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a b s t r a c t

Mesoscopic simulations of hydrocarbon flow in source shales are challenging, in part due to the het-
erogeneous shale pores with sizes ranging from a few nanometers to a few micrometers. Additionally,
the sub-continuum fluid–fluid and fluid–solid interactions in nano- to micro-scale shale pores, which
are physically and chemically sophisticated, must be captured. To address those challenges, we present
a GPU-accelerated package for simulation of flow in nano- to micro-pore networks with a many-body
dissipative particle dynamics (mDPD) mesoscale model. Based on a fully distributed parallel paradigm,
the code offloads all intensive workloads on GPUs. Other advancements, such as smart particle packing
and no-slip boundary condition in complex pore geometries, are also implemented for the construction
and the simulation of the realistic shale pores from 3D nanometer-resolution stack images. Our code is
validated for accuracy and compared against the CPU counterpart for speedup. In our benchmark tests,
the code delivers nearly perfect strong scaling and weak scaling (with up to 512 million particles) on up
to 512 K20X GPUs on Oak Ridge National Laboratory’s (ORNL) Titan supercomputer. Moreover, a single-
GPU benchmark on ORNL’s SummitDev and IBM’s AC922 suggests that the host-to-device NVLink can
boost performance over PCIe by a remarkable 40%. Lastly, we demonstrate, through a flow simulation
in realistic shale pores, that the CPU counterpart requires 840 Power9 cores to rival the performance
delivered by our package with four V100 GPUs on ORNL’s Summit architecture. This simulation package
enables quick-turnaround and high-throughput mesoscopic numerical simulations for investigating
complex flow phenomena in nano- to micro-porous rocks with realistic pore geometries.
Program summary
Program title: USERMESO 2.5
Program files doi: http://dx.doi.org/10.17632/zzpv74bz9m.1
Licensing provisions: GNU General Public License 3
Programming language: CUDA C/C++ with MPI and OpenMP
Nature of problem: Particle-based simulation of multiphase flow and fluid–solid interaction in nano-
to micro-scale pore networks of arbitrary pore geometries.
Solution method: Fluid particles and solid wall particles are modeled with a many-body dissipative
particle dynamics (mDPD) model – a mesoscopic model for coarse-grained fluid and solid molecules.
The pore surface wall boundary for arbitrary surface geometries is modeled with a no-slip boundary
condition for fluid particles that prevents fluid particles from indefinitely penetrating in the walls. The
time evolution of the system is integrated using the Velocity-Verlet algorithm.
Restrictions: The code is compatible with NVIDIA GPUs with compute capability 3.0 and above.
Unusual features: The code is implemented on GPGPUs with significantly improved speed.
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1. Introduction

Approximately 75% of the sedimentary rocks on Earth are
clastic nanoporous tight rocks, which are often referred to as
shale. Shale contains most of the world’s fossil energy sources
(e.g. oil and natural gas). However, only a small fraction of the
sources in shale can be recovered so far, in part due to the gaps
of our knowledge in the relevant fundamental physics that ulti-
mately control the dynamics of fluids in shale, which manifests
extremely low permeability in the micro- to nano-Darcy range
with average pore sizes from a few nanometers (10−9 m) to a
few micrometers (10−6 m). Filling these knowledge gaps may
help the development of more effective shale source recovery
strategies. Most of the theories of fluid flow in geomaterials (and
the predictive models built upon such theories) have been based
on the concepts of classical continuum fluid dynamics and a rigid
porous or fractured solid porous matrix, which assume ideal non-
slip boundary conditions for fluid flow and transport [1]. Those
concepts and models have proven adequate for developing the
theories of single- and multi-phase flow in permeable porous
media such as aquifers, soils, and conventional oil and gas reser-
voirs. Many pore-scale fluid flow models have been developed
in either Eulerian or Lagrangian frame, based on the continuum
computational fluid dynamics (CFD), e.g., the models based on
lattice Boltzmann method (LBM) [2,3], smoothed particle hydro-
dynamics (SPH) [4,5], and volume-of-fluid finite volume method
(VOF-FVM) [6,7]. However, the behavior of fluids in nanoporous
tight shale is very different, as the discreteness of molecules may
impact flow and transport processes at higher scales, and the
solid organic materials may play an important role as mechanical
components, sorbents and sources of fluids. Besides, the large
specific surface areas can make surface reactions and surface
transport more profound. For example, in an ideal spherical pore
of 100 nm diameter, about 6% of the fluid is within a distance of
1 nm from the solid surface, whereas in a pore of 10 nm diameter,
over 49% of the fluid is within a distance of 1 nm, where the
physical and chemical properties of the fluid can be significantly
different from those of bulk fluids. A good understanding of large-
scale flow and transport behaviors in shale requires robust and
accurate multiscale computational models that can bridge the
scale gaps between fluid molecular dynamics (MD) models and
nanopore-scale fluid flow models.

Dissipative particle dynamics (DPD) constitutes a relatively
new class of mesoscale models that can be used to simulate
single- and multi-phase fluid flow [8–13]. The DPD concept was
originally introduced for microscopic hydrodynamics [14] with
its theoretical foundation based on statistical mechanics
[15,16]. The various DPD models and their applications are sum-
marized by Moeendarbary et al. [17] and Liu et al. [18], re-
spectively. In DPD, a system can be simulated with a set of
interacting particles, where each particle represents a small clus-
ter of molecules instead of a single one. The particle–particle
interaction force in a DPD embodiment consists of a ‘‘conserva-
tive’’ (non-dissipative) component, a dissipative component that
represents the effect of viscosity, and a thermal component that
represents fluctuation. The distinction between DPD and SPH
is the thermally driven fluctuations that are only detectable on
microscopic scales, e.g. pores with sizes in the nanometer ranges.
Conversely, DPD fluids can recover the continuum Navier–Stokes
equations on large scales (scales much greater than the particle
size) with the effect of thermal fluctuations to be negligible.
Furthermore, DPD conserves mass and momentum, and also
the energy provided with special treatment [19–22], and allows
much larger time steps than MD simulations. These features
make DPD essentially a mesoscale method between the molec-
ular and continuum hydrodynamic scales, and facilitates simu-
lations of complex fluid systems with possible physical scales

spanning a wide range. Recently, a so-called ‘‘many-body’’ DPD
model [23], namely mDPD, has been found particularly suitable
for multi-phase fluid systems, and thus has been applied for
various multi-phase fluid simulation problems, including liquid–
vapor interface, surface tension, and multi-component fluid flows
in micro-scale channels [24–28]. In particular, mDPD manifests
a unique multiscale modeling capability that can model fluid–
fluid/solid interfaces in pores at both continuum- and sub-
continuum-scales, as demonstrated in Fig. 1.

Recently we developed an mDPD based nano to micro-scale
pore flow model and applied it for multiphase flow simulations
in source shale [29]. In that model, realistic shale pore geometries
are constructed based on 3D voxel data of shale core samples,
which are generated from a focused ion beam scanning elec-
tron microscopy (FIB-SEM) digital rock imaging process [30] with
voxel resolution at tens of nanometers or even a few nanometers.
Each voxel contains local composition information that can be
used to identify phase boundaries in shale, e.g. interfaces between
inorganic and organic solid matrices, between inorganic solid
matrix and pores, and between organic solid matrix and pores.
The integration of FIB-SEM to nano-pore flow simulations is a big
step forward as compared with the earlier methods that used ei-
ther manufactured or analytically described pore geometries [13].
Furthermore, it is worth noting that though FIB-SEM has been
adopted for analyzing shale samples for a while [31–34], most
of the early flow simulation methods applied to shale were con-
tinuum CFD models (e.g. a finite element model by Dewers et al.
[35]), whose theoretical legitimacy yet remain to be fully verified
for heterogeneous nanoporous media like shale. In comparison,
the mesoscopic nature of mDPD (as shown in Fig. 1) makes the
model a competent candidate for the nano- to micro-pore flow
simulations in shale.

In order to use mDPD for predicting the critical material prop-
erties of shale micro core samples such as permeability and
relative permeability, pore flow simulations must be conducted
at meaningful space and time scales that may require simula-
tions of a system with 108–109 particles and 107–108 timesteps.
These simulations are computationally demanding and require
significant computing resources. In early exercises we used the
DPD package [36] in LAMMPS [37]. The package takes advantage
of the parallel computing readiness of LAMMPS and delivers
satisfying scalability for homogeneous porous systems. However,
it is not the case for shale. Due to the highly non-uniform pore
distributions in shale, load imbalance emerges as a result of
non-uniform particle distributions and force calculations across
the processing ranks and has been a serious bottleneck for the
package to achieve desired scalability even with adaptive load
balancing. Indeed, compared with the theoretical advances in
multiphase DPD models, the development of efficient parallel
strategies for those models is left behind, especially for het-
erogeneous porous systems at the appropriate physical scales.
Efficient HPC strategies such as GPUs are highly encouraged.
Because of the particular suitability of the general-purpose GPUs
(GPGPUs) for MD and coarse-grained MD-like particle simula-
tions, GPU computing has been widely adopted for mesoscale
particle models such as SPH [38–40] and LBM [41–43]. Some basic
DPD models have been implemented in GPU accelerated pack-
ages such as HOOMD-blue [44], GROMACS [45] and LAMMPS-
GPU [46]. The implementation of more sophisticated DPD models
is recently described by Tang and Karniadakis [47] and Blumers
et al. [48]. Their GPU codes have demonstrated excellent strong-
and weak-scalability for DPD simulations.

In this work, a generalized GPU-accelerated implementation
of the mDPD based multiphase pore flow model with a solid
wall boundary model for arbitrary pore geometries is developed
to simulate flow dynamics in realistic source shale pores. The
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Fig. 1. Comparison of pore size effect on the continuum- and nano-scale fluid–fluid/solid interfaces in a slit-shape pore, as simulated by the mDPD model.

Fig. 2. Illustration of a production-level shale analysis workflow from nanometer-resolution digital rock imaging to GPU accelerated mDPD simulations of fluid flow
in realistic nanopores in shale.

software features a tight integration of our earlier works in-
cluding a mDPD pore flow model [29], an arbitrary-geometry
wall boundary model [49] and a GPU-accelerated DPD simulator
[47,48], and delivers an efficient rock analysis throughput from
digital rock imaging to pore flow simulations, as shown in Fig. 2.
With the new ability to model multiphase flow in arbitrary-
shaped, nano- to micro-scale channels, the code package can be
used to investigate the critical material properties of shale such as
permeability and relative permeability with unprecedented time
and length scales. Because a GPU can fit a workload compara-
ble to many CPU codes, the use of GPUs can effectively reduce
overhead in cross-rank/node communication. Consequentially the
reduced rank-level parallelism is especially helpful for reducing
load imbalance in mDPD flow simulations in non-uniform porous
systems. For example, investing the same computing capacity, it
requires a much smaller number of GPU cards than CPU cores, and
hence much fewer ranks in GPU computing than CPU assuming
one GPU card and one CPU core per rank. As a result, the use
of GPUs would greatly reduce the number of domain decompo-
sitions in a non-uniform porous system, and thus is expected
to improve load balance by substantially reducing cross-rank
communication and latency in rank synchronization.

The rest of the paper is structured as follows. In Section 2,
we briefly describe the mDPD model, a solid wall boundary
model and surface wall particle packing for arbitrary geometries.
In Section 3, we present the implementation and innovations
of our program. In Section 4, we validate the code with the
verification problems. In Section 5, we demonstrate the efficiency
of our code by running benchmark cases for uniform and non-
uniform nanoporous media. In Section 6, we further demonstrate
the capability of the software with pore flow simulations in
realistic shale nanopore networks. Lastly, we conclude the paper
in Section 7.

2. Pore-scale fluid flow models

2.1. Many-body dissipative particle dynamics

In a generic formulation, DPD particles interact via pairwise
central forces, i.e. Fij = FRij + FDij + FCij , where FRij represents a

random force, FDij a dissipative force, and FCij a conservative force
between particle i and j, respectively. If ri and vi are used to
denote the position and velocity of particle i, respectively, the
random force FRij and the dissipative force FDij can be expressed as
FRij = σwR(rij)ξijr̂ij and FDij = −γwD(rij)(r̂ij ·vij)r̂ij, where rij = ri−rj,
rij = |rij|, r̂ = rij/rij and vij = vi − vj. These forces constitute a
thermostat if the amplitude σ of the random variable ξij and the
viscous dissipation coefficient γ satisfy a fluctuation–dissipation
theorem: σ 2

= 2γ kBT and wD(r) = (wR(rij))2, where kBT denotes
the desired temperature in the unit of Boltzmann’s constant kB.
In the original DPD model, the conservative force FCij is defined as
FCij = aijwC(rij)r̂ij, where aij denotes the magnitude of the force,
and the weight function wC(r) vanishes when the inter-particle
distance r is larger than a cutoff range rc. The FCij is usually derived
from a soft and unspecific weight function wC(rij), thus allowing
for a fairly large integration time step. Different weight func-
tions describe different material properties. A common choice for
wC(rij) is wC(rij) = 1 − rij/rc and wR

= wC. The standard veloc-
ity Verlet algorithm can be employed to integrate the resulting
equations of motion in time. A quadratic equation of state (EOS) is
obtained with respect to the average particle density ρ, as shown
in Fig. 3(a). However, the original DPD model is not sufficient
to model multiphase fluid flow phenomena such as liquid–vapor
interfaces, liquid–liquid interfaces and free capillary surfaces. A
more complex EOS needs to be represented with the DPD model.
To achieve this, a long-range attractive and short-range repulsive
conservative force FC is required. The multiphase fluid flow model
employed in the present work is the so-called many-body DPD
method [23], namely mDPD. In mDPD, the FCij is augmented from
the standard DPD method by density-dependent contributions,
and the resulting model includes the van der Waals loop in the
EOS, as shown in Fig. 3(b). In the mDPD model, the conservative
force FCij is expressed as

FCij = Aijw
C(rij)r̂ij + Bij(ρ̄i + ρ̄j)wd(rij)r̂ij (1)

which consists of a long-range attractive part that is density-
independent, and a short-range repulsive part that depends on
a weighted average of the local particle density. The attractive
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Fig. 3. Validation of the EOS: (a) p = ρkBT +0.1aijr4Cρ2 for the original DPD model with kBT = 1, γ = 4.5, rC = 1, and aij = 25; (b) p = ρkBT +αAijρ
2
+2ρBijr4d (ρ

3
−

cρ2
+ d) for the mDPD model with kBT = 1, γ = 4.5, rC = 1, rd = 0.75, Aij = −40, Bij = 25, α = 0.101, c = 4.16, and d = 18. Pressure for each particle’s number

density ρ is obtained by averaging over 1000 time steps after equilibrium, in a 10 × 10 × 10 periodic box.

component Aijw
C(rij)r̂ij can be obtained by simply turning the

sign of the original force parameter aij (i.e., Aij < 0, with a
cutoff range rc = 1). The term Bij(ρ̄i + ρ̄j)wd(rij)r̂ij is a many-
body repulsive component with Bij > 0, and shorter cutoff
wd(rij) = 1 − r/rd, where rd < rC . The averaged local den-
sity, ρ̄i at the position of particle i can be computed as ρ̄i =∑

j̸=i wρ(rij), where the normalized weight function wρ needs
to satisfy

∫
∞

0 4πr2wρ(r) dr = 1. For a three-dimensional com-
putational domain, the wρ is defined as wd(r) =

15
2πr3d

(1 −

r/rd)2.

2.2. Solid wall conditions for arbitrary pore geometries

Because of the soft particle-to-particle interaction in DPD
models, fluid particles may penetrate through solid matrix given
a fluid-solid interface. Such penetration is not physically possible
and must be avoided. Early development of solid wall boundary
models were focused on imposing rigorous macroscopic bound-
ary conditions, e.g., a non-slip boundary condition at sharply
defined impenetrable solid surfaces. The idea was from a strict
mesoscopic interpretation of DPD models, where a single DPD
fluid particle represents a cluster of fluid molecules on scales
well above the atomistic levels [50]. To model a non-slip bound-
ary, additional forces must be exerted on fluid particles at the
vicinity of solid–fluid interfaces with model parameters carefully
calibrated to avoid spurious behaviors such as artificial slip [51],
temperature oscillation [52] and particle layering [53]. To relax
the strict non-slip requirement, Henrich et al. [54] proposed a
boundary model, which imposes a weak external repelling force
on fluid particles whenever they penetrate in solid matrix over
a thin layer. However, most earlier boundary models are only
suitable for solid surfaces that are either mostly flat, spherically
curved, or at best analytically describable. A boundary model that
can treat arbitrary pore geometries is required.

In this work, we adopt a new boundary model recently devel-
oped for DPD simulations involving arbitrarily complex geome-
tries [49]. For simulating pore flow in source rocks, this model
enables construction of DPD systems of realistic nano- to micro-
pore channels directly from loading the 3D stack images, so that
the many intermediate steps from scanning electron microscopy
(SEM) or transmission electron microscopy (TEM) images to the
corresponding numerical models, i.e., surface mesh reconstruc-
tion, mesh smoothing and remeshing can be avoided. Instead of
pre-defining the position of the wall boundary, the fluid particles

can detect the wall surface and compute wall penetration on-the-
fly. This is realized by gathering information on fluid particles’
neighbors. The geometry of solid boundary can then be computed
on-the-fly using local particle configurations. By removing the
necessity to pre-define the boundary geometry, arbitrary-shape
domains can be constructed directly from experimental images.
In particular, this boundary model computes a boundary volume
fraction of fluid particles and allows the fluid particles to detect
solid boundaries on-the-fly based on local particle configurations.
As a result, with a negligible extra computational cost, the moving
fluid particles become autonomous to find the pore surfaces and
infer the wall penetration. A predictor–corrector algorithm is then
applied to perfectly prevent the fluid particles from penetrating
the pore surfaces. In addition, it is important to point out that by
calculating and controlling the effective dissipative interactions
between fluid and solid particles, the no-slip or partially-slip
boundary condition are imposed on rough/curved pore surfaces
with negligible density and temperature fluctuations in the vicin-
ity of the solid boundary. For more details, we refer the interested
readers to Li et al. [49].

2.3. Particle packing for pore surface geometries

To construct bounding walls in DPD based fluid flow simula-
tions, most researchers (e.g. [25,49,55]) have followed a particle
packing approach proposed in Liu et al. [13]. Using this packing
approach, the whole simulation system will be first filled with
DPD particles at a particle number density (e.g. ρN = 8) for solid
matrix and then equilibrated. Next, particles located in defined
flow regions will be deleted. To reduce cost, particles located
in solid matrix but away from fluid–solid interfaces by over a
specified distance will also be deleted, as those particles will have
no interaction with fluid particles. The remaining particles are
the so-called surface wall particles, whose coordinates will be
saved and used as input data in wall-bounded flow simulations.
This approach, though easy to use for relatively small systems, is
however challenging for production-scale systems because of a
temporary spike of computational and memory cost in the step
of initial whole-system packing. The highest memory temporarily
needed could be over 100 times higher than it may be eventually
required, making it hardly affordable for most end users. For
example, a shale micro core sample with a meaningful domain
size might need billions of or even over a trillion particles to
fill the system temporarily, but at last require no more than 1%
of them as surface wall particles because of the sample’s low
porosity.
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For huge porous systems, to avoid the temporary but pro-
hibitive computing and memory cost incurred during the solid
particle packing process, we introduce a new approach as an
improved version of our early approach [29]. Following our early
version, a simulation system is determined based on voxel data
of a shale micro core sample, in which each voxel records a
numeric value for its local composition (e.g. pore, organic mat-
ter, or inorganic matter). An algorithm was developed to sweep
through all the voxels to identify the so-called surface wall voxels,
with the surface wall thickness equal to at least rc. In a second
sweep, solid particles with a specified number density are cre-
ated with a lattice-like distribution at locations corresponding
to the surface wall voxels, and saved to data files for further
use. Notice that the lattice-like packing of surface wall particles
might cause undesired oscillations in fluid temperature in the
vicinity of solid–fluid interfaces. Despite the known artifact, this
approach had been probably the only affordable way for huge
porous systems with arbitrary geometric complexity. To partially
remedy the artifact, the present work proposes an improved
particle insertion method. For each surface wall voxel, instead of
employing the lattice-like packing, we use a locally equilibrated
particle distribution that is randomly chosen from a database.
The database is prepared in advance and is large enough for as-
sembled pores to resemble sufficient randomness in pore surface
roughness. Fig. 4 is shown to illustrate this new packing method.
Also notice that the idea of local equilibrium of the particles in
each surface wall voxel makes the quality of packing closer to
the one by Liu et al. [13], but meantime would potentially give
rise to non-equilibrium in particles across two neighbor surface
wall voxels. Further improvement of affordable particle packing
for pore surface walls in huge porous systems is an open area in
DPD research.

3. GPU implementation

The present USERMESO 2.5 package builds on USERMESO 2.0
[48], which is a successor to the original fully GPU-accelerated
USERMESO package for DPD. USERMESO 2.0 expanded the capa-
bilities of the package to simulate different flavors of DPD, as
well as cellular dynamics. Although the new capabilities added
in USERMESO 2.5 only require the original USERMESO [47] as base,
we feel it more natural to name our software package USERMESO
2.5 as a progression from USERMESO 2.0.

3.1. Core features

The original USERMESO [47] is a GPU-accelerated extension
package to LAMMPS for DPD simulations. In the USERMESO frame-
work, all computations and host-device communications are han-
dled by the extension package while I/O related tasks such as
inter-rank communications are attended by LAMMPS. By offload-
ing computations to GPUs, USERMESO is able to achieve more
than 20 times speedup for simple particle simulations [47]. The
speedup over the CPU counterpart is made possible by technical
innovations on, but not limited to, neighbor list constructions
and particle reordering, which are intended to boost data locality
and increases the chance of cache hit. Furthermore, data-layout
is optimized for coalesced memory access. In LAMMPS, data are
stored in an array-of-structure layout on host memory. To avoid
strided access on device memory, data are stored in a structure-
of-array layout. The conversion between the array-of-structure
and structure-of-array layouts is carried out whenever data are
transferred.

The notable innovative features of the original USERMESO from
which USERMESO 2.5 has inherited include: (1) an atomics-
free warp-synchronous neighbor list construction algorithm,

(2) a two-level particle reordering scheme, which aligns with
the cell list lattice boundaries for generating strictly monotonic
neighbor list, (3) customized non-branching transcendental func-
tions (sin, cos, pow, log, exp, etc.), (4) overlapping calcula-
tion (e.g. force evaluation) with communication (e.g. particle
exchange) to reduce latency, and (5) radix sort with GPU stream
support.

3.2. New capabilities

To simulate complex single- and multi-phase fluid flow phe-
nomena in realistic nano- to micro-porous geometries, a number
of new features have been implemented in USERMESO 2.5. For
clarity, an outline that depicts the calculation of the key physical
variables has been presented in Algorithm 1 in reference to the
Velocity-Verlet algorithm.

Algorithm 1 An outline that depicts the calculation of many-
body density ρ and wall-particles density φ in reference to the
Velocity-Verlet algorithm.

• Calculate x(t + δt).
Calculate φ for all fluid-particles.

• Inter-rank communication/particle migration.
Calculate ρ for all local particles.
Synchronize ρ for ghost particles.

• Compute pair forces f (t + δt).
• Calculate v(t + δt).

First, an important feature that has been implemented in
USERMESO 2.5 is the impenetrable wall boundary described in
Section 2.2 as a general solution to handle complex geometries
in DPD simulations to treat pore surface walls of arbitrary geo-
metric configuration. Because this wall boundary can be generally
applied to any DPD method, we have implemented it as a stan-
dalone procedure that is independent of the DPD method to be
used. The main idea is to calculate the density of solid wall
particles, φ, within a fluid-particle’s support, and then to add a
correction force to the fluid particles to counteract the artificial
walls. Since φ is computed before the inter-rank communication,
no synchronization is necessary as shown in Algorithm 1.

The major contribution by USERMESO 2.5 is the capability
to run many-body DPD simulations. To recall the formulation
in Eq. (1), the many-body density ρ that appears in the con-
servative force term is needed to calculate the repulsive part of
the conservative force. On each rank, a loop over the particles
in the corresponding partition is conducted to calculate the ρ
of each particle prior to the loop over the particles that calcu-
lates the inter-particle force. Then an inter-rank communication
takes place to synchronize ρ for the partition-ghost particles, as
depicted in Algorithm 1. This communication is necessary and
cannot be avoided by enlarging the neighbor-search radius of the
particles. For example, a particle j in the neighborhood of particle
i may be a partition-ghost particle; the calculation of ρj depends
on its neighbor particles within repulsive force cut-off range rd
of particle j, which though in general can extend beyond the
partition-ghost regions.

4. Code verification

In this section, we present two test problems to verify the
implementation of the mDPD method and solid wall boundary
condition in USERMESO 2.5. The numerical results calculated by
USERMESO 2.5 were verified with our CPU code, which is im-
plemented based on the standard LAMMPS. Each problem under-
went a comparative verification on two platforms: a workstation
that has an Intel i7-8700K CPU and two NVIDIA TTIAN Xp GPUs,
and a DGX-1 server that is equipped with two Intel Xeon E5-2698
v4 CPUs and eight NVIDIA Tesla V100 GPUs.
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Fig. 4. Illustrations of a new additive particle packing process for constructing pore surface walls of porous systems based on 3D voxel data. To make it easy to
understand, we use 2D pixels instead of 3D voxels in the display.

4.1. Liquid–vacuum interface

In this problem, a simulation of water liquid–vacuum inter-
face is presented with the objective to assess whether USERMESO
2.5 accurately calculates properties of a specific type of fluid.
The water density and surface tension calculated by USERMESO
2.5 will be checked against its CPU counterpart. We followed
the problem setup similar to Ghoufi and Malfreyt [26], but used
a large cubic simulation domain bounded by [−50rc, 50rc] in
each direction with a periodic boundary condition. The simulation
was initialized with a face-centered cubic (fcc) based particle
allocation in the region of x ∈ [−10rc, 10rc] and with a lattice
spacing of rc in each direction, which resulted in a total of 820,000
particles in the system. The mDPD force interaction parameters
Aij = −50, Bij = 25, rd = 0.75rc and γ = 12.4 were used in order
to match the water properties reported in Ghoufi et al. [56]. With
those parameters, one DPD particle represents approximately a
cluster of three water molecules (i.e., Nm = 3), and the size of one
DPD particle corresponds to about 90 Å3. Details of conversion
from the reduced units to their corresponding physical values can
be found in Ghoufi and Malfreyt [26].

In the simulation, a total of 5000 timesteps were first car-
ried out to equilibrate the system. An instantaneous snapshot of
the equilibrated system is displayed on the left side of Fig. 5,
depicting a thin liquid slab formed by the particles. Another
5000 timesteps were then run to calculate the time-averaged
properties. With a 1D bin size of 2rc along the x axis, a density
profile calculated by USERMESO 2.5 is compared with the one
obtained by our CPU code on the right side of Fig. 5. The density
near x = 0 (center of the slab) is 6.88 for both USERMESO
2.5 and our CPU code, matching the value reported in Ghoufi
and Malfreyt [26]. Moreover, thanks to the simple shape of the
liquid slab, the interfacial tension γWV between the water liquid
and vacuum can be calculated by subtracting the mean tangential
stresses σyy and σzz from the normal stress σxx: γWV = Lx⟨σxx −

1/2(σyy + σzz)⟩. The calculated γWV is 12.4 for both USERMESO
2.5 and its CPU counterpart, again matching the value reported
in Ghoufi and Malfreyt [26]. In addition, the values for water
density and water-vacuum interfacial tension can be converted
into the physical units with the equations: rc = r∗

c (ρ
∗NmV )1/3 [Å],

ρ = ρ∗(NmM)/(Nar3c )[kg m−3
], and γ = γ ∗(kBT )/(r2c ) [N m−1

],
where the superscript * denote values in the reduced unit, V is
the volume of one water molecule (30 Å), M is the molar weight
of a water molecule (18 g mol−1), Na is Avogadro’s number, and
kB is Boltzmann’s constant, and T is equal to 298 K. Expressed
in the converted physical units, the water density and liquid–
vacuum interfacial tension are ρ = 994 kg m−3 and γ =

70.6 × 10−6 N m−1, respectively, which agree well with the
MD results [26]. Our result indicates that the implementation
of the mDPD method in USERMESO 2.5 achieves consistency
with its CPU counterpart, and delivers accurate predictions of
thermodynamic properties for fluids of interest.

Table 1
Simulations of a single fluid in slid nano pore: specification of the
attractive interaction parameters, Aatt .
Aatt Solid Liquid

Solid −40 −40
Liquid −40 −35; −30; −20

4.2. Static contact angle in a slit nano channel

The second test problem is the simulation of static contact
angles formed between a single fluid and its bounding solid walls
in a slit nano channel, which demonstrates the flexibility of the
mDPD model to characterize the wetting properties of fluids in
the nano-scale pores. In the mDPD model, the particle interaction
force between two types of materials such as solid and liquid
can be modified by adjusting the attractive force parameter ASL,
the repulsive force parameter BSL, and the repulsive force cutoff
range rd in Eq. (1), where the subscript ‘‘S’’ and ‘‘L’’ denote solid
and liquid, respectively. In a controlled study of the dependence
of liquid wetting behavior on certain mDPD parameters such as
ASL, we selected three typical values for ASL listed in Table 1,
while imposing constant values for the rest of the parameters,
i.e. BSL = 25 and rc = 1 with a fixed relation between rd and rc
as rd = 0.75rc for all particle interactions.

The simulation domain in this problem is bounded by x ∈

[−30rc, 30rc], y ∈ [−5rc, 5rc] and z ∈ [−2.5rc, 2.5rc]. A periodic
boundary condition is prescribed in the x and z directions. The
simulation consists of two steps. First, 3500 solid particles were
initially placed in the two regions bounded by y ∈ [−5rc, −4rc]
and [4rc, 5rc], respectively, with a random spatial distribution.
These two regions were treated as two subsystems to allow the
solid particles to undergo sufficient timesteps with the mDPD
method to reach equilibrium. The locations of the solid particles
were then fixed to represent the bounding walls of the slit pore
for the rest of the simulations. The width of the slit pore (along
the y direction) is 8rc, corresponding to 8.616 nm in the physical
unit. Secondly, 4000 liquid particles were placed randomly in a
region bounded by x ∈ [−13rc, 13rc] and z ∈ [−4rc, 4rc]. The
whole system was run for 4000 time steps to reach equilibrium
using the mDPD model along with the solid wall condition. Fi-
nally, 10,000 timesteps were run to obtain the time-averaged
properties of interest. This simulation was performed three times
with the three ASL values, respectively.

The instantaneous snapshots of the particle distributions cor-
responding to the ASL values are displayed on the left side of Fig. 6,
demonstrating the transition of the fluid wettability in the slit
pore from wetting to non-wetting. Note that in the latter case,
the fluid had shifted slightly away from its initial location due to
the coupled effect of non-smooth wall surface and strong non-
wettability of the fluid. To validate the consistency of USERMESO
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Fig. 5. A mDPD simulation of water liquid–vacuum interface: a snapshot of instantaneous particle distribution at equilibrium (left), and time-averaged density profile
along the x direction (right).

Fig. 6. Instantaneous particle distribution of a single liquid bounded by solid matter in a nanometer-scale slit pore, simulated by mDPD with different attractive
force parameter ASL .

2.5 against its CPU counterpart, we plotted the profiles of the
time-averaged fluid particle numbers versus the normalized pore
width, and presented the GPU and CPU results on the right side
of Fig. 6. Eight bins were specified along the y direction, resulting
in the eight data points in each profile. The GPU profiles agree
with their CPU references, indicating the numerical consistency.
Furthermore, by dismissing the two near-wall points in those pro-
files, the curvatures for the profiles can be calculated and used to
quantify the contact angles. For each profile, we have computed
its curvature as an average of four curvatures approximated with
the four series of three consecutive points, e.g. from the second
to the fourth point, and from the third to the fifth point. For
example, a higher ASL such as −35 led to a partially wetting fluid
with a contact angle smaller than 90◦, whereas a lower ASL such
as −20 led in a partially non-wetting fluid with a contact angle
larger than 90◦. In the case of ASL = −30, the profile is almost a
straight line, depicting the critical state of contact angle around
90◦. It is worth noting that a different choice in other parameters

can result in a different dependency pattern of contact angle on
ASL; for example, see a similar simulation in Pan [24].

5. Benchmark tests

In order to present a comprehensive performance benchmark,
we tested USERMESO 2.5 with simulations of fluid flows in both
simple homogeneous and complex heterogeneous pore networks.
HPC resources at Oak Ridge National Laboratory (ORNL), IBM and
Idaho National Laboratory (INL) were used to perform the tests.
We used the NVIDIA NVCC compiler with -O3 optimization to
compile the code. The CPU counterpart, which has also been
implemented based on the standard LAMMPS in this work, is
compiled with the GCC compiler with -O3 optimization as well.
We first benchmarked our package on a manufactured, homoge-
neous pore network, which serves to verify the code integrity
and identify any intrinsic bottlenecks. We then quantified the
performance of the code with a miniature version of a realistic
pore-network. For both cases, the walltimes are compared with
their respective CPU counterparts.
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Fig. 7. Simulations of fluid flow in manufactured, homogeneous nanoporous media: example of a porous domain consisting of 92 square cells. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Simulations of fluid flow in manufactured, homogeneous
nanoporous media: specification of the mDPD particle–particle
attractive interaction parameters, Aatt .
Aatt Solid Fluid

Solid – −40
Fluid −40 −40

5.1. Fluid flow in homogeneous nanoporous media

5.1.1. Problem description
To showcase the scaling performance ofUSERMESO 2.5, body-

force driven fluid flow was simulated in manufactured, homoge-
neous porous domains. Displayed in Fig. 7, fluid flow in such a
kind of domain is essentially two-dimensional, as the size of the
domain in the y direction (Ly) is sufficiently small in comparison
with the other two (Lx and Lz). This domain is created based on
a cell with Lx = Lz = 16 and Ly = 2, as shown on the right
side of Fig. 7. We followed the procedure described in Liu et al.
[13] to create such a cell, in which a ring-shape surface wall is
constructed by 666 equilibrated solid particles (red) with an outer
radius of 7 (≈ 6.0 nm) and an inner radius of 6 (≈ 5.1 nm).
Outside the ring, the space is filled with 1296 equilibrated fluid
particles (blue). The cell is duplicated in the x and z directions
(e.g. 232, 332. . . 652 cells) to assemble a series of quasi-2D square
domains, in which the even-numbered rows of cells are translated
over a horizontal distance of Lx/2 to finally form the domain for
the flow simulations. For example, a domain consisting of 92 cells
is shown on the left side of Fig. 7. These domains have a porosity
of 0.4, with the narrowest pore width to be 2 (≈ 1.7 nm). The
uniform pore distribution in this test minimizes load imbalance
across the compute nodes. We thus consider it an appropriate
problem to investigate the scalability of our code.

The mDPD force interaction parameters used in our previous
work [29] is adopted in this study. The attractive interaction
parameters are listed in Table 2, while the rest of the parameters
used are Brep = 25, and rd = 0.75rc for all the particle–particle
interactions. The particle number densities are 8 and 6.2 for the
solid and fluid particles, respectively, ensuring that the pores
are saturated at an adequate fluid pressure. An acceleration of
gz = 0.02 along the z direction is applied on the fluid particles
to drive the flow. A periodic boundary condition is prescribed at
all the three directions. A non-penetration boundary condition is
prescribed at the solid particle wall surfaces. A timestep size of
dt = 0.01 is used. In each timing test, 10,000 timesteps are run
first to allow the domain to reach equilibrium under the influence
of the fluid body force. The walltime is then measured for every
500 timesteps, until four walltimes are obtained to calculate an
average value.

Fig. 8. Simulations of fluid flow in manufactured, homogeneous nanoporous
media: the strong- and weak-scaling test results on the Titan supercomputer
at Oak Ridge National Laboratory.

5.1.2. Benchmark results
The scalability of our code is characterized with the strong-

and weak-scaling performed on Titan at ORNL, Each Titan node
is equipped with an AMD Opteron 6274 CPU, and a NVIDIA Tesla
K20X GPU (Kepler architecture) with 2688 CUDA cores and 6 GB
memory.

For the strong-scaling, the test was carried out in a simulation
system consisting of 332 cells and a total of about 2.1 million
particles (1.4 million fluid particles and 0.7 million solid par-
ticles). The system size was chosen to allow the memory of a
single K20X GPU to accommodate the simulation. For the weak-
scaling, the simulation system size was fixed at approximately 1
million particles per node. The walltimes were obtained on sys-
tems consisting of 232, 332, 452, 652, 912, 1292, 1832, 2592, 3672

and 5192 cells, respectively. To allow comparison across multiple
platforms, the performance of our code was quantified with the
metric ‘‘million-particle-steps per second’’, or MPS/second for
short [47]. As shown in Fig. 8, our flow simulator scored a nearly
perfect weak-scaling. On the other hand, the strong-scaling plot
leveled off around 512 nodes, when each node was loaded with
approximately 4100 particles.

Besides the Tesla K20X, we benchmarked our code on a few
more modern GPUs with advanced high-speed Host-to-Device in-
terconnects to characterize the performance improvement
brought by the latest hardware architectures. For clarity, the
machines that have been tested are labeled and listed in Ta-
ble 3 with the detailed hardware specifications. Of particular
note is the IBM AC922 node that is equipped with 42 IBM
Power9 cores and 6 NVIDIA V100 GPUs with the NVLink2 inter-
connect: the same architecture configuration as ORNL’s Summit
supercomputer. To factor out Host-to-Host and/or node-to-node
communication quality on different machines, we limited the
comparative benchmark simulation running on one CPU core and
one GPU on each machine. The walltime obtained on the Tesla
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Table 3
List of the hardware specifications for the labeled machines used in the benchmark test.
Label (machine) CPU NVIDIA GPU Host-to-Device interconnect

Tesla K20X (ORNL Titan node) AMD Opteron 6274 Tesla K20X PCIe
TITAN Xp (desktop workstation) Intel i7-8700K TTIAN Xp PCIe
V100 (NVIDIA DGX-1 at INL) Intel Xeon E5-2698 v4 Tesla V100 PCIe
P100 + NVLink1 (ORNL SummitDev node) IBM Power8 Tesla P100 NVLink1
V100 + NVLink2 (IBM AC922 node) IBM Power9 Tesla V100 NVLink2
2 ×Intel Xeon E5-2695 (INL HPC node) Intel Xeon E5–2695 N/A N/A

Fig. 9. Simulations of fluid flow in manufactured, homogeneous nanoporous
media: comparison of single-GPU performance on a number of latest GPUs.

K20X was used to serve as the baseline, while the performance
of other machines was measured in terms of the relative speedup,
as shown in Fig. 9.

For the first, our test result has shown that the TITAN Xp
(Pascal architecture, 3840 CUDA cores, 12 GB memory), a top-
tier consumer’s model, produced nearly twice the performance
of the Tesla K20X. Furthermore, our test result has shown that
the Tesla V100 (Volta architecture, 5120 CUDA cores, 32 GB
memory) on DGX-1 can output 2.5× the computing power of
the Tesla K20X. On the other hand, despite the availability of
software features that unify the appearance of the host and
device memory from a programmability perspective, our code
explicitly manages the allocation of host and device memory,
as well as the transfer of data in between, as an attempt to
optimally choreograph computation and data movement. Thus,
the overall performance depends heavily on the data transfer
speed between the hosts and devices. In this regard, a remarkable
finding is that the high-speed interconnects such as NVLink can
dramatically shorten the walltime in our simulations. Together
with the NVLink2 (the second-generation NVLink) on an IBM
AC922 node, the V100 delivered an astonishing 5.1× speedup
over an ORNL Titan node. In other words, the NVLink2 is able
to help double the performance of the V100 in our benchmark
simulations. Lastly, to compare with the performance of a CPU-
only implementation of our simulator, we benchmarked the CPU
counterpart on an INL HPC node fully utilizing its 36 cores (2 Intel
Xeon E5-2695 v4 CPUs, 18 cores per CPU), and have found that it
is equivalent to the TITAN Xp GPU in performance.

With an interest to elaborate on the ramifications of the
NVLink interconnect, we present a breakdown of the walltime
on the GPU-related tasks in Fig. 10, e.g., Host-to-Device transfer,
Device-to-Host transfer and kernel computation. For the Telsa
V100 with the PCIe interconnect (DGX-1 node), the transfers
together took up 53% of the GPU related tasks (i.e., 30% by Host-
to-Device data transfer and 23% by Device-to-Host data transfer).
In comparison, when NVLink2 interconnected the host and the
device, the transfers took up only 21% while the walltime of
kernel computations remains almost the same. In other words,
NVLink2 has helped reduce the walltime of the GPU related tasks
by about 40% for our benchmark simulation. The same test was

Fig. 10. Simulations of fluid flow in manufactured, homogeneous nanoporous
media: breakdown of walltime of a single-GPU simulation on GPU related tasks.

performed on SummitDev at ORNL (a tester cluster mimicking
Summit), which has the Tesla P100 (Pascal architecture, 3584
CUDA cores, 16 GB memory) with NVLink1 (the first-generation
NVLink). Our result indicates that NVLink independently reduces
considerable walltime that is sufficient to compensate for P100
when compared with its successor V100 without NVLink.

Above all, this benchmark problem has successfully demon-
strated the excellent scalability of our code. Furthermore, the use
of NVLink can drastically improve the efficiency of our code and
provides performance boost to data-transfer intensive applica-
tions like our particle simulator.

5.2. Fluid flow in heterogeneous nanoporous media

The objective of this problem is to assess and demonstrate
the scaling performance of USERMESO 2.5for simulations of fluid
flow in realistic heterogeneous nanopores, i.e., the shale kerogen-
hosted pores. In this study, the construction of kerogen-hosted
pores for pore-flow simulations was based on the nano-resolution
stack images of a Vaca Muerta shale micro core sample, which
refers to the geologic formation located at Neuquén Basin in
Argentina [57]. The procedures for digital imaging of shale core
samples and image post-processing for our pore-flow simula-
tions are briefly described in Appendix for interested readers.
Most hydrocarbons in shale are believed to be in kerogen-hosted
pores before geotechnically processed. Massive hydrocarbon flow
will not occur in kerogen with their natural low permeabil-
ity [58]. Permeability enhancement like hydraulic fracturing cre-
ates micro-cracks in shale and create linked paths for flow
through connected pores spanning multiple scales (e.g. from
nano- to micro-scale). Such structural evolution of organic-
matter-hosted pores as well as the flow within is challenging
to reproduce and measure in laboratory because of the required
physical conditions [59]. Our benchmark test is thus focused on
flow simulations in kerogen-hosted pores, in order to present
an efficient pore-network flow simulation package for relevant
research.
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Fig. 11. Schematic for creation of block domains for flow simulations in organic-rich regions in a shale core sample.

5.2.1. Problem description
For our benchmarking purpose, pore flow simulations in the

entire core sample is not necessary. Instead, we focus on a large
pore (labeled #1) in Fig. 18 and introduce an example of how to
set up a simulation domain for pore flow driven by bulk pressure
gradient, as shown in Fig. 11. In the first step, the #1 pore is
cropped to create a cubic block (957.5×952.5×945.0 nm3), with
two slabs perpendicular to a specified direction (e.g. x) added to
the two ends of the block to allow fluid particles to move only
inside the pore, as shown in Fig. 11 (middle). For flow simulation
in this block, it is estimated to require over 200 million particles
and 400 million timesteps. To allow the required memory to fit in
a single V100 GPU for strong-scaling test, we cropped the block
to a miniature version (367.5× 382.5× 355.0 nm3), as shown in
Fig. 11 (right).

The setup for our miniature version test is illustrated in Fig. 12,
which is general enough for applying to a system of any size. The
simulation box extents from −30 to 140 in x, 0 to 91 in y, and 0
to 88 in z, respectively. A reflection wall condition is prescribed
at all the box boundaries to prevent fluid particles from acciden-
tally fleeing, which though did not occur in our simulations. The
simulation depicts a pressure gradient driven flooding through a
porous block located at x ∈ [0, 89]. Five material types numbered
from 1 to 5 are labeled for the particles. A total of 3325,409
particles are created in the box, including 1859,025 particles as
type-1 fluid (source), 1641,640 particles as type-2 fluid (work-
ing), 568,488 particles as type-3 solid (pore surface wall), and
128,128 particles for type-4 solid (front-pushing slab) and type-5
solid (back-pressure slab), respectively. Type-1 and 2 particles are
assigned with the same mDPD model parameters as we consider
single-phase flow in this study. Likewise, type-3, 4 and 5 particles
represent solids of the same kind. The use of unique material
types allows flexible change of model parameters.

5.2.2. Benchmark results
The initial condition for the flooding simulation takes a few

separate simulations to prepare. For the first, type-1 fluid par-
ticles are created to saturate the porous block (type-3). Extra
type-1 fluid particles outside the block are pushed against the
block by a slab (type-5) in order to sustain the hydraulic pressure
in the pore. This setup mimicks hydrocarbons trapped in organic-
matter-hosted pores. For the second, type-2 fluid particles are
pushed against the block on the other side by a slab (type-4) with
a higher external pressure. A virtual wall is placed at the bound-
ary of the block (x = 89) to prevent type-2 fluid particles from
entering the pore. At the beginning of the flooding simulation, the
virtual wall is removed, and due to the bulk pressure difference
between the two ends of the block, the type-2 fluid particles will
be pushed into the pore gradually, while the type-1 fluid particles
in the pore will be extracted. The mDPD model parameters and

Fig. 12. Schematic for simulations of pressure gradient driven flooding in a block
porous domain.

timestep size used in Section 5.1 are adopted here. A series of
snapshots for the simulated flooding process are shown in Fig. 13,
depicting the forced ejection of source fluid out of the pore.

To investigate the scalability of USERMESO 2.5 on the flooding
simulations in the realistic shale pore geometries, we carried out
a set of strong-scaling tests using the Power9/V100 nodes on
the IBM AC922 cluster. We chose the first 10,000 timesteps of
the simulation for timing, during which the working fluid rushes
into the pore. Shown in Fig. 14, the benchmark results indicate
that the almost linear strong scaling obtained in Section 5.1 is
no longer held true with the realistic nanopore geometries. This
is because the fluid and solid particles are unevenly distributed
in the simulation domain, unlike the uniform pore network de-
scribed in Section 5.1. When a simulation box is decomposed
evenly based on the spatial dimensions, each subdomain has a
distinctive particle composition tabulated in Table 4. As a result
of the non-uniform particle distributions, the conventional spa-
tial decomposition scheme does not offer a good strong scaling.
Implementing a load balancing scheme such as the recursive
coordinate bi-sectioning (RCB), the performance of the CPU code
improved considerably, especially when fewer cores were used.
For example, in our CPU timing with 168 cores, the RCB cut
the walltime almost in half. However, as more cores were en-
gaged, the benefits of RCB subsided rapidly. This was observed
in the CPU timing with 840 cores, where the RCB failed to help
reduce the walltime by a definitive amount. As for USERMESO
2.5, the conventional spatial decomposition is enforced in the
current implementation. Furthermore, as a GPU can hold a much
larger subdomain than a CPU core, the effect of load imbalance is
much less pronounced. Hence despite the lack of load balancing
schemes, USERMESO 2.5 with 4 V100 GPUs performed just as
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Fig. 13. Miniature flooding test: a series of instantaneous snapshots for single-phase flooding in an organic-matter-hosted pore. The pore surface wall particles are
not displayed, to allow fluid particles in the pore to be seen.

Fig. 14. A comparison of the walltime measured between USERMESO 2.5 and
its CPU counterpart for the miniature flooding simulations on the IBM AC922
cluster featuring Power9 CPUs and V100 GPUs with NVLink2.

Table 4
Initial particle composition of each of the four subdomains. One subdomain is
run on one GPU. The GPU with the heaviest workload is responsible for 38.7%
more particles than the one with the lightest workload.
Subdomain Fluids Wall Slabs Total

0 675,028 164,223 64,068 903,319
1 830,701 182,201 64,060 1,076,962
2 930,803 97,688 64,064 1,092,555
3 1,064,133 124,376 64,064 1,252,573

well as 840 Power9 cores as seen in Fig. 14, well demonstrat-
ing the superiority of GPU implementation for realistic complex
geometries.

To further illuminate the scalability challenge for the particle
flow simulations in heterogeneous nanoporous geometries, we
present a breakdown of the GPU workloads with four V100 GPUs
and track the number of particles in each subdomain over the
timesteps, as shown in Fig. 15. Recall that the simulation box is
evenly divided into four subdomains with one per GPU. We also
plotted the load imbalance factor, which is defined as the ratio
of the largest GPU workload to the smallest among the subdo-
mains. The workload imbalance is the largest at the beginning
of the simulation, when subdomain 3 contained approximately
25% more particles than subdomain 0, corresponding to a load
imbalance factor of 1.4. As the working fluid rushed into the
pore, the workloads became more even over time, and the factor
descended to 1.28 at most. Further investigation on the load
balancing is not in the scope of this study. We intend to propose a
general solution to control load imbalance on GPUs in a follow-up
work.

6. Capability demonstration

Though it is a common understanding that the Darcy’s law is
no longer suitable for describing the flow and transport phenom-
ena in nanoporous source shale rocks, so far no mature analytic

Fig. 15. Breakdown of the GPU workloads over the timesteps. Note that in the
benchmark test between GPUs and CPUs, the walltimes were measured when
the workload imbalance is the largest, indicated by the pink background.

formulation has been deduced experimentally to elaborate the
source recovery processes in shale. Certain properties such as
the permeability-fluid dependence (i.e. the correlation between
the mass flow rate and bulk pressure gradient) are difficult to
measure experimentally in the micro core samples. The USERMESO
2.5 package presented in this work provides an alternative to
characterize the fluid-permeability dependency with mesoscopic
flow simulations in digitized nanometer-resolution realistic shale
pore geometries. To demonstrate the versatility of our package,
the micro block (957.5×952.5×945.0 nm3) shown in the middle
of Fig. 11 was used in the flooding simulations, with a brief
depiction of the problem setup and a snapshot of the moving
fluid particles on the left side of Fig. 16. Again, for simplicity,
we assumed single-phase flow by specifying the same model
parameters for the working fluid (blue) and source fluid (red). The
simulation box contained about 240 million particles. Four simu-
lations corresponding to four successively increased bulk pressure
gradients were performed. In each simulation, 3000 DPD time
units were run to allow the mass flow rate to reach a stable status.
A total of 2048 nodes on Titan at Oak Ridge National Laboratory
were deployed for each simulation. The same simulation would
take at least 15 times as long on the CPUs, deduced from our
benchmark results.

Shown on the right side of Fig. 16, the dependency of the
flow rate on the bulk pressure gradient deviated from the Darcy’s
law, indicating a non-constant permeability in shale, in part
because of their heterogeneous porosity distributions and the
sub-continuum solid–fluid interactions in the nanopores. The
simulation results coincide with the general observation from
shale reservoir operations that the increased injection rate does
not necessarily help increase the source recovery rate. However,
as a case of capability demonstration, such limited simulations
cannot provide all but a rough depiction of the complicated
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Fig. 16. Example of flooding simulations (about 240 million DPD particles) and permeability-fluid dependence characterization in a micro shale domain with realistic
nanometer-resolution pore geometries. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

source recovery processes. An inclusive understanding can only
be established with flow simulations based on a sufficiently large
ensemble of shale core samples and a careful calibration of model
parameters for specific types of fluids and solids.

7. Summary

This work has presented a GPU-accelerated mesoscopic pore
flow simulation package based on a many-body dissipative parti-
cle dynamics (mDPD) model to address the computational chal-
lenges in the numerical investigation of hydrocarbon flow in
source shales. Leveraging mDPD’s ability to model the sub-
continuum and continuum flow phenomena, the complex flow
dynamics and fluid–solid interactions in multiscale pore net-
works with pore sizes ranging from a few nanometers to a
few micrometers can be resolved simultaneously. The effective
use of GPUs enhances simulation performance significantly: al-
most linear scaling on up to 512 nodes is achieved in both
our strong and weak scaling benchmarks, while further speedup
is possible even beyond 1024 nodes. Besides, the use of the
advanced device-to-host interconnects such as NVLink2 brings
remarkable additional speedup over PCIe. Additional advances
including the implementation of solid wall boundary conditions
for mDPD flow in complex pore geometries and solid wall particle
packing for huge systems have facilitated flow simulations in
realistic shale nano pore networks that are constructed from
3D nanometer-resolution stack images. Furthermore, we have
calculated the speedup over CPU counterpart through a realistic
shale pore flow test: it requires 840 Power9 CPU cores to match
the performance of 4 V100 GPUs on the Summit architecture.

In summary, this package enables quick-turnaround and high-
throughput mesoscopic numerical simulations for investigating
complex flow phenomena in nano- to micro porous rocks with re-
alistic pore geometries. We made our software freely available on
GitHub, following the link https://github.com/AnselGitAccount/
USERMESO-2.0-mdpd.
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Fig. 17. A glance at the Vaca Muerta shale constituents in a raw digital image obtained by a FIB-SEM process. The resolution of this image is 2.5 × 2.5 nm2 per
pixel.

Fig. 18. Visualization of kerogen-hosted pores in a block region, with the ten largest pores rendered in unique colors and the top four largest pores labeled with #1,
#2, #3 and #4. Other smaller and isolated pores are colored in light yellow. Bottom: distribution of the connected porosities (%). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Appendix. Digital imaging and image post-processing for
shale core samples

The Vaca Muerta shale micro core sample referred to in this
work underwent a FIB-SEM process, which resulted in a stack of
raw images with 2.5×2.5 nm2 pixel resolution in each image and
5 nm interval in scanning direction. Fig. 17 displays one of such
raw images to illustrate the complex constituents in the sample.
In a simplistic manner, we categorized the shale constituents in
four phases: (1) inorganic matters, (2) inorganic-matter-hosted
pores, (3) organic matters, and (4) organic-matter-hosted pores
(i.e. kerogen-hosted pores). The raw images were not readily us-
able to pore-flow simulations because they could contain digital
noises that should be filtered out first.

The raw images were post-processed with the Dragonfly im-
age processing toolkit. The processed images were then used
for the preparation of DPD-based pore flow simulations. A block
region of interest that contains an abundance of kerogen-hosted
pores was found in our micro core sample and selected for

preparation of the pore-flow simulations reported in this work.
This block region has a size of width = 5232.50 nm in width,
height = 4400 nm, and depth = 3030 nm, and is visualized in
Fig. 18, where the pore networks are represented with pore sur-
face wall particles generated with the image-to-particle workflow
described in Section 2.2. In this block region, the ten largest pores
that have no connectivity with others are each rendered with a
unique color, and the rest of smaller isolated pores are colored in
light yellow. The distribution of kerogen-hosted porosities in this
block region is also reported in Fig. 18, demonstrating the low-
porosity feature of kerogen in shale as well as the discreteness of
the pores.
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