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Synonyms

Coarse-grained molecular dynamics; Fluctuating

hydrodynamics; Mesoscopic simulation; Rheol-

ogy; Soft matter

Definition

Dissipative particle dynamics (DPD) is a stochas-

tic mesoscopic simulation technique that

describes clusters of molecules moving together

in a Lagrangian fashion subject to simplified

pairwise conservative, dissipative and random

forces.

Introduction

Natural systems can be described at different

scales based on both spatial and temporal size.

In general, there are three different scales, i.e.,

micro-, meso-, and macroscales. A microscopic

event occurs at nanometers in length and nano-

seconds in time or, even less, governed by quan-

tum mechanics or classical laws. Macroscale

describes physical objects or phenomena that

are measurable and visible directly with the

naked eye, and thus, the mean free path of mole-

cules is far smaller than the characteristic length

of the geometry. A macroscopic event is usually

described by continuum partial differential equa-

tions (PDEs), such as Navier-Stokes equations

for fluid dynamics. Mesoscale is somewhat in

between, which is typically in order of microme-

ters and microseconds. Examples of such

mesoscopic systems include colloidal suspen-

sion, polymer solution, and biological mem-

branes. Since the behaviors of such systems can

be much more complex than that of a simple

fluid, they are usually called complex fluids.

There exist broad applications of complex fluid

systems in industrial technologies, especially in

the field of biological and biomedical sciences

such as biochemical lab-on-a-chip systems, sep-

aration devices, and drug delivery systems.

Computer simulations have become an essen-

tial part of mathematical modeling of many nat-

ural systems in modern science and technology,

serving as a bridge between theories and experi-

ments (see Fig. 1). Molecular dynamics (MD) has

emerged as one of the first and yet widely used

simulation methods in many areas of physics and

chemistry starting from the 1950s. However, the

classical MD is practical only for simulations up

to microscales. It is difficult to simulate larger
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and more complex systems because of prohibi-

tively expensive computations. Meanwhile,

sophisticated computational and numerical

discretization techniques have been developed

over the past decades for the solution of PDEs

at macroscale, such as various computational

fluid dynamics (CFD) methods. However, these

PDEs are inadequate to capture mesoscopic

events in complex fluids, since these PDEs are

based on simple constitutive equations, while the

dynamics of a complex fluid is fundamentally

affected by its microscopic structure. Further-

more, the standard PDE formulations often

ignore the stochastic nature of a system observed

at mesoscale, which is a characteristic feature for

many physical phenomena.

Mesoscopic simulation methods have been

developed to overcome the aforementioned

problems, aiming at modeling complex fluids

with efficient computational costs. Dissipative

particle dynamics (DPD), which describes clus-

ters of molecules moving together in a Lagrang-

ian fashion, is a typical mesoscopic simulation

method for the dynamic and rheological proper-

ties of simple and complex fluids [1]. DPD com-

bines Lagrangian features from MD and coarser

spatial-temporal scales from lattice-gas automata

(LGA), and, therefore, it is faster than MD and

more flexible than LGA. The first form of DPD

was reformulated by Espanöl and Warren such

that it produces a correct thermal equilibrium

state [2]. This is considered as the standard form

of DPD. Several improved DPD models [3–6],

which are capable of representing complicated

fluid properties more accurately, as well as effi-

cient algorithms have also been developed.

nm

Engineering

BOTTOM-UP

TOP-DOWN

D
is

ci
p

lin
e

Materials

Molecule

Microscales + C
oarse-G

raining +

+ Fluctuating H
ydrodynam

ics +

Protein folding (MD)

Polymer chain (MD)

mm m

Length scale

Colloidal particles

(SDPD)

Red blood cell (D
PD)

Heat flo
w (eDPD)

Catalytic meterials

(PDE)

Batteries (PDE)

Block copolymer

phase separation

(DPD)

Mesoscales Macroscales

µm

Dissipative Particle Dynamics, Overview,
Fig. 1 Illustration of the length scales in “soft” materials.

MD, DPD, and PDE stand for molecular dynamics,

dissipative particle dynamics, and partial differential

equations, respectively, and eDPD and SDPD indicate

energy-conserving DPD and smoothed DPD, respectively
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Rigorous foundations of DPD methodology have

also been investigated by both top-down (from

macroscopic description to mesoscopic descrip-

tion) and bottom-up (from microscopic to

mesoscopic) approaches.

Theoretical Formulation

In a DPD simulation, a particle represents a clus-

ter of molecules, and the position and momentum

of the particle are updated in a continuous phase

space at discrete time steps. The equation of

motion and pairwise interacting forces of parti-

cles read

_r ¼ vi, mi _vi ¼
X

j 6¼i

FC
ij þ FD

ij þ FR
ij

� �
; (1)

where ri, vi, and mi are position, velocity, and

mass of particle i, respectively. Fij
C is referred to

as conservative force obtained from a prescribed

potential between particles i and j. It is repulsive
and leads particles to be evenly distributed in

space. Roughly speaking, it can be understood

as a pressure force; Fij
D has a negative sign and

is proportional to the velocity difference of two

particles. Therefore, it is dissipative and resists

velocity difference of any interacting pair of par-

ticles. Hence, Fij
D dissipates the kinetic energy of

the system. This amount of energy must be put

back into the system, to keep the system at a

constant temperature. Fij
R is exactly for this pur-

pose. It is a random force and injects kinetic

energy back into the system. Effectively, Fij
D and

Fij
R implement a thermostat so that thermal equi-

librium is achieved. The magnitudes and func-

tional forms of the two forces are related by the

so-called fluctuation-dissipation theorem. The

typical forms of the three forces are as follows

[2, 7]:

FC
ij ¼ aijoC rij

� �
eij; (2a)

FD
ij ¼ �goD rij

� �
eij � vij
� �

eij; (2b)

FR
ij ¼ soR rij

� �
yijdt�1=2eij; (2c)

where aij, g, and s reflect, respectively, the

strength of conservative, dissipative, and random

forces. Here, y is a Gaussian white noise

(yij = yji), and eij is the unit vector pointing

from particle j to i; also, oC, oD, and oR are

unspecific weighting functions of relative dis-

tance rij. A common choice of the weighting

functions is

oC rij
� � ¼ 1� rij=rc

� �s
, rij < rc,

0, rij � rc;

�
(3)

oR rij
� � ¼ 1� rij=rc, rij < rc,

0, rij � rc;

�
(4)

where s = 1 is the most widely adopted for the

classical DPD method. However, other choices

(e.g., s = 0.25) for the envelopes have also been

used. Also, rc is the cutoff radius, which defines

the extent of the interaction range.

To satisfy the fluctuation-dissipation theorem,

two conditions must be further enforced [2]:

oD rij
� � ¼ oR rij

� �� �2
, s2 ¼ 2gkBT; (5)

where kB is the Boltzmann’s constant and T is the

absolute temperature.

Two important implications of the DPD forces

in Eq. 2 must be explicitly noted: firstly, DPD is

considered as a reduction model of the underlying

microscopic dynamics. By construction, it

focuses on the coarse-grained properties and

intentionally ignores irrelevant degrees of free-

dom on the microscopic level. As a result,

interparticle potential (the derivative of which is

�FC
ij ) is much softer than that of MD method;

hence, it can potentially access longer time and

length scales than are possible using conventional

MD simulations. Furthermore, Fij
D and Fij

R

together account for the lost microscopic infor-

mation. Secondly, by design, all three forces act

along the line of particle centers eij and are sym-

metric by interchanging particle indices. There-

fore, the momentum is locally conserved. The

fulfillment of the conservation laws guarantees

Dissipative Particle Dynamics, Overview 3



that a DPD system approaches the PDEs of fluid

dynamics, such as Navier-Stokes equations, at

the macroscopic scale.

For the purpose of modeling simple and com-

plex fluids, a, g (or s), and s are free parameters

to calibrate so that the desired properties of a

target system can be achieved. The time evolu-

tion of velocities and positions of particles is

determined by Newton’s second law of motion

similar to the MD method, which is usually inte-

grated using a modified velocity-

Verlet algorithm [7].

Extensions of DPD

The classic DPD method is a minimal working

version for mesoscopic simulations of fluids. Due

to the lack of necessary degrees of freedom, it

cannot model some specific problems, e.g., heat

flow in non-isothermal systems and liquid-vapor

interface in two-phase fluid systems. To this end,

extra degrees of freedom, such as an internal

energy variable and freedom to alter the equation

of state, have been introduced to DPD system for

particular applications [8]. In this section, several

extensions of the DPD method will be described

briefly.

Energy-Conserving DPD

The classic DPD method is limited to isothermal

systems and is not valid for modeling

non-isothermal processes because the energy is

not conserved in particle interactions. To extend

the standard formulation of DPDwith application

to heat flow in non-isothermal fluid systems, the

conservation of energy was applied to DPD by

introducing the particle internal energy ei as an
additional variable [3]. Along this new variable, a

local entropy function s(ei) and the temperature

Ti ¼ @si=@eið Þ�1
are defined for each particle.

The energy-conserving DPD model is known in

the literature as eDPD or DPDE, where for

interacting particles, the dissipation induced by

the dissipative forces is utilized in raising the

internal energy of the particles through viscous

heating. Moreover, the temperature differences

between particles produce variations in the inter-

nal energies through heat conduction.

The key aspect of eDPD is that the tempera-

ture Ti is defined on each particle, and the

fluctuation-dissipation theorem is applied locally

based on the particle temperature Ti rather than
the thermodynamic temperature of the system.

As a result, eDPD allows temperature gradients

and can be used in non-isothermal problems,

where thermal transport plays a critical role.

Many-Body DPD

The conservative force Fij
C is responsible for the

thermodynamic behavior of the DPD system and

has the form shown in Eq. 2. For a single-

component DPD fluid, the equation of state

(EOS) of the system can be approximated as

p ¼ rkBT þ aaijr2, which is a quadratic function
of the particle density r. This monotonic function

of EOS does not contain a van derWaals loop and

excludes the possibility of simulating phenomena

involving vapor-liquid coexistence or free

surface.

To model vapor-liquid coexistence, the many-

body DPD (MDPD) was developed by modifying

the expression of the conservative force [5]. A

direct way to produce higher order terms in EOS

is making the conservative force in MDPD

dependent not only on the interparticle distance

but also on the instantaneous local particle den-

sity. Therefore, the conservative force in MDPD

is effectively a many-body force and it generally

includes both attractive and repulsive compo-

nents. With higher order terms in EOS, MDPD

has been successfully applied to simulations of

droplet- and wetting-related phenomena.

Fluid Particle Model

The fluid particle model (FPM) is a generaliza-

tion of the classic DPD method [4]. FPM con-

siders both linear and angular momenta of the

particles and includes both central and noncentral

forces between particles, while the classic DPD

method considers only linear momentum and

includes only central forces. By introducing

torques and angular velocities of the particles,

both linear and angular momenta of FPM are
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conserved. Also, the dissipative and random

forces in FPM satisfy the fluctuation-dissipation

theorem, and they together act as a thermostat to

maintain the temperature of the FPM system at a

constant.

Since the rotational motion of individual par-

ticle is included, FPM shows high computational

efficiency in studying the dynamical and rheolog-

ical properties of colloidal suspensions in simple

fluid solvents. The reason is that each colloidal

particle can be represented by a single FPM par-

ticle rather than a cluster of particles. FPM has

been used to investigate a range of rheological

behaviors and volume fractions of the colloidal

suspensions and shows good agreement with

experimental and theoretical results.

Smoothed DPD

The classic DPD model is a bottom-up approach

and it is usually considered as a coarse-grained

MD model, in which particles are governed by a

coarse-grained force field. Similarly to the MD

method, the inputs of DPD are the particle inter-

actions, while the macroscale quantities, such as

viscosity, diffusivity, compressibility, and EOS,

are output properties. As a result, DPD has no

restrictions on constitutive equations, which pro-

vides flexibility in modeling complex materials

and multicomponent systems. However, a short-

coming of DPD is that it employs empirical

expressions for the particle interactions, and its

parameters are not related in a straightforward

way to usual macroscale quantities. Therefore,

in practice, the DPD units have to be mapped to

physical units based on output properties.

Alternatively, smoothed DPD (SDPD) is a

top-down approach [6]. It was developed from

smoothed particle hydrodynamics (SPH). In fact,

SDPD is a Lagrangian discrete model for simu-

lating Navier-Stokes hydrodynamics that

includes thermal fluctuations consistently. Unlike

the classic DPD method, the parameters in the

governing equations of SDPD have clear physical

meaning. The inputs are the viscosity, equation of

state, temperature, and other parameters required

by the fluctuating Navier-Stokes equations. How-

ever, since the constitutive equations and macro-

scale properties of the system must be given as

inputs, SDPD works well with simple fluids but

loses its effectiveness in modeling complex

materials.

Applications in Different Fields

In the past decade, the DPD method has been

successfully extended to many applications

including simple fluid hydrodynamics, polymer

solutions and melts, biological membranes, col-

loidal suspensions, and blood flow [9, 10]. A few

examples are presented in the following:

Polymer Solution

A polymer is a large molecule composed of many

repeated subunits bonded together. In DPD, a

polymer can be represented by linking collections

of particles into chains with appropriate spring

forces expressed as FS
ij ¼ kbond 1� rij=r0

� �
eij

[9]. Numerous simulations have testified that the

DPD model is capable of capturing many essen-

tial physical phenomena of the polymer systems.

For example, the DPD model has been applied to

polymers in solution to study effects of solvent

quality on the conformation and relaxation of

polymer chains [11]. The dynamics of polymer

chains in simple shear flow such as Couette and

Poiseuille flow have also been simulated. Simple

shear flows are commonly generated by imposing

a constant driving body force (Poiseuille flow), or

a driving velocity on the boundary shear planes

(Couette flow). The static and dynamic properties

of polymer chain under shear, such as radius of

gyration, diffusivity, and viscosity, were com-

puted and compared to experimental results

[12]. The conformational changes and transloca-

tion dynamics of polymer and DNA molecules

through microfluidic channels have also been

investigated by DPD [13].

Amphiphilic Systems

Amphiphilic molecules, which contain hydro-

philic head and hydrophobic tails, can be synthe-

sized with various structures of the block type. In

a selective solvent of one of the blocks, they can

self-assemble into a wide variety of morphol-

ogies. A typical model of amphiphilic molecules

Dissipative Particle Dynamics, Overview 5



is the two-letter (“black-and-white”) H-T model,

composed of a single head particle (denoted by

H) and a linear chain of tail particles (denoted by

T). The amphiphilic molecules are then

immersed in solvent bath (denoted by W).

To model the amphiphilic nature of amphi-

philic molecules, the hydrophobic and hydro-

philic interactions emerge from the relative

interaction strengths. In theory, the functional

dependence of the Flory-Huggins parameter w
[14] on DPD repulsion parameter aij places the

simulation results in the proper context. The rela-

tionship between aij and w has been established by
Groot and Warren [15]: aij = aii + 3.27wij at

particle density r = 3 and aij = aii + 1.45wij at
r = 5. Typically, for simplicity, the repulsive

parameter related to the interaction between two

alike DPD particles (H-H, T-T, W-W, and H-W)

is treated the same, while the parameter related to

the interaction between the hydrophilic and

hydrophobic particles (H-T and T-W) is made

larger than the repulsion parameter between two

similar particles, which ensures that the hydro-

phobic tails of amphiphilic molecules are suffi-

ciently shielded from the hydrophilic head and

solvent. Various morphologies, such as spherical

and cylindrical micelles, toroids, bilayers, and

vesicles, have been observed depending on the

selectivity of solvents, amphiphilic concentra-

tion, and the structure of the amphiphilic mole-

cules [16]. A selection of vesicle shapes obtained

from the DPD simulations is displayed in Fig. 2.

By adding a bond-bending potential to the

hydrophobic tails, a rod-coil amphiphilic mole-

cule can be modeled. Based on the functionality

of the rigid-rod blocks, there is growing interest

in amphiphilic systems with rod-coil structures,

and a number of intriguing phases, including

wavy lamellae, zigzags, and hollow spherical

micelles, have been observed through self-

assembly from DPD simulations [17]. These sim-

ulations have shown the applicability of DPD

method to study the self-assembly process of

amphiphilic systems.

Blood Flow

Blood is primarily composed of microscopic cel-

lular particles such as red blood cells (RBCs),

leukocytes, and platelets. The most abundant

cells in vertebrate blood are RBCs. A human

RBC is a nucleus-free cell with a biconcave

shape when not subject to any external stress

and is approximately 8.0 mm in diameter and

2.0 mm in thickness. The RBCmembrane consists

of a lipid bilayer supported by an attached

spectrin-based cytoskeleton, and its extreme

deformability allows the RBC to squeeze without

any damage when passing through narrow capil-

laries in microcirculation. A multiscale RBC

(MS-RBC) model [18], which is based on

spectrin-level RBC model [19], has been devel-

oped for blood simulations.

In the MS-RBC model, the membrane of RBC

is represented by a two-dimensional triangulated

network with a collection of DPD particles, while

Dissipative ParticleDynamics,Overview, Fig. 2 Self-

assembled complex microstructures of amphiphilic mole-

cules. These microstructures included: large unilamellar

vesicle (LUV), multilamellar vesicle (MLV),

multivesicular vesicle (MVV), and a toroid in LUV. The

hydrophilic and hydrophobic particles are rendered in

white and red/green, respectively. Slices of these shapes

are shown for clarity
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constraints on the area and volume conservation

of RBC are imposed to mimic the area-preserving

lipid bilayer and the incompressible interior fluid.

The RBC membrane interacts with the fluid par-

ticles through DPD forces, and the temperature of

the system is controlled through the DPD ther-

mostat. The internal and external fluids are

modeled by collections of free DPD particles,

and their separation is enforced by bounce-back

reflections of these particles at the RBC mem-

brane surface. The MS-RBC has been success-

fully applied in RBC simulations, such as RBC

dynamics in Poiseuille flow (see Fig. 3), RBC

thermal fluctuations, and RBCs in diseases like

malaria and sickle cell anemia [20].

Outlook

As a coarse-grained molecular dynamics method,

dissipative particle dynamics has been demon-

strated to be a promising mesoscopic method for

simulating the dynamic and rheological proper-

ties of simple and complex fluids. The classical

DPD method and its extended models have

already been applied successfully to a wide vari-

ety of phenomena occurring at the mesoscales.

However, there remain many open questions both

with regard to the foundations of the method and

in various applications. For example, the issue of

memory effects and the scaling up of DPD in

even bigger spatiotemporal scales are two impor-

tant open questions.
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2. Español, P., Warren, P.: Statistical mechanics of dis-

sipative particle dynamics. Europhys. Lett. 30,
191–196 (1995)
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