Chapter 5
Dissipative Particle Dynamics: Foundation,
Evolution, Implementation, and Applications

Z.Li, X. Bian, X. Li, M. Deng, Y.-H. Tang, B. Caswell, and G.E. Karniadakis

Abstract Dissipative particle dynamics (DPD) is a particle-based Lagrangian
method for simulating dynamic and rheological properties of simple and complex
fluids at mesoscopic length and time scales. In this chapter, we present the
DPD technique, beginning from its original ad hoc formulation and subsequent
theoretical developments. Next, we introduce various extensions of the DPD method
that can model non-isothermal processes, diffusion-reaction systems, and ionic
fluids. We also present a brief review of programming algorithms for constructing
efficient DPD simulation codes as well as existing software packages. Finally, we
demonstrate the effectiveness of DPD to solve particle-fluid problems, which may
not be tractable by continuum or atomistic approaches.
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5.1 Introduction

In many applications to soft matter and biological systems, despite of the sustained
fast growth of computing power during the past few decades, it is still computation-
ally prohibitive or impractical to simulate dynamics for long temporal scales and
large spatial scales with brute-force atomistic simulations [82]. The reason is that
the atomistic approaches are limited by the number of atoms/molecules that can be
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included in the simulation, typically 10*—108 corresponding to a length-scale on the
order of tens of nanometers, and the maximum time step in atomistic simulations is
limited by the smallest oscillation period of the fastest atomic motions in a molecule,
which is typically several femtoseconds (10~'%s). However, if only mesoscopic
structures of molecules or their collective behavior are of practical interest, it
may be unnecessary to explicitly take into account all of the atomistic details of
materials [110]. To this end, the mesoscopic approach drastically simplifies the
atomistic dynamics by eliminating fast degrees of freedom while preserving the
behavior of slow entities, and provides an economical simulation path to capture the
correct dynamics of complex fluids on larger spatial and temporal scales beyond
the capability of conventional atomistic simulations [78]. In recent years, with
increasing attention to the research of soft matter and biophysics, mesoscopic
modeling has become a rapidly expanding methodology [98] with applications
to material science [81, 95], polymer physics [40, 59, 70], rheology of complex
fluids [10, 88] and computational biology [55, 56, 93].

Dissipative particle dynamics (DPD) is currently one of the most popular
mesoscopic methods [71]. In DPD, a single coarse-grained (CG) particle represents
an entire cluster of molecules, with unresolved degrees of freedom approximated
by stochastic dynamics [61, 64]. Similar to the molecular dynamics (MD) method,
a DPD system consists of many interacting particles with their dynamics computed
by time integration of Newton’s equation of motion. However, in contrast to MD,
DPD has soft interaction potentials allowing for larger integration time steps. As
a bottom-up mesoscopic approach, the DPD method smoothly bridges the gap
between the microscopic and macroscopic worlds. On the one hand, DPD has
its roots in microscopic dynamics as its governing equations can be rigorously
derived from the microscopic dynamics by applying the Mori-Zwanzig projection
operator [61]. On the other hand, the framework of DPD can be derived from the
fluctuating Navier-Stokes equation [25]. The interactions between DPD particles
are pairwise so that the total momentum of the DPD system is strictly conserved.
By using the Fokker-Planck equation and applying the Mori projection operator,
Espafiol [22] and Marsh et al. [77] showed that the hydrodynamic equations of a
DPD system recover the continuity and Navier-Stokes equations. Therefore, the
DPD method can be considered as a particle-based Lagrangian representation of
the continuity and momentum equations at the mesoscopic level.

In this chapter, we will revisit the theory, algorithms and applications of the
DPD method. In Sect. 5.2 we consider its theoretical formulation. Beginning with
the statistical mechanics behind the DPD method, both bottom-up and top-down
derivations of its governing equations as well as the parameterizations will be
presented. Next, in Sect. 5.3 we review several extensions of DPD that have been
developed in recent years for tackling the challenges in diverse multi-physics
applications beyond the capability of the classical DPD method. In Sect. 5.4 we
introduce some useful algorithms for computer implementation of DPD simulations.
Finally, we present some selected applications in Sect.5.5 and end with a brief
summary in Sect. 5.6.
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5.2 Theoretical Formulation and Parameterization

The DPD method was invented intuitively by Kolemann and Hoggerbrugee [39, 44]
to study hydrodynamic phenomena at the mesoscale. In the original formulation,
DPD has only two types of pairwise forces: dissipative and random forces. Later
on Espafiol and Warren [26] further introduced the pairwise conservative force.
Meanwhile they also derived the stochastic differential equations (SDE) as the
equation of motion (EoM) for the particles. This is a fundamental step putting DPD
on a firm physical ground, where the equilibrium invariant distribution of a DPD
system is the canonical ensemble of Gibbs if the fluctuation-dissipation theorem
(FDT) is satisfied by the DPD inputs. In Sect. 5.2.1, we will introduce the detailed
derivations of the FDT for DPD systems.

Furthermore, we describe the projection technique (the Mori projection) in
the first part of Sect.5.2.2, which establishes the correspondence between DPD
parameters and thermodynamic properties and transport coefficients of the fluids
from the continuum point of view. This is indicated as route A in Fig. 5.1. To connect
DPD with a continuum description, one may also interpret DPD as a Lagrangian
discretization of the Landau-Lifshitz-Navier-Stokes equation. In this case, it is
named as Smoothed DPD or SDPD for brevity. This will be explained in detail
in the second part of Sect. 5.2.2, which corresponds to route B in Fig.5.1. We may
further apply the method of BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon)
hierarchy to obtain a kinetic equation for the single particle distribution and then
solve it to recover the Navier-Stokes’ transport coefficients, as will be explained
in Sect.5.2.3. This corresponds also to the route A in Fig.5.1. Another simpler
alternative to predict the transport coefficients of DPD is by assuming the continuum
limit within the cut off radius and take a continuum integral of the DPD parameters
as indicated also as the route A in Fig. 5.1. The continuum integral approach together
with parameterization of thermodynamic properties (compressibility) are both
explained in Sect. 5.2.4. Finally, in Sect. 5.2.5, we revisit some representative work
on the fundamental basis for coarse-graining the underlying system of molecular
dynamics, including again the projection technique. This time it is the Zwanzig
projection instead of the Mori projection. This corresponds to route C in Fig.5.1.

5.2.1 Fokker-Planck Equation and Fluctuation-Dissipation
Theorem

Rather than the discrete form from the original DPD paper [39], Espafiol and
Warren [26] formulated an EoM for DPD particles as continuous stochastic
differential equations (SDE)

I = p;/m,

pi=F=>)F=> (F5+F+Ff), CRY
J#i J#i



258 Z.Lietal.

Navier-
Stokes

macroscopic

Extensions:

(] +eDPD
© +sDPD

o tDPD

e +cDPD

e L To— mesoscopic
©

o

)

Coarse-graining:
*Mori-Zwanzig projection
*Kinetic equation
*Inverse problem
*Voronoitessellation

.uvv e

microscopic

>

Temporal scale

Fig. 5.1 Sketch of the current developments of the dissipative particle dynamics (DPD) method

where r; and p; are the position and momentum of particle i. Particle index i ranges
from 1 to the total number of particles N. The mass m for each particle is taken an
identical constant. For Galilean invariance, the forces are postulated to depend only
on relative position r;; = r;—r; and relative velocity v;; = v;—v; of two particles. To
preserve linear momentum, forces are antisymmetric and satisfy Newton’s third law,
that is, F;; = —Fj;. To preserve angular momentum, forces between two particles
always lie along the line of centers e; = r;;/r;;. Therefore, the three types of forces
are expressed as [26, 35]

FC = awc(rij)eij,
Ffj) = —wa(rij)(eij . V,'j)e,'j, (52)

FR = owR(rij)Sijeij,

in which a, y and o are the strengths of individual forces. Weighting functions wc,
wp, and wy, are isotropic and depend only on the relative distance r; = |r;| of two
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particles. §; = &;; is a Gaussian white noise with

< &> =0,

(5.3)
< &i(O&(!) > = (81 + 8udj) 8(r — 1),
where §;; is the Kronecker delta and (¢ — t') is the Dirac delta function [26]. If we
replace the forces in Eq. (5.1) by Eq. (5.2), we can write the Langevin equations in
a mathematically well-defined form of SDE
dl'i = Pi dt,

n;

Z FS + Z FII]) dt + Z UWR(r,-j)e,;de,-j,
J#i J#i J#i

(5.4)

dp;

where dW;; = dW);; are independent increments of the Wiener process and the 1t6
calculus rule is assumed. Therefore,

dWidekl = (5,’}((3,'1 + 8,’15jk) dt. (5.5

In continuum mechanics [46], we know that the conservation law can be
expressed as the continuity equation in the differential form as

U (x,1)
9

.tV [xf(x.0)] = 0, (5.6)

which states that in an infinitesimal volume the rate of change of density
(e.g., mass density, momentum density, ...) is balanced by the divergence of
the corresponding flux. In phase space the relevant coordinate becomes 6N
dimensional as x = (r,r2,..., "N, P1,P2,---,P3n). Accordingly, the velocity
in phase space is then x = (i,72,...,73n,P1,P2,---,P3n), and so f(X,f) is
the probability density function (PDF) in phase space [32]. Now we may
substitute the derivatives in SDE of Eq.(5.4) into Eq.(5.6). By applying the
gradient operator V applied on 6N dimensions, that is, d/dr; and 9/dp;, and
after some algebraic manipulations, we obtain the Fokker-Planck equation (FPE)
as [26]

3f(aXt, 2 = Lf(x,1) = Lof (X, 1) + Lpf (X, 1) + Lrf (X, 1), (5.7)
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where the Fokker-Planck operator £ decomposes into three operators L¢, Lp and
Lr. The individual operators are defined as follows

Pi 0 1C d
Lc=— . F: . ,
¢ - m al'i + Z v Bp,
Lp=) e a, [ywo(ry)(e; - vi)] . (5.8)
R

) [o? b 0
Cr= %:/eij. " [ . wAOe; (Bpi _ apj)} ,

where Y/ = Y Y with i # j. The FPE for the DPD system is an extension
of the Kramers equation for the Langevin equation of a single particle under an
external potential. The FPE is also an extension of the Liouville’s equation for the
Hamiltonian system of many particles.

We note that the evolution of PDF in the FPE is already averaged so that no
random variable appears in Eq.(5.8). The operator L is the classical Liouville
operator for a Hamiltonian system interacting with conservative forces FC alone,
where FC is simply the negative gradient of a potential. For a conservative system
of particles, it can be shown that the divergence of the PDF is zero, that is, the PDF
is incompressible and divergence of velocity in Eq. (5.6) is zero. However, due to the
dissipative and random forces F? and FX in DPD, the PDF is generally compressible
and these effects are taken into account by the operators L£p and L. We wish to find
the steady state solution of Eq. (5.7) for df /dr = 0, and in particular, the solution is
expected to be the Gibbs canonical ensemble:

09 = expl-BHM). 59

Here B = (kgT)~! and the Hamiltonian is the sum of the potential energy and
kinetic energy of the system, that is, H = V(r) + ), ZIZ, The negative gradient
of the potential V gives rise to the conservative force FC. The partition function
Z is there for normalization and is not particularly relevant in this context. Since
the canonical ensemble is the equilibrium solution for a conservative system, it is
straightforward to obtain L¢f“? = 0. Furthermore, Lpf*? + Lgf°? = 0 can also be
satisfied by postulating two relations as

wp(r) = [wr(n)]*,

(5.10)
02 = 2ykgT.

This is the celebrated fluctuation-dissipation theorem first derived by Espafiol and
Warren [26], which is of fundamental importance for a DPD system. With the FDT
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as a constraint on the input model parameters, the canonical ensemble of the DPD
system is warranted in the continuum limit, i.e., dt — 0.

Another operator L related to the Fokker-Planck operator proves to be important
later and we shall also briefly introduce it. Given an arbitrary function of phase space
coordinates, that is, a(x), we can write down its differential as

da da
da=Y" (Br» ~dr; + o, -dp,-)

. 1
1

1 0%a 92a 2a
drdr; dr;dp; dp;dp;
’ 2%:(3‘731'/ e dr;0p; iR ¥ opidp; T p")

J (5.11)
+0(dr?)
~ da
=Ladt + %:/O'WR(V,'J-)eU o AWy + O(dr'?),
where £ is defined as
A Pi 0 ane d
= F
£ ; m 8r,~ + 12‘]: v ap,
/ J 5.12
+ %: ywp(ry) | —(e; - vi)e; - op; (5.12)
2
,07 0 0
+ %: 5 Wr(ry)eg - (api - 3pj)-

The SDE of Eq.(5.4) and the Itd calculus rule in Eq.(5.5) were applied to
derive Eqgs. (5.11) and (5.12). We will need £ to compute the time derivatives of
hydrodynamic variables due to the property of Eq. (5.11)

d<a>

.= <La>, (5.13)

in which “<>” means ensemble average. It is also noteworthy that DPD satisfies
the detailed balance

Lf%a = f“L<a, (5.14)

where operator L€ is defined by reversing the sign of velocities in L.

For practical purposes, besides the FDT in Eq. (5.10) on the input parameters, we
did not specify the actual values of a, y and o, nor did we talk about the functional
forms of w¢, wg and wg. These discussions are presented in Sects. 5.2.4 and 5.2.5.
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In the following section we shall discuss how these input parameters determine the
hydrodynamic properties of a DPD system.

5.2.2 Bottom-Up and Top-Down Derivations

Since a DPD system respects Galilean invariance, it only allows for isotropic
interactions while preserving conservations of mass and momentum. The equation
to be expected to govern on a large spatial-temporal scale is the continuum Navier-
Stokes system. This intuitive argument can be put on firm ground by applying the
projection operator techniques of Zwanzig and Mori [80, 112, 113]. The projection
formalism not only yields the hydrodynamic equations for a DPD system, but also
establishes an explicit correspondence between the sound speed and viscosities
of the Navier-Stokes and the model parameters of DPD. To this end, the time-
independent projection operator of Mori [80] was generalized by Espafiol [22]
for the non-Hamiltonian system of DPD to derive a linear generalized Langevin
equation, from which he obtained the linearized hydrodynamic equations.

We shall revisit a few key steps of the derivations [22]; more details on the
technical aspects may be found in [33, 80, 113]. To start with a simplest example,
we present the essential idea of projection upon a two dimensional system, that is,
two coupled ordinary different equations (ODE).

Projection in a Nutshell

Given a system of two ODE:s as follows [113]

d
P — Aup + Ang, (5.15a)
dt
d
df = Ayp + Ang. (5.15b)

Suppose that our interest is on p, not g. Then, by solving Eq. (5.15b) for g we have
t
q(1) = 2¢(0) + / 20745 p()dx. (5.16)
0
Inserting Eq. (5.16) back into Eq. (5.15a), we have

d, ! _
dl; =Aup +A12/ 2079 A5 p()dT + Appe?'(0)
0 (5.17)

=Anp+ /OtK(t —O)p(v)dt + R(1),
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which has the form of the generalized Langevin equation (GLE). Furthermore, the
memory kernel and noise terms are defined as

K(t) = Apne*'Ay,
(5.18)
R(1) = Appe*?q(0).

If we are not interested in a specific initial condition ¢(0), but only in an ensemble
of ¢(0), which has certain statistical distribution, it makes sense to name R(¢) as
the noise term. In general, given a set of NV variables and we are only interested in a
subset of them or a set of functions of the N variables, after projection or substitution
we are left with equations for the dynamics of a few relevant variables. However,
the eliminated variables leave their footprints within the memory kernel and random
term.

Next we shall introduce the linear projection adopted by Mori and introduce
the concepts of relevant variables and relevant probability density. Subsequently,
we apply the Mori formalism to obtain the hydrodynamic equations of DPD. This
corresponds to the route A in Fig.5.1.

The Mori Formalism

First we introduce a scalar product between two functions of phase space coordi-
nates,

6. p) = / FAP RV X)dx = 1r [Py (5.19)

The technique of projection operators, requires the identification of variables A;(x, 7)
relevant to the macroscopic properties of the system, and subscript i is a free
index. In our case, the A; are hydrodynamic variables to be defined later, with zero
equilibrium averages. A relevant ensemble has the following form,

fx = explBH + BAA D). (5.20)

where the Einstein convention is assumed on the repeated index i. The thermo-
dynamic parameters A; are functions of time to be selected in such a way that
the average of A; performed with the relevant ensemble agrees with the average
performed with the original ensemble from the solution of the FPE of Eq. (5.7).
Mathematically, this means that the time-dependent average is

<Ai()> = tr[f(A(D)] = tr [f(OA(D)], (5.21)

where the x arguments are omitted for brevity. We further assume that the system is
not far from equilibrium, which implies a linear response in Eq. (5.20). This allows
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us to keep the first two terms of a Taylor expansion,
1
fx.n) = exp[=BH]exp [fLi(NAX)] ~ fH(X) [ + LA (5.22)

The linear departures from equilibrium of the two ensembles are defined by,

fx.0) =f49x) [1 4+ ¥(x, 1],

(5.23)
f&x.0) =f9x)[1 4+ ¥(x.0].
where the W(x, £) is constructed in accord with Eq. (5.20) as,
U(x, 1) = Bri(DAI(X, 1). (5.24)

From Eq.(5.21) we can now calculate the average either by use of the original
ensemble as

<A;()> =tr[f(x,0)A] = /f(x, NA(X, t)dx

= /feq(x) [1 4+ W(x, )] Ai(x, 1)dx

(5.25)
= /feq\I/(x, NA;(x, 1)dx
= (A, V),
or by use of the relevant ensemble as
<Ai()> = r[f(x.DA;] = / f(x, DA;(x, H)dx
= / FIx) [1 4 W(x, )] Aix, )dx
(5.26)

_ / FOU(x, DA (X, 1)dx
= (A, V),

where in both Egs. (5.25) and (5.26) the equilibrium averages vanish,

/ fX)A;(x,1)dx = 0,
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and the scalar product definition Eq. (5.19) has been used. Therefore,
<Ai(t)> = (Ai, \IJ) = (Ai, \IJ) = /f“f\l-’(x, I)Ai(X, t)dX
= [ 783,005 0 (5. D
‘ (5.27)
= B30 [ a0 x. D
= BA;(D(Ai. A)),

where the definitions of the scalar produce and the departure from equilibrium of the
relevant ensemble, Eqs. (5.19), (5.24) respectively, are employed. Finally, we have

BA (1) = (A1, A) ' <Ai(t)> = (A1, A) 7! (AL, ),

(5.28)
U(x,1) = BAi(DA; = Ai(Ai, A) ™ (AL W) = PY(x, 1),

here P is a projection operator that extracts the relevant part of the original
ensemble. Accordingly, QW (x, ) = (1 — P)W(x, 1) is the irrelevant part.
From the FPE in Eq. (5.7), we have

af (x, 1)
d

t

HfIx) [1 4+ W (x, ]}

= Lf(x,1),

= L{f(x)[1 + ¥(x,]},

ot
3[feq\;rt(x, )] = L (x, 1), (5.29)
fed 3‘1‘;)[(, 1) :feqﬁeqj(x’ 1),
aV(x,1) i
o = LV(x,1),

where detailed balance in Eq. (5.14) is employed. The formal solution to Eq. (5.29)
is

W(x, 1) = exp(L)W(x,0), (5.30)

in which the operator exp(ﬁ~€ 1) is defined in terms of its Taylor expansion. However,
if we first solve Eq.(5.29) for the irrelevant part QW (X, r), and then substitute its
solution back into the system to obtain the relevant part, we then get

IV(x,1)

Ny = PLW(X, 1) + / dtPL exp[QL (1 —1)] QL U(x. 7).  (5.31)
0
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Also from Eq. (5.29), we obtain an evolution equation for the relevant variables as

d<Ai(x,1)>

dt
(5.32)

= (ﬁAi, ) + /t drt (exp [ZQ{t —1}] LA;, QﬁeAj) BA; (7).
0

which is exact. However, in practice Eq. (5.32) is difficult to apply so that one often
tries to further simplify the complex memory kernel by searching for proper relevant
variables. With a clear time separation between the memory kernel (fast) and the
relevant variables (slow) the Markovian approximation can be invoked so that the
equation reads

d<A;(x,1)> ~ ! ~ ~ ~

D0 (2aw) + { /0 dt (exp[£Q7] 24, QZA)) L. (5.33)
Furthermore, it is also extremely difficult to generate the projected dynamics, and
in practice, one often approximates the projected dynamics with the real dynamics
as exp(L9t) = exp(Lt), which can be justified only a posteriori.

Hydrodynamics

If we apply Dirac’s § function to define the relevant variables as those which appear
in Navier-Stokes (NS) equations, we have

Sp(r.1) =) mé [r —xi(0)] — po,

(5.34)
g(r,0) = ) pid[r—ri(0)],

here py is the equilibrium density so that both the averages of §p, and g, vanish at
equilibrium. Since the energy was not defined as a relevant variable which would
appear in the Fourier equations, the classical DPD applies only to isothermal fluids
and their flows, in which the energy varies instantaneously and can not be taken as
a slow relevant variable.

On following through with the Mori projection introduced previously on these
relevant variables, the equation of continuity takes the form

asp(r,r) 0
Bt - ar g(rv t)v (535)
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and the momentum equations is [22]

ag(a';’ ) _ (. Lg(r.0) (5.36)

+ / dr / dr’ (exp[£LQ(t — )] Lg(r. 1), QL g(r . 1)) Bv(r'. 1),
0 \%4

where V is the special volume and v(r,?) is the velocity field. The momentum
equation can then be cast into the form of

og(r,1)

2
o = —c2Vép(r, 1) + nVv(r, 1) + (C _ 7

3 ) VV -v(r,1), (5.37)

in which the isothermal sound speed ¢, = dp/dp|r and it is only determined by
FS [22]. With the super-indices C and D to denote the contributions of conservative
and dissipative forces respectively the shear viscosity n = 7€ 4+ 5” and bulk
viscosity ¢ = ¢€ + ¢P. Each term is further defined as

. o[£ C
. =/3/0 L@ ey
L wv w |
2 ool C C
(cc—3nc)=ﬁ/ LY @.ed
0 ym i

(5.38)

ool'D D ]
nD:,B/ v Y (0).2) |dr.
0 L uv pv

o+ D D
(=) =8 [} [Zm.e)a

o s

In these summations & # v with no summation on repeated indices. Moreover, the
stress tensor contributions are given as

c
Z = ZZP;’#‘Z(H—I})F;
i ij

(5.39)

D
> =2 (ri—x)Fy,
ij

which follows the identification of the conservative and the dissipative force
contributions to the shear and the bulk viscosities respectively.
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Such formal derivations via the Mori projection on the SDE of the DPD
system provide further insight and support for understanding why DPD satisfies
the hydrodynamic equations at large spatial-temporal scales. However, in practice it
is not possible to quantify a priori the sound speed and viscosities of a DPD system
from the given input parameters without actually running DPD simulations.

Fluctuating Hydrodynamics

To circumvent the difficulty of specifying a priori the equation of state and the
transport coefficients of classical DPD, an alternative approach is smooth particle
hydrodynamics (SPH) which begins with the Lagrangian discretization of Naiver-
Stokes or in general Landau-Lifshitz-Navier-Stokes (LLNS) equations [25]. Given
the governing differential equations of NS in Lagrangian form

d
d’;’ — _pV-v, (5.40a)
dv _ ) n

ply =—VP+V v+(§+3)vv.v, (5.40b)

where d/dt is the substantial derivative (or material derivative), which describes
how quantities such as, density field p(r, 7), and velocity field v(r, ¢), evolve with
time along the trajectory of a point particle r at time t. Intensive variables, such
as the pressure field P = P¢[p(r,t)], are determined by an equation of state
under the local equilibrium assumption. For simplicity the shear (dynamic) and bulk
viscosities 7, ¢ are taken as input constants.

The NS equations are discretized by following the methodology of SPH [79]. An
arbitrary function A(r) can be formulated in an integral form by convolution with
the Dirac § function as

A(r) = /A(r’)S(r’ —r)dr. (5.41)

The essence of SPH consists of two steps to evaluate Eq.(5.41): first a kernel
approximation to replace the Dirac §(r) function, and second a particle summation
to approximate the integration. In the end, an arbitrary function A(r) is expressed in
terms of values at a set of N discrete disordered points—the SPH particles.

In SPH, a normalized smoothing function W(r’ — r, h) is used as the kernel with
h as its smoothing length such that in the limit 7 — 0 W(r’ —r, k) tends to the Dirac
§ function,

/ W' —r, h)dr = 1, %in% W' —r,h) =8 —r). (5.42)
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Note that W(r’ — r, &) is bell-shaped and radially-symmetric. Therefore, it can be
written as a function of a scalar variable: W(x' —r,h) = W(|r' —r|, h) = th w(s),
where D is the dimension of the problem and s = |r' —r|/h = r/h. Here we shall
not specify any kernel and for practical flow problems different kernels may have
different properties. Equations (5.40a) and (5.40b) require the gradient of the kernel
function derived from,

VW' —r,h) = -0 —r)G(r' —r|, h), (5.43)
with G > 0, the physical meaning of G will be clarified below.

The volume V; is defined as the inverse of the number density d;, which, in turn,
is related to mass m; and mass density p; as

1 Pi
v, =d; = m; = XI: W(Il'i — I‘j|) = XJ: WU (5.44)

Recall the hydrodynamic Egs. (5.40a) and (5.40b), which can now be given in their
discrete forms as

pi=—pi (V-v),, (5.45a)

. (VP);  n(V?v); n(VV.v),

V= — , 5.45b
m;v d + d; + 3d; ( )

where any quantity associated with particle i is denoted with a sub-index i and *”’ is
an abbreviation for the total (Lagrangian) time derivative.

According to Egs. (5.44) and (5.45a), we have the following equivalent continuity
equations

pi = —pi (V-v),
> d; = —d; (V-v), (5.46)
= Vi=Vi(V-v),.
In the Lagrangian description, each particle moves according to

l",' =V;. (547)

Therefore, the time derivative of Eq. (5.44) is given as

di=Y W(ri—x) =Y _[VW(ri—x;) - (vi = v))]. (5.48)
J

J
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If we define notations
rj =T —Ij,
Vij = Vi —Vj, (5.49)
—Gjrij = VW; = VW(|r; —1j|),

then Eq. (5.48) becomes

d,’ = Z (G,:,'l','j . V,:,') . (550)
J
By comparing Eq. (5.50) with Eq. (5.46), we get a SPH representation for the
divergence operator of velocity

1
(V-v); = d: Z (Gyryj - Vi) - (5.51)
b

The extensive variables of the system are as follows,

M = Zmi,

i

(5.52)

where the total mass M is a sum of the individual masses. The total energy E is sum
of the individual kinetic energy mvi2 /2 and internal energy E; of each particle i.

Each particle i has the same constant mass m; = m; hence conservation of total
massis M = 0. E,; is a prescribed function of the particle’s own mass m;, and volume
Vi

E; = E“(m;, V). (5.53)
Its time derivative is given by
. 0E“1 oE“? .
Ei = n; V. 5.54
om ™ v, 69

The thermodynamics equation of state [14] yields the pressure as

dE“1
P;=— . 5.55
WV ( )
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Therefore, Eq. (5.54) with constant m; becomes
E = PV (5.56)

As required by the first and second laws of thermodynamics, the SPH representation
of an isolated system must satisfy

E= Z (mv;-vi + E;) = 0, (5.57a)

§=) Si=o. (5.57b)

* Reversible dynamics: Suppose we deal with an inviscid Euler flow with n = 0
and x = 0, we have

o Z (mv;-v; +E;) with Egs. (5.45b) and (5.56)

(VP); - .
= Z [_ Vi — Piv,} with Eq. (5.46)

% (5.58)
= Xl: [_(de’)i i — Z;(v.v)i}
=0,
which is required by Eq. (5.57a). This leads to
3 [_ (VP); -v,-]
i d;
=3 _Zf'(v.v)i] with Eq. (5.51)
=2 ;zi > (Gyry - Vz‘j)}
i i
- . - . (5.59)

i P; P,
= 2 > (Girvi) | = P > (Giry )
| 1 J l 1 ]

P; [P, i
= 2 D (Giryvi) [+ d; > (Giry - v)
L 1 J i j L i .

P, P,
B ZZ |:(d? + dé) G"fr"f'v’} '

i j J
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Therefore, a physically faithful SPH representation of pressure gradient operator

is proposed as
(VP); |: (Pi P; ) :|
= E + ) Giry |- (5.60)
, 2 2 | Bl
d i d;

Hence, in the SPH representation, a pairwise conservative force from pressure
gradient can be written as

P P
FS = (d’2 + d;) Gyry. (5.61)
i J

In summary, by the density definition in Eq. (5.44) and the position evolution
of the Lagrangian description in Eq. (5.47), we get a divergence operator of SPH
for velocity in Eq. (5.51) so that continuity equation is accounted for. The velocity
divergence operator Eq. (5.51) generates a pressure gradient operator Eq. (5.60)
which ensures the total energy of an inviscid fluid to be constant. Further note
that using a variational approach, it can be shown that Eqgs. (5.44) and (5.60) are
also variationally consistent [12].

» [rreversible dynamics: Using the kernel approximation, we have the following
identity [25]

@ —r)* (' —nf 5aﬁi|

(' —ry?

/dr’ [A(K) —A()] G(r' —r|) |:5
(5.62)
= V*VPA(r) + O(V*AR?),

where we have assumed that A(r) is sufficiently smooth on the scale of /. Taking
the trace of Eq. (5.62) leads to

2 / dr' [A(r') — A(n)] G(IY' —x]) = V - VA(r) + O(V*AR?). (5.63)

Note that

/drfqzvjzzcz. (5.64)
r ‘

J

The second derivatives in SPH are discretized as
(VzV)i Gjj
=-2 il
d; Zj: did; "

(5.65
(VV -v); ) Gyj )
d did; (Se; - viey —vi) |,
j 1
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where we have introduced the notation

r—r _ T

ej = = . (5.66)
Iri—x[ry
Finally, the pairwise dissipative force is
57’] G," n G,"
2 = ( . ;) AR (¢+ 3) 0 (€5 - virey) - (5.67)

One may go ahead and apply the SPH methodology to discretize the random
stress part of LLNS, but it is difficult to impose thermodynamic consistency by
this route. Although the original stochastic partial different equation (SPDE) of
LLNS is thermodynamically consistent, a separate discretization of the viscous and
random stresses does not guarantee the same consistency at the discrete level. This
inconsistency is avoided by the creation directly at the discrete level of a random
force F§ consistent with F?, as was first done by Espafiol and Revenga [25].
One could also extend the continuous FPE introduced in Sect.5.2.1 to a discrete
version, and so derive a consistent form of Ffje An elegant alternative is to apply
the GENERIC (general equation for the nonequilibrium reversible-irreversible
coupling) [84] method, which imposes thermodynamic consistency on any discrete
mesoscopic model without the need to involve derivations in phase space directly.
Consequently, in GENERIC, all operations and constraints are simply algebraic.
Without further derivations, we shall simply provide the pairwise random force as

B;;
Fi=)" (Aiidwij + 3’ tr[dW,;;]) e, (5.68)
J
where dW;; is matrix of independent increments of the Wiener process, dWj; is the

symmetric part of it, and dWj; is the traceless symmetric part of it. They are given
explicitly by

dW;; = (dWy; + dw§) /2,
dW,;i = dW,] — tr[dW,-j]I/?), (5.69)

trldWy] =) dW.
o

Furthermore, the magnitude of noise is given as

5 G; 1'?
Aj=|aker (7T —¢) YT
X 3 didj
12 (5.70)
57 Gy
B;; = | 4kgT 8 ’ .
o= [ (3 +50) 1
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From the SPH discretization of the Navier-Stokes equation and the introduction
of the random force corresponding to the fluctuating hydrodynamic equations
known as LLNS [46], we get a version of DPD named SDPD. In contrast to
the DPD method, the equation of state and transport coefficients are explicitly
specified a priori in SDPD. This may avoid some of the difficulties associated
with the original DPD mentioned above. This also corresponds to the top-down
view of DPD, or the route B on Fig.5.1. However, from this version of DPD,
one cannot expect more than the continuum behavior of the system. Whereas
in the original DPD designed by coarse-graining or parameterization, small
scale behavior is expected to arise that corresponds to some underlying physical
process.

5.2.3 Transport Coefficients from Kinetic Theory

Besides the Mori projection, we may also formulate the transport coefficients of
DPD by deriving its kinetic equations. This also corresponds to the route A in
Fig.5.1. Let us introduce the p-space density, single-particle and pair distribution
functions as [76, 77]

fon =" 8(x—x),

ffxn= <Z S(x— Xi)> = <f(x, t)>, (5.71)

FAx.x, 1) = <Z '8(x — x;:)8(x — x,-)> .

ij

We apply Eqs. (5.11)—(5.71) and neglect the conservative force (corresponding to
the high y limit), we get

I (x,
fg f :_v.<zi:v,-8(x—xi)>

d
+vy v < E "5(x — Xi)WD(Vij)(eij : Vij)eij> (5.72)
ij

o2 9%

/ - 5 D x3 . .e
+ 2 3V3v'<%: S(x —xi)w (rl,)el,e€,>,
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where the contraction *” of tensors is defined as A:B =}, A;B;; and V = 9/9r.
We perform the 1ntegrals over all variables except x; and x;,

YD

, (5.73)

= y/dv//dRﬁﬁwD(ﬁ):{ Cw-vy+? £ x.x0),

ov 2y ovav
where x = (r,v), X' = (,v), R = r —r’ and R = R/|R|. This is the first
equation of the BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) hierarchy [37].
Note that the difference here is we apply the Fokker-Planck operator for a dissipative
system instead of the Louville operator for a Hamiltonian system. If we assume
molecular chaos to be

X0~ 0,1, (5.74)
then we arrive at a nonlinear integro-partial differential equation,

o (X D v px (5.75)
/ // DR LM /o 9 ’ o’ &
=y | dv | AdRRRw” (R)f(r', V', 1): v—v)+ f(x,v,1).
v 2y dvav
Following the Chapman-Enskog method, we solve Eq. (5.75) as a power series in
a small parameter 1 on the hydrodynamic scale, i.e., f = fo + ufi + ...; then,
we define a mean free time as ty = 1/(ynr.), where n is the number density of
a DPD system, and define a mean thermal velocity as vy = \/ kgT/m. Hence, the
small parameter is ;& = fovoV, essentially ~ 1/y in the high friction limit. The first
two terms fy and f; suffice to estimate the Navier-Stokes transport coefficients as
follows,

dkgT kgT
= , = , 5.76
nk 2]y {k vl (5.76)

where subscript “K” denotes the kinetic contributions. From the contribution of the
dissipative force we have

myn*[riwgo] myn®[rwgo)
Np = s é‘D =

= , 5.77
2d(d + 2) 2d2 >.77)

where the square brackets mean a spatial integral as [...] = [ ...dr.
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5.2.4 Parameterization

The parameterization of input parameters for a particular DPD simulation falls
generally into two approaches: one approach is to solve an inverse problem and
the other approach is to directly coarse-grain from an underlying MD system. The
first approach generally initiates a loop of processes involving trial simulations
and tuning input parameters until the desired properties are simulated by the
DPD system. Although not accurately, the kinetic equations (neglecting conser-
vative force) from the last section indeed provide a guideline of tuning the DPD
parameters. We may also apply the kinetic equations further here to provide a
guideline for selecting the finite time step At of DPD. This part largely follows the
methodologies introduced in [75]. Furthermore, we shall also present the continuum
integral approximation [35], which provides an alternative reference to tune the
input parameters. Nevertheless, with either the kinetic equations or the continuum
integral approximation, one may need a few trial simulations to solve the inverse
problem. This can be done systematically by applying the Bayesian framework, but
this topic is beyond the scope of this chapter.
The direct or forward way of coarse-graining will be presented in Sect. 5.2.5.

Timestep for a Constant Temperature and Noise Level

In Sect.5.2.1, we learnt that, at Ar — 0, the temperature is well defined if the input
parameters of DPD satisfy the FDT given by Eq. (5.10). Here we try to find out how
the finite time step At affects the temperature, since one advantage of DPD is the
use of a larger time step than that of MD.

We define the one-particle distribution function for DPD as

7m0 = Y [ dxste = no)5e - po)y . (578)

where f(x, 7) is the distribution function in the 6N phase-space introduced above.
For simplicity, if we ignore the conservative force in DPD as is in the original form
introduced by Hoogerbrugge and Koelman [39], the equilibrium distribution is the
Gibbs distribution for the momentum

iZm

2
f(p) = ;exp (—/3 P ) (5.79)

In a simulation with a discrete time step Af, the changes in position and
momentum for particle i are Ar;(f) and Ap;(¢), then the change in f(V(x, f) from
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ttot+ Atis
ArO(@)
=fVx, 1+ A —fV(x, 1)
= Z / dx [8(r —r; — Ar)8(p — pi — Ap;) — 8(r —r))d(p — p)] /(%)
L (5.80)

where ¢ is suppressed in the last expression to save space. We can expand the terms
under the integral of Eq. (5.80) by Taylor series. Keeping only up to second partial
derivatives, we can have an expression for the differential Af(". The first moment
of Af() is

A/dp/dl‘f(l)pz /dp/dr (Z/dxfeqS(r—ri)5(p—Pi)APi) (5.81)

=0,

which follows from the momentum conservation of DPD. The second moment of
AfD is

A/dp/dltf“’p2

kgTy*Ar
= —ZyAthTn [WD] + UZAI [Wi] + o

m

2n [w%] + " [WD]2§ )
(5.82)

where d is the number of space dimensions and the square brackets denote the
integral

[w(r)] = /drw(r). (5.83)
To have an invariant one-particle distribution, Eq. (5.82) must be zero, therefore,
kT As (5.84)
m = s .
BT A2 — AinAr) — Ay At
where
4 2y? 2 o’ 2
Al = d [wp], A= Iy [wp]. As= p [wr]- (5.85)
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For the distribution function in Eq. (5.79), higher moments are related to lower ones
as

/ dpfVp"t? o / dpfVp", (5.86)

and so if the first and second moments remain constant then all moments are
constant.
We shall briefly discuss the implications of Eq. (5.85) as follows [75].

* For a special case of Eq. (5.85) with Ar = 0, we then have mkgT = A3/(24,).
This recovers Eq. (5.10), which was obtained from the equilibrium solutions of
Fokker-Planck equation correspond to the SDE of DPD.

* For a given set of input parameters of DPD (y, o, wp, wg, 1), the measured tem-
perature of the system will increase as the time step becomes larger. Furthermore,
1/(kgT) is a linearly monotonic function of Az. For example, one way to measure
the equilibrium temperature is to calculate the averaged kinetic energy of the
particles. Then, from the equipartition theorem one obtains temperature as

kT = (v?) /3. (5.87)

* For a given set of input parameters, if At > Af,, the denominator of Eq.5.85
becomes negative and the system will become unstable, where

At. = (2A1)/(nA? + A,). (5.88)
* Once a value of At is selected, the density can not exceed a critical density
n. = (2A; — Ay At) /(A2 A1), (5.89)

for a stable simulation.
* The choice of larger y (and o) will amplify the effects of a finite Ar.

The analysis above ignored the conservative force for the simplification of the
equilibrium solution of f“/(x). To select a proper At for a practical simulation
with conservative force, one may draw similar conclusions by running actual trial
simulations and measure the temperature by Eq. (5.87). Depending on the level of
the artificial temperature increase we are willing to accept in the simulation we can
then pick the appropriate At.

In our experience with random number generation, there is no statistical differ-
ence between using uniform-distributed and Gaussian-distributed random numbers.
In practice the uniform distribution is preferred for the random forces, as it is
computationally less expensive. From Eq. (5.85), it is also clear that the temperature
increases as the noise level as o>, But the value of o does not change the range
of At over which the system is stable. However, with higher o, y is larger due to
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the FDT (5.10) and this accelerates the process of a DPD system changing from a
deviated temperature kg7’ to the target temperature kpT.

Repulsive Parameter in the Conservative Force

For modeling a correct thermodynamic state of a liquid, a DPD system must have the
correct fluctuations, which are determined by the compressibility of the liquid [37].
Therefore, the repulsive force parameter a in Eq.(5.2) is selected to recover the
compressibility of realistic fluids [35]. By applying the virial theorem, we obtain
the pressure of a DPD system as

1
p = pkgT + 3y <Z(I‘i —r)- fi>

i<j

1 c 5.90

i<j
2m 5 [ 2
= pkpT + 3 P rf(r)g(r)rdr,
0

where g(r) is the radial distribution function of DPD particles, p the number density
of DPD particles and r. the cutoff radius beyond which f(r) vanishes. For a wide
range of parameters, the pressure can be approximated for high densities (p > 2) as

p = pkgT + aap®(a¢ = 0.101 + 0.001). (5.91)

The compressibility of a DPD fluid is computed by ! = (dp/dp)r/kpT. To match
the compressibility of a DPD fluid to that of a realistic fluid, the dimensionless
compressibility is defined by

S ILP

K, oksTBr’ (5.92)
where 7 is the isothermal compressibility of the fluid of interest and [L] the length
scale and p the number of DPD particles in a volume of [L]?. For example, the
liquid water at 300 K has a thermal energy of kzT = 4.142 x 1072 kgm?s~2 and a
compressibility of 87 = 4.503 x 1071 ms? /kg. Let p = 3 be the number density of
a DPD system where one DPD particle represents a water molecule, a length scale
[L] = 0.448 nm is determined so that the DPD system matches the number density
of water molecule. Substituting these values into Eq.(5.92) gives . ! = 16.0.
Therefore, the repulsive force parameter is @ = kpT (k. ' — 1.0)/2ap ~ 75.0ksT/p
with ¢ = 0.101 £0.001 for liquid water [35]. It is worth notable that the expression

a = 75.0kgT/p is obtained based on a choice of [L] = 0.448 nm. Whenever the



280 Z.Lietal.

coarse-graining level or the length scale [L] is changed, a; should be modified
accordingly to recover the correct compressibility of the fluid. Otherwise, the value
of Kc_l will be underestimated, and hence the DPD fluid’s sound speed will be lower
than expected.

Dissipative Coefficient

We consider a fluid undergoing uniform linear flow v, = eng7g. From the Irving-
Kirkwood formula [41], we know that the stress has contributions from both a
kinetic part due to particle transfer across streamlines and a dynamic part due to
inter-particle forces. We first consider the second part due to forces. In particular,
the one arising from the dissipative force is

1
Oup = |, <Zr,-,-aF,?,3>, (5.93)

i>j

where the expression for FII]) is given in Eq. (5.2). If we assume a uniform density
without a particular structure for the particles, that is, g(r) = 1, we can then replace
the summation by an integral as

2 2 00
Oup = 1);'0 /0 drr*tywp(r) [eaﬁ + epa + 85aew] . (5.94)

Therefore, the viscosity due to dissipative contribution is

2 2 [od)
nP = 7{1);/0 / drr*wp(r). (5.95)
0

For any specific weight function wp(r) chosen, the viscosity can be calculated in a
straightforward way.

Next we derive the kinetic contribution to viscosity due to the diffusion of the
particles. The Langevin equation for a single particle without conservative forces
reads as,

dvi D R
.= > FP+ ) Ff (5.96)
J#i J#i
Since the friction force is linear in the velocity difference, we may write

dV,’ Vi

P FX, (5.97)
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where
1 B 1y .
= > ywo(ry) Ll = > owr(ry) Ot (5.98)
J#i j#i

We further replace the sum by integral and get

1 4 o
= e / drr*wp(r),
T 3 0

(FF) =0, (5.99)
(FR(@) - FR(1')) = 4nop / ” drr® [wr(r)] 8(t = 1').
0

We can solve the Langevin equation Eq. (5.96) straightforwardly to obtain the time
correlation of velocity as

(vi(0) - vi(r)) = 3kgT exp (—t/1). (5.100)

Thereafter, the diffusion coefficient is obtained as
1 o0
D = 3/ dt (vi(0) - v;(t)) = tkpT. (5.101)
0

According to the kinetic theory, the viscosity contribution due to the particle
diffusion reads

" =p(v’)7/3. (5.102)

The total viscosity is simply the sum of 7” and nX. Therefore, given Egs. (5.95)
and (5.102), one may estimate the input parameters to achieve a desired viscosity of
a DPD system.

5.2.5 The Zwanzig Formalism for Coarse-Graining

We have applied the Mori formalism in Sect.5.2.2 to get the linear GLE or the
linearized hydrodynamic equations, where the correspondence between thermody-
namic response and transport coefficients of the NS equations and DPD parameters
are established. Here we introduce another projection adopted by Zwanzig [38, 43,
50, 61, 112, 113], from which a non-linear GLE is obtained. It can be shown that
Zwanzig’s approach is more general and in fact Mori’s approach is an approximation
to Zwanzig’s near equilibrium [33].
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We shall introduce the microdynamics described by a Hamiltonian, which has
Gibbsian statistics. Furthermore, we derive two equivalent ways of projection.
Firstly, we work on the relevant density adopted by Zwanzig [111]. Secondly, we
work on the relevant variables directly [38].

Microdynamics

Given N particles (atoms or molecules) of a Hamiltonian system, a phase space
point is defined as Z(r) = [Z1(?),...,Zen(®)] = [r1(2), ..., xn(@), P1(D), ..., PN (D)]
where r; and p; are the position and momentum of ith particle in three dimensions.
The dynamics of N atoms is governed by Hamilton’s equations of motion

OH OH
pi=—. . 1
op;’ p or, (5.103)

i =

where H is the Hamiltonian of the system defined as the sum of kinetic energy and
potential energy of the particles

H(ry, ..., xnP1s---PN) = K(P1, ... py) + V(r1, .. TN), (5.104)

where K = va gi with m as the particle mass, and V is yet to be specified. In
particular, given the initial condition Z(0) = z, the evolution of dynamics for Z(z)
is determined.

Generally, we are not interested in Z(t) per se, but in a set of M functions defined
on the phase space A(Z(?)) = [AI(Z()),...,Au(Z(t))] = a(t,z), where a is
introduced to indicate the explicit dependence on initial condition z. The evolution
of dynamics of a is

oa(t,z)

5 = La(t2). (5.105)

in which £ is the Liouville operator defined in Sect.5.2.2, and it was referred to
as L¢ in the context of a dissipative system. Here we simply omit the subscript C
without ambiguity. The formal solution to Eq. (5.105) is

a(z,z) = exp{tL}a(0,z) = exp{tL}A(z), (5.106)

where the exponential operator is defined via its Taylor expansions. Inserting
Eq. (5.106) into Eq. (5.105) we get

da(t, z)

= La(t,z) = Lexp{tL}A(z) = exp{tL}LA(z), (5.107)

where £ and exp{tL} commute.



5 Dissipative Particle Dynamics: Foundation, Evolution, Implementation, and. . . 283

We have also the Liouville equation for the PDF of particle microdynamics as

U@

), = Lo, (5.108)

which has the formal solution as f(f) = exp(—iLt). Note that the PDF here
describes the microdynamics of a Hamiltonian system, in contrast to the PDF for
the dissipative system of DPD particles in Sect. 5.2.1.

The Zwanzig Formalism: Relevant Density

We introduce an operator P [111], which is used to divide an ensemble density f(7)
into a relevant part fi (f) = Pf(¢) and an irrelevant part >(r) = (1 — P)f(¢),

f@ =hH1) + 100). (5.109)

Here P is a linear operator and time-independent so that P and d/d¢ commute.
Therefore, the Liouville’s equation can be decomposed into a pair of equations

Pli(df/00)] = i(3fi/dr) = PL(fi +12).
(I =P)i (3f /9n] = i (8f2/3r) = (1 = P)L(fi + f2).

The second equation is a first-order inhomogeneous equation and can be solved in
terms of f>(0) and fj (¢) in a straightforward manner [113] to obtain:

fo(t) =exp[—ir(1 = P)L] 2(0)

(5.110)

1 (5.111)
— i/ dsexp[—is(1 = P)L] (1 — P)Lfi(t —s).
0
Substitute f>(#) into the first equation we get
Ofi(0)
i =PLf (1)
(5.112)

—i / asPL exp [—is(1 — P)L] (1 — P)LSi(t — 5)
0

+ PLexp[—it(1 — P)L]f>(0),

which is the evolution equation for the relevant density.

The Zwanzig Formalism: Relevant Variable

More specifically, if we are interested in the statistical properties of A(a(t,z)) =
A(Z(1)), with initial condition Z(0) = =z satisfying A(z) = o. That is, the
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initial condition of z is distributed according to the equilibrium density f¢?(z),
such as f*(z) = Q;'8(H(z) — E) in the microcanonical ensemble and € is the
normalization factor, and meanwhile f“/(z) is conditional on the initial condition
A(z) = «. Zwanzig’s approach allows us to write an exact integro-differential
equation with random coefficients and when the equation is solved with different
realizations, the ensemble of A(Z(t)) is generated.

We introduce a conditional expectation operator P,, whose action to an arbitrary
phase-space function F(z) at A(z) = « gives the conditional equilibrium expecta-
tion of F(z) as [38]

PuF(z) = ! / F(z)f*Y(z)6(A(z) — a))dz, (5.113)
Q(a)
where the probability density of A(z) is defined as
Qo) = /f“’"(z)8(A(z) —a)dz. (5.114)

Let Qo) = 1 — Pa( and insert 1 into Eq. (5.107) we get
da(t,z)
y = exp{tL}LA(z) = exp{tL}Paw) LA + exp{tL} Qaw) LA. (5.115)
Recall the Duhamel-Dyson identity as already applied in Sect. 5.2.2

t
exp{tL} = exp{tQam L} + / dsexp{(t — $)L}Paw L exp{sQaw L}, (5.116)
0

which can be verified by differentiation [33, 113]. If we apply Eq. (5.116) to replace
the second term in Eq. (5.115), we get

da(z, ! ~ -
a(at i expitLiPag LA + / ds exp{(t — ) LYPawLR(s,-) + R(t, 2),
0
(5.117)
with
R(t,2) = expl{tQaw LILA = Qa exp{tQa) L} LA. (5.118)

Equation (5.117) is the evolution equation for relevant variables. Lei et al. [S0] have
applied it to derive a set of equations of motion for mesoscopic particles, each
of which represents a cluster of constrained MD particles. The resultant equation
of motion has the same form as DPD. Hijén et al. [38] and Li et al. [61] also
applied the Mori-Zwanzig formalism to coarse-grain a system of homogeneous
star polymer melts, where each DPD particle represents the center of mass of
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individual star polymer. In the context of coarse-graining, the parameters such as
a, y (o) and weighting functions w¢, wp (wg) for DPD depend on the properties
of the underlying MD system at a specific state point performed. Typically,
we have numerical values for DPD input parameters obtained from the MD

values.

5.3 Extensions of Dissipative Particle Dynamics

The classical DPD model was initially proposed as a minimal working version
for mesoscopic simulation of fluids. It only considers the momentum equation
governing the evolution of flow field, which precludes the classical DPD method
from modeling some specific problems, e.g., liquid-vapor coexistence in one-
component multiphase fluid systems, heat flow in non-isothermal systems and
diffusion-reaction process in biological systems. To this end, several extensions of
the DPD method have been developed in recent years for tackling the challenges in
diverse applications involving multiple physical fields (i.e., flow field, thermal field
and concentration field), which are beyond the capability of classical DPD model.
In this section, we will introduce some of them, including the many-body DPD
(mDPD) model for multiphase flows [85], the energy-conserving DPD (eDPD)
model for non-isothermal systems [6, 23] and the transport DPD (tDPD) model for
advection-diffusion-reaction processes [66], as shown by the “DPD Alphabet” in
Fig.5.2. The eDPD model is the first extension of DPD proposed by Avalos et al. [6]

Dissipative Par?icle Dynamics (DPD)
[ |

Classical DPD Extensions of DPD
@ - =
] ¢ gl =2 |3 T mlE
o3 ] @< o |@ @ ‘2 o8
8| = o = o E Z|g m 3 <3
2 & SEE |- 1 - S =
g|S & 2|3 5|3 3 = Sl
2 o 2(° g2 2 e &
w 0 s
Particle  Simple aDPD cDPD eDPD mDPD tDPD ...
Self-Assembly Flows | | | I |
Liquid PNP Energy  Multi-phase ADR
Crystal Equation  Equation Interface Equation

TR~

Fig. 5.2 State of the art of the DPD method (“DPD Alphabet”), in which the classical DPD model
is widely used for studying hydrodynamics of isothermal fluid systems while various extensions of
DPD have been developed for modeling different phenomena in multiphysics applications




286 Z.Lietal.

and Espafiol [23] independently in 1997, the mDPD model is another extension
of DPD initialized by Pagonabarraga and Frenkel [85] in 2001 and subsequently
specified by Warren [106] in 2003, and the tDPD model was developed by
Liet al. [66] in 2015.

5.3.1 Energy-Conserving DPD (eDPD) for Non-Isothermal
Systems

The dissipative force or force of friction between DPD particles reduces their
velocity difference and thus dissipates the thermal kinetic energy of the system,
while the random force generates a stochastic force on each DPD particle that
inputs kinetic energy into the system. In the classical DPD model, the dissipative
and random forces together satisfy the fluctuation-dissipation theorem and so act as
a thermostat to maintain the system at a constant temperature [26]. The evolution
equation for the macroscopic energy density in a DPD system does not have the
form of a local conservation equation [77], but contains source and sink terms
corresponding to the random and dissipative forces, respectively, and hence the total
energy of the system is not conserved [6]. As a result, the classical DPD method is
limited to isothermal systems and can neither sustain temperature gradients nor can
it model heat transfer [23].

To extend the isothermal DPD equations to modeling heat transport in non-
isothermal fluid systems, energy conservation is satisfied in DPD by introducing
the internal energy as an additional property of the system [23, 96]. Therefore,
an energy-conserving DPD model was developed and is known in the literature
as eDPD [62, 95]. As in classical DPD, each eDPD particle is considered to
be coarse-grained representation of a group of molecules rather than individual
atoms. The time evolution of an eDPD particle i with mass m; is governed by the
conservation of momentum and energy, which is described by the following set of
equations [23, 62]:

d’r; dv; c > <
mi o =mi, =Fi= Z(FJ +F) +F)). (5.119a)
i
dT;
Coge =9 (g +aj + i), (5.119b)
i#]

where ¢, r;, v; and F; denote time, and position, velocity, force vectors, respectively,
T; the temperature, C, the thermal capacity of eDPD particles and ¢; the heat flux
between particles. The summation of forces is carried out over all other particles
within a cutoff radius 7., beyond which the forces are considered to be zero.

The three components of F;, including the conservative force Fg, dissipative
force FII]) and random forces FII.;, are given by Eq. (5.2) [35]. For an eDPD system
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in local thermodynamic equilibrium, a Fokker-Planck equation, mathematically
identical to the stochastic equations of Egs.(5.119a) and (5.119b), can now be
derived [23]. The solution of the FPE gives the relationship between the dissipative
force and random force, which requires o7 = 4yykgT;T;/(T; + T;) and wp(r) =
w,ze(r). The key aspect of eDPD is that the temperature 7; is defined on each
particle, and the fluctuation-dissipation theorem is applied locally based on the
particle temperature 7; rather than the thermodynamic temperature of the system.
As a result, eDPD allows temperature gradients and can be used in non-isothermal
problems, where thermal transport plays a critical role.

The heat fluxes between particles accounting for the thermal conduction g€,
viscous heating ¢, and random heat flux g® are given by Qiao and He [95] and
Liet al. [62]:

af =) kywer(ry) (T7' = T;7").

it
1 2
q) = - > {wD(r,;;) [)’ij (e5vi) — o3/ mi] - UtjiWR("ij)eiiViiCii}v (5.120)
b
af = Bywr(ry&;.
J#i

where the expression of thermal conduction ¢ contains 77! rather than T because
the thermodynamic quantity conjugated to the internal energy is the inverse of
the temperature rather than the temperature itself [35]. The parameters k; and
Bij determine the strength of the thermal conduction and the random heat flux,
respectively. In particular, k; plays the role of a thermal conductivity given
as kj = C(T; + Tj)2/4k3 in which « is interpreted as a mesoscale heat
friction coefficient [95, 96], and ,35 = 2kpk;. The weight functions wcr(r) and
wer(r) in Eq.(5.120) are given as wer(r) = way(r) = (1 —r/ry)’" in which
st is the exponent of the weight functions and r. is a cutoff radius for heat
fluxes. The case of s = 2.0 corresponds to the typical quadratic weighting
function [35].

For an eDPD particle, the characteristic scale of the kinetic energy related to its
momentum is kg7, while the characteristic scale of the internal energy related to its
temperature is C, 7. To convert the kinetic energy into the internal energy, we need
a scaling factor kgT/C,T. Therefore, the viscous heating g} given by Eq. (5.120)
has a factor 1/C, when the kinetic energy kzT has been rescaled into the unit. Also,
the factor 2 in the denominator means that the heat generated by non-conservative
interactions is distributed evenly to both particles of a pair. By performing practical
eDPD simulations, Li et al. [62] verified the energy conservation of the eDPD
system.

The transport properties including diffusivity and viscosity of the eDPD fluid
are output properties instead of input parameters. Groot and Warren [35] and
Marsh et al. [77] have investigated the expressions of the diffusivity and the viscosity
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in terms of DPD parameters. With the interaction between particles described by
Eq. (5.2), they are given by Groot and Warren [35] and Marsh et al. [77]

-1

4 )
D = kBT( 72)//0/ rzg(r)wD(r)dr) ,
0

D 2myp

o0
v=2+ 15 /0 r4g(r)wD(r)dr,

(5.121)

where g(r) is the radial distribution function of DPD particles. A rough analytical
prediction of the diffusivity and the kinematic viscosity can be obtained by assuming
g(r) = 1.0 corresponding to ideal gases [35]. Substituting wp(r) = w,ze(r) =
(1 =r/r.)* into Eq.(5.121), the diffusivity and kinematic viscosity of the eDPD
fluid can be approximated by:

_ 3kpT(s + 1)(s + 2)(s + 3)

D
8rypr?
3kgT(s + 1) (s + 2)(s + 3) 167 ypr>
v = .
167ypr? 56+ D(s+2)(s+3)(s+4d(s+5)

(5.122)

Equation (5.122) indicates that both the diffusivity D and the kinematic viscosity v
of the eDPD fluid increase with the increase of temperature when other variables
in Eq. (5.122) are kept constant. However, for most of the simple liquids such as
water, ethanol and glycerin, the diffusivity increases but the kinematic viscosity
decreases with increasing temperature. In order to simulate the flow dynamics of
such liquids, at least one of the parameters p, r., ¥y and s should be function of
temperature so that the eDPD model can reproduce the correct dynamic behavior of
non-isothermal fluid systems. After studying the sensitivity of D and v, the exponent
of the weighting function s is defined as a function of temperature for modeling
the temperature-dependent diffusion and viscosity of eDPD fluids. For details on
choosing the function for s, readers are referred to [52, 62].

In addition, if the variation of fluid density with temperature is also considered,
a temperature-dependent conservative coefficient a(T) is required to capture the
effect of temperature on the fluid density. More specifically, let both the fluid
density p(T) and compressibility x!(7T) be functions of temperature obtainable
from experimental data. The temperature-dependent conservative coefficient is
determined by a(T) = kgT(k;'(T) — 1)/2ap(T) in which @ = 0.101 & 0.001.
For example, the density of a DPD fluid with constant a is invariant with respect
to temperature, while a(T) = 75kgT/p yield a linear dependence of density on
temperature [62].

Similar to the diffusivity and the kinematic viscosity, the thermal conductivity is
also an output property. For an eDPD system whose transport of energy is dominated
by the dissipative interactions of Eq. (5.120), the macroscopic thermal conductivity
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A can be calculated by Mackie et al. [74]:

2 2 re
A= ;’ 5 , /0 Flwer(r)g(rdr, (5.123)
where k = C?kT?/kp and wer(r) the weight function used in Eq. (5.120). Given
wer(r) = (1 —r/r.)*" an analytical estimate for the thermal conductivity A can be
obtained by assuming the radial pair distribution function g(r) = 1.0 corresponding
to ideal gases, and it is given as:

167p?k C2r?
A= PG . (5.124)
kg(st + D (st + 2) (st + 3) (st + 4)(s7 + 5)
In particular, when the typical quadratic weight function (1 — r/ rc)2 is employed
for wer(r) with sy = 2.0, then Eq. (5.124) becomes

2mp?

A, =
315kp

KC*r. (5.125)

The definition of the Prandtl number is Pr = pvC,/A, which is a temperature-
dependent dimensionless number and its value can be obtained from available
experimental data. After replacing A by Pr in Eq. (5.125), we have a formula for
determining the mesoscale heat friction « for the eDPD system given by:

315kgy 1
K = BY (5.126)
27wpCyr? Pr

where v is the kinematic viscosity which can be roughly approximated by
Eq.(5.121) or given by the computed kinematic viscosity. The expression of
Eq.(5.126) is obtained from the typical quadratic weight function wer(r) =
1-r/ r.)* and a similar formula can be derived from Eq. (5.123) when a different
weight function is employed.

By including the energy equation in the DPD framework, the eDPD method
has been successfully used in diverse applications involving thermal fields. For
example, Li et al. [62] considered the coupling of the flow and the thermal fields,
where an eDPD simulation of a Poiseuille flow confined between a hot wall and
a cold wall was performed. Since the hotter fluid is less viscous than the colder
fluid, the variation of the viscosity perpendicular to the flow direction leads to an
asymmetric velocity profile. As a result, the peak of the velocity profile shifts to
the hotter side, as shown in Fig. 5.3a. Li et al. [65] also applied the eDPD method
to modeling of thermoresponsive polymers. Because of the energy conservation
in eDPD, they demonstrated that eDPD simulations are able to correctly capture
not only the transient behavior of polymer precipitation from solvent induced by
temperature changes, as shown in Fig. 5.3b, but also the energy variation associated
with the phase transition process. Moreover, natural convection in microchannels [1]
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Hot Wall

(a) Cold Wall

Fig. 5.3 (a) An eDPD simulation [62] of the Poiseuille flow combined with the heat conduction
between a cold wall T¢ and a hot wall 7. (b) eDPD modeling of thermoresponsive microgels [65].
Lines show the evolution of gyration radius R, and (bI-b4) show cross sections of their transient
microstructure corresponding to the changes of R, during heating. Images (b) is adapted with
permissions from [65]

and in eccentric annulus [15], thermal conduction of nanofluids [95] and doubly
thermoresponsive self-assemblies [102], to name but a few, have been also studied
using eDPD simulations.

5.3.2 Many-Body DPD (mDPD) for Multiphase Flows

The conservative force between particles i and j is given as Fg = aw.(rj)e; in
the classical DPD model, where a is a repulsive force parameter and w,(r;) is a
soft and unspecific weight function. A common choice of the weight function is
we(ry) = 1 — rj/re for ryj < r. and vanishes beyond the cutoft radius r.. For a
single-component DPD fluid with a purely repulsive conservative force, the equation
of state (EOS) of the system can be computed by Groot and Warren [35]

1 C
p = pkgT + 3y <§(l’, — rj) . Fl]>

(5.127)
2 21 [ 3
= pkgT + ap” - 3 we(r)g(r)rdr,
0
where g(r) is the RDF, and p is the number density of DPD particles. The first term
in the EOS is an ideal gas term, and the second term is the excess pressure. In the

mean-field theory, Eq. (5.127) can be simplified by employing the RDF of the idea
gas g(r) =1,

p = pkgT + amrap?, (5.128)
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where amp = 23” fooo we(r)ridr. Given a weighting function w.(r) = 1 — r/r.
with a cutoff radius r. = 1, we arrive at apyg = 7/30. The realistic EOS of a
DPD fluid can be computed by performing a series of DPD simulations at various
densities. The computed EOS of DPD fluids is in the form of p ~ pkzT + aap?
with a coefficient « = 0.101 £ 0.001 very close to the mean-field prediction
amp = /30 = 0.1047, which is perfectly quadratic in the density [35]. This
monotonic function of EOS does not have a van der Waals loop and excludes the
possibility of modeling phenomena involving vapor-liquid coexistence and free-
surfaces of single-component fluids. To this end, Pagonabarraga and Frenkel [85]
defined the free energy ¥ of an inhomogeneous system with density p(r) as
¥ = [ p(r)e(p (r)) dr, where ¢(p) is the local free energy per particle associated
to the local configuration of particles rather than a mechanical potential energy. If
the free energy determines the relevant energy for a given configuration of DPD
particles, then the force acting on each particle can be derived as the variation
of such energy when the corresponding particle is displaced. However, the ideal
contribution to the free energy of the system has already been accounted for by the
dissipative and random forces. Therefore, only the excess free energy is involved
in the conservative interaction between DPD particles. Let ¥ (p) be the excess
component of the total free energy v (p), the conservative force acting on a particle
iiswrittenas F; = — a?r,- Zj VYex (0j) = Zj F;;. Then, the conservative force between
a pair of particles i and j depends not only on their relative positions, but also on
their local densities. This defines the many-body DPD (mDPD) model [106].

Let ¢ (p) be an unspecified function of density, the density-dependent conserva-
tive force is written as,

1
Fj = ) [ (00) + & ()] we(ri)e, (5.129)

for a one-component fluid. The local density p; of a particle i is taken to be
the instantaneously weighted average p; = Zi# w,(r;j) with a weight function
w,(ry) = 15(1 = ry/rc)?/(27r?), which is normalized so that fooo drw,(r) = 1.
It is obvious that if ¢(p) = a, the method with Eq. (5.129) reduces exactly to
the classical DPD model. By the mean-field theory, the modified force law of
Eq. (5.129) should give an EOS

puE = pkgT + ayeg (p)p°, (5.130)

where ayp = /30 for the standard choice of w,(r). Since ¢ (p) is an unspecified
function of density, in principle, an arbitrary dependence of EOS on density can
be recovered. However, having a van der Waals loop in the EOS is not sufficient
to stabilize the vapor-liquid interface. Pagonabarraga and Frenkel [85] discussed
that a simple many-body DPD model with a single interaction range may not yield
a stable interface. To simulate the vapor-liquid coexistence with mDPD, one must
also give consideration to the ranges of interactions. In the approach developed by
Warren [106], the density-dependent conservative force is introduced empirically
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with a different cut-off radius r;, and can be written as,
FS = Awc(ry)e; + B(pi + p))wa(ry)ey, (5.131)

where the first term with a negative coefficient A < 0 stands for an attractive force
within an interaction range r., and the second term with B > 0 is the density-
dependent repulsive force within an interaction range r;. Then, the mean-field
EOS is

v = pkpT + ayvp(Ap® + 2Brip?). (5.132)

Thus, given A < 0 and B > 0, this EOS has the potential to contain a van der Waals
loop for modeling vapor-liquid coexistence.

Using numerical experiments, Warren [106] explored a wider parameter space
for the mDPD model with the conservative force given by Eq. (5.131). By defining
a function ® = (p — pkgT — aAp® — 2aBr4p*)/Bri, the data of the mDPD fluids
collapse onto a straight line, as shown in Fig.5.4a. The computed EOS can be
fitted by

p = pkpT + aAp* + 2aBri(p® — cp® + d), (5.133)

where ¢ = 0.101 £ 0.001, ¢ = 4.16 = 0.02, and d = 18 £ 1. Let py and p; be
vapor and liquid coexistence densities, respectively, then a phase separation can be
observed in a range of densities py < p < pr. In principle, integration of the EOS
gives the free-energy density from which predictions can be made about py and

-20
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Fig. 5.4 (a) Data collapse of pressure against density for py < p < §,A = —40 ~ —20,B =
25 or 40,kgT = r, = 1,r; = 0.75. The ordinate is the function ® = (p — pkpT — aAp? —
20.Br4p®) /Bri. The straight line is a fit to data given by Eq. (5.133). (b) Pressure as a function of
density for the two selected parameter sets A = —40,B = 40 or 25,r; = 0.75,kgT = r. = 1.0.
The lines are the predictions of the fitted EOS in the form of Eq. (5.133). Data are from [106]
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pr. Unfortunately, the EOS must deviate from the above fitted form of Eq. (5.133)
for p < 1. Therefore, the vapor phase is inadequately characterized. If the case
pL = 1 in coexistence with a very dilute vapor is of practical interest, it would be
easier to use the EOS to predict the point where the pressure vanishes as an estimate
of the coexisting liquid phase density, i.e., p(pr) = 0. Using this, the numerical
experiments performed by Warren [106] obtained the liquid densities of the order
pL ~ 5 for —A ~ B ~ 30. Figure 5.4b plots the computed EOS of two DPD fluids
with parameters A = —40,B = 40 or 25,r; = 0.75,kgT = r, = 1.0. The two
parameter sets are distinguished by the different values of the liquid densities, i.e.,
pr = 5.08 £ 0.01 for B = 40 and p; = 6.05 £ 0.01 for B = 25, as indicated in
Fig.5.4b by p(pr) = 0. The coexisting vapor density p;, < 1, so these parameters
are suitable for free-surface simulations.

Ever since its inception, the mDPD model has been applied to simulations of
various wetting phenomena and multiphase flows. For example, Arienti et al. [5]
investigated the performance of the mDPD model at vapor/liquid and liquid/solid
interfaces and simulated the dynamics of droplets entering an inverted Y-shaped
fracture junction, as shown in Fig. 5.5a. Li et al. [60] performed mDPD simulations
of the manipulation of a liquid droplet on solid surfaces driven by a linear
gradient of wettability. They explored the internal three-dimensional velocity field
with transverse flow in a moving droplet, as shown in Fig.5.5b. Li et al. [58]
also studied droplet oscillations in AC electrowetting using mDPD simulations.
Wang and Chen [105] used mDPD to simulate droplets sliding across micropillars
and investigated how the pillars with different intrinsic wettability influence the
movement of droplets, as shown in Fig. 5.5¢, which describes the evolution of the
advancing and receding contact angle with time as well as five snapshots of the
droplet sliding across multiple micropillars.

The essential concept of the mDPD model is to construct a density-dependent
conservative force, which yields EOS with a van der Waals loop for modeling vapor-
liquid coexistence. In the strategy proposed by Warren, an empirical expression of
the conservative force is first introduced, and then the mDPD model is calibrated to
determine the true EOS and thermodynamic properties of the mDPD fluid. Alter-
natively, following the original formulations of mDPD proposed by Pagonabarraga
and Frenkel [85], Tiwari and Abraham [103] used an opposite strategy to construct
the conservative force for the mDPD model. They started from a van der Waals
equation of state and formulated the conservative force in the context of the mean-
field theory.

Using the mean-field approximation for intermolecular attraction, the free energy
per particle is given by

Y= / Uy (r) p(r)dr, (5.134)

where u,(r) is the attractive component of the interaction potential, r the separation
distance of particles and o the diameter of particles for excluded volume. Expanding
p(r) in Eq. (5.134) about r and assuming that the gradient of p is small, only the even
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Fig. 5.5 (a) mDPD simulations of droplets with different sizes entering an inverted Y-shaped
fracture junction. (b) Three-dimensional velocity field inside a moving droplet, where the vector
V denotes the direction of movement. (¢) Advancing and receding contact angle evolution versus
time for a droplet sliding over pillars. Images (a), (b) and (c) are adapted with permissions from
[5, 60, 105]

derivatives of density survive and the leading two terms are

Vo= —up—«kV2p, (5.135)
in which p = — fr>[r Uy (r)dr and k = —é o Uy (r)dr. The parameters ;1 and
Kk arise due to the long-range attractive forces and give rise to the weak attraction
and surface tension, respectively, between the mDPD particles at the coarse-grained
level. Then, the form of the conservative force FC, which gives rise to phase
segregation and surface tension in a liquid-vapor system, is given by

FC = — Ve, + F, (5.136)
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with ¥, being the excess part of the free energy . FS = «VV?p represents
the surface tension component that comes from the second term in Eq. (5.135).
Here, only the contribution from the excess part is considered in the conservative
force because the ideal part has already been considered through the random and
dissipative forces. If the EOS of the mDPD fluids is described by the van der Waals
equation of state, then

ks T
p= " g, (5.137)
1—bp

where a and b are the parameters for the EOS. More specifically, the parameter a
accounts for the long-range attractive behavior, while the parameter b is responsible
for excluded volume effects. Then, the free energy y of particles can be derived
from Eq. (5.137) by p = —dv/dv where p is the pressure and v = p~! the specific
volume,

Y = Yex + kgTInp = —kgT In(1 — bp) —ap + kT In p, (5.138)

where the first term is responsible for repulsion between the particles, the second
term originates from the attractive part of interaction potential, and the last term is
the ideal gas part. Substituting the excess free energy Ve into Eq. (5.136), we obtain

FC¢ = —V [kgT In(1 — bp) + ap] + kVV?p. (5.139)

It is clear that the conservative force in the form of Eq.(5.139) is also density-
dependent. For mDPD system consisting of discrete particles, the density in the
vicinity of a particle i is computed as a weighted average of contributions from
its neighbors, i.e., p; = Zj w,(r;j), where the weighting function w,(r;) can be
the widely used smoothing kernels in the smoothed particle hydrodynamics (SPH)
method [79]. For example, the Lucy kernel reads

wo(r.re) = { (l)é?’i? (1 + 3:) (1 - 2)3’ r=re (5.140)

Let wg) (r) and wﬁf) (r) be the first and third derivatives of the weight function of

Eq. (5.140) with respect to the particle separation r. Then, the conservative force for
a pair of particles i and j takes the final form

bkT bkT
Fj = {— ( 1~ bp, + by Za) wil (ry) 4+ 1w () ¢ €. (5.141)

With parameters a = 3.012x 1073, =2.5%x1072,kgT = 2.1x102and r. = 1.11
in DPD units, Tiwari and Abraham [103] successfully validated the mDPD model
with the two-dimensional Young—Laplace equation Ap = piy — pour = 01v/R where
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Fig. 5.6 (a) Validation of the mDPD model with the two-dimensional Young—Laplace equation
Ap = pin — Pour = O1v/R. The inset shows the setup of mDPD simulations for a two-dimensional
droplet in a periodic box. (b) Snapshots of large-amplitude oscillations of liquid cylinder with an
initial aspect ratio of 5. (a) and (b) are adapted with permission from [103]

oyy 18 the liquid-vapor interfacial tension and R the equilibrium radius of the droplet,
as shown in Fig. 5.6a, and simulated large-amplitude oscillations of liquid cylinders,
as shown in Fig. 5.6b.

Surface tension is one of the most important fluid properties relevant to the liquid-
vapor coexistence. Although the magnitude of surface tension is determined by
the interactions between mDPD particles, it is an output property of the mDPD
system rather than an input parameter. The exact value of the surface tension
needs to be computed from mDPD simulations. Several methods can be applied
to compute the surface tension of a mDPD fluid. The first one is to compute the
pressure difference between the inside and the outside of a droplet for various radii.
According to the Young-Laplace equation, i.e., Ap = pin — Pour = 201y/R for
three-dimensional droplets, the surface tension oy, is determined by the slope of
the line Ap ~ R™!, as shown in Fig.5.6a. The second one is the pendant drop
method, which is also widely used in experimental tensiometers. To set up the
pendant droplet in mDPD simulations, a vertical cylindrical column of fluid at a
density close to the equilibrium liquid density is equilibrated. A “support” needs
to be constructed by “freezing” particles at the top of the column as a solid wall.
By applying a gravitational body force onto each mDPD particle, the liquid forms
a pendant droplet after the system reaches equilibrium. Then, a numerical fit of the
theoretical drop shape to the shape obtained by mDPD simulations eventually yields
the surface tension [106]. The third method is the easiest one that only needs a thin
liquid film in a periodic computational box. The surface tension is computed from
the standard mechanical definition of the pressure tensor using the Irving—Kirkwood
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expression,

1
Oy = / |:pzz - 2(pxx +pyy):| dz, (5.142)

where pyx, pyy and p,, are the three diagonal components of the pressure tensor, with
x and y parallel to the planar interface and z normal to it. More practically, let A be
the surface area of the planar surface of the liquid film, then the surface tension is
computed by

1 1
o = <2A ; [rU,XFU,X -, (v, Fiy + r,ZF”)D (5.143)
7]

where the factor 2 in the denominator accounts for the fact that the liquid film has
two interfaces, r; g and Fy; g are the f-component (B is x,y or z) of r; and Fy,
respectively.

In the last decade, the mDPD model proposed by Warren [106] has been
more widely used in diverse applications than Tiwari’s mDPD model [103]. The
reason may lie in the convenience of Warren’s approach in modeling solid-liquid
interfacial tensions. More specifically, Warren employed empirical expressions of
the conservative force in Eq. (5.131), where the coefficients A and B can be defined
as species-dependent parameters. For instance, let Ay and By be the coefficients
for liquid-liquid interaction while Ag and By for solid-liquid interaction, the solid-
liquid interfacial tension can be easily changed just by varying A and By, which
generates various wetting phenomena of droplets on solid substrates. However,
Tiwari’s mDPD model starts from the van der Waals equation of state, which
does not easily model solid-liquid interfaces. Moreover, the van der Waals model
describes vapor-liquid equilibrium over very limited ranges of temperature. The
famous loops provide only a qualitative representation of the two-phase boundary
in PVT space. Therefore, Warren’s approach has been successfully applied to
various wetting problems involving solid-liquid interfacial tensions, while Tiwari’s
approach has been only applied to fluids in periodic boxes.

5.3.3 Transport DPD (tDPD) for Advection-Diffusion-Reaction

The classical DPD system has only equations governing the evolution of density
and velocity fields but no evolution equations for describing the concentration
field, which precludes the classical DPD method from modeling diffusion-reaction
processes, i.e., two of the most fundamental processes in biological systems [21].
More specifically, proteins in an aqueous solution diffuse in a living cell due to
Brownian motion, and some collisions of appropriate proteins may lead to chemical
reactions. Moreover, most biological functions depend highly on the concentrations
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of specific proteins, ions or other biochemical factors [4], whose transports at the
cellular and subcellular levels are crucial to corresponding biological processes in
living systems. Therefore, it is important to include the advection-diffusion-reaction
(ADR) equation in the DPD model when diffusion and reactions are involved. To
this end, Li et al. [66] developed a transport dissipative particle dynamics model
named tDPD for mesoscopic problems involving ADR processes.

Similar to classical DPD method, in tDPD each particle is associated with extra
variables for carrying concentrations in addition to other quantities such as position
and momentum. The transport of concentration is modeled by a Fickian flux and
a random flux between tDPD particles. More specifically, the time evolution of a
tDPD particle i with unit mass m; = 1 is governed by the conservation of momentum
and concentration, which is described by the following set of equations

dzl'i dVi -
= =F =) (F§+F)+FH) +F,

dr? dr ™Y

i#]
i (5.144)
o =Q=2 (07 +0)+0.

i#]

where t, r;, v; and F; denote time, and position, velocity, force vectors, respectively.
F$ is the force on particle i from an external force field. Just as in the standard
DPD model, the pairwise interaction between tDPD particles i and j consists of
the conservative force FS = a;wc(rjj)ey, dissipative force FII]) = —y;wp(rij)(e; -
vj)e; and random force Fiy = oywr(r;)&se;. C; represents the concentration of
one species defined as the number of a chemical species carried by a tDPD particle
i and Q; the corresponding concentration flux. The total concentration flux on a
particle i accounts for the Fickian flux ij? , the random flux Qf; and a source term

3 due to chemical reactions. Since tDPD particles have unit mass, this definition
of concentration is equivalent to the concentration in terms of chemical species per
unit mass. Then, the volume concentration, i.e. chemical species per unit volume,
is pC; where p is the number density of tDPD particles. We note that C; can be a
vector C; containing N components i.e. {Cy, C, ..., Cy}; when N chemical species
are considered.

The driving force for diffusion of each species is the gradient of chemical
potential Q = —DCV 1 /RT in which D is the diffusion coefficient, R the universal
gas constant, 7' the absolute temperature and p the chemical potential given by
W = o + RT In C for dilute solutions [83]. By substituting the chemical potential
into the expression of driving force, we find that the diffusion driving force is
proportional to the concentration gradient V C, which corresponds to a concentration
difference between two neighboring tDPD particles. It follows that the Fickian flux
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Q7 and random flux Qf in the tDPD model are given by

Qf,.’ = —kywpc(ry) (Ci = C)), (5.145a)
OF = ejwre(ry)éy. (5.145b)

where k;; and €; determine the strength of the Fickian and random fluxes, and §;
is the Gaussian white noise [26]. wpc(r) and wgc(r) are weight functions with
a cutoff radius r... The Fickian friction parameter k plays the analogous role for
concentration differences between tDPD particles as y does for momentum. In
general, the concentration friction « is a NxN matrix when the interdiffusivities of N
different chemical species are involved. However, considering N chemical species in
dilute solution and neglecting the interdiffusivities of different species, the system is
then reduced to a set of uncoupled diffusion equations with independent diffusivities
between species, and hence k becomes a diagonal matrix [8].

By applying the local-equilibrium assumption to the tDPD system, the random
term Q{f is related to the dissipative term Ql? by satisfying the fluctuation-dissipation
theorem [66, 83]

6121 = m?/c,-jp(C,- +Cj), wpclry) = wﬁc(r,-j), (5.146)

where m; the mass of a single solute molecule, C; and C; are the concentrations
on particle i and j, respectively. For detailed derivations for obtaining Eq. (5.146),
readers are referred to [66]. In general, the mass of a single solute molecule m; is
much smaller than the mass of a tDPD particle m, which is chosen as mass unit.
Consequently, the magnitude of € is small at m; < m, which indicates that the
contribution of the random flux Qf; to the total diffusion coefficient D is negligible
unless m; becomes comparable to m in nanoscale systems.

The macroscopic properties including viscosity and diffusivity of a tDPD system
are output properties rather than input parameters. Since the stochastic forces on
tDPD particles yield random movements, the effective diffusion coefficient D is the
result of contributions from the random diffusion D¢ and the Fickian diffusion D . In
general, the random contribution D? is a combined result of the random movements
of tDPD particles and random flux ij in Eq.(5.145b). However, the variance of
random flux Qf;. has a small prefactor m? as given by Eq.(5.146). In practical

applications, the contribution of the random flux QII.; to Df is negligible, which has
been confirmed by Kordilla et al. [45] Thus, in the mathematical derivations in this
section, we consider that Df is due to the random movements of tDPD particles. In
particular, for a tDPD system in thermal equilibrium, the diffusion coefficient D¢
induced by the random movements of tDPD particles can be calculated by Groot
and Warren [35]

3kgT

Df = , ,
dryp - [ rPwp(r)g(r)dr

(5.147)
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where r. is the cutoff radius for forces. Also, the macroscopic diffusion coefficient
DF due to the Fickian flux can be computed by Mackie et al. [74]

_ 2mkp
-3

Df / rwpe(r)g(r)dr, (5.148)
0

in which « is the Fickian friction coefficient and r.. is the cutoff radius for

concentration flux. Let wp(r) = (1 — r/r.)*t and wpc(r) = (1 — r/r.)*2 be the

weight functions of the dissipative force Ffl). and of the Fickian flux Q{; , respectively.

When the radial distribution function of ideal gas g(r) = 1.0 is employed, both D¢

and D can be evaluated analytically

D =Df +DF

_ 3kgT(s1 + 1)(s1 + 2)(s1 +3)
N 8mypr’ (5.149)

N 167k prs,
(s2 4+ D)(s2 +2)(s2 + 3)(s2 + 4)(s2 + 5)°

where s; and s, are the exponents of wp(r) and wpc(r). Equation (5.149) provides
a relationship between the macroscopic effective diffusion coefficient D (which can
be experimentally measured) and parameters in the tDPD model. Equation (5.149)
indicates that the effective diffusion coefficient D is a linear function of the
parameter k, and the minimum value of the effective diffusion coefficient Dy, =
Df is obtained at k = 0. Since the radial distribution function g(r) = 1
corresponding to the ideal gas is used, Eq. (5.149) provides a rough prediction of
the effective diffusion coefficient D. The accurate value of D can only be obtained
by computations in tDPD simulations.

Li et al. [66] proposed a numerical diffusivity benchmark to compute the accurate
value of D of tDPD systems, which shares the same strategy of reverse Poiseuille
flow as a numerical viscometer [7] and computation of the thermal conductivity in
eDPD [62]. For a tDPD fluid with constant diffusion coefficient, the ADR equation
is given by dC/dt = DV?C+Q° where D is the diffusion coefficient and Q5 a source
term. For steady state problems, the ADR equation is simplified to DV2C = —Q5,
which is the same as the governing equation of Poiseuille flow driven by a body
force uV2V = —g. To obtain the accurate value of the effective diffusion coefficient,
one needs to perform a tDPD simulation in a computational domain with periodic
boundary conditions. Let z = 0 be a plane subdividing the fluid system into two
equal domains in z-direction. A small concentration source +Q° is applied in the
domain of z > 0 while a concentration sink with same magnitude —Q5 is applied
in the other domain z < 0, as shown in Fig. 5.7a. Because of the periodic boundary
conditions, the concentration of the tDPD fluid is constrained to be invariable at the
plane z = 0. When the diffusion coefficient D is constant, the steady state solution
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Fig. 5.7 (a) Schematic geometry for the numerical diffusivity meter using fully periodic boundary
conditions. (b) Concentration profiles obtained by running tDPD simulations for different Fickian
friction coefficients k. (b) is adapted with permission from [66]

of the concentration profile is given by

S
Q= (d —z]) + Co. (5.150)

@ =5,

where QS is the source term, Cy the initial concentration of the tDPD system, and
d the half length of the computational domain in z-direction. The concentration
profiles can be easily obtained by running the tDPD simulation to the steady
state. Figure 5.7b shows the concentration profiles obtained from tDPD simulations
for different Fickian friction coefficients k, in which the lines are the best-fitting
parabolas for each case. Then, the effective diffusion coefficient can be determined
by fitting the concentration profile with the analytical solution given by Eq. (5.150).
It is obvious that the effective diffusion coefficient D can be significantly changed
by varying the Fickian friction coefficient k.

Boundary conditions are crucial for the investigation of diffusion-reaction pro-
cesses in wall-bounded systems. Usually, defining stationary particles to represent
solid objects is a common treatment in classical DPD simulations [108]. However,
those solid walls made up by discrete frozen particles induce unwanted temperature
and density fluctuations in the vicinity of the walls [90]. Alternatively, Li et al. [66]
used effective boundary fluxes to impose Dirichlet and Neumann boundary condi-
tions for concentration in the tDPD systems.

Dirichlet Boundary Condition

Since the fluid particles do not penetrate into wall boundaries, the random move-
ments of fluid particles do not have any contributions to the boundary concentration
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flux. Therefore, the effective boundary concentration flux is induced only by the
Fickian flux. For a fluid particle i in the vicinity of a wall boundary, the effective
Fickian concentration flux on particle i from the wall can be calculated [66] by

Tee \/VCCZ_ZZ
Qp.(h) = 2mp / / 0P (r)g(r)xdxdz
z=h Jx=0

N Z (5.151)
= 2er/ / —K -wpc(r) - h(Ci —Cy) - g(r)xdxdz
z=h Jx=0

= 2npk (C,, — C)) - (h),

where C; is the concentration of particle i, C,, the expected concentration at the wall
surface, and 4 the distance of the particle i away from the wall surface. Here, ¢ ()
is a function of A, which is defined as

ree  palre—22 o
@(h) = / » / » wpc(r)g(r) 5 ~dx - dz. (5.152)

Equation (5.151) reveals that the boundary concentration flux is determined by the
concentration difference between particle i and the wall, and also their distance.
Given a radial distribution function g(r) and the weight function wpc(r), the
function ¢(h) can be evaluated through Eq. (5.152). As the distance & approaches
to zero, the magnitude of ¢(#) goes to infinity. In practical tDPD simulations, a
truncation of ¢(#) at small distances can be used to stabilize the simulation, i.e.,
setting ¢ (h < 0.01r.) = ¢(0.01r..).

Neumann Boundary Condition

To consider the effective flux along the normal direction of wall surface, we integrate
the effect of concentration flux from the wall boundary and define a distance
dependent function given by

Tee \/l”u-z—zz o
d(h) = / / wpce(r)g(r) - dxdz. (5.153)
z=h Jx=0

The normalized ®(h) is defined as ®(h) = P(h)/ for“ ®(x)dx. Then, the integral
of ®(h) is equal to one. Using the computed g(7) and the expression of wpc(r),
the function ®(4) can be obtained through Eq.(5.153). To impose a Neumann
boundary condition dC/dn = A at a wall boundary, it is equivalent to applying
a concentration flux Q% = DA across the boundary. In practice, the flux Q% is
distributed onto the fluid particles in the vicinity of the wall weighted by ®(h).
Let p be the number density of the fluid particles, the volume concentration is pC
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because the concentration C in tDPD is defined as the number of a chemical species
per particle. Then, any fluid particle i close to the wall receives a concentration flux
from the wall boundary given by

0¥ (h) = DAp - ®(h). (5.154)

One-dimensional test cases have been performed in [66] to check the effective-
ness and the accuracy of using the effective boundary fluxes for implementation
of the Dirichlet and Neumann boundary conditions. Figure 5.8(al) illustrates the
initial condition C(x,0) = 0 and the boundary conditions for the test case of
the Dirichlet boundary condition. By solving a one-dimensional diffusion equation
dC/dt = DV?C with boundary conditions of C(0,7) = 0 and C(L,,t) = Cj, an
analytical solution for the transient concentration profile can be obtained [66]

C(x, 1) = Cox + i 2Co (—=1)"sin (B,x) ex (—D,th) (5.155)
’ L.  “Znm " P n ’
where 8, = nm/L, with L, being the length of the computational domain

in the x-direction, D the diffusion coefficient. Figure 5.8(b1) shows a compar-
ison between the concentration profiles obtained using tDPD and theoretical
solution Eq.(5.155) at several times including the steady state solution. The
results are in good agreement, which validates the effective boundary flux of
Eq.(5.151) for imposing the correct Dirichlet boundary condition in the tDPD
simulation.

Figure 5.8(a2) shows a similar setup as the previous test case but different
wall boundary conditions for the Neumann boundary condition. Considering a

Periodic Boundary Periodic Boundary

Periodic Boundary

1F T T T
= (DPD simulation
08— Analytic solution

20 40 60 80

Fig. 5.8 Initial condition and boundary conditions for the one-dimensional diffusion with (al)
the Dirichlet boundary condition and (a2) the Neumann boundary condition. The corresponding
transient concentration profiles and comparison with theoretical solutions are shown in (b1) and
(b2). These plots are adapted with permission from [66]
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concentration flux at the left wall x = 0, we apply the a Neumann boundary
condition dC/dn = A at x = 0. Also, the right wall at x = L, has a fixed
concentration C(100,7) = 0. By solving a one-dimensional diffusion equation
dC/dt = DV?C with boundary conditions of dC(0, ) /dx = A and C(L,.t) = 0, we
have the theoretical solution for the transient concentration profile given by Li et al.
[66]

Cix,t) =Ax—Ly) + iA Z B2 sinz(nj ) cos (B,x) exp (—D,Bﬁt),
* n=1,0dd

(5.156)

where 8, = nn/(2L,) with L, being the length of the computational domain in
the x-direction, D the diffusion coefficient. Figure 5.8(b2) compares the transient
concentration profiles obtained using tDPD with the theoretical solution Eq. (5.156).
The excellent agreement between the tDPD results and the theoretical solution
confirms the validity of the effective boundary flux of Eq. (5.154) for imposing the
correct Neumann boundary condition.

The particle-based tDPD method satisfies the conservation of concentration
automatically and provides an economical way to solve ADR equations with
a large number of species. It has been reported [66] that the tDPD solution
of a 25-species coagulation model is only twice as computationally expensive
as the conventional DPD simulation of hydrodynamics alone, unlike the con-
tinuum model requiring more than 20 Poisson/Helmholtz solvers making the
computational cost over ten times higher than the Navier-Stokes solver. This low
additional cost for solving ADR equations indicates the promising potential of
tDPD in biological applications involving multiple biochemical species at the
mesoscale.

5.3.4 Other Extensions

In addition to eDPD, mDPD and tDPD models, there are some other extensions of
DPD developed for different purposes. Examples include:

1. Fluid particle model (FPM): It is a generalization of the classical DPD method
developed by Espaiiol [24]. FPM considers both linear and angular momenta of
the particles and includes both central and noncentral forces between particles,
while the classical DPD method considers only linear momentum and includes
only central forces. By introducing torques and angular velocities of the particles,
both linear and angular momenta of FPM are conserved.

2. Single-particle DPD model: It is based on FPM with modified colloid-solvent
pairwise potentials [86]. In this model, each spherical colloidal particle can be
represented by a single FPM particle rather than a cluster of particles. As a result,
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it shows high computational efficiency in studying the dynamical and rheological
properties of colloidal suspensions in simple fluid solvents.

3. Anisotropic single-particle DPD model (aDPD): It is a further development of
the single-particle DPD model [20]. By introducing a shape matrix indicating
the particle size and shape, aDPD formulates the conservative and dissipative
interactions between anisotropic DPD particles using a linear mapping from the
original single-particle DPD model of isotropic spherical particles, while the
random forces are properly formulated by satisfying the fluctuation-dissipation
theorem. Consequently, aDPD enables the DPD method to efficiently model the
colloidal ellipsoids under the effect of thermal fluctuation. Examples include
the orientation-dependent diffusion of an anisotropic particle, and the isotropic-
nematic transition in an ellipsoidal suspension induced by the changes of volume
fraction or the aspect ratio of ellipsoid particles.

4. Charged DPD model (cDPD): It was developed by Deng et al. [19] based on
tDPD for simulating mesoscopic electrokinetic phenomena governed by the
stochastic Poisson-Nernst-Planck and the Navier-Stokes equations. By introduc-
ing extra degrees of freedom for the ionic concentration and the electrostatic
potential associated with each DPD particle, cDPD models the diffusion of ionic
species driven by the ionic concentration gradient, electrostatic potential gradient
and thermal fluctuations through pairwise fluxes between DPD particles, while
the electrostatic potential is obtained by solving the Poisson equation on the
moving DPD particles iteratively at each time-step. Since both the fluctuations of
momentum and ionic concentration are systematically included in cDPD without
any grid-based algorithms, it is a flexible and powerful method in studying
complex fluids with electrostatic interactions at the micro- and nano-scales.

5. Smoothed DPD (SDPD) model: It is a top-down approach [25] developed from
smoothed particle hydrodynamics (SPH). SDPD starts from continuum equations
while other DPD models are bottom-up approaches starting from microscopic
dynamics. As a matter of fact, SDPD is a Lagrangian discrete model for simulat-
ing Navier-Stokes hydrodynamics that includes thermal fluctuations consistently.
Unlike these bottom-up DPD methods, the parameters in the governing equations
of SDPD have clear physical meanings. Its inputs are the viscosity, equation of
state, temperature and other parameters required by the fluctuating Navier-Stokes
equations. However, since the constitutive equations and macroscale properties
of the system must be given as inputs, SDPD works well with simple fluids but
loses its effectiveness in modeling complex fluids and materials, which may not
have a known constitutive equation.

Motivated by tackling different challenges in the mesoscopic modeling, the
various extensions of DPD have been developed and constitute the “DPD Alphabet”,
as shown in Fig.5.2. These new developed DPD models dramatically extend the
capability of the DPD simulations beyond the classical DPD, which makes DPD a
more promising mesoscopic method for diverse applications.
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5.4 Computer Implementation

A DPD program shares the structure with an atomistic molecular dynamics simula-
tor, and iterates over a time stepping loop consists of four stages: force evaluation,
position/velocity update, parallel communication, and data collection.

5.4.1 Pairwise Search

Due to the short-range nature of the DPD pairwise force, the evaluation is usually
assisted with the use of a spatial searching algorithm, which loops over all pairs
of particles that are within the cutoff distance r.. One of the classical approaches
used by the most DPD software, as well as many other existing MD software, is to
use a Verlet list, which is essentially a table storing the indices of particles within a
given distance r, for each particle in the system. r, is usually chosen to be slightly
larger than r. such that the list does not need to be updated for every time step. As a
trade-off the list will contain some extra particles which are not within r.

The Verlet list can be constructed naively by a O(N?) pairwise search, but more
efficiently with the help of a cell list. The cell list algorithm makes use of a uniform
lattice to partition the system into many nearly-cubic cells, and stores the indices of
the particles that are located within each cell. The cells are numbered consecutively
along the axes, allowing the index of cell that each particle belongs to be determined
by simply dividing the particle’s coordinate by the length of the cells and then
flooring to the nearest integer.

Given a system of N particles occupying a volume of L, x L, x L, a Verlet list
can be constructed from a cell list using O(N) time and storage by looping over
each particle, first finding the cell that the particle belongs to, and then comparing
against other particles in this cell as well as particles in all 26 immediate neighboring
cells. The cell list itself takes O(L,L,L, + N) storage and O(N) time to construct as
shown by Algorithm 1. Alternatively, the cell list can be used directly for computing
the pairwise force [97] and may delivery better performance on massively parallel
processors where memory bandwidth is more precious than computing power.

5.4.2 Force Computation

The conservative force is usually defined directly using a weight function, or
through the differentiation of a potential function. The computation of the conserva-
tive force is relatively straightforward because it only affects static properties such as
radial distribution function and compressibility. In fact, several splitting integration
schemes evaluate the dissipative and random force separately from the conservative
force.
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Algorithm 1 The cell list algorithm

Method RectilinearCelllist( Np: integer,
ncell: integer (3],
cell_size: integer[3],
coord: real[N] [3] )

Ncell = ncell[0] * ncell[l] % ncelll[2]
bin size = zeros[Ncell]

local_seq = integer|[N]

cid = integer[N]

for i = 0:N

cell xyz = floor( coord[i] ./ cell_size )

cid[i] = cell xyz[0] + cell xyz[1l] % ncell[0] + cell xyz[2]  ncell[l] =
ncell[2]

local_seq[i]l = bin_size[ cid[i] ]

++bin_size[ cid[i] ]

bin start = zeros[Ncell]
for i = 1:Ncell
bin start[i] = bin start[i-1] + bin size[i-1]

cell_list = integer|[N]
for i = 0:N
cell list[ bin_start[ cid[i] ] + local_seqli] ] = 1

return cell list, bin start

The dissipative force is usually evaluated together with the random force, due
to the common arithmetics for computing the weight function as dictated by
the fluctuation-dissipative theorem. However, the most prevalent and convenient
approach is to still evaluate the dissipative and random force alongside the con-
servative force, because this saves the work for the pairwise searching, a dominant
workload in DPD simulations.

It is a common practice in molecular dynamics simulation to omit the pairwise
interactions between particles that are connected by bonds. For example, in the
CHARMM force field the pairwise interaction between atoms separated by less
than three bonds are not computed, because the interaction is assumed to be already
considered by the bonded potential. The same principle could be applied to DPD,
but a careful consideration must be made on whether to also exclude the dissipative
and random terms. The decision to include the dissipative and random force can be
justified by noting that the conservative bonded force may only serve the role of
the DPD conservative force. The friction and random effects thus are still needed
between particles that are bonded, but may be based on different weight functions
or coefficients.
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The random force in DPD need to be handled carefully for distributed-memory
parallelization, which is usually done with a domain decomposition scheme that
divides the simulation box into non-overlapping subregions. The force on particles
within each subregion can be computed locally on each processor. The force
between subregions can be computed with the help of ghost particles, which are
the local images of remote particles from neighboring processors that are within
the cutoff of each subregion. A forward communication is responsible for the
exchange of the ghost particles. A backward communication process is necessary
if we are to take advantage of the Newton’s 3rd law of action and reaction,
which is widely used in serial DPD programs to speed up the force computation.
The extra communication stages may actually compromise parallel efficiency on
massively parallel clusters due to the overhead for sending and synchronizing over
the messages. The computation for pairwise interactions across subregions can be
duplicated in order to eliminate the backward communication stage. This overhead
does not incur network communication and should be negligible as long as the area-
to-volume ratio of the subregion remains reasonably large. However, the random
term need to be handled carefully in this case because the reproduction of the same
random number between the a pair of particles spanning two processors is necessary
to ensure momentum conservation. This is usually handled by using a stateless
random number generator that crunches in situ a global random variable, which
changes over time steps but remains the same across all processors within a time
step, with some per-particle signature that is persistent on each particle [2, 89, 101].
As long as the same signature is presented, the same random number can be
recovered for each of the particles on two different processors. A common choice for
the signature is the id of the particle. Alternatively, the signature may be computed
from a blend of the highly volatile bits of the particles’ degrees of freedom such as
position and velocity, which serves as a source of entropy.

5.4.3 Numerical Optimization

In [26], the random numbers between pairs of particles are assumed to be delta-
correlated, symmetric Gaussian i.i.d. random variables with zero mean and unit
variance. However, the generation of Gaussian random numbers is less straightfor-
ward and more expensive, despite the existence of highly efficient algorithms such
as the Box-Muller method. The non-compact nature of the Gaussian distribution
makes it possible for extremely large forces to occur regardless of magnitude.
This can cause numerical instability in practice and hence requires treatment
such as re-generation or truncation. However, due to the law of large numbers,
any random variable with the same mean and variance could lead to the same
stochastic differential equation for DPD and thus can lead to the same invariant
distribution indistinguishable from that driven by a Gaussian term. This observation
liberates us to use much cheaper random number generators, e.g. one that generates
numbers uniformly distributed on [—+/3, +/3). Other possibilities include the arcsin
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distribution on [—+/2, +/2), which can be generated using the logistic map with
only floating point operations. This fits better to the architectural characteristics of
general purpose graphics processing units with less integer arithmetic throughput.

An effective approach to achieve high Schmidt number in DPD simulation is
to increase the power s of the dissipative weight function wp(ry) = (1 —ry/r.)*
in Eq.(5.2). If the power is non-integral, a general transcendental function that
evaluates the result of w* is needed. This function is among one of the slowest
math functions in every programming language, because it has to be evaluated as
w' = "™ using the identity x = "™, and in turn involves the evaluation of
the natural logarithm and exponential function. In order to conform to the IEEE
floating point standard, a generic implementation of the functions as provided in
most programming languages has to deal with the full range of inputs as well
as possible exceptions, which triggers instruction branching and reduced CPU
efficiency. The process, however, can be sped up by exploiting the limited range
of the weight function and the power. The possibility that the base or the exponent
being O can be precluded by the cutoff testing prior to the function call; it is also
unlikely that the base or the exponent would be NaN or Inf unless there are serious
problems in the underlying physics of the model. As such, both the logarithm
and exponential component of the power function can be implemented using a
Chebyshev polynomial expansion with accuracy up to the last digit of the floating
point number [101].

5.4.4 Time Integration

The velocity Verlet (VV) algorithm is the most commonly used algorithm for
integrating DPD systems due to their symplecticity, numerical stability, and ease of
implementation. It integrates position using half-step values of velocity. The form
most frequently used in molecular dynamics simulations is:

At At
v(t + 2)—v(t)—i— 2t'a(t),

At) = r(t At At
r(t + =r() + v(r + 5 ), (5.157)
a(t + Art) = F(r(t + Av)),

At At
v(t + A =v(r + 2)+ 5 -a(t+ Ar).
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However, due to the dependence of the dissipative force on particle velocity, the
scheme in DPD is of the form:

v(t + Azt) =) + Aztt-a(t),

r(t + At) = r(t) + At-v(t + Azt),
(5.158)

ale+ A0 = Fre+ An), v+ A;)],

At At
v(t+ A =v(t + 2)+ 5 -a(t + Ap).

There is a temporal misalignment between the position and velocity used for the
force. As such, the modified velocity Verlet algorithm aims to improve the stability
of the integrator by using an extrapolated version of the velocity for the force
evaluation [35]:

v(t + Azt) =v() + Aztt-a(t),

r(t+ At) = r(t) + At-v(r + At),
2 (5.159)

a(t + A1) = F[r(t L AN () + A Al a(I)],

At At
)+ 5 -a(t+ A,

v(t+ A =v(t+ )

where A € [0,1] is a parameter that depends on the specific choice of DPD
parameter, and need to be tuned case-by-case. There also exist more advanced time
integrators that are based on iterative or splitting techniques, such as DPD-VV [9],
Shardlow splitting scheme [99], the pairwise Noose-Hoover-Langevin method [53],
and the pairwise adaptive Langevin method [54].

5.5 Applications

The DPD method was invented more than two decades ago for simulating com-
plex fluids at the mesoscale [39]. Ever since its inception, DPD modeling has
found a wide spectrum of applications including simple fluids hydrodynamics,
polymer solutions and melts, biological membranes, colloidal suspensions and
blood flow [34, 72]. This section will briefly introduce a few examples of DPD
applications.
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5.5.1 Single-Phase Fluid Flow

DPD provides the correct hydrodynamic behavior of fluids at the mesoscale,
which is of fundamental importance for particles in flow and colloidal/polymer
suspensions. In the following, we briefly introduce the implementation of boundary
conditions for wall-bounded flows in DPD, and present two examples of single-
phase fluid flow.

No-Slip Boundary Condition in DPD

In fluid dynamics, the tangential component of the fluid velocity at the solid bound-
ary is always equal to that of the solid boundary, thus, the no-slip boundary condition
is usually used in modeling of wall-bounded flows. When one performs DPD
simulation of Couette flow or Poiseuille flow in a microchannel or microtube, the
soft repulsion between two particles cannot prevent fluid particles from penetrating
solid boundaries, and thus extra effort is required to impose the no-slip boundary
condition.

To impose a wall boundary condition in DPD, layers of particles at the solid
walls are usually frozen (velocity of these particles are set to zero) to model
solid walls. To prevent the penetration of fluid particles into the solid walls, a
proper reflection, such as bounce-back reflection, specular reflection, or Maxwellian
reflection, at the fluid-solid interface are usually implemented. In order to enforce
the no-slip boundary condition at the fluid—solid interface, the DPD repulsive
forces from wall particles are adjusted appropriately according to the wall density
ny, [90],

FY = a, (0.0303n2 + 0.5617n,, — 0.8536) . (5.160)

In this implementation, the average force acting on the DPD particles from
the solid wall in the near-wall region is equal to the average force from the
fluid.

In addition, interaction of liquids with solid walls causes layering of the fluid,
which is responsible for the large density fluctuations near the wall. These fluctu-
ations are physical and thus desirable in simulations, but they may be erroneous
in some other simulations; for example, spurious density fluctuations have been
observed in particle systems such as stochastic rotational dynamics, MD and DPD
simulations. Thus, one needs to control the density fluctuations in wall-bounded
DPD systems.

An adaptive boundary condition (ABC) [91] has been developed and applied to
fluid particles in the vicinity of the walls in order to control fluid density fluctuations
near the solid walls. In the ABC method, the magnitude of the adaptive force,
F%(i,), depends on the distance of the fluid particles to the solid walls and is
update simultaneously during the simulations according to the estimated density
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fluctuations,

(5.161)

. . Yo i)
FXZW(zb)zFXYd(szcW( S,

Z§b=,’a pa(i)

where Cy is a weighting factor.

The no-slip boundary condition in shear flow can also be implemented by
numerical periodicity, such as the use of Lees—Edwards boundary conditions [47].
Instead of including physical wall boundary, Lees and Edwards [47] proposed a
simple and ingenious modification to the standard periodic boundary condition for
particle-based simulations of shear flow. In particular, particles is considered as
being embedded in a fluid which has a constant velocity gradient to maintain the
system under a shear stress in a steady state. Once a particle leaves the simulation
box in the direction parallel to the velocity gradient, it will be reintroduced into the
box from the opposite boundary with a displacement and a velocity shift in the flow
direction. Although the Lees—Edwards boundary conditions have been successfully
used in many MD and DPD simulations [3, 87], it can only be applied to fluid
systems in steady states with constant shear rates.

Couette Flow

In fluid dynamics, Couette flow is a simple shear flow of a viscous fluid between two
parallel walls, one of which is moving relative to the other. The constitutive relation
for Couette flow can be expressed as,

d
T = _“dZ’ (5.162)

where T, is the shear stress, and du/dy is the velocity gradient in the y direction,
and p the dynamic viscosity. In DPD, the friction between the fluid and the moving
wall particles causes the fluid to shear. Figure 5.9a shows the simulation results of
transient development to the steady-state Couette flow. The DPD results agree well
with the analytical solution for different times. A notable aspect of this simple shear
flow is that the shear stress is constant throughout the flow domain. Thus, Couette
flow is frequently used to measure the viscosity of a fluid.

Poiseuille Flow

Poiseuille flow is a steady viscous fluid flow driven by an effective pressure gradient
established between the two ends of a long duct, usually a pipe, of uniform circular
cross-section. For a fluid flow through a pipe of radius R and length L, in the
presence of a uniform pressure gradient AP/ L, the velocity of the fluid at a specified
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Fig. 5.9 Time evolution of the velocity profiles in (a) Couette and (b) Poiseuille flows, in which
7 denotes the DPD time unit

distance r from the center of the pipe, v(r), is given by,
AP
= R*— 1), 5.163
v =, =) (5.163)

in which 7 is the fluid viscosity. In DPD, Poiseuille flow can be obtained by
applying a body force to the DPD fluid. Figure 5.9b shows the simulation results
of development of Poiseuille flow. The fluid velocity in a pipe changes from zero
at the wall surface because of the no-slip condition to a maximum v,,,, at the pipe
center.

In DPD modeling of Poiseuille flow, it is also worth to mention the periodic
(or reverse) Poiseuille flow method developed by Backer et al. [7], which is also
commonly used to estimate the viscosity of the DPD fluid. The method produces
counter-flowing Poiseuille flows by uniform body forces in opposite directions
along two-halves of a computational domain. The absence of density artifacts makes
this method useful for studying the bulk Poiseuille flow.

5.5.2 Blood Flow

Blood is a complex fluid exhibiting intriguing dynamic and its rheology depends on
the flowrate and volume fraction of suspending particles especially the red blood
cells (RBCs). In recent years, particle-based RBC models have attracted increasing
attention in multiscale modeling of blood flows. In particle-based approaches, the
motion of particles is flow governed by the interactions between discrete particles.
Early attempts focused on simulating blood flow with RBC being an elastic
particle, whose inner skeleton is represented by a rectangular lattice connected by
elastic springs. More recently, DPD was employed in a systematic coarse-grained
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procedure for modeling RBCs [92], which served as a basis of a general multiscale
RBC (MS-RBC) model that included membrane viscosity and external/internal fluid
viscosity contrast [28]. In the MS-RBC model, the membrane of RBC is represented
by a two-dimensional triangulated network with a collection of DPD particles, while
constraints on the area and volume conservation of RBC are imposed to mimic the
area—preserving lipid bilayer and the incompressible interior fluid. Specifically, the
elastic part of bond is represented by

kgTl,, 3)6-2 — 2x3 k
Vi= ). [B G-z, & n_l] (5.164)
Jel..N; 4p(1 —x;) (n—1

where /; is the length of the spring j, [, is the maximum spring extension, x; = [;/1,,,
p is the persistence length, kgT is the energy unit, k, is the spring constant, and n is
a specified exponent. The membrane viscosity is imposed by introducing a viscous
force on each spring. The bending resistance of the RBC membrane is modeled by

Vo= > ky[1—cos(6;— 60)]. (5.165)

JEL.N;

in which k; is the bending constant, 6; is the instantaneous angle between two
adjacent triangles having the common edge j, and 6, is the spontaneous angle. In
addition, the RBC model includes the area and volume conservation constraints,
which mimic the area-incompressibility of the lipid bilayer and the incompressibil-
ity of the interior fluid, respectively. The corresponding energy is given by

|y Kl A AV = VY

Vot = : 5.166
* 24, 241! 2Vt (5.166)

JEL.N;

where N, is the number of triangles in the membrane network, Ay is the triangle
area, and ky, k, and k, are the local area, global area and volume constraint
coefficients, respectively. The terms AY" and V{” are the specified total area and
volume, respectively.

The MS-RBC model is multiscale, as the RBC can be represented on the
spectrin level, where each spring in the network corresponds to a single spectrin
tetramer with the equilibrium distance between two neighboring actin connections
of ~75 nm. On the other hand, for more efficient computation, the RBC network can
also be highly coarse-grained with the equilibrium spring lengths of up to 500 ~
600 nm. The RBC membrane interacts with the fluid particles through DPD forces,
and the temperature of the system is controlled through the DPD thermostat. The
internal and external fluids are modelled by collections of free DPD particles and
their separation is enforced by bounce-back reflections of these particles at the RBC
membrane surface. The MS-RBC has been successfully applied in RBC simulations,
such as RBC dynamics in Poiseuille flow [28], RBC thermal fluctuations [29] and
RBCs in diseases like malaria [31] and sickle cell disease [49, 68].
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Modeling Blood Flow in Health

DPD simulations have proven effective in modeling the collective dynamics and
microrheology of RBCs in shear flow. The simulations for shear flow can accurately
predict the dependence of blood viscosity on shear rate, see Fig.5.10a. A novel
feature is the inclusion of attractive cell—cell interactions which allows to investigate
cell aggregation and formation of rouleaux. Simulations in larger tubes with
diameters ranging from 10 to 40 pm successfully reproduced several hemodynamic
phenomena, including cell migration towards the flow centerline, cell-free layer
near the wall and blunt velocity profile [51]. Recently, more complex geometries
have been considered, e.g. the blood flow in a bifurcating microfluidic channel or
complex arterial network [57, 73]. The results quantify the effect of branch location
and bifurcation angle variation on blood-plasma separation, which is agreement with
experiment.

An important characteristic of the dynamics of an individual RBC in shear
flow is the tank-treading frequency. Simulations with continuum models suggest
that the membrane viscosity needs to be accounted for in order to agree with
the experiments. Indeed, the MS-RBC model with membrane viscosity captures
this effect [28]. More recently, the simulations with a two-component RBC model
have been demonstrated to capture the observed dependency between TT frequency
and shear rate for RBCs with different degrees of confinement [63]: it follows a
linear relationship for a narrow channel but a nonlinear one for a wide channel.
The simulations also probed the apparent bilayer—cytoskeleton slip for a defective
membrane in hereditary spherocytosis and elliptocytosis.

Modeling Blood Flow in Malaria

Malaria is one of the most prevalent human infections worldwide. In malaria,
RBCs are hosts of Plasmodium parasites which change the cell biomechanical
properties. Progression through the parasite development from ring to trophozoite
then to schizont stages leads to Pf-RBCs loss of their deformability with a relative
membrane stiffening more than tenfold in comparison to healthy ones. Moreover,
at the final stage (schizont) of the parasite development, the Pf-RBCs often show
near-spherical shapes due to the formation of intracellular parasitophorous vacuoles,
which further impaires cell deformability. These changes can greatly affect the
dynamic and rheological properties of Pf-RBCs, alter blood flow and may even
cause occlusions of small capillaries. Quantifying cell deformability for various
stages of Pf-RBCs is significant. Recent efforts have been directed towards this
end. For example, Bow et al. [13] employed a MS-RBC model to study the
biomechanical properties of Pf-RBCs. They investigated a progressive stiffening
of Pf-RBCs with parasite growth. Ye et al. [109] simulated the flow dynamics of
Pf-RBCs in shear flow. They found that malaria parasites can perturb blood flow,
causing Pf-RBCs move towards blood vessel wall and adhere to the subendothelial
surface. Recently, Chang et al. [16] developed a two-step multiscale framework
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Fig. 5.10 Predicting human blood viscosity in-silico. (a) Shear viscosity of normal blood as a
function of shear rate; Adapted from [30]. (b) Shear viscosity of sickle cell suspension with
different cell morphology at different shear rate. Adapted from [68]
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for RBC modeling. Using this two-step multiscale framework, they predicted the
altered biomechanical properties of RBCs associated with their pathophysiological
states, including malaria. They investigated the influence of the nanoscale knob
density on RBC deformability and found a decrease in elongation index for
Pf-RBCs at trophozoite and schizont stages with the increase of knob density,
indicating that the nanoscale knobs, being rigid, contribute to cell membrane
stiffness.

Modeling Blood Flow in Sickle Cell Anemia (SCA)

SCA is a genetic blood disorder exhibiting heterogeneous cell morphology and
abnormal rheology under hypoxic conditions [17, 42]. In sickle cell disease,
mechanically fragile but rather stiff RBCs contribute to impaired blood flow and
other pathophysiological aspects of the disease. When the flow of blood is relatively
slow, cellular reactions occur that lead to adhesion of sickle RBCs to vascular
endothelium, resulting in vaso—occlusion and consequent clinical manifestations
such as organ damage, pain, and even death. Using the same DPD-based RBC
model, Li et al. [68] performed simulations of blood flow in sickle cell disease.
The simulation results confirmed the previous experimental measurements that the
sickle cell blood exhibit different levels of viscosity for different cell morphologies
(Fig.5.10b): the granular RBC suspension is the most viscous, while the shear
viscosity of sickle RBC suspensions containing elongated RBCs shows a dramatic
decrease. Moreover, it is known that the origin of SCA can be traced to a common
molecular basis, but individual patients with SCA have a highly variable clinical
phenotype. For these reasons, Li et al. [68] have recently developed a predictive
patient-specific model of SCA. Through the simulations they were able to reveal the
role of approved drugs like hydroxyurea on the blood viscosity, which has remained
a mystery for a long time.

DPD-based RBC models have also been used to quantify the adhesive properties
of sickle RBCs and probe vaso-occlusion phenomena in SCA (Fig.5.11) [49].
Given the same ‘“adhesive potential”, their results validate the hypothesis that
heterogeneous cell adhesive dynamics is mainly due to the different cell rigidities
and peculiar cell morphologies (Fig.5.11a) [48]. They also quantified the specific
physiological conditions triggering the vaso-occlusion crisis. Under physiological
conditions, their simulations show that the interplay of deformable SS2 cells
and ISCs can potentially trigger full blood occlusion. In addition, they also
employed a DPD-based white blood cell (WBC) model to probe its effect to
blood vaso-occlusion. They found that the blood flow undergoes slow down
due to the WBC recruitment and the moderate sickle RBC-WBC interaction
leads to multiple sickle RBC trapped on the WBCs and the full occlusion
(Fig.5.11b).
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Fig. 5.11 Vaso-occlusion in post-capillaries. (a) Instantaneous mean velocity of blood flow in a
cylindrical tube of D = 10 um infused with different sickle RBC suspensions. The red curve
represents the resultant velocity infused with SS2 and ISC cell groups. The inset plots represent the
instantaneous snapshots where SS2 cells adhere to vessel wall, consequently trapping the ISCs and
resulting in cell blockage. The green curve represents the blood velocity infused with SS2 and ISC
cell groups, where adhesive interaction is only applied to the ISC group. The inset plot represents
a snapshot where transient adhesion is established between ISC and the tube wall. Steady flow
is recovered due to the detachment of the cell from the tube wall. The blue curve represents the
instantaneous velocity of blood flow infused with SS2 and healthy cell groups. Blood flow exhibits
a slow down but not a full occlusion. (b) Effect of WBCs: instantaneous mean velocity of the blood
flow in a tube of D = 13.4 um. The inset snapshots represent blood cells in free motion, WBC
adhesion and blood occlusion states. Reproduced from [49], by permission

5.5.3 Dynamics of Polymers in Shear Flow

A polymer is a large molecule composed of many repeated subunits bonded
together. The dynamics of a polymer in shear flow is of central importance in
biomolecular engineering, materials science, and medicine. Therefore, it is not
surprising that the polymer behavior in shear flow has become a subject of intensive
experimental, theoretical, and computational studies.

Through the DPD approach, a polymer can be represented by linking collections
of DPD particles into chains with appropriate forces arising from different combi-
nations of the following types [100]:

* Harmonic spring model: It is one of the most popular polymer models. In the
spring model, the consecutive particles in the polymer chain are connected by
harmonic springs,

Fj = ks(1 = /o), (5.167)

with kg being the spring constant, and ry the equilibrium bond length.
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e Wormlike chain (WLC) model: It is a continuous model used to characterize the
behavior of a semi-flexible polymer.

ksT i\ 2 4r
reel(-L) el e

where Ap is an effective persistence length, and Lgp is the maximum length of
the spring.

 Finitely extensible nonlinear elastic (FENE) model: It simplifies the chain of
monomers by connecting a sequence of beads with nonlinear springs, which can
capture the finite extensibility of a polymer chain. For the FENE chain, the force
on particle i due to particle j is,

Hry;
FEENE — _ v , 5.169
v - (rij/r%zax) ( )

in which H is the spring constant, and 7, is the maximum length of the spring.
* Lennard-Jones chain (LJC) model: The force for each pair of particles is given
by a truncated Lennard-Jones potential,

12 6
Uu:4e[(L) —(L) + 1}, (5.170)
rij rij 4

where € is the depth of the potential well, and L is the finite distance at which the
inter-particle potential is zero.

Industrial and biological applications based on the dynamics of polymer in
microfluidic and nanofluidic channels are ubiquitous in past decades. Recent works
have focused on the dynamics and flow behaviors of polymers in fluidic channels.
Such studies deepen our understanding of the detailed conformational changes of
polymers inside the fluidic channels. Dynamic simulation and modeling help in
predicting how polymers will behave in fluidic flows and channels. For example,
Wijmans and Smit [107] simulate tethered polymers in shear flow using DPD. They
found that the polymer chains are able to stretch in the flow direction with respect
to the shear rate. Symeonidis and Karniadakis [100] employed DPD to study the
A-phage DNA under shear flow. They presented comparison of WLC models under
shear with experimental results and demonstrated the correct static scaling laws for
the radius of gyration. Fan et al. [27] simulated the dynamics of macromolecular
solutions in shear flow. They found that the velocity profiles of FENE polymer chain
suspensions can be fitted using the power-law model.

Dynamics of the translocation of polymers through a narrow channel or a narrow
pore is significant in the understanding of several chemical and biological processes
such as the transport of protein through membrane channels, motion of DNA and
RNA across narrow pores, and infection of virus into the cell nucleus. Therefore,
the translocation dynamics of polymer in shear flow have received increasing
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Fig. 5.12 Translocation event produced by a polymer molecule passing through the fluidic
channel in single-file conformations in the simulation at (a) r = 110, (b) t = 160, (¢) t = 180,
and (d) r = 220. Adapted with permission from [36]

attention in past decades. In the process of polymer translocation through a narrow
channel, the number of available configurations of polymer molecules decreases,
resulting in an effective entropy barrier for polymer molecules. Therefore, an
external driving force such as an external electric field, chemical potential gradient,
or a direct pulling force, is needed to overcome this entropy barrier and hasten the
translocation. In DPD, an applied pressure gradient, which generates a fluid flow in
narrow channel, can drive polymer chains through the narrow channel.

The DPD simulation provides a reliable approach to investigate the conforma-
tional changes and dynamic behaviors of polymers in the translocation processes.
For example, Guo et al. [36] employed DPD to simulate the dynamics of flow-
induced translocation of polymers through a fluidic channel. They found that there
are three stages in the translocation process of linear polymer molecule (Fig. 5.12):
(1) drift diffusion; (2) capture; and (3) translocation. These simulations can help
in clearly understanding the detailed conformational, dynamical, and transport
properties of polymer molecules and the events taking place inside the fluidic
channels during the process of the polymer translocation.

5.6 Concluding Remarks

Dissipative particle dynamics, as a coarse-grained molecular dynamics method
that can be rigorously derived through the Mori-Zwanzig formalism, has been
demonstrated to be a powerful and flexible mesoscopic method for simulating the
mesoscopic dynamics of complex fluids and various mesoscopic phenomena in soft
matter systems. In the past decade, the classical DPD method and its extensions
have already been applied successfully to a wide range of problems occurring at the
mesoscale. However, there still remain many open questions both in the foundation
of DPD and in its applications.
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An open question of DPD’s foundation is the theoretical derivation of meso-
scopic principle from molecular dynamics simulations of unbonded atoms. Unlike
bonded atoms in polymers and proteins, unbonded atoms does not move as a
group and cannot be packed into a coarse-grained entity. Consequently, the coarse-
grained representation of unbonded atoms does not have clear physical definition.
Although constraints can be applied to enforce unbonded atoms to move as
a group in molecular dynamics simulations for coarse-graining [50, 94], these
constraints significantly change the dynamical behavior of the unbonded atoms;
hence, these constrained molecular dynamics systems can no longer represent the
correct solvents. Therefore, the theoretical derivation of mesoscopic principles for
unconstrained and unbonded solvents is an open question.

Another interesting relevant problem of DPD is that memory effects should be
included in mesoscopic modeling when the Markovian property breaks down. The
classical DPD model was constructed with Gaussian white noise, which assumes
that the typical time scales of resolved dynamics and unresolved dynamics are well-
separated. However, at small coarse-grained levels, it is expected that the time scale
of unresolved dynamics is comparable with that of resolved dynamics, where the
correlation of random force cannot simply be replaced by the Dirac delta function.
Then, we need to consider non-Markovian dynamics by including memory effects.
So far there have been several attempts to include non-Markovian memory into
mesoscopic modeling, such as introduction of additional internal variables [104],
computing a time-convolution for friction directly [64], using a set of fictitious
particles [18], or coupling to the Ornstein-Uhlenbeck process [69].

Finally, DPD application to diverse practical problems requires the development
of fast time-evolution algorithms for large-scale simulations and useful boundary
methods for modeling biological systems. To this end, many attempts have been
made to enhance the capability of DPD simulations. Examples include the open
source GPU-accelerated DPD simulators [11, 101] for large-scale simulations, the
efficient time-integrators allowing for larger time steps [53, 54], an inflow/outflow
boundary method for blood flows [73] and a local detection boundary method for
arbitrarily complex geometries [67].
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