

NHERI Experimental Facility at UF: Boundary Layer Wind Tunnel

Jennifer A. Bridge, Ph.D., Kurt Gurley, Ph.D., Forrest Masters, Ph.D., Brian Phillips, Ph.D.

AAWE 2021 Workshop

NSF Award# 2037725

UF NHERI Experimental Facility

- Provide users access to advanced wind engineering experimental research infrastructure
- Support transformative wind hazard research through state-of-the-art experimental resources, seamless integration of high-performance computing, skilled personnel, and a culture of safety and collegiality
- Expand and diversify the wind engineering community to develop a workforce that serves society to create the hazard resilient infrastructure of the future

NSF Award 2037725

UNIVERSITY of FLORIDA

UF Experimental Facility

Self-Configuring Boundary Layer Wind Tunnel (**BLWT**) NSF Award 2037725

Multi-Axis Wind Load Simulator (**MAWLS**)

High Airflow Pressure Loading Actuator (**HAPLA**)

Dynamic Flow Simulator (**DFS**)

Spatiotemporal Pressure Loading Actuator (**SPLA**)

Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

Herbert Wertheim College of Engineering

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

UF Herbert Wertheim College of Engineering

POWERING THE NEW ENGINEER TO TRANSFORM THE FUTURE

Terraformer NSF MRI CMMI 1428954

- Computer controlled terrain generator
- 48 RS-485 communication busses
- 1116 integrated stepper motor drives
- Rapidly configures in 90 seconds to produce a range of target exposures

Specifications Optional active flow control for the BLWT Non-neutral mean velocity profiles Nonstationary flow conditions 319 ducted fan assemblies 9-inch 6-blade propellor • 1 hp brushless DC motor with electronic speed controller Nominal free discharge velocity ~23 m/s Maximum frequency response of ~3 Hz Flow Field Modulator (FFM)

Flow Field Modulator

Mean Velocity and Turbulence Generator

Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

MRI (NSF Award 1428954)

The FFM **slides into** the wind tunnel to provide active flow control or **slides out** for conventional BLWT operation

Flow Field Modulator

- 319 ducted fan assemblies
- Capable of reproducing userspecified non-monotonic and/or spatiotemporally nonstationary flows
- Velocity profiles produced along the height of the tunnel by varying row fan speeds
- Individual fan speeds fluctuate to achieve target turbulence properties

Cell Assembly

- Hexagonal aluminum duct
- Brushless DC motor, electronic speed controller

W = 6 m

Airflow

H = 3 m

 $L = 1.6 \, {\rm m}$

- Nominal free discharge velocity ~23 m/s
- Max frequency response of ~3 Hz

Example Target Profiles – Log Law

UF Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

Example Target Profiles – Urban Canopy

Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

Next evolution of simulation

Non-stationary events

BLWT Simulation of Transient and Non-synoptic Wind Events: May 19, 2021

y, u (m/s)

Non-neutral flows

Kwon, D. K., & Kareem, A. (2009). Gustfront factor: New framework for wind load effects on structures. *Journal of structural engineering*, *135*(6), 717-732.

Mean velocity profiles (Kwon and Kareem, 2009)

20

25

Model Instrumentation

- Scanivalve pressure scanning system
 - 512 pressure taps can be measured simultaneously from eight ZOC33 modules
 - Max sampling rate = 625 Hz
- 6-axis force balance sensors
- Displacement sensors
- Accelerometers

Flexible tubes inside model connects pressure 'taps' to pressure scanning modules

FEMA STARR II Project NHERI Experimental Facility

(b)

3D instrument control of the Cobra Probe Rake for precision measurement of surface flows

(a) Cobra Probe installed in instrument traverse

(b) Zoomed in view of the over the topographic

Cobra Probe model surface

Particle Image Velocimetry (PIV)

- Dantec Dynamics PIV system
 - DualPower 30-1000 laser (2 X 30 mJ at 1000 Hz; 527 nm)
 - SpeedSense VEO 340 camera that can record up to 72 GB of data at 4MP and 800 fps
 - Camera is equipped with a 10 Gb interface to enable rapid transfer of data

UF Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

PIV Setup

College of Engineering UNIVERSITY of FLORIDA

- Designed and built seeders in house
 - Produce particles of the correct size (1-2 micron)
 - Evenly and sufficiently distribute particles in PIV window
 - Use safe and inexpensive fluid

Field Data + Laboratory Resources

- Site-specific impacts on building loads
 - High resolution site imaging + Damage assessment + Terraformer heterogenous terrain in BLWT
- Effects of transient and non-synoptic flow
 - Ground-based measurements + Flow Field Modulator/BLWT
- Wind and rain effects on wall systems, components, and cladding
 - Tower measurements/pressure traces + Damage assessment + Pressure loading actuators (HAPLA - non-NHERI)

UF Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

Additional Resources

In-House Fabrication

- 3-axis CNC router
 - Fully programmable MultiCam APEX3R CNC Router for routing foam, wood, plastics, and aluminum model components
 - 1.5m x 3m

- 3D printers
 - Three Formlabs Form 2 stereolithography 3D printers for high-resolution rigid pressure-tapped models
 - Five LulzBot TAZ 6 Fused Filament Fabrication 3D printers for production of larger lower resolution model components
- Machine shop and skilled design/fabrication staff

How do I learn more?

- https://ufl.designsafe-ci.org
- Contact one of the PI team
 - Jennifer Bridge, jennifer.bridge@essie.ufl.edu
 - Forrest Masters, <u>masters@ce.ufl.edu</u>
 - Kurt Gurley, <u>kgurl@ce.ufl.edu</u>
 - Brian Phillips, <u>brian.phillips@essie.ufl.edu</u>
- Upcoming workshop May 19

Herbert Wertheim College of Engineering UNIVERSITY of FLORIDA

 BLWT Simulation of Transient and Non-synoptic Wind Events

