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Dissipative particle dynamics (DPD) is an effective Lagrangian method for modeling 
complex fluids in the mesoscale regime but so far it has been limited to relatively simple 
geometries. Here, we formulate a local detection method for DPD involving arbitrarily 
shaped geometric three-dimensional domains. By introducing an indicator variable of 
boundary volume fraction (BVF) for each fluid particle, the boundary of arbitrary-shape 
objects is detected on-the-fly for the moving fluid particles using only the local particle 
configuration. Therefore, this approach eliminates the need of an analytical description 
of the boundary and geometry of objects in DPD simulations and makes it possible to 
load the geometry of a system directly from experimental images or computer-aided 
designs/drawings. More specifically, the BVF of a fluid particle is defined by the weighted 
summation over its neighboring particles within a cutoff distance. Wall penetration is 
inferred from the value of the BVF and prevented by a predictor–corrector algorithm. The 
no-slip boundary condition is achieved by employing effective dissipative coefficients for 
liquid–solid interactions. Quantitative evaluations of the new method are performed for 
the plane Poiseuille flow, the plane Couette flow and the Wannier flow in a cylindrical 
domain and compared with their corresponding analytical solutions and (high-order) 
spectral element solution of the Navier–Stokes equations. We verify that the proposed 
method yields correct no-slip boundary conditions for velocity and generates negligible 
fluctuations of density and temperature in the vicinity of the wall surface. Moreover, 
we construct a very complex 3D geometry – the “Brown Pacman” microfluidic device 
– to explicitly demonstrate how to construct a DPD system with complex geometry 
directly from loading a graphical image. Subsequently, we simulate the flow of a surfactant 
solution through this complex microfluidic device using the new method. Its effectiveness 
is demonstrated by examining the rich dynamics of surfactant micelles, which are flowing 
around multiple small cylinders and stenotic regions in the microfluidic device without 
wall penetration. In addition to stationary arbitrary-shape objects, the new method is 
particularly useful for problems involving moving and deformable boundaries, because it 
only uses local information of neighboring particles and satisfies the desired boundary 
conditions on-the-fly.
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1. Introduction

Despite of the sustained fast growth of computing power during the past few decades, it is still computationally pro-
hibitive or impractical to model long time scales and large spatial scales in many applications of soft matter and biological 
systems with the brute-force atomistic simulations [1,2]. If only the mesoscopic properties and collective behavior are of 
practical interest, it may not be necessary to explicitly take into account all the details of materials at the atomic/molecular 
level [3]. To this end, a coarse-graining approach eliminates fast degrees of freedom and drastically simplifies the dynamics 
on atomistic scales, while providing a cost-effective simulation path to capturing the correct properties of complex fluids 
at larger spatial and temporal scales beyond the capacity of conventional atomistic simulations [4]. In recent years, with 
increasing attention on the research of soft matter and biophysics [5], coarse-grained (CG) modeling has become a rapidly 
expanding methodology especially in the simulations of polymers [6–9], colloidal suspensions [10–12], interfaces of multi-
phase fluids [13–15], cell dynamics [16–18], blood rheology [19–21] and biological materials [22–25].

Initially proposed by Hoogerbrugge and Koelman [26], dissipative particle dynamics (DPD) is one of the currently most 
popular CG methods [27–29] for performing mesoscopic simulations of complex fluids. The DPD particles are defined as 
coarse-grained entities [30,31], which represent clusters of molecules rather than atoms/molecules directly. In contrast to 
molecular dynamics (MD) method, DPD allows much larger particle size and also time steps because of the soft particle 
interactions. As a particle-based mesoscopic method, DPD considers N particles, whose state variables of momentum and 
position are governed by the Newton’s equations of motion [32]. For a typical DPD particle i, its time evolution follows 
ṙi = vi and ṗi = Fi = ∑

i �= j(FC
i j + FD

ij + FR
i j) where ri , vi , pi and Fi denote position, velocity, momentum and force vectors, 

respectively. The summation for computing the total force Fi is carried out over all other particles within a cutoff radius rc

beyond which the forces are considered negligible. The pairwise force Fi j comprises conservative (FC
i j ), dissipative (FD

ij ) and 
random (FR

i j) forces, which are expressed as [32]

FC
i j = aijωC (ri j)ei j,

FD
ij = −γi jωD(ri j)(ei j · vi j)ei j,

FR
i j = σi jωR(ri j)dW̃ ijei j,

(1)

where ri j = |ri j| = |ri −r j | represents the distance between two particles i and j, ei j = ri j/ri j is the unit vector from particles 
j to i, and vi j = vi − v j is the velocity difference; dW̃ ij is an independent increment of the Wiener process [33]. Also, γi j
is the dissipative coefficient and σi j sets the strength of random force. The dissipative force and random force together act 
as a thermostat when the dissipative coefficient γ and the amplitudes of white noise σ satisfy the fluctuation–dissipation 
theorem (FDT) [33,34] requiring σ 2 = 2γ kB T and ωD(r) = ω2

R(r). All these forces in Eq. (1) have the same finite interac-
tion range rc and their amplitudes decay according to corresponding weight functions. A common choice of the weight 
functions [32] is ωC (r) = 1 − r/rc and ωD(r) = ω2

R(r) = (1 − r/rc)
2 for r ≤ rc and zero for r > rc .

All the three forces between DPD particles are soft and short-range interactions, which allow large time steps for the 
time integration of the particle-based system. The soft interactions between DPD particles, unlike the hard potentials in 
atomistic simulations, cannot prevent fluid particles from penetrating wall boundaries [35]. It is also unlike the top–down 
smoothed particle hydrodynamics (SPH) [36] or smoothed DPD (SDPD) [10] approach, where the equation of state can be 
tuned so that the pressure is arbitrarily strong to prevent particle penetration. As a result, for wall-bounded flow systems, 
DPD simulations require extra formulations [37–39] to prevent the penetration of the liquid particles into solid boundaries. 
Specular, Maxwellian, and bounce-back reflections [40] are common techniques used to reflect particles back into the fluid 
after they cross the wall surface. Therefore, for wall-bounded flows one has to mathematically predefine the position of 
solid wall to judge the penetration of fluid particles before a DPD simulation can be performed, which is difficult to extend 
for arbitrarily shaped boundaries and limits the applicability of DPD.

In the present paper, we develop a boundary method for imposing correctly the no-slip boundary condition on the 
solid walls with arbitrary shapes. Instead of predefining the position of the wall boundary, we make the fluid particles au-
tonomous to detect the wall surface and to infer the wall penetration by themselves based on the local information of their 
neighboring particles. Hence, the geometry of solid boundary can be computed on-the-fly using local particle configura-
tions. Therefore, it is no longer necessary to predefine the boundary geometry for DPD simulations, which makes it possible 
to construct DPD systems with arbitrary-shape domains directly from loading experimental images or computer-aided 
designs/drawings. Furthermore, since this boundary method uses local information of neighboring particles and satisfies 
no-slip/partial-slip boundary conditions on-the-fly, it is not only valuable for stationary arbitrary-shape boundaries but also 
for moving boundaries and deformable boundaries.

The remainder of this paper is organized as follows: Section 2 introduces the details of the boundary method, and also 
how to compute the effective dissipative coefficient for liquid–solid interactions. In Section 3, we validate the proposed 
boundary method by performing the Poiseuille flow, the Couette flow and the Wannier flow with comparison to analytical 
solutions. Moreover, an error analysis of this boundary method related to the curvature of arbitrary-shaped boundaries is 
provided in Appendix A. We also include a demonstration of micelles flowing through a very complex microfluidic device. 
Finally, we end with a brief summary and discussion in Section 4.
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Fig. 1. (a) Sketch for a fluid particle i in the vicinity of a wall represented by many solid particles and the integration domain for accumulation of φ. 
(b) Dependence of φ(h) on h/rcw calculated by the integration in Eq. (4).

2. Wall boundary method

2.1. Definition of the boundary volume fraction

Consider a fluid particle i in the vicinity of a solid wall represented by discrete DPD particles and we assign to it an extra 
variable φi = ϕ(ri) in addition to other quantities such as position and momentum. We define φi as the boundary volume 
fraction (BVF) depending on the coordinates of particle i. More specifically, the value of φi is computed using a weighted 
summation over neighboring solid particles j given by

φi = ϕ(ri) = 1

ρw

j∈S∑
ri j<rcw

W (ri j, rcw) , (2)

where W (r, rcw) is a weighting function, and ρw is the bulk number density of solid particles. The weighting function 
W (r, rcw) can be any smoothing kernel, such as the ones used widely in smoothed particle hydrodynamics [41,42]. As a 
demonstration, we choose the three-dimensional Lucy kernel [43]

W (r, rcw) = 105

16πr3
cw

(
1 + 3r

rcw

)(
1 − r

rcw

)3

, (3)

where r is the norm of r, and rcw is the cutoff radius beyond which W (r, rcw) is considered zero. Larger rcw increases the 
computational cost but yields smoother ϕ(r), as we will discuss in section 3. Unless otherwise specified, in testing cases we 
simply set rcw equal to rc .

Consider a planar wall surface or a wall surface with a radius of curvature far greater than the cutoff radius rcw , as 
shown in Fig. 1(a); we estimate the value of φi using the continuum approximation

φi = ϕ(h) =
rcw∫

z=h

√
rcw

2−z2∫
x=0

2πxW (r, rcw) · dx · dz (4)

where r = √
x2 + z2 and h is the distance between the particle i and the wall boundary. By inserting the Lucy kernel given 

by Eq. (3) into Eq. (4), we have

ϕ(h) =
⎧⎨
⎩

1
16

(
1 − h

rcw

)5
(

15
(

h
rcw

)2 + 19 h
rcw

+ 8

)
0 � h � rcw ,

1 − ϕ(−h) −rcw � h < 0
(5)

in which ϕ(h = 0) = 0.5. It is worth noting that h = 0 represents that the particle lies right on the wall surface, and a 
negative h means that the particle is underneath the wall surface while a positive h is for the particle outside the wall 
boundary. The number density ρw disappears in Eq. (4) because we scaled ϕ(r) by ρw in Eq. (2). Thus, the value of φi only 
depends on h as plotted in Fig. 1(b), which shows clearly that ϕ(h) decreases from 1.0 to 0 as h changes from −rcw to rcw .

Given a value of φi , the distance of a particle i away from the wall surface can be computed by the inverse function of 
Eq. (5). For simplifying the numerical implementation in practical simulations, we employ an approximation of ϕ−1(φi) in 
the form of
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hi/rcw = ϕ−1(φi) ≈
{

1 − (
2.088φ3

i + 1.478φi
)1/4

0 � φi � 0.5 ,

−ϕ−1(1 − φi) 0.5 < φi � 1.
(6)

The value of BVF on each fluid particle φi can be evaluated every time step in the same loop of pairwise force com-
putation, so the extra computational cost for applying this boundary method is marginal. Given a value of φi , the distance 
of the particle i from the wall surface is given by h = ϕ−1(φi) · rcw . Whenever hi < 0 (or φi > 0.5), the wall penetration is 
observed.

For a fluid DPD particle i with state variables {ri, vi}, we employ a predictor–corrector algorithm to prevent the wall 
penetration. In particular, we perform an imaginary-integration of its position for a time step 	t , i.e., r′

i = ri + vi	t . If the 
value ϕ(r′

i) > 0.5, the particle i at the predicted position r′
i would penetrate into the wall. To avoid this wall penetration, 

we correct the velocity of the particles whose ϕ(r′
i) greater than 0.5 by reassigning a new value

vnew
i = 2U + a	t − vi + 2 max{0,vi · en} · en, (7)

where en is the unit normal vector of the wall boundary, U and a are the local velocity and local acceleration of the 
boundary, respectively. It is obvious that all stationary wall boundaries have U = a = 0. For moving boundaries, the value of 
U and a can take the values of velocity and acceleration of the nearest wall particle in practical DPD simulations. Let nw be 
the gradient of ϕ(ri) at the location of particle i, which is computed by

nw = ∇ϕ(ri) = 1

ρw

j∈S∑
ri j<rcw

ri j

ri j

dW (ri j, rcw)

dri j
. (8)

Then, the unit normal vector of the wall boundary en = nw/nw where nw is the modulus of nw .

2.2. Control of the surface roughness

Consider a flat wall represented by solid particles in uniform lattices, the iso-surface of φ = 0.5 is smooth and flat, 
which can accurately represent the surface of the flat wall. However, the structure of solid particles associated with these 
lattices will induce unwanted fluctuations [37] of fluid density and temperature in the vicinity of wall boundary. There are 
different methods to eliminate the wall-induced fluctuations in the bulk region, such as an adaptive model for wall-particle 
interactions [44], an amorphous wall model [45] and a dynamic virtual particle allocation method [46]. In the present 
paper, we employ randomly distributed particles in the wall domain to represent the wall boundary, which is easier and 
more general for construction of fluid system with complex geometry and arbitrarily shaped boundaries.

Randomly distributed particles do not possess a lattice structure, and hence effectively eliminate the fluctuations of 
averaged profiles of density and temperature in the vicinity of the wall surface. Theoretically, to the limit of the continuum 
approximation, a planar wall surface can be accurately represented by the isosurface of φ = 0.5 when the solid particles 
are dense enough. However, in practical implementations, the number density ρw in DPD simulations is finite and usually 
smaller than 10.0. As a result, the roughness on wall surface is generated by the random distribution of discrete particles 
with finite number density. Figs. 2 shows the wall boundary represented by the isosurface of φ = 0.5 for the number 
densities of wall particles being ρw = 4.0 and 8.0. The solid wall is made up of randomly distributed particles, where the 
average distance between these particles is δ = ρ

−1/3
w = 0.63 for ρw = 4.0 and δ = 0.5 for ρw = 8.0.

The surface roughness shown in Fig. 2 comes from the estimation error of φ based on the discrete particles. Unlike 
SPH or other mesh-free methods that try to eliminate this error, we take advantage of this kind of error for generating 
controllable roughness on wall surface in the DPD systems. As a matter of fact, any natural solid wall contains more or 
less chemical/physical heterogeneities on the surface especially at the mesoscopic scale. Such heterogeneity can be modeled 
qualitatively by the roughness on walls in the DPD systems, as shown in Fig. 2. More importantly, the proposed boundary 
method provides a convenient way to generate various sizes of the roughness for representation of different degrees of the 
heterogeneity.

According to the unbiased estimation of standard deviation [47], the magnitude of roughness associated with the ran-
domness of particle distribution will monotonically decrease as the number of neighboring particles Nw = 2πr3

cw/3 · ρw

increases, implying that the roughness of the wall is controllable by tuning the cutoff radius rcw and number density ρw of 
DPD systems. To quantify the wall surface texture, we define the root mean squared height Rq given by

Rq =
(

1

A

∫∫
	2(x, y)dxdy

)1/2

(9)

where A is the area of a flat wall, and 	(x, y) represents the vertical deviations of a real surface of φ = 0.5 from its ideal 
surface defined by the isosurface of φ = 0.5 when ρw → ∞. Fig. 3 shows that the root mean squared height Rq decreases as 
the cutoff radius rcw and the number density ρw increase. Since rcw is only involved in computation of φ, the variation of 
rcw does not affect the particle interactions and fluid properties. In practical DPD simulations, changing the value of N−1/2

w
allows linear tunability of the wall surface roughness, as shown in Fig. 3(b).
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Fig. 2. Wall boundary represented by the isosurface of φ = 0.5 computed by Eq. (2) for a number density of wall particles ρw = 4.0 with the cutoff radius 
of (a1) rcw = 1.0 and (a2) rcw = 2.0, and for a number density ρw = 8.0 with the cutoff radius of (b1) rcw = 1.0 and (b2) rcw = 2.0. The value of 	(x, y)

represents the vertical deviations of an isosurface of φ = 0.5 from its ideal surface z = 0. Spherules represent the randomly distributed solid particles.

Fig. 3. (a) Dependence of the root mean squared height Rq on the cutoff radius rcw , where the inset shows the scaling law of Rq ∼ r−3/2
cw . (b) The scaling 

law of Rq ∝ 1/
√

Nw indicating the linear tunability of the wall surface roughness, where Nw is the number of neighboring solid particles on wall surface, 
i.e., Nw = 2πr3

cw/3 · ρw .

Usually, a randomized configuration of DPD particles can be generated simply by a random number generator, which 
may result in overlapping of particles or large vacancies in wall boundaries. To avoid the overlaps or vacancies, a more 
uniform particle distribution is needed, which can be achieved by a process of geometry optimization or a short run of 
particle-based simulation. In the present paper, we carry out a short DPD simulation with a relatively large conservative 
force coefficient to get the initial particle positions. Then, the particles in the wall domain are frozen as solid particles, 
while others in the fluid domain are taken as the fluid particles. For instance, the wall boundary shown in Fig. 2 is obtained 
by running 1000 time steps of DPD simulation from totally randomized particles.

2.3. Effective dissipative interaction

Applying the bounce-back reflection without any correction on dissipative interactions will violate the no-slip condition 
on wall surface in DPD simulations. This is a widely discussed issue for DPD and it is the motivation of many previous 
DPD works [37,48–50] for imposing correct no-slip boundary conditions at wall surface. In this section, we will introduce 
a method to implement an effective dissipative interaction, so that the local detection method is able to impose correct 
no-slip boundary conditions at wall boundaries.

The dissipative force between two DPD particles is computed by FD
ij = −γ · ωD(ri j)(ei j · vi j)ei j , where ri j is the distance 

between particles i and j, ei j represents the unit vector from particle j to i, and vi j = vi − v j is their velocity difference. 
The weighting function is given by ωD(ri j) = (1 − ri j/rc)

2 for ri j � rc and zero for ri j > rc . The effective dissipative force 
from solid boundaries is extracted from the fluid–solid interactions using the continuum approximation [51]. In particular, 
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Fig. 4. Integration domains for the effective boundary force. �F and �S represent the domain of fluid and solid wall, respectively. The number of particles 
in the infinitesimal ring element is 2πρg(r)xdxdz in which ρ is the average number density and g(r) the radial distribution function. vi j = vi − U is the 
instantaneous velocity difference between particle i and the boundary, while v′

j = −vi j · (z − h)/h is an extrapolated velocity for solid particles.

we integrate the force contribution over the part of the cutoff sphere that lies in the solid domain, as shown with the gray 
area of Fig. 4 where we choose a coordinate system with x-axis along the direction of the velocity component of particle 
i parallel to the wall surface and z-axis perpendicular to the wall surface. Let vi j = vi − U be the instantaneous velocity 
difference between particle i with velocity vi and the solid particles with velocity U, and u be the parallel component 
of vi j .

Consider a planar wall surface or a wall surface with the radius of curvature far greater than the cutoff radius rc ; if the 
wall is considered as a rigid body and has uniform velocity U, the instantaneous velocity difference in parallel direction is u. 
Then, the total dissipative force F D

0 (h) on the particle i due to the presence of wall boundary can be evaluated by:

F D
0 (h) =

rC∫
z=h

√
rC

2−z2∫
x=0

2π∫
θ=0

(−γ · ωD(ri j)(ei j · vi j)ei j · ρ · g(r) · dx · x · dθ · dz
)

=
rC∫

z=h

√
rC

2−z2∫
x=0

(
−γπρ · u ·

(
1 − r

rc

)2

· x3

r2
· g(r) · dx · dz

)

g(r)=1====== −γπρur3
c

[
1

45
− 1

12

h

rc
−

(
h

rc

)3 (
1

3
log

(
h

rc

)
+ 2

9

)
+ 1

3

(
h

rc

)4

− 1

20

(
h

rc

)5
]

. (10)

However, the value of F D
0 (h) is not sufficient to impose the correct no-slip boundary condition on the wall surface. To 

this end, we assign an extrapolated velocity v′
j = −vi j · (z − h)/h to each solid particle so that the wall surface has zero 

velocity, and hence the instantaneous velocity difference becomes ṽi j = vi j − v′
j = vi j · z/h, in which the parallel component 

is u · z/h. Then, the corrected dissipative force F D
cor(h) on the particle i due to the presence of wall boundary is computed 

by:

F D
cor(h) =

rC∫
z=h

√
rC

2−z2∫
x=0

2π∫
θ=0

(−γ · ωD(ri j)(ei j · ṽi j)ei j · ρ · g(r) · dx · x · dθ · dz
)

=
rC∫

z=h

√
rC

2−z2∫
x=0

(
−γπρ ·

( z

h
u
)

·
(

1 − r

rc

)2

· x3

r2
· g(r) · dx · dz

)

g(r)=1====== −γπρur3
c

[
1

240

rc

h
− 1

24

h

rc
− 1

4

(
h

rc

)3 [
log

(
h

c

)
+ 3

4

]
+ 4

15

(
h

rc

)4

− 1

24

(
h

rc

)5
]

. (11)

Fig. 5(a) plots the distance-dependent functions of F D
0 (h) and F D

cor(h), which shows that the correction with extrapolated 
velocities does not change the value of F D(h) significantly at large distances (i.e., h/rc > 0.5) but yields bigger dissipative 
force at small distances (i.e., h/rc < 0.5). Here, we define the ratio of F D

cor(h) to F D(h) as a correction coefficient λ(h) =
0
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Fig. 5. (a) Distance-dependent functions of the effective dissipative force F D
0 (h) and F D

cor(h). (b) Correction coefficient λ(h) defined by the ratio of F D
cor(h)

to F D
0 (h) and its approximation given by Eq. (12).

Fig. 6. (a) Time evolution of the velocity profile u(z, t) and comparison with analytic solution at t = 10, 50, 100, 200 and at steady state, and (b) density 
ρ and temperature T profiles in a Poiseuille flow. The inset of (b) shows negligible fluctuations of density (< 1%) and temperature (< 2%) in the vicinity 
of the wall surface. The simulation uses 24000 fluid particles and 4800 frozen particles for two flat walls of thickness 2.0 in a computational domain of 
30.0 × 5.0 × 24.0 with ρ = 8.0, a = 75.0kB T /ρ, σ = 3.0, kB T = 1.0 and rc = rcw = 1.0.

F D
cor(h)/F D

0 (h), which is plotted in Fig. 5(b). In practical implementation, the distance-dependent coefficient λ(h) can be 
approximated by

λ(h) = λ(ϕ−1(φ) · rcw) ≈
{

1 + 0.187
( rc

h − 1
) − 0.093

(
1 − h

rc

)3
0.01 � h/rc � 1.0 ,

19.423 h/rc < 0.01 .
(12)

Let the effective dissipative coefficient for liquid–solid interaction be γe = λ(h) · γ . We note that the formula of Eq. (12) is 
obtained based on g(r) = 1. A more accurate function of λ(h) can be derived from Eqs. (10) and (11) using the computed 
g(r). For easier numerical implementation using Eq. (12) directly without computation of g(r), it is recommended to keep 
Nw = 2πr3

cw/3 ·ρw � 15, i.e., setting rcw � 1.35 at ρw = 3 and rcw � 1.0 at ρw = 8, so that the value of φ can be evaluated 
accurately. Then, the dissipative force between liquid particles and solid particles is computed by FD

ij = −γe · ωD(ri j)(ei j ·
vi j)ei j , which guarantees the no-slip boundary condition at the wall surface. The corresponding random force is given by 
FR

i j = σe · ωR(ri j)dW̃ ijei j with σe = 2kB Tγe and dW̃ ij being independent increments of the Wiener process to satisfy the 
FDT [33]. The physical motivation for using a continuum approximation in Eqs. (10) and (11) is the fact that a discrete 
particle-based system with number density ρ → ∞ converges to a continuum representation. The discretization error is 
induced by the finite particle density of DPD systems. In the next section, we will verify the validity and the accuracy of 
the boundary method using the effective dissipative coefficient for liquid–solid interaction.

3. Numerical results

In this section, we examine the accuracy of the proposed boundary method for well-known flows such as the plane 
Poiseuille flow, the plane Couette flow and the Wannier cylindrical flow. Then, a demonstration of flow in a “Brown Pacman” 
microfluidic device involving very complex boundaries is performed.
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Firstly, we test the accuracy of the boundary method on stationary walls by carrying out a DPD simulation of the plane 
Poiseuille flow, in which a body force field acting in the x-direction on a fluid between two flat plates in the xy-plane. In 
this simple case, the Navier–Stokes equations admit the exact solution of the velocity profile given by [52]

u(z, t) = Fd2

8υ

(
1 −

(
2z

d

)2
)

−
∞∑

n=0

4(−1)n Fd2

υπ3(2n + 1)3
· cos

[
(2n + 1)π z

d

]
· exp

[
− (2n + 1)2π2υt

d2

]
, (13)

where d is the separation of the plates, υ the kinematic viscosity and F a driving force per unit mass. The parameter set 
for the Poiseuille flow is ρ = 8.0, kB T = 1.0, a = 75.0kB T /ρ , γ = 4.5, σ = 3.0 and rc = rcw = 1.0. The kinematic viscosity of 
the DPD fluid can be computed by running a periodic Poiseuille flow [53], which gives υ = 0.275.

More specifically, the DPD simulation of transient Poiseuille flow is performed in a computational domain of 30.0 ×
5.0 × 24.0 in DPD units, which contains 24000 fluid particles and 4800 frozen particles for solid walls with a thickness 
of 2.0. The system is initialized with stationary fluid and two stationary walls. Periodic boundary condition is applied in 
x- and y-directions and no-slip boundary condition in z-direction. Then, a body force gx = 0.02 is applied on each DPD 
particle to drive the fluid, which is equivalent to imposing a pressure drop of ρgx Lx on the channel of length Lx . To extract 
the velocity profile from the DPD simulation, we divide the computational domain into 48 bins of width 	 = 0.5 along 
the z-direction. The transient velocity profiles at t = 10, 50, 100, 200 and at steady state are plotted in Fig. 6(a), where all 
local flow properties including particle density and kinetic temperature are obtained by averaging enough sampled data 
from 100 independent simulations initialized with different random seeds. The first and last bins contain both fluid and 
solid volumes because of the roughness of the wall surface, as shown in Fig. 2. Considering the flat solid walls are made of 
randomly distributed particles, the volume of the raised part equals to the volume of the sunk part on average. Therefore, 
when we compute the density profile, all the fluid particles of z < 0.5 are collected into the first bin and the fluid particles 
of z > 19.5 are collected into the last bin. In Fig. 6(a) we observe that the transient velocity profiles are in an excellent 
agreement with the analytical solution given by Eq. (13), which indicates that the boundary method can provide accurate 
no-slip boundary condition on the wall surface. Furthermore, Fig. 6(b) shows that our boundary method gives negligible 
density fluctuation (less than 1%) and temperature fluctuation (less than 2%) in the vicinity of the wall boundary.

The next test case is used to validate the boundary method for moving flat walls. The Couette flow considers a viscous 
DPD fluid between two parallel plates, one of which is moving relative to the other. To simplify the case, we make the 
upper wall moving and the lower wall stationary. Similarly to the first test case, the DPD simulation of the Couette flow 
is performed in a computational domain of 30.0 × 5.0 × 24.0 with periodic boundary conditions in x- and y-directions 
and no-slip solid walls in z-direction. By solving a one-dimensional Navier–Stokes equation with boundary conditions of 
u(0, t) = 0 and u(20, t) = 1.0, an analytical solution for the transient velocity profile u(z, t) can be obtained [54]

u(z, t) = z

d
U0 + 2U0

π

∞∑
n=1

(−1)n

n
sin

(nπ

d
z
)

exp

(
−n2π2

d2
νt

)
, (14)

where U0 is the velocity of the moving wall, d is the separation between two plates and ν the kinematic viscosity of 
the fluid. The computational domain is divided into 48 bins of width 	 = 0.5 along the z-direction for obtaining local 
velocity profiles and fluid properties. Fig. 7(a) shows a comparison between the transient velocity profiles obtained by DPD 
simulation and the theoretical solution of Eq. (14) at several times and also the steady state solution. The results are in good 
agreement, which validates the proposed boundary method for imposing the correct no-slip boundary condition for moving 
walls in the DPD simulation. Furthermore, similarly to the test case of Poiseuille flow, in Fig. 7(b) we observe negligible 
density fluctuation (less than 1%) and temperature fluctuation (less than 2%) in the vicinity of wall boundary.

In the previous two cases, we have tested the performance of the proposed boundary method for both stationary and 
moving flat walls. It yields correct no-slip boundary and successfully prevents the liquid particles from penetrating into solid 
boundaries. The next test case is for curved wall boundaries. We consider the so-called Wannier flow [55] of two eccentric 
rotating cylinders shown in Fig. 8 for validating the boundary method on curved walls since it involves both concave and 
convex wall boundaries. For this problem we setup the system with cylinder radii of Router = 10 at center Couter = {0, 0, 0}
and Rinner = 5.0 at center Cinner = {0, −2.5, 0}. The outer cylinder is set to rotate with an angular velocity of � = R−1

outer = 0.1
while the inner cylinder is stationary. Then, the velocity and acceleration on the outer cylinder surface are U = {u, v, w} =
{−y�, x�, 0} and a = {ax, ay, az} = {−�2x, −�2 y, 0}, respectively, which will be used in the predictor–corrector algorithm 
given by Eq. (4).

To construct a DPD system for the Wannier flow, we first fill a computational domain of 22.4 × 22.4 × 10.0 with 
40141 randomly distributed DPD particles. The DPD parameters are set as ρ = 8.0, a = 75.0kB T /ρ, σ = 3.0, kB T = 1.0 and 
rc = rcw = 1.0. Then, we relax the system by running a short DPD simulation for 1000 time steps to eliminate the initial 
configurational energy. Subsequently, the DPD particles with 10.0 ≤ R = √

x2 + y2 ≤ 11.2 are defined as outer cylinder, and 
the DPD particles with 3.8 ≤ R = √

x2 + y2 ≤ 5.0 are defined as inner cylinder, while particles with 5 < R = √
x2 + y2 < 10.0

are fluid particles. All other particles are removed from the system. Finally, the DPD system has 18850 fluid particles and 
two cylinders of thickness 1.2 consisting of 9048 solid particles. In the simulation, the boundary surface is defined by the 
isosurface of φ = 0.5. The Reynolds number of the Wannier flow is Re = U0G/ν = 1.0 × 2.5/0.275 = 9.09, in which U0 is 
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Fig. 7. (a) Velocity u, (b) density ρ and temperature T profiles and comparison with Navier–Stokes solution in a Couette flow. The inset of (b) shows that 
the fluctuations of density and temperature in the vicinity of the wall surface are less than 2%. The simulation uses 24000 fluid particles and 4800 solid 
particles for two flat walls with a thickness of 2.0 in a computational domain of 30.0 × 5.0 × 24.0. DPD parameters are set by ρ = 8.0, a = 75.0kB T /ρ, σ =
3.0, kB T = 1.0 and rc = rcw = 1.0.

Fig. 8. (a) Streamlines of the Wannier flow and (b) velocity profiles of sections A′–A, B′–B and C′–C obtained by the DPD simulation and the spectral 
element method (SEM). The DPD simulation uses 18850 fluid particles and 9054 solid particles for two cylinders of thickness 1.2 in a computational 
domain of 22.4 × 22.4 × 10.0. The wall surface is represented by the isosurface of φ = 0.5 in the DPD simulation.

the velocity on the surface of outer cylinder, G the gap between two cylinders and ν the kinematic viscosity. The DPD fluid 
has a compressibility of κ−1 = 15.40 and a sound speed of c = 3.92 in reduced DPD units, which indicates a Mach number 
Ma = U0/c = 0.255 for the Wannier flow. We run the DPD simulation for 5 000 time units to obtain a fully developed 
Wannier flow with a time step 	t = 0.005. To obtain the local velocity vectors from the DPD simulation, the computational 
domain is divided into square cells with side length 0.25 in xy-plane. The flow field shown in Fig. 8(a) is obtained by 
averaging particle velocity in each cell over 10 000 time units. We note that the accuracy of the flow field obtained from 
DPD simulations is determined by the number of samples in each cell (by performing space–time average and ensemble 
average). In the present study, we follow the DPD parameters used in the Poiseuille flow with a number density of 8.0. If 
a different number density rather than 8.0 is employed, one needs to carefully parameterize the DPD system to have the 
same dimensionless numbers, i.e., Re and Ma, to generate the same results. Moreover, for a DPD system with lower number 
densities, more space–time average or ensemble average should be performed to ensure the same quality of the flow field.

We compare the streamlines of the Wannier flow in Fig. 8(a) and the velocity profiles of sections A′–A, B′–B and C′–C 
in Fig. 8(b) obtained by the DPD simulation with the result obtained by the spectral element method (SEM) for an incom-
pressible flow at the same Reynolds number of Re = 9.09. Results show that the DPD simulation is in very good agreement 
with the solution of SEM, where small deviation of streamlines may be induced by the compressibility of the DPD fluid. 
As long as we run the DPD simulation, we do not observe wall penetration, which indicates that the proposed boundary 
method can be safely applied to problems involving curved boundaries. The random surface roughness is generated by the 
random-distributed particle representation, which may change the hydrodynamics locally. However, in our benchmark tests, 
as far as we have tested, we saw no significant changes on the averaged velocity fields.

For wall boundaries that can be defined analytically, there is no difference between the local detection method and 
other boundary methods for DPD [37,49,50]. The advantage of this method is on-the-fly detection of boundaries (at a 
cheap computational cost), so that it can be applied to not only simple geometries that can be analytically defined, but 
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Fig. 9. (a) The vector graphical image used for generating the DPD system of a “Brown Pacman” microfluidic device. (b) Visualization of the surfactant 
solution flowing through the “Brown Pacman” channel (see also Supporting Information for the movie). A, B and C are three zoom-in views of (b).

also complicate geometries that can hardly be described mathematically. To further demonstrate the capability of the local 
detection boundary method in realistic application scenarios, we construct a “Brown Pacman” microfluidic device and carry 
out a simulation of a surfactant solution flowing through the microfluidic channel with complex geometry [56]. The system 
is set up by mapping a vector graphics image of the desired channel geometry, as shown in Fig. 9(a), onto a simulation box 
of size 600 × 230 × 24 reduced units. DPD particles representing the channel wall are then placed randomly within regions 
with brightness < 50%, while 6 341 124 solvent particles and 300 000 surfactant particles with a volume concentration of 
4.52% are randomly placed in regions with brightness > 50%. The system comprises of a total of 13 248 000 DPD particles 
with a number density ρ = 4 and the simulation is performed using the USERMESO GPU-accelerated DPD package [57]. 
Each surfactant molecule has one hydrophilic bead (H) and one hydrophobic bead (T) connected by a harmonic bond 
with potential Eb(r) = K (r − r0)

2, where K is the spring force constant, and r, r0 the instantaneous and equilibrium bond 
length. The two beads representation (H1 T1) is the simplest model for surfactants, phospholipids and block copolymers 
used in chemical engineering [58,59]. We note that longer chains (Hm Tn, m + n > 2) for copolymers should be used if 
molecule structures are important in application problems. A cutoff distance rc = 1.0 is used for the pairwise interaction 
and rcw = 1.0 for the local detection method. The wall surface is represented by the isosurface of φ = 0.5, but the isosurface 
of φ = 0.5 can deviate from the real curved surface (especially at sharp corners), and their deviation increases as the 
curvature increases. Since the local detection method imposes no-slip boundary condition on the isosurface of φ = 0.5 (not 
real physical wall surface), for both concave and convex geometries, it yields a curvature-dependent slip for velocity on the 
physical boundaries. Quantitative details about the deviation of the isosurface of φ = 0.5 from real physical boundaries are 
included in Appendix A. The interaction matrix between the surfactant, solvent and wall particles is given in Table 1. The 
hydrophobic/hydrophilic properties of the surfactant molecule is determined by the Flory–Huggins χ -parameter [32], i.e., 
negative χ -parameter for hydrophilic beads and positive χ -parameter for hydrophobic beads. A lateral pressure gradient, 
−∂ p/∂x = c(vx − v0

x), where c = 0.25 and v0
x = 4, is applied at the inlet of the channel to drive the flow. The system is 

first optimized using a short run of DPD simulation. A time step size of 	t = 0.01 is then used to simulate the system for 
1 × 106 time steps.

In Fig. 9(b), we observe rich phenomena of surfactant dynamically assembling and disassembling following the flow (see 
also Supporting Information for the movie). Three local zoom-in views of Fig. 9(b) are shown in Fig. 9A, B and C. More 
specifically, zone A is located between the walls of “B” and “R”, where the flow field is almost stationary. Consequently, the 
surfactant molecules in a shear-free solution self-assemble into small spherical aggregates, as shown in Fig. 9A. However, 
Fig. 9B shows that the surfactant molecules form elongated wormlike micelles under strong shear flow. We observe that 
these wormlike micelles flow around the small cylinders without wall penetration. Zone C is located at a transition area 
from a nearly stationary flow to a shear flow, where a shear-induced phase transition from spherical micelles to elongated 
wormlike micelles is shown in Fig. 9C. Since the boundary geometry is computed on-the-fly, the proposed local detection 
method takes care of imposing no-slip boundary conditions and preventing wall penetrations automatically, even for such a 
complex microfluidic device. This may be very valuable for many realistic applications.

4. Summary and discussions

A local detection method tackling the challenges induced by arbitrarily shaped boundaries and complex geometries in 
dissipative particle dynamics (DPD) simulations has been proposed. By computing a boundary volume fraction (BVF) for 
each fluid particle, the solid boundary is detected on-the-fly by the fluid particles according to local particle configuration. 
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Table 1
Repulsive force constants aij for microfluidic channel.

H T Solvent Wall

H 45 75 37.5 150
T 75 37.5 150 150
Solvent 37.5 150 37.5 37.5
Wall 150 150 37.5 37.5

At a small extra computational cost, the fluid particles become autonomous to find the wall surface and to infer the wall 
penetration based on the coordinates of their neighboring particles. A predictor–corrector algorithm was employed to pre-
vent the fluid particles from penetrating into the wall boundaries, and the effective dissipative coefficients for liquid–solid 
interactions were used to impose no-slip boundary condition on the wall surface.

We employed randomly distributed particles to represent walls to allow easiness and generality for construction of 
DPD systems involving arbitrary-shape boundaries. Theoretically, to the limit of the continuum approximation, the wall 
surface can be accurately represented by the isosurface of BVF φ = 0.5 when the solid particles are dense enough. How-
ever, in practical implementations, the random distribution of discrete particles with finite number density will introduce 
surface roughness of wall boundaries, which comes from the estimation error of BVF based on the discrete particles. We 
demonstrated that the magnitude of roughness associated with the randomness of particle distribution is monotonically 
controllable by tuning the cutoff radius for computing BVF and the number density of DPD particles. Since any natural solid 
wall contains more or less chemical/physical heterogeneities on the surface, especially at the mesoscopic scale, such hetero-
geneity can be modeled qualitatively by the roughness on walls in the DPD systems. In this respect, the proposed boundary 
method provides a convenient way to generate various sizes of the roughness for representation of different degrees of the 
heterogeneity and to introduce curvature-dependent slip for hydrodynamics as discussed in the Appendix A.

The transient Poiseuille and Couette flows as well as the Wannier flow were used as benchmark tests for verifying the 
proposed arbitrary boundary method. The results showed that the proposed boundary method imposes the correct no-slip 
boundary condition for both stationary and moving walls in the DPD simulation, and yields negligible density fluctuation 
(less than 1%) and temperature fluctuation (less than 2%) in the vicinity of wall surface. The local detection method can 
be applied to complex fluids straightforward without any additional efforts. To further demonstrate the capability of the 
presented arbitrary boundary method in realistic application scenarios, a “Brown Pacman” microfluidic device with complex 
geometry was constructed directly from a vector graphics image and a DPD simulation of surfactant solution flowing through 
this complex microfluidic device was carried out. The validity of this boundary method was confirmed by examining the 
rich dynamics of surfactant micelles flowing around the small cylinders without wall penetration.

The local detection method was implemented as an extension to the Large-scale Atomic/Molecular Massively Parallel 
Simulator (LAMMPS) [60] and the GPU-accelerated DPD package USERMESO [57,61]. Since this method only uses local in-
formation of neighboring particles for computing the value of BVF and satisfies designed boundary conditions on-the-fly, 
it provides a practical and efficient way to deal with complex geometries and impose the no-slip boundary condition on 
wall surface in DPD simulations. With the local detection method, it is no longer necessary to mathematically define the 
boundary geometry for DPD simulations, which enables us to construct DPD systems directly from experimental CT images 
or computer-aided designs/drawings. Moreover, this method is not only valuable for stationary arbitrary-shape boundaries, 
but also for the moving boundaries and deformable boundaries.

The DPD method is a bottom-up approach starting from microscopic dynamics, which was designed for investigating 
mesoscopic dynamics of complex fluids [32]. In the continuum limit, the hydrodynamic equations of a DPD system can 
recover the continuity and Navier–Stokes equations [62]. However, for simple fluids, whose dynamics can be correctly de-
scribed by macroscopic partial differential equations, DPD cannot perform better than top–down methods derived from 
continuum equations, such as the fluctuating hydrodynamics [63] and the smoothed DPD method [10,64].

Although we presented here that the surface roughness is controllable by varying the number of neighboring particles, 
this boundary method cannot accurately capture large curvatures of wall boundary where the radius of curvature is too 
small to be identified from the surface roughness. To this end, higher resolution of DPD system is required to represent the 
large curvature properly so that the size of random surface roughness is much smaller than the radius of curvature.
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Fig. 10. Performance accuracy of representing curved wall boundaries, including (a) concave surface and (b) convex surface, by the isosurface of φ = 0.5. 
The expected radii of cylinders are R0 = 10.0, the isosurface of φ = 0.5 gives R� = 9.997 for the concave cylinder and R� = 9.996 for the convex cylinder. 
Spherules represent randomly distributed solid particles constituting cylinders.

Fig. 11. (a) Relative error (R� − R0)/R0 vs radius of curvature of the curved wall boundaries R0 = 1/κ in which κ is the curvature. (b) Corrected magnitude 
of boundary friction function φc that accurately represents the expected concave and convex wall boundaries.

Appendix A. Error analysis for curved surfaces

Representing the wall boundary by the isosurface of φ = 0.5 is accurate for flat wall boundaries, as indicated by Eq. (5). 
However, for curved boundaries, the isosurface of φ = 0.5 will deviate from the designed boundary surface. To analyze the 
error and the performance of representing curved wall boundaries with the isosurface of φ = 0.5, we construct a series of 
concave and convex cylinders to quantify the error induced by the curvature of wall boundaries. Fig. 10 shows the geometry 
of concave and convex cylinders. The expected radii of both cylinders are R0 = 10.0. Let ρw = 8.0 be the particle number 
density, the average separation between particles is δ = ρ

−1/3
w = 0.5. We fill a computational domain of 10.0 × 25.0 × 25.0

with 50000 randomly distributed DPD particles. Then, we relax the system by running a short DPD simulation to eliminate 
initial randomicity. For the concave cylinder, the DPD particles with R = √

y2 + z2 ranging from 10.0 to 12.0 are defined 
as solid particles, as shown in Fig. 10(a). Similarly, the convex cylinder is made up by the discrete DPD particle with 
R = √

y2 + z2 ranging from 8.0 to 10.0.
By defining rcw = 1.0, the value of ϕ(r) can be easily computed using Eq. (2). Fig. 10 shows the performance of repre-

senting concave and convex boundaries by the isosurfaces of φ = 0.5. The designed radii of both two cylinders are R0 = 10.0, 
while the iso-surface of φ = 0.5 gives R� = 9.997 for the concave cylinder and R� = 9.996 for the convex cylinder. Although 
the isosurfaces of φ = 0.5 slightly deviate from the expected cylinder radius, the relative error (R� − R0)/R0 are negligible 
for R0 = 10.0, i.e., less than 0.05%.

Let κ be the curvature of the cylinder surface, as the radius of curvature R0 = 1/κ decreases, the relative error (R� −
R0)/R0 increases, as plotted in Fig. 11(a). We observe that the relative error (R� − R0)/R0 is about 4.5% for R0 = 1.0, 
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however, it becomes less than 1% for R0 ≥ 2.0. Consequently, using the isosurface of φ = 0.5 to represent the curved 
boundaries does not induce significant error for small curvatures, i.e., κ = R−1

0 ≤ 0.5.
Theoretically, a corrected magnitude of the boundary friction function φc rather than 0.5 can be defined to accurately 

represent the curved boundaries. Using the continuum approximation, the extra volume for curved surfaces different from 
a flat surface is πr4

cw/4R0, as shown by the dark domain in the inset of Fig. 11(b). Then, the corrected boundary friction 
functions are φc = 0.5 + 3rcw/16R0 for concave surfaces and φc = 0.5 − 3rcw/16R0 for convex surfaces. Therefore, the 
difference between φc and 0.5 decreases as the radius of curvature R0 = 1/κ increases, which is given by

|φc − 0.5| = πr4
cw/4R0

4πr3
cw/3

= 3rcw

16R0
. (A.1)

The formula of Eq. (A.1) is obtained based on the continuum approximation. For the wall consisting of discrete DPD particles, 
we observe in Fig. 11(b) that the decay of |φc − 0.5| is slightly faster than R−1

0 . This is because the distribution of DPD 
particle is initially regularized by performing a short simulation.

It is worth noting that employing the isosurface of φ = 0.5 to represent the curved boundaries could introduce curvature-
dependent slip for hydrodynamics, which would be practically useful for some applications where partial slips on curved 
wall surfaces are expected. As described in Fig. 11(a), the isosurface of φ = 0.5 deviates from the real curved surface and 
the deviation increases as the curvature increases. Since the local-detection boundary method imposes no-slip boundary 
condition on the isosurface of φ = 0.5, for both concave and convex geometries, a partial slip for velocity will be observed 
on physical boundaries, where the slip length depends on the curvatures of the boundary as shown in Fig. 11(a).

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jcp.2017.11.014.
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