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Sampled-data H∞ filtering for linear parameter varying systems
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In this paper, we address the sampled-data filter design problem for continuous-time linear parameter-varying (LPV) systems.
The filtering error system obtained from augmenting a continuous-time LPV system and the sampled-data filter is a hybrid
system. The sampled-data filter design objective is to ensure the error system stability and a prescribed level of the induced
energy-to-energy gain (or H∞ norm) from the disturbance input to the estimation error. To this purpose, we employ a lifting
method to derive an equivalent discrete-time LPV representation for the continuous-time LPV system. In the present study,
the sampled-data filter synthesis conditions are formulated in terms of linear matrix inequality optimisation problems. The
viability of the proposed design method to cope with variable sampling rates is illustrated through numerical examples,
where reliable estimation of the LPV system outputs is achieved.
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1. Introduction

Filters utilise the output measurements of a dynamic system
to estimate the states or a linear combination of the states of
the system. The performance of a filter is often assessed in
terms of a measure of the state estimation error that is the
difference between the actual and the estimated state. The
literature on various versions of Kalman filtering technique
is rich (see, e.g. Grewal and Andrews 2001; Eubank 2006).
Using the statistical information of the exogenous distur-
bance input of the system, the Kalman filter minimises the
variance of the state estimation error. In contrast, when the
statistical information is unknown, theH∞ filtering method
can be proposed to minimise the energy of the estimation
error signal for the worst bounded energy disturbance in-
put (Nagpal and Khargonekar 1991; Geromel, Bernussou,
Garcia, and Oliveria 2000). Other performance measures
such as energy-to-peak gain, peak-to-peak gain or a combi-
nation of these objectives from the disturbance input to the
estimation error signal can be also utilised for the filtering
design problem (Skelton, Iwasaki, and Grigoriadis 1998).

Among several factors that affect the search for im-
proved filter design strategies, one can mention the chal-
lenges posed by signal recovery and estimation under
time-varying dynamics. Recently, linear parameter-varying
(LPV) systems theory has led to significant steps forward in
the study of time-varying systems. LPV systems constitute
a class of linear time-varying systems whose dynamics de-
pends on time-varying parameters, also known as schedul-
ing parameters. When such parameters are available in real
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time, they can be employed for control and filter synthesis
purposes resulting in less conservative conditions compared
to fixed robust controllers and filters (Rugh and Shamma
2000). In addition, within the framework of quasi-LPV, we
can model a large class of nonlinear systems as LPV sys-
tems. In a quasi-LPV system, the scheduling parameters
are not only a function of exogenous signals but also of
the system states. Some of the recent studies in this area
have addressed the filter design problem in LPV systems,
especially in the continuous-time domain. In Mahmoud and
Boujarwah (2001), the H∞ filtering problem for a class of
polytopic LPV systems is considered. The design of fault
detection and isolation filters for LPV systems has been an-
other area of interest for researchers (see, e.g. Abdalla,
Nobrega, and Grigoriadis 2001; Grenaille, Henry, and
Zolghadri 2008). In addition, the authors in Mohammad-
pour and Grigoriadis (2008) addressed mixedH2/H∞ filter
design for LPV systems, where the system contains delay
in the states. While the aforementioned references examine
the LPV filter design problem in continuous-time domain,
our main concern in this paper is to develop an LPV filter
design method that is implemented in discrete time.

In the past few decades, advances in computing devices
has led to efficient ways to digitally implement controllers
and filters for continuous-time physical systems (Chang,
Tsai, and Shieh 2002). Digital implementation of the filters
results in a mixture of continuous-time and discrete-time
signals and systems forming a hybrid dynamical system.
In a typical hybrid process, the measurable output signals
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are periodically sampled with an analog-to-digital (A/D)
converter. Then, the digitised outputs are processed using
a digital device (controller or filter) and fed to the plant
after being converted to analog signals through a digital-
to-analog (D/A) converter. Due to the aforementioned hy-
brid nature of the system, there has been a need to adapt
the continuous-time filtering theory to capture this level
of complexity. The issue of digital implementation has
been studied primarily within the area of digital control
theory. Therein, the existing methods only approximately
cope with the behaviour of the continuous-time signals
in the control system since the behavior of such systems
can be captured and studied only at the sampling instants
(Yamamoto 1990; Franklin, Powell, and Workman 1997).
In contrast to the traditional approaches, sampled-data con-
trol theory provides an exact solution method for the anal-
ysis and synthesis of sampled-data control systems with
the inter-sample behavior taken into account (Chen and
Francis 1995). Within this context, Bamieh and Pearson
(1992) presented a framework to design an H∞ controller
for sampled-data systems. Using a lifting technique, they
solved the sampled-data control problem in terms of an
equivalent discrete-time system, where the plant is aug-
mented with the sampler and hold devices and is lifted to
a system with a finite-dimensional state-space representa-
tion and with infinite-dimensional input and output spaces
(see Yamamoto 1990; Chen and Francis 1995). The lifting
technique was shown to preserve the input–output energy-
to-energy gain of the closed-loop hybrid system. Tan and
Grigoriadis (2000) and Tan, Grigoriadis, and Wu (2002)
used the idea of lifting technique and applied it to the LPV
sampled-data systems, where they solved energy-to-energy
and energy-to-peak gain problems to design state feedback
and output feedback controllers. A benefit of this formu-
lation is that the sampling interval can be varying as a
function of the scheduling parameters. This is the case in
event-sampling systems, such as engines where the sam-
pling interval is a function of the engine speed. There have
also been some additional recent efforts on sampled-data
control design for LPV systems (see, e.g. Lawrence 2001;
Farret, Duc, and Harcaut 2002).

The lifting method essentially maps the hybrid system
to the discrete-time domain in an equivalent representation.
As an alternative method, Fridman, Seuret, and Richard
(2004) introduced a sampled-data H∞ control and filtering
methodology that maps the hybrid system to the continuous-
time domain (see also Fridman, Shaked, and Suplin 2005;
Suplin, Fridman, and Shaked 2007, 2009). In this approach,
the digital control law is represented as a delayed control
and thus the augmentation of the plant and the controller
(or the filter) leads to a state-delay system. Comparing
the two approaches described above, the lifting method is
more cumbersome but results in an improved performance,
while the input delay approach is more conservative due
to the introduction of delay to the system. In addition, the

input delay method can be extended for systems with intrin-
sic delay, as well as uncertain sampling times or uncertain
system matrices.

The contribution of the present paper is as follows. We
employ the lifting method to synthesise a discrete-time fil-
ter for a continuous-time LPV system. In that aspect the
obtained discrete-time filter captures the inter-sample be-
havior of the system. The corresponding synthesis condi-
tions to guarantee energy-to-energy (or H∞) performance
objective on the filtering error are formulated in terms
of linear matrix inequalities (LMIs). To this purpose, we
assume that the scheduling parameters of the LPV sys-
tem are piecewise constant. A simplified version of this
work has appeared in Ramezanifar, Mohammadpour, and
Grigoriadis (2012), wherein the lifting of the original LPV
plant was performed approximately.

The notation used in this paper is standard. R denotes
the set of real numbers. R

n and R
n×n denote the set of real

vectors of dimension n and the set of real n × n matrices,
respectively. Given a symmetric matrix X = XT ∈ R

n×n,
X > 0 (X ≥ 0) denotes matrix positive definiteness (semi-
definiteness). The notation (·)T denotes the transpose of
a real matrix. Given a real n × m matrix Y with rank
r, the orthogonal complement Y⊥ is defined as the (n −
r) × n matrix that satisfies Y⊥Y = 0 and Y⊥Y⊥� > 0.
The L2[a, b] norm of a continuous-time signal is defined
as ‖f ‖L2[a,b] = (

∫ a

b
|f (t)|2)

1
2 . The space of the time se-

ries with a finite L2[a, b] norm is called the signal space
L2[a, b]. The l2 norm of a discrete signal is defined as
‖f ‖l2 = (

∑∞
k=0 |f (k)|2)

1
2 . Finally, (·)∗ denotes the adjoint

of an operator on the Hilbert space.
The paper is organised as follows. Section 2 presents

the problem statement. In Section 3, we present the lift-
ing method employed to find an equivalent discrete-time
LPV state-space representation of a continuous-time LPV
system. Next, we propose a solution to the LPV sampled-
data filtering problem by designing a discrete-time LPV
filter for the discrete-time LPV system obtained using the
lifting method. As an alternative solution, in Section 4,
we describe the conventional procedure to first design a
continuous-time filter and then discretise the designed filter
using a discretisation method. Section 5 illustrates the pro-
posed LPV sampled-data filtering design using a numerical
example. We also present the results of comparative studies
between the LPV sampled-data design and the approximate
discretisation. Section 6 concludes the paper.

2. Problem statement

Consider a stable nth-order LPV system with the following
state-space representation

ẋ(t) = A(ρ(t))x(t) + B1(ρ(t))w(t)

z(t) = C1(ρ(t))x(t) + D11(ρ(t))w(t)

y(t) = C2(ρ(t))x(t), (1)
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Figure 1. The block diagram of the hybrid system.

where x(t) ∈ R
n is the state vector, z(t) ∈ R

nz is the signal
to be estimated, y(t) ∈ R

ny is the measured output vector
and w(t) ∈ R

nw is the disturbance vector containing pro-
cess noise. The system matrices A(·), B1(·), C1(·), D11(·)
and C2(·) are real continuous functions of a time-varying
parameter vector ρ(t) and of appropriate dimensions. It is
assumed that the parameter vector is bounded piecewise
constant. We first describe the sampling scenario we con-
sider in this study. We assume time intervals [0, t1), [t1, t2),
. . . , [tk, tk + 1), . . . that are not necessarily equi-spaced with
tk’s being the sampling instants. For the sake of brevity,
throughout this paper, k will be used to represent tk, and
the length of the kth interval will be represented by τ k, i.e.
τ k = tk + 1 − tk.

Next, we consider an nth-order discrete-time parameter-
varying filter F described by the following state-space rep-
resentation

xF (k + 1) = AF (ρ(k))xF (k) + BF (ρ(k))y(k)

zF (k) = CF (ρ(k))xF (k) + DF (ρ(k))y(k), (2)

where xF(k), y(k) and zF(k) represent the discrete-time filter
state vector, the discrete samples of measurement data, i.e.
y(k) = y(tk) and the filter output, respectively. All the sys-
tem matrices are defined to be of appropriate dimensions. In
the aforementioned filter structure, not only the measured
output signal y(t) is sampled, but also the parameter vector
ρ(t) is sampled synchronously at tk (for k = 0, 1, 2, . . .).
Using zF(k), we build a continuous-time stepwise signal
ẑ(t) as ẑ(t) = zF (k) for tk ≤ t < tk + 1 in order to estimate
the signal z(t) in Equation (1). The filter design problem
described above is a hybrid filtering problem, where the
physical system has a continuous dynamics, while the fil-
ter to estimate the plant output is implemented in a digital
computer. Figure 1 shows the configuration of the hybrid
system under study, the interconnection of the open-loop
continuous-time system and the discrete-time filter, along
with the signal conversion devices. We assume in this paper
that the A/D converter is an ideal sampler, the D/A converter
is a zero-order hold and that the quantisation errors are ne-
glected. In Figure 1, the dependency of the converters on
the parameter ρ(tk) remarks that sampling and holding fre-
quency is not necessarily constant and may vary arbitrarily
according to the exogenous parameter(s). It is noted that,
in a typical LPV system, the parameter vector ρ(t) varies
continuously and is assumed to be measurable in real time,

Figure 2. Estimation error system.

i.e. the parameter space is

Fv
P ≡ {ρ : ρ(t) ∈ C(R, R

s) : ρ(t) ∈ P, |ρ̇i(t)| ≤ vi

i = 1, 2, . . . , s ∀t ∈ R+}, (3)

where C(R, R
s) is the set of continuous-time functions from

R to R
s , P is a compact set of R

s and {vi}si=1 are nonneg-
ative numbers. However, according to the configuration in
Figure 1, in the current study we can measure it only at sam-
pling instants. Therefore, we assume that in the continuous-
time system, the parameter vector does not change in
between two consecutive samples. Hence, the set of all
admissible trajectories for the parameter vector ρ(t) in
Equation (1) is defined as

Ev
P � {ρ : ρ(t) ∈ P, ρ(tk + t) = ρ(tk), |ρi(tk+1) − ρi(tk)|

≤ vi, k ∈ Z
+, i = 1, 2, . . . , s ∀t ∈ [0, τk).}. (4)

Although this assumption seems restrictive, but it is valid in
many practical systems, where during the sampling instants,
the parameter changes are insignificant and without the loss
of generality, it could be neglected.

Figure 2 shows the estimation error defined as e(t) =
z(t) − ẑ(t) along with the filtering problem configuration
where P and F are the plant and filter, and S and H are sam-
pling and holding devices, respectively. For the error sys-
tem that relates the disturbance signal w(t) to the estimation
error signal e(t), the induced L2-gain (or the H∞-norm) is
defined as

‖Twe‖i,2 = sup
ρ∈Ev

P

sup
w∈L2−{0}

‖e‖L2

‖w‖L2

, (5)

where Twe is the operator mapping the disturbance w(t) to
the estimation error e(t). This quantity, also known as the
energy-to-energy gain of the augmented system, indicates
the worst case output energy ‖e‖L2 over all bounded energy
disturbances ‖w‖L2 for all admissible parameter vectors
ρ(t) ∈ Ev

P . In this paper, we aim to design the filter F so
that the following conditions are satisfied:

• The filtering error system is asymptotically stable,
and

• The energy-to-energy gain of the filtering error sys-
tem is minimised, i.e.

min
F

‖Twe‖i,2. (6)
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Instead of the optimal design problem (6), one can solve
the γ -suboptimal energy-to-energy gain problem, in which
a filter F is sought such that

‖Twe‖i,2 < γ, (7)

where γ is a given positive scalar. If the inequality (7) holds
true, then the estimation error energy will be bounded by
γ ‖w‖L2 for any nonzero disturbance w(t) with bounded
energy. That is, as long as w(t) ∈ L2 − {0}, regardless of
its nature, the energy of the error signal does not exceed a
specific bound.

Remark 1: In this paper, we only consider the full-order
filter design problem, where the filter has the same order as
the plant. It is, however, noted that the results presented in
this paper can be extended to design reduced-order filters as
well, using the approach in Grigoriadis and Watson (1997).

Remark 2: It is noted that in Equation (1), we assume there
is no feed through matrix D21 influencing the measurement
signal y(t) in order for the sampling operator to be well
defined (Bamieh and Pearson 1992). This is not a restrictive
assumption and when it is not the case, we can cascade y(t)
with a strictly proper filter to relax this requirement.

Preceding to the discussion and for further justification, we
slightly change the aforementioned filtering problem, where
we convert the configuration of the filtering problem to the
well-known control design problem. This is done so that
we can benefit from the existing techniques developed for
sampled-data control design. Figure 3(a) illustrates the new
configuration. In this arrangement, we construct a new plant
in which e(t) = z(t) − ẑ(t) is the signal to be controlled and
ẑ(t) is the control input. The state-space representation of
the new augmented plant Q in Figure 3(a) is

ẋ(t) = A(ρ(t))x(t) + B1(ρ(t))w(t)

e(t) = C1(ρ(t))x(t) + D11(ρ(t))w(t) + D12(ρ(t))ẑ(t)

y(t) = C2(ρ(t))x(t), (8)

where D12 = −I. The main reason for this rearrangement
will be described in the following section. Next, we have to
augment the sample and hold devices with the plant Q so
that we can employ the so-called lifting technique. To this
purpose, we form a new plant G by augmenting the system
Q and the sample and hold devices as shown in Figure 3(b)
described by

ẋ(t) = A(ρ(t))x(t) + B1(ρ(t))w(t)

e(t) = C1(ρ(t))x(t) + D11(ρ(t))w(t) + D12(ρ(t))zF (k)

y(k) = C2(ρ(tk))x(tk). (9)

It is important to note that using this configuration the effect
of both converters is directly taken into account within the
design process. A simpler approach to solve the sampled-
data filtering problem without casting it into the control
design problem has been addressed by Ramezanifar et al.
(2012); however, that is not as accurate as the one proposed
in this paper since only the sampling device is augmented
with the plant before the lifting technique is applied.

3. Solution to the hybrid filtering problem

In this section, we first describe the lifting method that we
will use in this paper to discretise a continuous-time system.

3.1. Discretising using lifting technique

We consider a signal f (t) ∈ L2[0,∞). By signal lifting,
we mean breaking f(t) into the intervals [0, t1), [t1, t2),
. . . , [tk, tk + 1), . . . and constructing a sequence of signals
denoted by fk(t), whose elements are defined as fk(t) =
f(tk + t) for 0 ≤ t < tk + 1 − tk or equivalently 0 ≤ t
< τ k. Collecting all the elements in a vector, we define
f = [. . . , f−1(t), f0(t), f1(t), . . .]T . It is evident that each
element fk(t) belongs to L2[0, τk]. Next, we consider the
continuous-time LPV system G as illustrated in Figure 3(b).
One can think of G as an operator acting on the input pair
w(t) and zF(k) to provide the output pair e(t) and y(k). The
lifting of the system G is the process of finding an operator

Figure 3. (a) Describing the filter in control configuration. (b) Augmenting the sample and hold devices.
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Figure 4. The lifted sampled-data system.

denoted by G that maps the lifted signal [wT , zF (k)T ]T to
the lifted signal [eT , y(k)T ]T as depicted in Figure 4, in the
sense that both systems have equivalent closed-loop H∞
norm.

Next, we derive the state-space realisation describing
the lifted system G. The integral solution to the state-space
representation (9) is

x(tk + t) = �(tk + t, tk)x(tk)

+
∫ tk+t

tk

�(tk + t, s)B1(ρ(s))w(s)ds (10)

for t ∈ [0, τ k), where �(t2, t1) = exp (
∫ t2
t1

A(ρ(ξ ))dξ ) (for 0
≤ t1 ≤ t2 < τ k) is the corresponding state transition matrix.
Since we have assumed the parameter space is piecewise
constant, the state transition matrix becomes �(tk + t, tk) =
exp (A(ρ(tk))τ k). Thus, if we change the integral variable
and use the lifted signal definition, Equation (10) can be
simplified as

xk(t) = eA(ρ(tk ))t xk(0) +
∫ t

0
eA(ρ(tk ))(t−s)B1(ρ(tk))wk(s)ds

for t ∈ [0, τ k). Note that xk(t) = xk + 1(0) for t = τ k. Similarly,
the lifted output signal is

ek(t) = C1(ρ(tk)){eA(ρ(tk ))t xk(0)

+
∫ t

0
eA(ρ(tk ))(t−s)B1(ρ(tk))wk(s)ds}

+D11(ρ(tk))wk(t) + D12(ρ(tk))zF (k),

and

yk(0) = C2(ρ(tk))xk(0).

Finally, we can represent the state-space realisation of G,
i.e. the lifted version of G, as

xk+1(0) = Ad (ρ(k))xk(0) + B1(ρ(k))wk(s)

ek(t) = C1(ρ(k))xk(0) + D11(ρ(k))wk(s)

+D12(ρ(k))zF (k)

yk(0) = C2(ρ(k))xk(0), (11)

where Ad = eA(ρ(tk ))τk and

B1 : L2[0, τk] → R
n, B1wk

=
∫ τk

0
eA(ρ(tk ))(τk−s)B1(ρ(tk))wk(s)ds,

C1 : R
n → L2[0, τk], (C1xk)(t) = C1(ρ(tk))eA(ρ(tk ))t xk,

D11 : L2[0, τk] → L2[0, τk], (D11wk)(t)

= C1(ρ(tk))
∫ t

0
eA(ρ(tk ))(t−s)B1(ρ(tk))wk(s)ds

+D11(ρ(tk))wk(t). (12)

The lifted system (11) has infinite-dimensional input and
output spaces but its state-space realisation is finite-
dimensional with the dimension equal to that of the original
system. The question is now how to describe this system
using a discrete-time LPV model such that the stability
and an upper bound on the H∞ norm of the closed-loop
system is preserved. Indeed, at this stage we seek for the
lifted system’s state-space matrices that would be imple-
mented in discrete time by sampling the input vector and
parameter signals at discrete-time instants. This equivalent
discrete-time system is determined to be

xd (k + 1) = Add (ρ(k))xd (k) + B1d (ρ(k))wd (k)

+B2d (ρ(k))zF (k)

ed (k) = C1d (ρ(k))xd (k) + D12d (ρ(k))zF (k)

yd (k) = C2(ρ(k))xd (k), (13)

with the matrices Add and B1d given by

Add = Ad + B1D
∗
11(γ 2I − D11D

∗
11)−1C1

B2d = B1D
∗
11(γ 2I − D11D

∗
11)−1D12. (14)

In addition, the matrices B1d, C1d and D12d are given by

B1dB
T
1d = γ 2B1(γ 2I − D∗

11D11)−1B∗
1[

CT
1d

DT
12d

][
C1d D12d

] = γ 2

[
C∗

1
D∗

12

]
(γ 2I − D11D

∗
11)−1

× [
C1 D12

]
. (15)

The following theorem states the equivalence of the
initial hybrid LPV system and the lifted discrete-time LPV
system with respect to stability and energy-to-energy gain.

Theorem 3.1: Consider two dynamical systems, one of
which is formed by the interconnection of the continuous-
time system (9) with the sampled-data system (2), and sec-
ond one is formed by interconnecting the discrete-time sys-
tem (13) with Equation (2). The following statements are
equivalent provided that ‖D11‖L2[0,τk ) < γ .
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• The former system is stable and has the energy-to-
energy gain less than γ .

• The latter system is stable and has the energy-to-
energy gain less than γ .

Proof: Please refer to Chen and Francis (1995).
In order to apply Theorem 3.1, the L2[0, τk) induced

gain of D11, as well as several other operator compositions
must be evaluated. For a complete discussion on the eval-
uation of these operators, the reader is referred to Chen
and Francis (1995), where the design for the LTI case
has been addressed. As a quick reference, the procedure
for evaluating the aforementioned operators is presented in
Appendix.

Using the lifted LPV discrete-time system (13), the
next step is to design a discrete-time parameter-dependent
filter represented by Equation (2). We discuss the design
procedure in the following section.

3.2. Discrete-time filter design for discrete-time
LPV systems

In this section, we consider an LPV system represented by
Equation (13), where the objective is to design a discrete-
time system F described by the state-space representation
(2) such that the energy-to-energy gain from the disturbance
wd to the estimation error ed is less than γ with γ being a
given positive scalar. First, we present preliminaries in the
form of two lemmas that are required for the discussions in
this section. For a proof of the two lemmas, the interested
reader is referred to Skelton et al. (1998).

Lemma 3.2: Consider a stable discrete-time LPV system
represented by

xd (k + 1) = Ad (ρ(k))xd (k) + Bd (ρ(k))wd (k)

yd (k) = Cd (ρ(k))xd (k),

and let γ be a given positive scalar. Then, the energy-to-
energy gain of the system from wd to yd is less than γ if
and only if there exists a parameter-dependent symmetric
positive definite matrix P(ρ(k)) such that

[
Ad (ρ(k)) Bd (ρ(k))
Cd (ρ(k)) 0

]T [
P (ρ(k)) 0

0 I

]

×
[

Ad (ρ(k)) Bd (ρ(k))
Cd (ρ(k)) 0

]
<

[
P (ρ(k − 1)) 0

0 γ 2I

]
.

Lemma 3.3: Consider the matrices �, �, 	 and a symmet-
ric matrix R. There exists a matrix F such that the quadratic
matrix inequality

(	 + �F�)T R(	 + �F�) < Q (16)

has a solution if and only if the following conditions hold
true

�T ⊥(Q − 	T R	)�T ⊥T > 0 (17)

�⊥(R−1 − 	Q−1	T )�⊥T > 0. (18)

In this case, all the possible solutions for the matrix F
are parameterised by

F = −
�T R	��T (���T )−1 + �1/2L(���T )−1/2,

(19)

where L is an arbitrary matrix such that ‖L‖ < 1 and

� = (Q − 	T R	 + 	T R�
�T R	)−1

� = 
 − 
�T R	(� − ��T (���T )−1��)	T R�



 = (�T R�)−1.

The following theorem gives the solution to the problem
mentioned at the beginning of this section.

Theorem 3.4: For a given positive scalar γ , there exists
an nth-order system F represented in state-space form by
Equation (2) to make the energy-to-energy gain of the sys-
tem (13) from wd to ed less than γ , if and only if there exist
parameter-dependent matrices X > 0 and Y > 0 such that
for all admissible parameters, there is a feasible solution to
the set of LMIs

CT ⊥
2

(
Y (ρ(k − 1)) − AT

ddY (ρ(k))Add

−CT
1dC1d

)
CT ⊥T

2 > 0, (20)

[
B2d

D12d

]⊥([
X(ρ(k)) 0

0 γ 2I

]
−

[
Add B1d

C1d 0

]T

×
[

X(ρ(k − 1)) 0
0 I

][
Add B1d

C1d 0

])[
B2d

D12d

]⊥T

> 0,

(21)

and [
Y (ρ(k)) γ I

γ I X(ρ(k))

]
≥ 0. (22)

Proof: To solve the γ -suboptimal H∞ design problem,
we first examine the closed-loop representation of systems
(13) and (2) (where y(k) and yd(k) are the same). Defining
x̄d (k) = [xT

d (k), xT
F (k)]T , we have

x̄d (k + 1) = (Ā + B̄FM̄)x̄d (k) + D̄wd (k)

ed (k) = (C̄ + H̄FM̄)x̄d (k),
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where

Ā =
[

Add (ρ(k)) 0
0 0

]
, B̄ =

[
B2d (ρ(k)) 0

0 I

]

M̄ =
[

C2(ρ(k)) 0
0 I

]
, D̄ =

[
B1d (ρ(k))

0

]
C̄ = [

C1d (ρ(k)) 0
]
, H̄ = [

D12d (ρ(k)) 0
]
.

In addition, the matrix F defined by

F =
[

DF (ρ(k)) CF (ρ(k))
BF (ρ(k)) AF (ρ(k))

]
(23)

includes the unknown matrices corresponding to the filter
state-space representation. Next, we use Lemma 3.2 as the
LMI-based condition to ensure that there is a solution to
the γ -suboptimal filtering problem. The lemma states that
there exists a γ -suboptimal LPV filter if and only if there
exists a parameter-dependent matrix P(ρ(k)) > 0 such that

[
Ā + B̄FM̄ D̄

C̄ + H̄FM̄ 0

]T [
P (ρ(k)) 0

0 I

]

×
[

Ā + B̄FM̄ D̄

C̄ + H̄FM̄ 0

]
<

[
P (ρ(k − 1)) 0

0 γ 2I

]
.

Next, we use Lemma 3.3 to determine a set of LMI condi-
tions to ensure the existence of the filter F. The associated
matrices are determined to be

	 =
[

Ā D̄

C̄ 0

]
, � =

[
B̄

H̄

]
=

⎡
⎣ B2d 0

0 I

D12d 0

⎤
⎦,

� = [
M̄ 0

] =
[

C2 0 0
0 I 0

]
(24)

R =
[

P (ρ(k)) 0
0 I

]
,Q =

[
P (ρ(k − 1)) 0

0 γ 2I

]
. (25)

It can be verified that

�⊥ =
[[

B2d

D12d

]⊥
0

]⎡
⎣ I 0 0

0 0 I

0 I 0

⎤
⎦,

�T ⊥ = [
CT ⊥

2 0 0
]⎡⎣ I 0 0

0 0 I

0 I 0

⎤
⎦. (26)

Next, we partition P as

P (ρ(k)) =
[

Y (ρ(k)) Y12(ρ(k))
Y T

12(ρ(k)) Y22(ρ(k))

]
. (27)

Then, the solvability condition (17) leads to the LMI (20).
In addition, the solvability condition (18) leads to a matrix
inequality problem, in which the matrix P−1 appears. Then,
applying the congruence transformation T = diag(γ I, γ I )
and introducing

γ 2P −1(ρ(k)) =
[

X(ρ(k)) X12(ρ(k))
XT

12(ρ(k)) X22(ρ(k))

]

leads to Equation (21). The (1,1) entries of the two matrices
P and P−1 are related through

Y − γ 2X−1 = Y12Y
−1
22 Y T

12 ≥ 0, (28)

which implies that

Y (ρ(k)) − γ 2X−1(ρ(k)) ≥ 0,

or equivalently the LMI (22).

Remark 1: It is noted that the inequality conditions in
Theorem 3.4 are parameterised LMIs. To solve this infinite-
dimensional LMI problem, we initially pick some basis
functions to represent the dependency of the matrix vari-
ables on the LPV parameters, e.g. by selecting first-order
polynomials as

X = X0 + ρX1, Y = Y0 + ρY1. (29)

Next, the set of LMI problem is solved to determine X0, X1,
Y0 and X1 at the selected grid points. The results are finally
checked on a finer grid.

Remark 2: It is important to note that in Theorem 3.4,
the matrix inequalities (20), (21) and (22) are not linear
in terms of γ , since the associated matrices Add, B1d, B2d,
C1d and D12d obtained from (14) and (15) are themselves
dependent on γ . So, in order to find the optimum γ , we
decrease γ successively in a loop and solve the feasibility
problem of the LMIs (with Add, B1d, B2d, C1d and D12d

updated accordingly). The search is terminated as soon as
the set of LMIs become infeasible.

Remark 3: At each sampling instant, the set of LMIs de-
pends on the LPV parameter vector at both kth and (k − 1)th
samples. Hence, there is a need to store parameters during
the design process. One can also replace ρ(k − 1) by r(k)
in the corresponding LMIs and treat it as a new parameter
vector r ∈ Ev

P . In this case, the feasibility or optimisation
problem corresponding to the sampled-data filter design
should be solved over the new parameter space Ev

P × Ev
P .

After solving the LMIs associated with Theorem 3.4
offline, the filter matrices (23) are determined at each sam-
pling instant as following:

Step 1: The scheduling parameter ρ is measured.
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Step 2: For a predetermined value of γ and the current
value of ρ, the discrete-time system matrices in Equation
(13) are updated, using the process given in Appendix.

Step 3: The matrices 	, � and � in (24) are determined.
Using X0, X1, Y0 and Y1, from Equation (29) X and Y
are calculated. Once X and Y are calculated, Y12 and Y22

can be determined from the factorisation problem (28)
using singular value decomposition.

Step 4: Next, P is found from Equation (27) and subse-
quently R and Q in Equation (25) are determined.

Step 5: Finally, F is obtained from Equation (19). By parti-
tioning matrix F, the filter matrices AF, BF, CF and DF

are then obtained from Equation (23).

4. Continuous-time LPV filter discretisation

A conventional solution to the sampled-data filter problem
is to design a continuous-time LPV filter for the continuous-
time LPV plant and then apply a standard discretisation
method to find a discrete-time representation of the filter.
In this section, we present the LMI-based conditions to de-
sign a continuous-time filter for a given continuous-time
LPV system. Then, we discuss the use of trapezoidal ap-
proximation method to discretise the designed filter. We
first present two lemmas that are important in the proof of
the main results of this section. For more details, please
refer to Skelton et al. (1998).

Lemma 4.1: Consider a stable continuous-time LPV sys-
tem represented by

ẋ(t) = A(ρ(t))x(t) + B(ρ(t))w(t)

y(t) = C(ρ(t))x(t) + D(ρ(t))w(t)

and let γ be a given positive scalar. Then energy-to-energy
gain of the system from w to y is less than γ if and only
if there exists a parameter-dependent symmetric positive
definite matrix P(ρ(t)) that satisfies the following matrix
inequality

⎡
⎣ Ṗ (ρ) + P (ρ)A(ρ) + AT (ρ)P (ρ) P (ρ)B(ρ) CT (ρ)

BT (ρ)P (ρ) −γ 2I DT (ρ)
C(ρ) D(ρ) −I

⎤
⎦

< 0

Lemma 4.2: Consider the matrices �, �, 	 and a symmet-
ric matrix R. There exists a matrix F such that the quadratic
matrix inequality

�F� + (�F�)T + 	 < 0 (30)

has a solution if and only if the following conditions hold
true

�⊥	�⊥T < 0 (31)

�T ⊥	�T ⊥T < 0. (32)

In this case, all the possible solutions for the matrix F are
parameterised by

F = −R−1�T ��T � + 

1
2 L�

1
2 , (33)

where �, R and L are free parameters satisfying

� = (�R−1�T − 	)−1 > 0, R > 0, ‖L‖ < 1

and � and � are defined by


 = R−1 − R−1�T (� − ��T ���)�R−1

� = (���T )−1.

4.1. Procedure for the design of continuous-time
filters for LPV systems

Considering the LPV system represented by Equation (1),
we define a continuous-time filter F described by the fol-
lowing state-space representation

ẋF (t) = AF (ρ(t))xF (t) + BF (ρ(t))y(t)

ẑ(t) = CF (ρ(t))xF (t) + DF (ρ(t))y(t). (34)

The design objective is to ensure that the energy-to-energy
gain from the disturbance w to the estimation error e be-
comes less than γ , where γ is a given positive scalar and
the estimation error is defined as e(t) = z(t) − ẑ(t). The
following theorem gives the solution to this problem.

Theorem 4.3: For a given positive scalar γ , there exists an
nth-order filter (34) to solve the γ -suboptimal continuous-
time filtering problem if and only if there exist parameter-
dependent matrices X > 0 and Y > 0 such that for all
admissible parameters, there is a feasible solution to the set
of LMIs[

Ẋ(ρ) + A(ρ)X(ρ) + X(ρ)AT (ρ) B1(ρ)
BT

1 (ρ) −γ 2I

]
< 0, (35)

[
CT ⊥

2 (ρ) 0
0 I

]

×
[

Ẏ (ρ) + Y (ρ)A(ρ) + AT (ρ)Y (ρ) C1(ρ)
CT

1 (ρ) −I

]

×
[

CT ⊥
2 (ρ) 0

0 I

]T

< 0, (36)

and

Y (ρ(t)) ≥ X(ρ(t)). (37)
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Proof: Defining x̄(t) = [xT (t), xT
F (t)]T , the estimation er-

ror dynamics is given by

x̄(t) = (Ā + B̄FM̄)x̄(t) + D̄w(t)

e(t) = (C̄ + H̄FM̄)x̄(t) + Ēw(t), (38)

where

Ā =
[

A(ρ(t)) 0
0 0

]
, B̄ =

[
0 0
0 I

]
,

M̄ =
[

C2(ρ(t)) 0
0 I

]
,

D̄ =
[

B1(ρ(t))
0

]
, C̄ = [

C1(ρ(t)) 0
]
,

H̄ = [−I 0
]
, Ē = D11

and

F =
[

DF (ρ(t)) CF (ρ(t))
BF (ρ(t)) AF (ρ(t))

]
. (39)

Next, we apply Lemma 4.1 to the augmented system (38)
to obtain

[
Ṗ + P (Ā + B̄FM̄) + (Ā + B̄FM̄)T P P D̄ (C̄ + H̄FM̄)T

D̄T P −γ 2I ĒT

C̄ + H̄FM̄ Ē −I

]
< 0.

This matrix inequality can be cast in the form of (30) with

� =
⎡
⎣P B̄

0
H̄

⎤
⎦,� = [

M̄ 0 0
]
,

	 =
⎡
⎣ Ṗ + PĀ + ĀT P P D̄ C̄T

D̄T P −γ 2I ĒT

C̄ Ē −I

⎤
⎦. (40)

One can readily obtain that

�⊥ =
⎡
⎣

[
B̄

H̄

]⊥
0

0 I

⎤
⎦

⎡
⎣P −1 0 0

0 0 I

0 I 0

⎤
⎦,

�T ⊥ =
[

M̄T ⊥ 0 0
0 0 I

]
,

where

[
B̄

H̄

]⊥
= [

I 0 0
]
, M̄T ⊥ = [

CT ⊥
2 0

]
.

Before we proceed to apply the solvability conditions in
Lemma 4.2, we partition P(ρ(t)) and P−1(ρ(t)) as

P (ρ(t)) =
[

Y (ρ(t)) Y12(ρ(t))
YT

12(ρ(t)) Y22(ρ(t))

]
,

P −1(ρ(t)) =
[

X(ρ(t)) X12(ρ(t))
XT

12(ρ(t)) X22(ρ(t))

]
. (41)

The solvability condition (31) becomes

Ẋ(ρ) + A(ρ)X(ρ) + X(ρ)AT (ρ) + 1

γ 2
B1(ρ)BT

1 (ρ) < 0.

Applying the Schur complement on the above inequality
yields (35). In addition, the (1, 1) entries of the two matrices
P and P−1 are related through

Y − X = Y12Y
−1
22 Y T

12 ≥ 0 (42)

that yields (37). Once the matrices X and Y are found, the
matrices Y12 and Y22 can be determined from the factorisa-
tion problem (42). Subsequently, the matrix P in Equation
(41) is calculated. Substituting the obtained matrices in
Equation (40), the filter state-space matrices in Equation
(39) are computed by Equation (33).

Remark 1: In the matrix inequalities (35) and (36), the
(1,1) entries include a derivative term that can be replaced
by Ẋ = ∂X

∂ρ
ρ̇ and Ẏ = ∂Y

∂ρ
ρ̇, respectively. Due to the affine

dependency of matrix inequalities on ρ̇, it is only required
to solve the feasibility problem at vertices of ρ̇. There-
fore, one can replace the term Ẋ with

∑s
i=1 ±(vi

∂X
∂ρ

) and

Ẏ with
∑s

i=1 ±(vi
∂Y
∂ρ

) (Wu and Grigoriadis 2001), where
vi is defined in Equation (3). The summation means that
every combination of + and − should be included in the
inequality. That is, the corresponding inequalities actually
represent 2s different combinations in the summation.

4.2. Trapezoidal discretisation of the
continuous-time LPV filter

Among various options for discretisation of a continuous-
time dynamic system, we employ the trapezoidal approxi-
mation that is a counterpart of the bilinear transformation
for LPV systems (Tóth, Lovera, Heuberger, and Van den
Hof 2009). The proposed formulation in this section is
adopted from the work of Apkarian (1997). It is, however,
slightly tailored for nonuniform sampling periods. This
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approach is moderately accurate and advantageously re-
duces the computational cost.

Considering the sampling interval tk ≤ t < tk + 1, we
assume that for the continuous-time filter (34), the state
vector xF(tk) is known. Then, at the end of sampling interval,
we have

xF (tk+1) = xF (tk) +
∫ tk+1

tk

(
AF (ρ(τ ))x(τ )

+BF (ρ(τ ))y(τ )
)
dτ

ẑ(tk) = CF (ρ(tk))xF (tk) + DF (ρ(tk))y(tk). (43)

Using the trapezoidal approximation for the integral part in
Equation (43) and with a simplified notation, we obtain

xF (k + 1) ≈ xF (k) + τk

2

(
AF (ρ(k))xF (k)

+BF (ρ(k))y(k) + AF (ρ(k + 1))xF (k + 1)

+ BF (ρ(k + 1))y(k + 1)) .

Next, we gather all the terms corresponding to the sampling
time tk + 1 and rename them xd(k + 1), i.e.

xd (k + 1) =
(
I − τk

2
AF (ρ(k + 1))

)
xF (k + 1)

− τk

2
BF (ρ(k + 1))y(k + 1), (44)

which implies that

xF (k) =
(
I − τk−1

2
AF (ρ(k))

)−1
(xd (k)

+ τk−1

2
BF (ρ(k))y(k)). (45)

Finally, we substitute Equations (44) and (45) into Equation
(43) to obtain a discrete-time representation of the filter de-
signed in continuous time. The following theorem charac-
terises the filter state-space matrices for the implementation
purposes.

Theorem 4.4: Consider the LPV filter (34) designed in
continuous time. The sampled dynamics of this filter is rep-
resented by the following discrete-time state-space model

xd (k + 1) = AFd (ρk)xd (k) + BFd (ρk)y(k)

ẑd (k) = CFd (ρk)xd (k) + DFd (ρk)y(k),

where

AFd =
(
I + τk

2
AF

) (
I − τk−1

2
AF

)−1

BFd = τk + τk−1

2

(
I − τk−1

2
AF

)−1
BF

CFd = CF

(
I − τk−1

2
AF

)−1

Figure 5. The double mass-spring-damper system.

DFd = τk−1

2
CF

(
I − τk−1

2
AF

)−1
BF + DF .

This discrete-time system is then placed in the Filter block
in Figure 1. It is noted that the filter state-space matrices
are functions of ρ(k) and updated at each sampling instant.

5. Simulation results

In this section, we present some numerical results obtained
from applying the proposed sampled-data LPV filter de-
sign methods. We consider a forth-order resonant system
corresponding to a double mass-spring-damper system with
nonlinear springs as shown in Figure 5. The dynamic model
of the system is described by

m1ẍ1 + (c1 + c2)ẋ1 + (k1 + k2)x1 − k2x2 − c2ẋ2 = w1(t)

m2ẍ2 + c2ẋ2 + k2x2 − c2ẋ1 − k2x1 = w2(t),

where m1 and m2 are masses, k1 and k2 are spring stiff-
nesses, c1 and c2 are the damping coefficients and w1(t) and
w2(t) are external force disturbances acting on the masses.
The objective is to design a sampled-data filter to estimate
the mass velocities using the measurement of the posi-
tions. The associated state-space model of the system is as
follows:

d

dt

⎡
⎢⎢⎣

x1

ẋ1

x2

ẋ2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
− k1(t)+k2(t)

m1
− c1+c2

m1
− k2(t)

m1
− c2

m1

0 0 0 1
k2(t)
m2

c2
m2

− k2(t)
m2

− c2
m2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1

ẋ1

x2

ẋ2

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0 0
1

m1
0

0 0
0 1

m2

⎤
⎥⎥⎦

[
w1(t)
w2(t)

]

z(t) =
[

0 1 0 0
0 0 0 1

]⎡
⎢⎢⎣

x1

ẋ1

x2

ẋ2

⎤
⎥⎥⎦,

y(t) =
[

1 0 0 0
0 0 1 0

]⎡
⎢⎢⎣

x1

ẋ1

x2

ẋ2

⎤
⎥⎥⎦. (46)
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Figure 6. The estimation results of z1(t) for the sampling rate of
0.1 sec.

Figure 7. The estimation results of z2(t) for the sampling rate of
0.1 sec.

The parameters are assumed to be

m1 = m2 = 1

11
[kg]

k1 = k2 = 8 + 2 sin(t)[N/m]

c1 = c2 = 0.5[N.s/m]. (47)

We assume that the sine term in Equation (47) corre-
sponds to the LPV parameter, i.e. ρ(t) = sin (t), whose
functional representation is not known a priori but since it
is a time-dependent variable, it can be produced in a dig-
ital device. We note that the parameter space is [−1, 1].
It is also assumed that the system is affected by an in-
put disturbance signal w1(t) = 1 for t ∈ [0, 1] and

Figure 8. The estimation results of z1(t) for the sampling rate of
0.2 sec.

Figure 9. The estimation results of z2(t) for the sampling rate of
0.2 sec.

w1(t) = 0 otherwise. We consider three designs corre-
sponding to different sampling rates. First, we design a
discrete-time filter for the case of a constant sampling rate
τ k = 0.1. Figures 6 and 7 illustrate the estimates of z1(t)
and z2(t), respectively, using the proposed sampled-data
method along with the actual outputs of the continuous-
time system. For comparison purposes, we have also
shown in these figures the trapezoidal approximation of
an LPV filter designed in continuous time. As observed,
the estimation performance using the discretisation of the
continuous-time filter design is inferior to that of the
proposed sampled-data design. It is emphasised that, if
we use the rectangular approximation for discretisation
of the continuous-time filter, the estimation performance
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Figure 10. The estimation results of z1(t) with variable sampling
rate.

Figure 11. The estimation results of z2(t) with variable sampling
rate.

even worsens compared to the trapezoidal approxima-
tion. In this example the optimal value of γ is ob-
tained to be 2.5. It is noted that the output tracking
is even improved for lower sampling rates than τ k =
0.1. In the second scenario, we examine the case of a con-
stant sampling rate τ k = 0.2, which is quite large with
respect to the frequency of the output signals. Figures 8
and 9 show the estimation results using the sampled-data
and trapezoidal approximation methods. While the latter
method fails to provide a good estimate, the former provides
reliable estimates of the output of the continuous-time LPV
system. In this case, the optimal value of γ is determined to
be 4.4. Finally, we consider a case with a variable sampling
rate, in which the sampling rate changes according to the

pattern

tk+1 = tk + 0.2(1 + 0.5 sin(0.2tk)).

Starting from t0 = 0, the pattern above is associated with
a time-varying sampling. Figures 10 and 11 show accept-
able estimation results that the sampled-data LPV filter can
provide. The optimal value of γ is obtained to be 5.3. Also
shown in these figures are the results of trapezoidal ap-
proximation of an LPV filter designed in continuous time.
It is obvious that the sampled-data filter exhibits better
performance.

6. Concluding remarks

In this paper, we presented a sampled-data filter design
method for stable continuous-time LPV systems using the
lifting technique. The design method consisted of obtaining
an equivalent discrete-time LPV system by employing the
lifting method and subsequently design a discrete-time LPV
filter for the lifted system. It was shown that the sampled-
data approach effectively handles large and even variable
sampling rates. Numerical results demonstrated the via-
bility of the proposed sampled-data filtering method. In
addition, to compare the results with conventional filter-
ing methods, we designed a continuous-time LPV filter
and discretised it by means of trapezoidal approximation.
This approach is a fast solution alternative for the sampled-
data control and filtering problems that reduces the com-
putational effort at the cost of accuracy. This method can
give favourable results specially when the LMI optimisa-
tion leads to a sufficiently small H∞ norm for the estima-
tion error system. The simulation results demonstrated the
improved estimation performance achieved using the de-
veloped LPV sampled-data filter design method compared
to the discretisation of a filter designed in continuous time.
The improvement was observed for three cases with small,
large and variable sampling rates.

The authors are currently developing sampled-data con-
trol and filtering methodologies for LPV systems that in-
clude time-varying state delay and uncertainty.
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Appendix
In this section, we summarise the procedure to compute
‖D11‖L2[0,τk ), as well as the matrix-valued representation for the
operator compositions (14) and (15). The interested reader is re-
ferred to Chen and Francis (1995), where a complete discussion
is presented for LTI systems. In order to compute ‖D11‖L2[0,τk ),
we define

S =
[

S11 S12

S21 S22

]

= exp

{
τk

[ −AT (ρ(tk)) −CT
1 (ρ(tk))C1(ρ(tk))

γ −2B1(ρ(tk))BT
1 (ρ(tk)) A(ρ(tk))

]}
,

for γ > 0. It is shown by Chen and Francis (1995) that ‖D11‖L2[0,τk )

is equal to the largest value of γ , for which the matrix S11 has a zero
eigenvalue. The procedure for evaluating the operator composi-
tions at each sampling instant is performed by taking the following
steps:

Step 1: Define the square matrix U as

U =
[

A(ρ(tk)) 0n×nz

0nz×n 0nz×nz

]
,

and

E =
[ −AT (ρ(tk)) −CT

1 (ρ(tk))C1(ρ(tk))
1
γ 2 B1(ρ(tk))BT

1 (ρ(tk)) A(ρ(tk))

]

X = [ C1(ρ(tk)) D12(ρ(tk)) ]
T

[ 0 C1(ρ(tk)) ]

Y = [ C1(ρ(tk)) 0 ]
T

[ C1(ρ(tk)) D12(ρ(tk)) ].

Using the aforementioned definitions, we introduce⎡
⎣ P M L

0 Q N
0 0 R

⎤
⎦ = exp

⎧⎨
⎩τk

⎡
⎣−UT X 0

0 E Y
0 0 U

⎤
⎦

⎫⎬
⎭ .

Next, we partition Q and R in the above equation as

Q =
[

Q11 Q12

Q21 Q22

]
, R =

[
R11 0
0 I

]
.

Consequently, the matrix Ad, that appears in the first subequation
in (14), is determined to be

Ad (ρ(k)) = R11. (A1)

Step 2: In this step, the system matrices Add and B2d in Equation
(13) are obtained. Having

F = [
F1 F2

] = [
(Q−1

11 )T 0
]
MT R

and utilising (A1), we determine

Add (ρ(k)) = Ad (ρ(k)) + F1

B2d (ρ(k)) = F2.

Step 3: By means of a matrix factorisation (e.g. using Cholesky
factorisation), one can find B1d in Equation (13) satisfying

B1d (ρ(k))BT
1d (ρ(k)) = γ 2Q12Q

−1
11 .

Step 4: Finally, C1d and D12d in Equation (13) are found. To this
end, we first define the matrix V as

V = [C1(ρ(tk)) D12(ρ(tk))]. (A2)

Defining

[
P11 P12

0 P22

]
= exp

{
τk

[ −U V T V
0 U

]}
,

and

J = RT M

[
Q−1

11 0
0 0

]
N − RT L + P T

22P12,

the two matrices C1d and D12d are found satisfying

[
C1d (ρ(k)) D12d (ρ(k))

]T [
C1d (ρ(k)) D12d (ρ(k))

] = J

through a matrix factorisation. It is emphasised that since in this
study our focus is on the matrices depending on a piecewise-
constant parameter, we need to repeat the aforementioned steps at
each sampling instant. This is done to update the system matrices
in Equations (14) and (15).




