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a b s t r a c t

This paper presents a nonparametric method for identification of MIMO linear parameter-varying (LPV)
models in state-space form. The states are first estimated up to a similarity transformation via a nonlinear
canonical correlation analysis (CCA) operating in a reproducing kernel Hilbert space (RKHS). This enables
to reconstruct a minimal-dimensional inference between past and future input, output and scheduling
variables, making it possible to estimate a state sequence consistent with the data. Once the states are
estimated, a least-squares support vector machine (LS-SVM)-based identification scheme is formulated,
allowing to capture the dependency structure of the matrices of the estimated state-space model on
the scheduling variables without requiring an explicit declaration of these often unknown dependencies;
instead, it only requires the selection of nonlinear kernel functions and the tuning of the associated hyper-
parameters.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Linear parameter-varying (LPV) model identification has at-
tracted a lot of attention within the system identification com-
munity in the recent past. Although a significant progress on the
identification of LPV systems with input–output (IO) models has
been achieved (Bamieh & Giarre, 2002; Tóth, 2010; Tóth, Lau-
rain, Zheng, & Poolla, 2011), identification in an LPV state-space
form remains challenging with several open problems. The main
streams of LPV control synthesis approaches in the literature are
derived from LPV state-space (SS) representations. However, the
bulk of discrete-time LPV identification and modeling is often
carried out under an IO structure. Therefore, a possible approach
would be to transform available LPV-IO models to LPV-SS form.
However, such a transformation is complicated as the conversion
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to equivalent SS models often results in dynamic dependence of
the state-spacematrices on the scheduling variableswhile approx-
imative ‘‘realizations’’ deform the dynamical relations between the
inputs and outputs, often leading to high output errors (Tóth,
Abbas, & Werner, 2012). Allowing for such a dynamic dependence
increases the complexity of the transformed LPV-SSmodel thereby
making controller synthesismore difficult or even computationally
infeasible. It is for this reason that LPV-SSmodels directly identified
from IO data are of prime importance.

Broadly speaking, LPV identification methods can be catego-
rized into parametric and nonparametric methods. In parametric
identification of LPV models, the assumption is made that the
scheduling dependencies of the model coefficients are known a
priori (Bamieh & Giarre, 2002). However, in practice, selecting
adequate functions to parameterize these dependencies is a non-
trivial task where often one tries to include a wide array of basis
functions to ensure that the process dynamics are captured. This
often leads to over-parametrization of themodel coefficients (Lau-
rain, Tóth, Zheng, & Gilson, 2012), causing a large variance in the
estimates. On the other hand, an inappropriate selection of these
functions causes structural bias (Tóth et al., 2011). Examples of
parametric LPV-SS identification include subspace identification
methods published in van Wingerden and Verhaegen (2009) and
Verdult and Verhaegen (2002). These methods pertain to systems
that can be modeled with affine parameter-dependence, and are
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usually only suitable for low-dimensional cases. For an overview of
other LPV-SS identification schemes, see Tóth (2010). An alterna-
tive approachwith an attractive bias–variance trade-off is to obtain
a nonparametric reconstruction of the scheduling dependencies
in LPV models. Kernel-based nonparametric identification tech-
niques have demonstrated encouraging results for LPV-IO models
in Abbasi, Mohammadpour, Tóth, and Meskin (2014), Laurain
et al. (2012) and Tóth et al. (2011), among others; however, very
few fully nonparametric methods for state-space model structures
have been reported. A mixed parametric method based on least-
squares support vector machine (LS-SVM) was proposed recently
in dos Santos et al. (2014). In this work, the state matrix A is
described by a parametric model, while the state-readout matrix
C is described by a nonparametric one. The problem of selecting
basis functions therefore is solved only partially. Additionally,
the work dos Santos et al. (2014) focuses only on single-input
single-output (SISO) LPV-SS models. In our recent work Rizvi,
Mohammadpour, Tóth, and Meskin (2015b), we proposed an
LS-SVM-based LPV-SS identification method for multi-input multi-
output (MIMO) systems. Further improvement was presented
in Rizvi, Mohammadpour, Tóth, and Meskin (2015a) by incor-
porating instrumental variables, making the technique robust to
the presence of colored noise. A limiting factor in both of these
works however, was the assumption of the availability of state
measurements, which, most often, is not the case in practical situ-
ations. To avoid confusion, it is also noted that in van Wingerden
and Verhaegen (2009) and Verdult and Verhaegen (2005), kernel-
basedmethods have been applied for an entirely different purpose,
namely to increase computational reliability of regression prob-
lems in predictor-based subspace identification with a fixed affine
dependency structure of the estimated model.

In this paper, we present an LS-SVM-based nonparametric
method forMIMO LPV-SSmodel identification. The proposed tech-
nique works in two steps; first, LS-SVM-based nonlinear canonical
correlation analysis (CCA) is used to estimate the states of the data-
generating system from inputs, outputs, and scheduling variables
data. The estimated states are then used with the measured data
to identify the state-space matrices of an LPV-SS model of the
data-generating system with no assumption made a priori on the
scheduling dependency structure. The main contribution of this
paper lies in the formulation of kernelized CCA and LS-SVM for
LPV-SS model identification such that the linearity in the dynamic
relation of the model is retained. The paper is arranged as follows.
The problem is formulated in Section 2. The use of correlation
analysis for the estimation of the states is derived and explained in
Section 3. Section 4 details the LS-SVM-based identification algo-
rithm. To demonstrate the capabilities of the developed approach,
simulation studies are provided in Section 6. Finally, concluding
remarks are made in Section 7.

2. Problem formulation and preliminaries

Consider an LPV system represented by the following discrete-
time state-space innovation noise model:

xk+1 = A(pk)xk + B(pk)uk + K (pk)ek, (1a)
yk = C(pk)xk + D(pk)uk + ek, (1b)

where k ∈ Z denotes discrete-time, and A(pk) ∈ Rn×n, B(pk) ∈

Rn×nu , K (pk) ∈ Rn×ny , C(pk) ∈ Rny×n, and D(pk) ∈ Rny×nu are
smooth functions of time-varying scheduling variables pk ∈ P ⊂

Rnp with P being compact. Variables uk ∈ Rnu , yk ∈ Rny , and
xk ∈ Rn represent the inputs, outputs, and states of the system
at time k, while ek ∈ Rny is a stochastic white noise process,

independent of u. By substituting ek = yk − C(pk)xk − D(pk)uk in
(1a), we can re-write the above set of equations as

xk+1 = Ã(pk)xk + B̃(pk)uk + K (pk)yk, (2a)
yk = C(pk)xk + D(pk)uk + ek, (2b)

where Ã(pk) = A(pk)−K (pk)C(pk), and B̃(pk) = B(pk)−K (pk)D(pk).
Similar to the LTI case, (2) must be asymptotically stable in the
deterministic sense (even if asymptotic stability of (1) is not re-
quired), otherwise identification of (1) is ill-posed due to the diver-
gence of the variance of the resulting stochastic process. Our aim
is to develop a kernelized LS-SVM approach to estimate the func-
tional dependencies of the state-space matrices on the scheduling
variables, given only themeasurementsD = {uk, yk, pk}Nk=1, where
N is the number of samples (see the equation in Box I).

3. A KCCA-based approach for state estimation

To achieve the aforedescribed objective, first we aim at estimat-
ing the state sequence {xk}Nk=1 compatiblewith D.

3.1. Canonical correlation analysis

Canonical correlation analysis (CCA) is a statistical method
mainly used to determine linear relations among several variables
and had a major role in the development of LTI subspace iden-
tification. Given two sets of variables, u ∈ Rnu and y ∈ Rny ,
with N samples of each collected in U ∈ RN×nu and Y ∈ RN×ny ,
CCA aims at finding vectors vj ∈ Rnu and wj ∈ Rny to maximize
correlation between projected variables Uvj and Ywj, also known
as variates (Suykens, Gestel, Moor, & Vandewalle, 2002). This leads
to the following constrained optimization problem:

max
vj,wj

v⊤

j U⊤Ywj, s.t. v⊤

j U⊤Uvj = w⊤

j Y
⊤Ywj = 1.

The optimization solved in the dual form leads to a generalized
eigenvalue problem. For more details, see Verdult, Suykens, Boets,
Goethals, and De Moor (2004). CCA only uses second order infor-
mation to identify the relation between data sets, an important
consequence of which is that CCA and its regularized versions are
easily kernelizable and can handle nonlinear relationships (De Bie
& De Moor, 2003).

3.2. Regularized kernel CCA for LPV state estimation

In our LPV problem setting, we aim to use CCA to find an
estimate of the state sequence associated with D. However, we
will show that the associated relationship between the inputs and
outputs of the data-generating LPV model (1) that defines the so-
called state map is a heavily nonlinear dynamic function of pk.
This state map can be captured by modifying the linear CCA and
incorporating kernel functions to map the nonlinear dynamic rela-
tions into a reproducing kernel Hilbert space (RKHS), where classical
CCA is applied, resulting in a kernelized CCA method (Bach &
Jordan, 2003). The main idea behind this is that the states are the
minimal interface between the past and future input, output and
scheduling variable data; therefore, the states are expected to be
the representative of the past behavior needed to determine the
future behavior (Verdult et al., 2004).

Define the past scheduling variables p̄dk ∈ Rdnp and future
scheduling variables p̄dk+d ∈ Rdnp w.r.t. time instant k as

p̄dk := [p⊤

k−d · · · p⊤

k−1]
⊤, (4a)

p̄dk+d := [p⊤

k · · · p⊤

k+d−1]
⊤, (4b)

where d denotes the number of past and future samples. Past and
future inputs and outputs ūd

k ∈ Rdnu , ȳdk ∈ Rdny , ūd
k+d ∈ Rdnu , and
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⎡⎢⎢⎣
yk

yk+1
...

yk+d−1

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

C(pk)
C(pk+1)Ã(pk)

...

C(pk+d−1)
d∏

l=2

Ã(pk+d−l)

⎤⎥⎥⎥⎥⎥⎥⎦
  

(Od
f ⋄p)(k)

xk +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D(pk) 0 · · · 0

C(pk+1)B̃(pk) D(pk+1) · · ·
...

...
...

. . .
...

C(pk+d−1)
d−1∏
l=2

Ã(pk+d−l)B̃(pk) C(pk+d−1)
d−2∏
l=2

Ã(pk+d−l)B̃(pk+1) · · · D(pk+d−1)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
  

(Hd
f ⋄p)(k)

×

⎡⎢⎢⎣
uk

uk+1
...

uk+d−1

⎤⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0

C(pk+1)K (pk) 0 · · ·
...

...
...

. . .
...

C(pk+d−1)
d−1∏
l=2

Ã(pk+d−l)K (pk) C(pk+d−1)
d−2∏
l=2

Ã(pk+d−l)K (pk+1) · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
  

(Ld
f ⋄p)(k)

⎡⎢⎢⎣
yk

yk+1
...

yk+d−1

⎤⎥⎥⎦+

⎡⎢⎢⎣
ek

ek+1
...

ek+d−1

⎤⎥⎥⎦ . (3)

Box I.

ȳdk+d ∈ Rdny are defined in a similar way. Further, we also define

z̄dk =

[
ūdk
ȳdk

]
, z̄dk+d =

[
ūdk+d
ȳdk+d

]
∈ Rd(nu+ny). The future outputs of (2) can

be written in the observability form1 (3), described compactly as

ȳdk+d = (Od
f ⋄ p)(k) · xk + (Hd

f ⋄ p)(k) · ūd
k+d

+ (Ld
f ⋄ p)(k) · ȳdk+d + ēdk+d, (5)

where (Od
f ⋄ p)(k) ∈ Rdny×n is the time-varying d-step forward

observability matrix2 at time k along the scheduling trajectory p,
(Hd

f ⋄ p)(k) ∈ Rdny×dnu is a forward Toeplitz matrix based on the
Infinite Impulse Response (IIR) coefficients of (2), and (Ld

f ⋄ p)(k) ∈

Rdny×dny is a lower trianglematrix. Variable ēdk+d denotes a segment
of the sample path of ek. Without loss of generality, it is assumed
that (2) is structurally observable in the deterministic sense.3

Definition 3.1. The LPV-SS representation (2) with state-
dimension n is called structurally observable, if there exists a
scheduling trajectory p ∈ PZ, such that the n-step observability
matrix (On

f ⋄ p)(k) is full (column) rank for all k ∈ Z.

Let P ⊆ PZ be the set of all scheduling trajectories p such that
rank

(
(On

f ⋄ p)(k)
)

= n for all k ∈ Z. Then, in order to guarantee
that Od

f is injective in (5), it is assumed that d is chosen such that
d ≥ n and p ∈ P in the given data setD. In otherwords, we assume
that the to-be-estimatedmodel representation is observable along
the given trajectory of p on all intervals of length d, which corre-
sponds to a persistency of excitation (PE) condition on p. Dropping

1 Note that, in (3), we use a left precedence for multiplication, e.g., for k= d=4,∏d
l=2 = Ã(pk+d−l) = Ã(p6)Ã(p5)Ã(p4).
2 The notation (Od

f ⋄ p)(k) corresponds to the evaluation of Od
f along p at time

instant k and is used as a shorthand to express the dynamic dependence of the
corresponding matrix functions, e.g., Od

f at time k depends on the instantaneous
and future sample values of the scheduling variables, i.e., pk, . . . , pk+d−1 .
3 If the assumption of structural observability is not satisfied, then (2) is not state-

minimal and under somemild assumptions on the class of functional dependencies
of the associated matrix functions, there exists a structurally observable LPV-SS
realization of the underlying system with equivalent IO map.

the dynamic dependence argument for notational ease, the state
sequence statistics can be given by

xk =
(
Od

f (k)
)†((

I − Ld
f (k)

)
ȳdk+d − Hd

f (k)ū
d
k+d

)
−
(
Od

f (k)
)†
ēdk+d, (6)

where (·)† indicates the Moore–Penrose pseudo-inverse, which
exists due to injectivity of the linear map Od

f (k) in (9). Using a
similar definition of a d-step backward reachability matrix Rd

p(k)
depending on pk−d, . . . , pk−1 and its counterpartVd

p(k)with respect
to K (pk), xk can also be given as

xk =

( d∏
i=1

Ã(pk−i)
)

  
X d

p (k)

xk−d + Rd
p(k)ū

d
k + Vd

p(k)ȳ
d
k, (7)

which in turn can be substituted into (5) to obtain a relation
of future and past IO data similar to the data equation used in
predictor-based subspace identification:

ȳdk+d = Od
f (k)R

d
p(k)ū

d
k + Hd

f (k)ū
d
k+d + Od

f (k)V
d
p(k)ȳ

d
k

+ (Ld
f ⋄ p)(k) · ȳdk+d + Od

f (k)X
d
p (k)xk−d + ēdk+d, (8)

where d is chosen such that X d
p (k) ≈ 0 due to the asymptotic sta-

bility of (2b). This reveals that the state sequence can be estimated
via a CCA between past and future IO data.

To illustrate the concept, one can take (6) and since e is an
independent and identically distributed (i.i.d) zero-mean process,
the expected value of the last term on the right-hand side is zero,
giving us, in the conditional mean sense, the following unbiased
state estimate

x̂k =
(
Od

f (k)
)† [

−Hd
f (k) I − Ld

f (k)
]  

ϕf(p̄dk+d)

z̄dk+d. (9)

Note that (9) is a non-minimal variance estimator; however, if we
are allowed to change the state basis in terms of the CCA applied
on (8), we can then determine a state transformation (see the
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discussion of Remark 1) that minimizes this variance contribution
by maximizing the correlation between the associated variates.
Similarly, choosing d such that X d

p (k) ≈ 0 in (7), we can arrive at
the predictor

x̂k =
[
Rd

p(k) Vd
p(k)

]  
ϕp(p̄dk )

z̄dk . (10)

Even if both ϕf(p̄dk+d) and ϕp(p̄
d
k) are unknown mappings (defined

by the to-be-estimatedmatrix functions), the relations (9) and (10)
allow the use of CCA for the estimation of x̂k. Note that maximiza-
tion of the covariance of the variates can result in estimation of
x̂k on different state basis, which can be seen as a p-dependent
state transformation applied on these maps. As these maps at
least have polynomial dependence on p̄dk+d and p̄dk even in case of
affine dependence of the original matrix functions of (1), a tailor-
made kernelized formulation of CCA is required for the underlying
estimation problem. To develop this formulation, we define the
past and future data setsΦp,Φf ∈ RN×nG as

Φp :=
[
ϕp(p̄d1)z̄

d
1 · · · ϕp(p̄dN )z̄

d
N

]⊤
, (11a)

Φf :=
[
ϕf(p̄d1+d)z̄

d
1+d · · · ϕf(p̄dN+d)z̄

d
N+d

]⊤
, (11b)

where ϕp : Rdnp → RnG×d(nu+ny) and ϕf : Rdnp → RnG×d(nu+ny)

represent unknown feature maps that, respectively, map the past
and future scheduling variables into an RKHS Gk̆ defined uniquely
by a symmetric and positive definite kernel function k̆ : Rdnp ×

Rdnp → R (for details, see Cucker & Smale, 2001); variable
nG represents the dimension of this possibly infinite-dimensional
feature space. The kernel function, with arguments in the input
space Rdnp , corresponds to an inner product in the RKHS as[
ϕp(p̄dk)

]⊤
i

[
ϕp(p̄dj )

]
i = k̆

(
p̄dk, p̄

d
j

)
.

Now the CCA problem corresponding to the equivalent represen-
tation (2) becomes

max
vj,wj

v⊤

j Φ
⊤

f Φpwj s.t. v⊤

j Φ
⊤

f Φfvj = w⊤

j Φ
⊤

p Φpwj = 1, (12)

where vj ∈ RnG , wj ∈ RnG with j ∈ {1, . . . ,N} are directions in
the feature space Gk̆, along which the projections of the future and
past data have maximum correlation. The KCCA in terms of (12),
though regularized, does not provide a useful canonical correlation
of the variables. The Authors of this early version of KCCA, Bach
and Jordan, argue in Bach and Jordan (2003) that the geometric
interpretation of (12) is equivalent to maximizing the cosine of
the angle between subspaces generated by the column spaces
of Φp and Φf. If the non-centered Gram matrices are invertible,
as for example, when the data points are distinct and Gaussian
kernels are used, then the two column spaces are identical and the
angle between them is zero. This results in a canonical correlation
estimate that is always equal to one. In other words, (12) does
not give a useful canonical correlation (Bach & Jordan, 2003). To
overcome this ‘‘naive kernelization’’, different variants of KCCA
were later proposed that can provide a good estimator for general
kernels. An improved regularized version based on LS-SVM was
later introduced in Suykens et al. (2002), the primal version of
which, adapted to the case of the LPV-SS model (2), is given as

max
vj,wj

J (vj, wj, s, r) =

γ

N∑
k=1

(
skrk − νf

1
2
s2k − νp

1
2
r2k

)
−

1
2
v⊤

j vj −
1
2
w⊤

j wj,

s.t. sk = v⊤

j ϕf(p̄
d
k+d)z̄

d
k+d, rk = w⊤

j ϕp(p̄
d
k)z̄

d
k , (13)

for k = 1, . . . ,N, where γ , νf, νp ∈ R+ are positive hyper-
parameters needed to be chosen. The main advantage of this im-
proved CCA lies in the introduction of the last two terms in the
cost function, which help to regularize vj, wj, making sure they
do not become arbitrarily large. Writing the above problem in
a dual form, we define the Lagrangian as given in (14), where
ηj = [η1j · · · ηNj ]

⊤
∈ RN and κj = [κ1

j · · · κN
j ]

⊤
∈ RN are

Lagrange multipliers. The dual form of (13) is obtained via the
Karush–Kuhn–Tucker (KKT) conditions, i.e., finding the derivatives
∂L
∂vj
, ∂L
∂wj
, ∂L
∂sk
, ∂L
∂rk
, ∂L
∂ηkj
, ∂L
∂κkj

and equating them to zero, which are not

shown here due to the space limitations.

L(vj, wj, s, r, ηj, κj) = J (vj, wj, s, r) −

N∑
k=1

ηkj

(
sk − v⊤

j ϕf(p̄
d
k+d)z̄

d
k+d

)

−

N∑
k=1

κk
j

(
rk − w⊤

j ϕp(p̄
d
k)z̄

d
k

)
, (14)

Using these conditions to eliminate the primal decision variables
vj, wj, sk, rk, and substituting λj = 1/γ , the above problem can be
simplified to a regularized generalized eigenvalue problem as

Kppκj = λj(νfKff + I)ηj, (15a)
Kffηj = λj(νpKpp + I)κj, (15b)

where Kff = ΦfΦ
⊤

f and Kpp = ΦpΦ
⊤
p are kernel matrices that

express the inner product of the feature maps in Gk̆. The elements
of the kernel matrices are

[Kff]l,m = z̄d ⊤

l+d k̆(p̄
d
l+d, p̄

d
m+d)z̄

d
m+d, (16a)

[Kpp]l,m = z̄d ⊤

l k̆(p̄dl , p̄
d
m)z̄

d
m. (16b)

Kernel functions can be chosen from a variety of different func-
tions, including, but not limited to polynomial kernels k̆(pi, pj) =

((pi · pj) + 1)q, and radial basis functions (RBF) k̆(pi, pj) =

exp
(
−

∥ pi−pj ∥
2
2

σ2

)
. Parameters q ∈ N and σ ∈ R+ denote the

degree of the polynomial and the spread of the RBF function; these
are essentially tuning parameters chosen by the user (Schölkopf
& Smola, 2002). By solving (15), one can find the primal decision
variables vj = Φ⊤

f ηj andwj = Φ⊤
p κj, which are obtained by solving

the KKT conditions ∂L
∂vj

= 0, ∂L
∂wj

= 0 and obtain an estimate of the
state evolution of (1) w.r.t. D.

AsKpp, Kff ∈ RN×N , the regularized generalized eigenvalue prob-
lem (15) can have up to 2N different solutions ηj, κj, j = 1, . . . , 2N ,
defining the primal decision variables vj = Φ⊤

f ηj and wj = Φ⊤
p κj.

Since each of these solutions gives a direction in the feature space
correlating past data with the future data, each solution can give
us one component, i.e., the jth component, of the state variable
that ties the past behavior to the future. Therefore, the estimate
of a compatible state vector at time instant k follows using the jth
solution to the KCCA problem as

x̆jk = v⊤

j ϕf(p̄
d
k+d)z̄

d
k+d. (17)

Substituting above the earlier solved KKT condition gives vj =

Φ⊤

f ηj, and replacing the feature space dot-product ϕ⊤

f (·)ϕf(·) with
a kernel function k̆(·, ·), we obtain

x̆jk = η⊤

j

⎡⎢⎣ z̄d ⊤

1+dk̆(p̄
d
1+d, p̄

d
k+d)

...

z̄d ⊤

N+dk̆(p
d
N+d, p̄

d
k+d)

⎤⎥⎦ z̄dk+d. (18)

Similarly, wj = Φ⊤
p κj gives the estimated jth component of the

state vector at time k as

x̆jk = w⊤

j ϕp(p̄
d
k)z̄

d
k = κ⊤

j

⎡⎢⎣ z̄d ⊤

1 k̄(p̄d1, p̄
d
k)

...

z̄d ⊤

N k̄(pdN , p̄
d
k)

⎤⎥⎦ z̄dk . (19)
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Remark 1. All 2N solutions of the regularized generalized eigen-
value problem (15) in terms of normalized eigenvectors can be
analytically calculated via the following economical singular value
decomposition (SVD)[
νfKff + I 0

0 νpKpp + I

]−1[ 0 Kpp
Kff 0

]
=WΣ

[
V1
V2

]⊤
(20)

whereΣ is a diagonal matrix containing all non-zero singular val-
ues, and the corresponding solutions are ηj = [V1]j and κj = [V2]j
with [·]j denoting the jth column. An effective dimension of x̆ can
be chosen by only taking into account those x̆jk which are associated
with the n̂ most significant singular values. From the stochastic
point of view, without regularization, the reconstructed sequences
x̆jk are independent and the magnitude of their autocorrelation
reveals their significance in the canonical relationship.

Therefore, given d measurements of inputs, outputs, and
scheduling variables, a state sequence x̆k, compatible with the
system, canbe estimatedbydetermining themaximumcorrelation
between ϕf(p̄dk+d)z̄

d
k+d and ϕp(p̄

d
k)z̄

d
k in the CCA sense. The notion of

compatibility corresponds to the fact that the state is estimated
up to a linear map or state transformation T : Rdnp → Rn̂×n,
such that x̆k = E{(T ⋄ p)(k) · xk | D} in the conditional mean
sense. The state transformation T can have dynamic dependence
on pk, . . . , pk−d+1 (Tóth et al., 2012) and with n̂ ≥ n it is injective.
Therefore, x̆k is estimated in a state-space basis different from the
basis of x̂k. This state-space basis and its dimension is determined
by the user using the rank-revealing property of the SVD in (20).
This is an established practice in subspace identification for LPV
(see Felici, van Wingerden, & Verhaegen, 2007; Verdult & Ver-
haegen, 2005) and LTI systems (see Overschee & De Moor, 1995).
Hence, x̆k corresponds to the estimate of the state sequence of an
equivalent realization of (2) as

x̆k+1 = (Ãe ⋄ p)(k)x̆k + (B̃e ⋄ p)(k)uk + (Ke ⋄ p)(k)yk,
yk = (Ce ⋄ p)(k)x̆k + Duk + ek, (21)

where subscript e denotes the estimate and T Ã = ÃeT , T B̃ = B̃e,
TK = Ke and C = CeT .

Note that the states associated with an LPV-SS representation
of the system summarize all information from the past behavior
needed to predict the future behavior. In that sense, the past input
and output data z̄dk =

[
ūd ⊤

k ȳd ⊤

k

]⊤ forms a non-minimal state
representation of the system. This fact of LTI system theory also
holds in the LPV case, i.e., for any finite dimensional LPV-SS repre-
sentation (1)with up tomeromorphic pdependencies, it is possible
to give an LPV-SS realization with a state vector z̄dk which has an
equivalent IO map in an almost everywhere sense (i.e., all com-
patible trajectories are equal, except a subset of trajectories with
measure zero due to possible singularity of the matrix functions).
To illustrate this fact, we next show that the future output behavior
is a function of past data z̄dk , p̄

d
k , and uk, pk plus a contribution of the

noise in terms of ēdk and ek.

Lemma 3.1. Let (2) be structurally observable and d ≥ n. Then, there
exists a function f : Rnf → Rny with nf = (d+1)(nu +np +n)+ dny
such that for any trajectories p ∈ P , u ∈ (Rnu )Z and e ∈ (Rny )Z

yk = f (uk, pk, ek, z̄dk , p̄
d
k, ē

d
k). (22)

Proof. As (2) is observable along any p ∈ P , shifting (6) d-samples
backward in time is used to substitute xk−d in (7) to arrive at

xk = Md
p(k)

((
I − Ld

f (k − d)
)
ȳdk − Hd

f (k − d)ūd
k

)
+Rd

p(k)ū
d
k + Vd

p(k)ȳ
d
k − Md

p(k)ē
d
k. (23)

where Md
p(k) =

∏d
i=1Ã(pk−i)

(
Od

f (k − d)
)†. Using (23) and substi-

tuting it into (2b) gives

yk = C(pk)
[
Rd

p(k) Vd
p(k)

]
z̄dk + D(pk)uk

− C(pk)Md
p(k)

[
Hd

f (k−d) Ld
f (k−d)−I

]
z̄dk

+ ek − C(pk)Md
p(k)ē

d
k. (24)

4. Matrix function estimation via LS-SVM

Once we have obtained an estimate {x̆k}Nk=1 of the state
sequence {xk}Nk=1, we can form an extended data set D̆ =

{uk, yk, x̆k, pk}Nk=1 to estimate the matrix functions in (2). We pa-
rameterize our LPV-SS model as4

x̆k+1 = Wxϕ
⊤

x (pk) + εk, (25a)

yk = Wyϕ
⊤

y (pk) + ςk, (25b)

where x̆k is the estimate of xk, εk and ςk are residual errors on the
states and outputs, respectively, Wx = [W1 W2 W3] ∈ Rn×3nH and
Wy = [W4 W5] ∈ Rny×2nH are weighting matrices. The functions
ϕ⊤
x (pk) ∈ R3nH×1 and ϕ⊤

y (pk) ∈ R2nH×1 are defined by

ϕ⊤

x (pk) =
[(
Φ1(pk)x̆k

)⊤ (
Φ2(pk)uk

)⊤ (
Φ3(pk)yk

)⊤]⊤
,

ϕ⊤

y (pk) =
[(
Φ4(pk)x̆k

)⊤ (
Φ5(pk)uk

)⊤]⊤
,

where Φ1,Φ4 : Rnp → RnH×n, Φ2,Φ5 : Rnp → RnH×nu , and Φ3 :

Rnp → RnH×ny are unknown featuremaps thatmap the scheduling
variables to a high dimensional (RKHS) Hk̄ defined uniquely by
the kernel functions k̄i : Rnp × Rnp → R with i ∈ 1, . . . , 5.
From (25a)–(25b), we can gauge that Ã(pk) ∼ W1Φ1(pk), B̃(pk) ∼

W2Φ2(pk), K (pk) ∼ W3Φ3(pk), C(pk) ∼ W4Φ4(pk), and D(pk) =

W5Φ5(pk), where∼ stands for an equivalent function under a state
transformation. The problem in this paper, therefore, reduces to
finding the dependency of WiΦi(pk) on pk given the data D̆. To
achieve this, we aim to minimize the following cost function:

min
Wx,Wy,ε,ς

I(Wx,Wy, ε, ς ) =

1
2

(
∥Wx∥

2
F +

Wy
2
F +

N∑
k=1

ε⊤

k Γ εk + ς⊤

k Ψ ςk,

)
(26)

over Wx,Wy, where ∥·∥F denotes the Frobenius norm. Matrices
Γ = diag(γ1, . . . , γn) and Ψ = diag(ψ1, . . . , ψny ) are diagonal
positive weighting matrices on these residuals, and are known as
regularization matrices. This problem can be solved in the dual
form by introducing the Lagrangian as

K(Wx,Wy,α, β, ε, ς ) = I −

N∑
j=1

β⊤

j

(
Wyϕ

⊤

y (pj) + ςj − yj
)

−

N∑
j=1

α⊤

j

(
Wxϕ

⊤

x (pj) + εj − x̆j+1
)
, (27)

where αj ∈ Rn, βj ∈ Rny are the Lagrange multipliers at time j. The
solution is obtained by solving the KKT conditions, i.e., equating the
partial derivatives ∂K

∂Wx
, ∂K
∂Wy

, ∂K
∂αj
, ∂K
∂βj
, ∂K
∂εj
, ∂K
∂ςj

to zero. For brevity,
we do not list the KKT conditions here (see Rizvi et al., 2015a).
Substituting these conditions in (25a)–(25b), we can eliminate the

4 Compared to thepossible case of dependencies in (21), for the sake of simplicity,
here we restrict our dependency class to be static (as in the original representation
form (2)).
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primal decision variables and obtain the following equations:

x̆k+1 =

{
N∑
j=1

αjϕx(pj)  
Wx

}
ϕ⊤

x (pk) + Γ −1αk  
εk

, (28a)

yk =

{
N∑
j=1

βjϕy(pj)  
Wy

}
ϕ⊤

y (pk) + Ψ −1βk  
ςk

. (28b)

By replacing the inner-product Φ⊤

i (pk)Φi(pj) by a kernel function
k̄i(pj, pk) and defining

[Ω]j,k =

3∑
i=1

z⊤

i (j)k̄i(pj, pk)zi(k), (29a)

[Ξ ]j,k =

5∑
i=4

z⊤

i (j)k̄i(pj, pk)zi(k), (29b)

where zi(k) =

{x̆k, i = 1, 4
uk, i = 2, 5
yk, i = 3.

We can now write (28) in a compact form as follows:

X̆k+1 = αΩ + Γ −1α, (30a)

Y = βΞ + Ψ −1β, (30b)

where Ω ∈ RN×N and Ξ ∈ RN×N are kernel matrices as defined
above, α = [α1 · · ·αN ] ∈ Rn×N and β = [β1 · · ·βN ] ∈ Rny×N

are the matrices containing the Lagrange multipliers, X̆k+1 =

[x̆2 · · · x̆N+1] ∈ Rn×N and Y = [y1 · · · yN ] ∈ Rny×N contain the
estimated states and outputs for the N samples, respectively. The
solution to the above equations can be obtained as follows:

vec(α) =
(
IN ⊗ Γ −1

+Ω⊤
⊗ In

)−1
vec(X̆k+1), (31a)

vec(β) =
(
IN ⊗ Ψ −1

+Ξ⊤
⊗ Iny

)−1
vec(Y ), (31b)

where matrices IN and Iny represent identity matrices of dimen-
sions N and ny, respectively. For a given solution to (31a)–(31b),
the estimate of the state-space matrices can be calculated by using
the KKT conditions in (25a)–(25b) as

Ãe(·) = W1Φ1(·) =

N∑
j=1

αjx̆⊤

j k̄1(pj, ·), (32a)

B̃e(·) = W2Φ2(·) =

N∑
j=1

αju⊤

j k̄2(pj, ·), (32b)

Ce(·) = W4Φ4(·) =

N∑
j=1

βjx̆⊤

j k̄4(pj, ·), (32c)

Ke(·) = W3Φ3(·) =

N∑
j=1

αjy⊤

j k̄3(pj, ·), (32d)

De(·) = W5Φ5(·) =

N∑
j=1

βju⊤

j k̄5(pj, ·). (32e)

This gives a nonparametric estimate of the SS matrices.

5. Tuning of the hyper-parameters

Both the state trajectory estimation in terms of the KCCA prob-
lem and the estimation of the matrix functions of the state-space

representation require the choice of hyper-parameters for the def-
inition of the associated kernel functions and other regularization
parameters. Let θc be the collection of hyper-parameters: νf, νp and
kernel coefficients, e.g., σc associated with the state estimation de-
tailed in Section 3, while θs be the collection of hyper-parameters:
γ1, . . . , γn, ψ1, . . . , ψny and kernel coefficients, e.g., σs, associated
with the matrix function estimation problem in Section 4. Let θ =

[θ⊤

c θ⊤

s ]
⊤.

Denote themodelM(θ ) as the solution of the specified state and
matrix function estimation problems using the estimation data set
D and a fixed choice of θ . Additionally, let Dval be an independent
data set generated by (1) and define

BFR(θ ) = 100% · max

(
1 −

yk − ŷk(θ )

2

∥yk − ȳ∥2
, 0

)
, (33)

as fitness score or best fit rate (BFR) between the actual output
trajectory y of Dval, its mean ȳ, and the simulated5 output ŷ of the
identified model M(θ ) w.r.t. the inputs and scheduling trajectory
ofDval. We seek tomaximize (33) over θ . This results in a nonlinear
optimization problemwith a quadratic cost function, which can be
seen as an inference problem between the data sets D and Dval
under the given parametrization of the estimation problems in
terms of θ .

Alternatively, we also formulate the choice of the hyper-
parameters θc and θs under a Bayesian setting by assuming a Gaus-
sian distribution (with an RBF kernel) of the state variation and
matrix functions and a uniform distribution of θc and θs. Note that
in this setting, the matrix function estimation problem (Section 4)
is conditioned on the estimated x̆, dependent on the prior θc, and
as the estimation involves an SVD, even in case of a fixed choice of
n no joint formulation of the hyper-parameter estimation of θc and
θs can be given. Furthermore, Hardoon and Shawe-Taylor (2009)
provides a detailed theoretical analysis of KCCA from the stochastic
point of view. However, the problemof choosing the regularization
parameter even under a Gaussian setting remains largely unsolved
without using any approximation of the resulting expressions.
These problems somewhat undermine the stochastic efficiency of
the resulting methodology. Nevertheless, for illustration purposes
the choice of θs is formulated in terms of a log marginal likelihood
(ML) function conditioned on it. Following the work in Rasmussen
and Williams (2006), and using (30), we define the log marginal
likelihood function as

log p̄(Y |X̆,U, P, θs) = −
1
2

( ny∑
i=1

YiΞ
−1
i Y⊤

i + log|Ξi|

)

−
1
2

(
nx∑
i=1

X̆iΩ
−1
i X̆⊤

i + log|Ωi|

)
−

N
2

log 2π, (34)

where the kernel matrices Ξi and Ωi are defined as Ξi = Ξ +

ψ−1
i IN ,Ωi = Ω+γ−1

i IN and Yi, X̆i denote the ith output/state or ith
row of Y and X̆ , p̄ denotes probability, and Y ,U, P , and X̆ represent
themeasurements of outputs, inputs, scheduling variables, and the
estimated states, respectively. By maximizing the log ML function
(34) over the parameter set θs, we seek the set of hyper-parameters
thatmaximize the likelihood of fitting the estimated LPV-SSmodel
outputs to the given observations Y and X̆i, corresponding to a
nonlinear optimization problem over D̆.

5 Alternatively, one can formulate a similar objective functionw.r.t. the predicted
output of M(θ ) using the predictor form (2).
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6. Numerical examples

Example 1. Consider the following discrete-time data-generating
system

xk+1 = A(pk)xk + B(pk)uk + K (pk)ek,
yk = C(pk)xk + ek

with

A(pk)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

sat(pk) 1 0 0
1
2

p3k
8

4
10

1
5

3
10

0
p2k
5

1
8

0 0
1
2

1
5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

K (pk)=

⎡⎢⎢⎢⎣
tanh(pk)

3pk
0

0 0
0 sin(2πpk) + cos(2πpk)
0 1

⎤⎥⎥⎥⎦ ,

C(pk)=

⎡⎣p2k
5

1 0 0

0 0 1 0

⎤⎦ , B(pk) =

[
p4k
5

0
1
5

0

]⊤

,

where sat(pk) is a saturation functionwith limits at±0.5 and unity
slope. Given the measurements uk, yk, and pk in D, we want to es-
timate the matrix functions A, . . . , K . The data-generating system
with initial condition x0 = [0 0 0 0]⊤ has been simulated with
uniformly distributed input signal uk ∼ U(−1, 1), pk = sin(0.3k)
and normally distributed measurement noise ek ∼ N (0, Iσ 2

e )
to generate a data set D = {uk, yk, pk}Nk=1 with N = 1100,
where σ 2

e has been chosen to guarantee a 20 dB signal-to-noise
ratio (SNR). The data is divided into 800 and 300 samples for
estimation D and validation Dval, respectively. Polynomial kernel
is chosen for the state estimation step and the past and future
window size of d = 4 is selected while for the matrix function
estimation problem RBF kernels are employed. Other kernels have
also been tested and the selection of the kernel, and its associated
hyper-parameters, ismade based on theminimization of the cross-
validation objective function (33). This optimization problem is
solved6 using the fmincon solver in MATLAB. Followed by this,
the ML approach corresponding to the maximization of (34) is also
implemented. While the solution θ depends on initialization of
the optimization problem, we observe that in the best case, the
maximization of likelihood function (34) gives us comparable, and
in some cases, slightly improved solution. The proposed kernel
CCA-based algorithm is run and the state sequence is estimated.
The order of the system is selected by solving the SVDproblem (20).
A plot of the first 50 singular values σ̃j, j = 1, . . . , 50, is shown in
Fig. 1. We observe a significant gap between the first four singular
values and the next four that follow them. Using the extended data
set D̆ = {uk, yk, x̆k, pk}Nk=1, we then run the LS-SVM identification
algorithmof Section 4 based on different choices of systemorder to
estimate the state-space matrices. An RBF kernel is chosen to find
an estimate of the matrix functions. For independently generated
data sets, the estimation is repeated 100 times in a Monte-Carlo
study and the fitness score statistics are tabulated in Table 1.

6 For n̂ = 8, the optimization problem resulted in νf = 1000, νp = 8200, deg = 2
for the polynomial kernel, {σs,i}4i=1 = {1.05, 10.15, 2×10−4, 9.1} for the RBF kernel,
{γi}

8
i=1 = {700, 400, 750, 700, 500, 1400, 1400, 720} and {ψi}

2
i=1 = {5500, 0.5}.

Fig. 1. Singular values of the SVD problem (20).

Fig. 2. Simulated output response of the estimated LPVmodel in the given example
computed on Dval (red) and the noise free response of the original system (blue);
for the sake of clarity, only 100 of the validation data points are shown here. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 1
Monte-Carlo simulation results for Example 1.

n̂ Mean (BFR %) Std. (BFR %)

SNR 25 dB 4 85.15 1.12
8 87.03 0.751

SNR 20 dB 4 83.91 0.911
8 86.31 0.022
9 86.03 1.015

We observe that by selecting the order to be n̂ = 8, a slightly
higher fitness rate is obtained compared to n̂ = 4. Note that
this can be explained by the fact that the non-smooth saturation
function based state-map is difficult to be captured by apolynomial
kernel. For n̂ = 9 and onwards, no significant improvement is
observed in terms of accuracy of the simulated outputs. This is
also corroborated by the singular values plot shown in Fig. 1. Fig. 2
shows the simulated outputs of an identified model (dashed red
line) in the Monte-Carlo run compared to the original noise-free
outputs of the data-generating system (solid blue line). In order to
quantify how well the simulated outputs of the estimated LPV-SS
model fit the actual outputs, the BFR is evaluated on the validation
data set Dval and the statistics are tabulated in Table 1. Obtained
average BFR values with small standard deviation demonstrate
consistent performance of the proposed LPV model identification
algorithm.
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Fig. 3. An ideal continuous stirred tank reactor.

Example 2. The model of an ideal continuous stirred tank reactor
(CSTR) is considered here. Schematic diagram of the CSTR process
is shown in Fig. 3. It shows the chemical reaction that converts an
inflowing liquid to a product; this reaction is non-isothermal as
described in Tóth, Van den Hof, Ludlage, and Heuberger (2010).
The first principles-based model is described by

Ṫ2 =
Q1

V
(T1 − T2) −

UHE

AHE
(T2 − Tc) +

∆Hk0
ρcρ

e−
EA
RT2 C2,

Ċ2 =
Q1

V
(C1 − C2) − k0e

−
EA
RT2 C2, (35)

where Tc, T1, T2 are the temperatures for the coolant, the inflowing
and outflowing liquids, and C1, C2 denote the concentration of the
rawmaterial and the product, respectively. VariableQ1 denotes the
input flow of raw material to the CSTR. A typical control objective
is often to regulate the concentration C2 or the temperature T2 in
the reactor; these two signals make up the internal states of the
system. In this study, we consider the product temperature T2 to be
the regulated output. VariablesQ1 and Tc are used asmanipulatable
signals. Steady-state operating conditions and parameter values
are taken from Tóth et al. (2010) and are not reproduced here. Raw
material concentration C1 is taken as the scheduling variable p. This
is because step changes in the manipulated variables at different
values of C1 show significantly different dynamics in terms of time
constants, relative gains, and even the sign of the gain exhibits
non-minimum-phase behavior at certain operating points (Tóth
et al., 2010). The process is assumed to be a first order reaction
with a temperature relation according to Arrhenius law; it is also
assumed that the temperature increase in the coolant over the
coil can be neglected. The inflow and outflow rates, Q1 and Q2,
are kept equal. Previously, we published our LPV-SS identification
study of the CSTR model in Rizvi et al. (2015b) under the strong
assumption that both the internal states C2, T2 were available for
full measurement. Here, we intend to assess the capabilities of
our KCCA-based LS-SVM algorithm to predict the internal states
when they are not available in full for measurements, and then use
them for LPV identification.We then intend to compare the perfor-
mance with our previous results that assumed full measurements
of states. For this purpose, the measurements for C2 are assumed
not available, and only output measurements T2 are taken. Pseudo
randombinary sequences (PRBS) of the two inputswith± 10% of the
nominal values are used to excite the CSTR model. Gaussian white
noise is added such that 25 dB SNR is maintained for the output
T2. A slowly-varying trajectory for the scheduling variable C1 with
limits at ±50% of the nominal value is used, as shown in Fig. 4. A

Fig. 4. Scheduling trajectory C1(kg/m3) for Example 2.

Table 2
CSTR output fitness simulation results.

SNR (dB) BFR (%)

LS-SVM (full states measurement) 25 86.72
KCCA-based LS-SVM 25 83.23

sampling time of 60 s is chosen to generate the input–output data.
We choose RBF kernel for the KCCA-based state estimation, and
make use of optimization of (34) to obtain the hyper-parameter
set.7 The past and future window size for the input, output and
scheduling variables data is set to d = 4. The KCCA-based LS-
SVM algorithm estimates state sequences x̆ and then uses the
augmented data set to find the state-space matrix functions. The
fitness scores based on BFR percentage (33) are also calculated,
and their values are presented in Table 2. Compared to the LS-SVM
algorithm that assumes complete measurement of both states, the
KCCA-based LS-SVM algorithm obtains slightly lower, but compa-
rable BFR values. However, the proposed kernelized CCA algorithm
doeswell to find directions in the RKHSwhere correlation between
inputs and outputs is maximized, and then uses this solution to
estimate transformed estimates of the states. This gives us, despite
the lack of state measurements in full, a comparable prediction for
T2. Negligibly small improvements are observed if an attempt is
made to fit a higher ordermodel. Simulated values of the identified
models with and without state measurements are shown in Fig. 5.
Overall, the proposed kernelized CCA for state estimation in LPV-
SSmodels shows an encouraging ability to estimate state variables
that can tie past and future input–output behavior together.

7. Concluding remarks

This paper has presented a nonparametric method for identi-
fication of LPV-SS models. The proposed technique relies only on
the inputs, outputs, and scheduling variables data. The states are
estimated up to a similarity transformation by using correlation
analysis between the past and future data. Once estimated, an LS-
SVM-based non-parametric scheme is used to identify the underly-
ing LPVmodel. The proposed scheme solves a convex optimization
problem and provides encouraging results on a MIMO numerical
example with challenging nonlinearities in the presence of noise.
The proposed algorithm is further validated on themodel of a con-
tinuous stirred tank reactor process, and results are comparedwith
an earlier study that assumes complete knowledge of the states.
We find that kernel CCA provides encouraging state reconstruction
results, which can then be augmented with the measured data
in order to build an LPV-SS model. The main contribution of this
paper lies in formulating the kernel CCA and LS-SVM solution for

7 For n̂ = 2, the tuned values of the hyper-parameters are as follows: σc =

470, νf = 1000, νp = 1000, {σs,i}4i=1 = {360, 2600, 360, 7000}, {γi}2i=1 =

{500, 500} and ψ = 1.2 × 105 .
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Fig. 5. Example 2: (left) Validation results for CSTR output temperature T2(◦ C) using LS-SVM-based identification with and without full states measurements, and (right)
validation error.

this identification problem by preserving the linearity structure in
parameter-dependent state-space models. The proposed method
also does not impose any dependency structure on the matrix
functions, affine or otherwise. Since LPV-SS models are important
for LPV control synthesis purposes, we believe that this work has
the potential to pave the way for efficient low-order LPVmodeling
for control synthesis.
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