼��.

4. Simulation results

To validate our proposed control design, in this
section, we present closed-loop simulation using the
proposed LPV feedback/feedforward controllers.
Simulation and validation studies are pursued using
(i) the low-order lumped parameter model of the SCR
system (Sections 4.1 and 4.2), and (ii) a high-fidelity
numerical model of the reactions developed in GT-
POWER (Section 4.3).

4.1 Simulation results for the fixed temperature case

In order to satisfy the dual goals of maximising NO
conversion efficiency and keeping the ammonia slip at
a desired level, we chose z¼ a1x1þ a3x3 as the
controlled weighted output in the state-space repre-
sentation (9) where �1 and �3 are the weighting scalers
on the NO and NH3 concentrations, respectively. The
profile of NO concentration upstream the catalyst is
shown in Figure 5 with the temperature fixed at 573K.
For simulation purposes, measurement noise was
added to the NO measurement downstream the
catalyst. The feedforward part of the controller is
designed to keep the ammonia slip around 10 ppm.

First, we demonstrate the results of using the
designed reduced order LPV output feedback con-
troller. After solving the synthesis LMIs, the dominant
pole is determined to be at �16.5. Figure 6 shows the
dependence of the controller’s DC gain versus �̂ as
in (15). It is interesting to note that the gain appears to

be a linear function of �̂, and hence �ð�̂Þ in (14) can be
adapted in real time to changes of �̂. The determined
reduced order controller in (14) is applied to the SCR
system using the design configuration of Figure 2.
Shown in Figure 7 is the closed-loop simulation results
comparing the state-feedback, output-feedback and
sliding mode control design methods. The three plots
shown in Figure 7 correspond to NO concentration
downstream the catalyst, the released ammonia and
the injected ammonia, and illustrate the differences in
transient responses corresponding to the three con-
trollers. As observed from this figure, using LPV
output feedback, the ammonia slip of around 10 ppm is
quickly achieved due to the use of the feedforward
term resulting in the improved steady state perfor-
mance. The reduced order controller (14) is scheduled
based on the parameter �̂ as in (12). In Figure 8,
the approximation of � using (12) is shown illustrating
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Figure 5. NO concentration in SCR inlet.
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its accuracy for the estimation of the coverage ratio
to be used for control gain adaptation. Figure 7 also
includes the result of the state-feedback controller
integrated with the observer designed using Lemma 1.

Finally, we compare the proposed LPV H1-
controllers of this article with a sliding mode-based
controller described in Khalil (2002). To this end, a
nonlinear observer is designed first to estimate the
surface coverage fraction and the ammonia slip
concentration as

_̂x ¼ hðx̂, u, d Þ þ LðĈNO � CNOÞ,

where x̂ ¼ ĈNO �̂ ĈNH3

� �T
is the observer state, h is

the nonlinear model in (1), L is the observer gain vector
and CNO is the measured NO concentration down-
stream the catalyst. In Figure 7, the result of closing
the feedback loop using sliding mode control following
the approach in Upahhyay and van Nieuwstadt (2006)
and Devarakonda et al. (2008) is shown.

Next, we apply the proposed reduced order output
feedback control strategy of this article for different
exhaust temperatures. In Figure 9, we evaluate the
closed-loop system performance in terms of the NO
conversion efficiency for temperatures fixed at 573,
673, and 773K. As expected, the SCR catalyst
performs better at higher temperatures. This trend,
however, changes at very high temperatures where
ammonia oxidation limits the NOx conversion.

Finally, we compare the performance (in terms of
NO conversion efficiency) of the closed-loop systems
using the sliding mode controller, the LPV state-
feedback controller, and the reduced order LPV
feedback/feedforward controller. In the design of the
feedforward controller, the ammonia slip is kept
around 10 ppm and the NO conversion efficiency for
the three control design methods are compared in
Table 2. The following metric is used to evaluate the
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Figure 8. Surface coverage fraction estimate.
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conversion efficiency:

DeNOx ¼

P
i CNO,inðiÞ �

P
i CNO,outðiÞP

i CNO,inðiÞ
: ð28Þ

The NO concentration profile (upstream the catalyst)

used to evaluate the NO conversion efficiency is shown

in Figure 10. This emission profile corresponds to an

EPA Urban Dynamometer Driving Schedule (UDDS)

which has been developed for chassis dynamometer

testing of heavy-duty vehicles and . The basic param-

eters of the cycle are: duration of 1060 s, distance of

5.55 miles, average speed of 18.86mile/h and maximum

speed of 58mile/h. To perform a comparative study

between the transient behaviour of the three control

design methods discussed in this article, we have shown

in Figure 11 the profiles of NO concentration down-

stream the catalyst, the amount of ammonia slip and

the injected ammonia for the different control designs.

The controllers are designed to satisfy the dual

objective of keeping ammonia slip around 10 ppm

and maximising the conversion efficiency, which in this

case was calculated to be close to 85% as shown in

Table 2. As indicated in Table 2, the computation time

corresponding to the LPV output feedback controller

is considerably higher compared to other two. This is

justified due to the real-time adaptation of both

feedback and feedforward control laws with respect

to the LPV parameters.
Next, we investigate the robustness of the proposed

control design methods through a comparative study.

The described feedback control methods in this article

do not take the exhaust flow variation into account

during the design process. We will study using

simulations the effect of varying flow on different

transient performance criteria including NOx conver-

sion, injected ammonia and ammonia slip. To this

purpose, we design the controllers at a particular

exhaust flow and validate it on the plant model with

exhaust flow varying in a range from one-tenth of the

nominal flow to as much as four times the nominal

flow, for which the controllers were designed. The

comparison is depicted in Figure 12. Figure 12(a) and

(b) illustrates the comparison between the amount of

ammonia slip and the ammonia injected, respectively.

Figure 12(c) shows the NO downstream the catalyst for

the three controllers and the cases with fixed flow and

varying flows. It is noted that the sliding mode

controller gains vary with respect to the changes in

the surface coverage fraction �, whose estimate is

provided by the nonlinear observer. Hence, the sliding

mode control gains are indirectly scheduled based on

the exhaust flow, while the output feedback LPV

controller gains are scheduled in real time based on the

estimate of � from (12) that involves the exhaust flow.

This implies that even though the variation of the

exhaust flow is not considered directly in the design

process, it does alter the controller via the controller
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Table 2. Comparisons. between different control methods.

Control
strategy

DeNOx

(%)

Ammonia
slip
RMS

Injected
ammonia
RMS

Computation
time (s)

LPV state
feedback

85.67 10.23 550 0.2

Sliding mode
control

85.66 10.37 406 0.2

LPV output
feedback

85.16 10.03 358 1.5
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gain adaptation in real time. This fact explains the

comparative behaviour of the output feedback LPV

and sliding mode controllers. As observed from the

plots, the varying flow has little impact on the injected

ammonia for the state-feedback case, and this leads to

a change in the slip corresponding to this controller

due to the variation in exhaust flow. On the other

hand, both the output feedback LPV and sliding mode

controllers keep the slip at the desired level and this

explains the change in the injected ammonia for these

two controllers to adapt to the varying flow. It is worth

mentioning that compared to the other two controllers,

the LPV output feedback shows less variation in the

ammonia slip for the case of a varying exhaust flow.

The changes in the NO downstream the catalyst can be
similarly justified. Additional simulations were also
performed by changing other model parameters
including the catalyst storage capacity, and robustness
of LPV output feedback controller compared to other
two was observed. The results are not reported here
due to the space limitation.

4.2 Simulation results for the temperature-varying
case

To show the effectiveness of the proposed design
method for the temperature-varying case, we compare
the performance of the two reduced order LPV
controllers discussed in Section 3.1 for the example
considered earlier and with a temperature-varying
profile shown in Figure 13. The first controller we
design is scheduled only based on �̂ and the second one
is scheduled based on both �̂ and the exhaust
temperature T. The results are shown in Figures 14
and 15. The NO conversion efficiencies for the first and
second cases are calculated to be 61.39% and 80.52%,
respectively. Also, using the feedforward term similar
to (16) but temperature-dependent we are able to keep
the ammonia slippage around our desired value of
10 ppm by using a gain-scheduling control method.
The control inputs corresponding to the two control
methods are shown in the last subplots of Figures 14
and 15. As observed, for the temperature-varying case
the LPV controller scheduled based on only �̂ results in
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Figure 14. NO concentration downstream the catalyst, ammonia slip and injected ammonia for LPV control scheduled
only on �̂.
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a control action (injected ammonia) with a large

number of switchings between low ammonia and

high ammonia, while the LPV controller scheduled

on both �̂ and T leads to a smoother control action due

to the consideration of varying temperature in the

reduced order controller dynamics.
For the SCR qLPV model with varying tempera-

ture, there are five scheduling parameters. Using the

PCA technique described in Section 2.2, we are able to

reduce the number of parameters to only one or two

parameters. Figure 16 shows the number of required

principal components versus the fraction of total

variation. It is observed that the first principal

component captures 63% and the first two principal

components capture 93% of the model dynamics. Due

to the relatively good accuracy and lower complexity,

the model with one parameter is used for controller

design purposes. Hence, the nonlinear system is

controlled by an LPV H1-output feedback controller

that is scheduled on the reduced parameter vector �(t).
Since the model is affine in terms of �, by taking

advantage of the multi-convexity property, the con-

troller synthesis LMIs hold true for all �i 2 ½�i,
��i
 if

they hold only at the vertices (Gahinet, Apkarian, and

Chilali 1996). The parameter reduction makes the

computations very tractable in the LPV design process

since the number of LMIs to be solved depends

exponentially on the number of parameters. In

addition, the PCA method results in a model that is

affine in the reduced parameter space.
Simulation results demonstrate that the designed

full-order controller can be reduced to a first-order

parameter-varying one without significantly sacrificing
performance. The simulation results are shown in
Figure 17. The performance of the reduced order
controller gain-scheduled based on �̂ and T is
compared to that of the open-loop case in which
constant amount of ammonia (320 ppm) is injected
into the catalyst. By making use of a gain-scheduled
feedforward control law, we are able to keep the NH3

slip around 10 ppm as before. However, this is not
possible using open-loop control. Therefore, the
constant amount of injected ammonia to the open-
loop SCR system is adjusted so that the mean value of
NH3 slip remains around 10 ppm. Figure 18 shows the
contribution of feedback and feedforward in the
overall control strategy, respectively. The NO conver-
sion efficiency for the closed-loop and open-loop
systems was calculated to be 82.5% and 73.4%,
respectively.

4.3 GT-POWER simulation results

In this section, we validate the designed LPV output
feedback/feedforward control scheme depicted in
Figure 2 on a high-order computational model of
the SCR reactions using the GT-SUITE simulation
software tool. GT-SUITE (and in particular
GT-POWER, which is part of GT-SUITE) is an
engine/powertrain computational modelling platform
used for integrated simulations of an engine and a
vehicle (Gamma Technologies 2009). In this platform,
the SCR aftertreatment system can be modelled using
its corresponding reaction kinetics. This tool is used
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Figure 15. NO concentration downstream the catalyst, ammonia slip and injected ammonia for LPV control scheduled on both �̂
and T.
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in the simulations described next to obtain a better

understanding of the SCRmodel described in Section 2,

as well as to evaluate the performance of the designed

LPV controller. Subsequently, the GT model is

coupled with MATLAB/SIMULINK, in which the

control algorithm is implemented. Figure 19 shows a

schematic of the model built in GT-POWER and used

for this validation. Basically, the simulation model

consists of the following components:

. flow inlet to introduce exhaust gases and flow

outlet,
. connecting pipes,
. NO and ammonia injectors which are con-

trolled from Simulink,
. catalyst brick which defines the catalyst

geometry and cells configuration,
. surface reaction mechanisms that occur in the

SCR and the corresponding kinetics,
. NO sensors upstream and downstream the

catalyst,
. link to Matlab/Simulink,
. monitors to display signals.

General chemistry system equations for exhaust after-

treatment pipe gas flow are described by a set of

convection–reaction equations, and more specifically,

continuity equation for different species, energy

equation, momentum equation and diffusion equa-

tions. The quasi-steady solver is used for the flow

solver with the time step of 1 s. Chemistry solver is set

to backward differentiation formulae (BDF), which is

a robust differential algebraic equation solver. This

chemistry solver is the recommended solver for most

catalysts and is appropriate in handling stiff kinetics.

For this model, the catalyst is coated with vanadium

and the same parameters are used as in Table 1.
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The results of three simulations are reported here.

In the first set of simulations, we consider a constant

NO concentration and a fixed temperature of 500 ppm

and 573K, respectively. Using the reduced order LPV

output feedback control described in the previous

section, Figure 20 shows the transient NO conversion

rate, ammonia slip, and injected ammonia. It is noted

that the feedforward control is designed to achieve the

ammonia slip of 10 ppm.
The second set of simulations is performed for the

fixed temperature of 573K and a transient NO profile

as shown in Figure 10. The feedforward control is

designed so that the ammonia slip is around 25 ppm at

the steady sate. Figure 21 shows the transient NO

conversion, ammonia slip and the injected ammonia.

In the last set of simulations, we consider a transient

NO profile along with the varying exhaust temperature

as shown before in Figure 13. To simplify the control

design, we use the PCA method described in Section

2.2 for LPV parameter reduction purposes. Figure 22

depicts the NO conversion, ammonia slip, and injected

ammonia for a desired slip of 25 ppm. It is noted that

unlike the first case that led to the desired ammonia

slip, the second and third cases lead to slips that are

fluctuating around the desired value of 25 ppm.

A justification is that the lumped parameter model

used for control design purposes can capture the low-

frequency dynamics of the SCR system and hence it is

more appropriate for slowly varying perturbations

about a steady-state operation. Both feedback control

gains and feedforward controls are scheduled based
on the estimate of � given in (12) that is dependent on
both NO downstream the catalyst and exhaust
temperature. Therefore, the discrepancy between the
high-order GT-POWER model and lumped parameter
model (1) would lead to an error in the ammonia slip.
It is noted that the use of an estimator (e.g. a Kalman
filter) that takes into account the dynamics of
the surface coverage fraction can help provide a
better estimate of this parameter leading to improve-
ment in the performance in terms of the desired
ammonia slip.

5. Concluding remarks

In this article, we propose an LPV control design
method for ammonia SCR aftertreatment system in
automotive applications. The objective is to minimise
NOx emission while keeping ammonia slippage low.
Both output feedback and state-feedback LPV con-
trollers were examined and compared. The latter
method required an observer for state estimation, but
the former method only used the concentration of NO
upstream and downstream the catalyst. Eliminating the
fast modes in the full-order LPV output feedback
controller resulted in a simple first-order transfer
function gain scheduled as a function of the LPV
parameter (the surface coverage fraction). Two other
control design methods (namely sliding mode and LPV
state-feedback controllers) were also examined,

0 200 400 600 800 1000
0

200

400

600

800

N
H

3 
co

nc
en

tr
at

io
n 

(p
pm

)

Feedback contribution

0 200 400 600 800 1000
0

200

400

600

800

N
H

3 
co

nc
en

tr
at

io
n 

(p
pm

)

Time (s)

Feedforward contribution

Figure 18. Feedback and feedforward control contribution.
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Figure 19. Model of the GT-POWER simulation.
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Figure 20. GT-POWER simulations with constant temperature and NO concentration.
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simulated and compared. It was observed that the
proposed reduced order controller LPV feedback/
feedforward scheme had the ability to better handle
the dual objectives of regulating the ammonia slip and
improving the NO conversion efficiency. We also
investigated the impact of exhaust temperature on the
structure of the reduced order controller as an
additional LPV parameter. To address the complexity
of the qLPV model due to the large number of gain-

scheduling parameters, a PCA method was used as a
parameter reduction tool based on the SVD of the
collected data matrix. The use of PCA not only led to a
lower number of LPV parameters but also provided an
affine model (in terms of the reduced LPV parameters)
that significantly simplified the control design process.
Finally, a high-fidelity model of the SCR in the GT-
POWER simulation was used to investigate the
performance of the designed controllers.
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Figure 22. GT-POWER simulations with varying temperature and transient NO.
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Figure 21. GT-POWER simulations with fixed temperature and transient NO.
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