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Abstract

Biological phenomena at cellular and subcellular levels involve transport of
reacting biochemical species, including proteins, enzymes, and nutrients. At the
mesoscopic scale, stochastic effects can play an important role and dominate
the biological processes. Therefore, the continuum deterministic description,
which ignores fluctuations, becomes no longer accurate. To this end, mesoscopic
methods with stochastic terms are attracting more attention as a promising
approach for tackling challenging problems in cellular biology and bioengi-
neering. This chapter describes particle-based stochastic models for mesoscopic
transport processes, including thermal transport, reactive chemical transport, and
ionic transport in mesoscopic systems.
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1 Introduction

At the mesoscopic scale, thermal fluctuations and discrete features play important
roles in biological processes, and the classical approaches based on deterministic
transport equations are inadequate to predict the time evolution of the mesoscale
biological system (Hellander 2008). Deterministic equations are formulated as a
system of (generally, nonlinear) ordinary differential equations (ODEs) and partial
differential equations (PDEs) for the dynamics of mean-field concentrations of
the biochemical species. However, at cellular and subcellular levels, the biological
processes present considerable variations from cell to cell (Chen et al. 2017). The
variations arise from the fact that the cells are so small that the discrete features
and stochastic effects become crucial and may play a significant role in the relevant
dynamics. Therefore, to accurately model biological processes at the mesoscopic
scale, a better approach involves developing discrete particle-based methods suitable
for stochastic processes, where the discreteness of the biochemical species and
the randomness of transports and reactions are explicitly accounted for. From a
modeling point of view, stochastic dynamics is considerably harder to simulate and
analyze than the mean-field behavior (Schnoerr et al. 2017).

For mesoscopic processes driven by thermal noises, a popular approach that
accounts for the effects of thermal fluctuations is the Markovian stochastic process,
where stochastic terms induced by equilibrium or non-equilibrium fluctuations can
be modeled in terms of Gaussian white noise (Ortiz de Zárate and Sengers 2006). A
Markovian approximation is valid when the correlation time of fluctuations is much
shorter than the characteristic timescale of the dynamics of fluid particles/voxels.
This is true as long as the size of fluid particles/voxels is much larger than the
biochemical molecule size. As the size of fluid particle/voxel becomes comparable
with the molecule size, it is anticipated that the macroscopic or mesoscopic
modeling framework based on equilibrium/non-equilibrium statistics will fail to
describe the underlying system dynamics accurately. In this regard, microscale
methods with much higher computational cost, such as the reaction-diffusion master
equation (RDME) (Drawert et al. 2016; Schnoerr et al. 2017), must be employed to
attain insight into the discrete features of biochemical reactive transport.

This chapter focuses on recent advances in particle-based methods, including
dissipative particle dynamics (DPD), smoothed particle hydrodynamics (SPH), and
smoothed dissipative particle dynamics (SDPD), for mesoscale transport processes.
In these methods, the stochastic terms induced by thermal fluctuations are modeled
as Markov processes. Developing these methods has provided not only a deeper
understanding of the transport processes in the presence of fluctuations but also a
framework for modeling non-equilibrium processes of mesoscopic systems using
a local equilibrium approximation and investigating the energetic fluctuations of
mesoscopic transport in biological systems and beyond. Methods for thermal
transport at the mesoscopic scale are introduced in Sect. 2. The methods for
modeling mesoscopic reactive transport are discussed in Sect. 3. Section 4 presents
the methods for modeling mesoscopic ionic transport, and Sect. 5 concludes with a
brief summary and discussion.
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2 Mesoscopic Thermal Transport

Compared to healthy tissues, unhealthy tissues (especially tumors and cancers)
usually have lower pH values and higher temperatures stemming from microenvi-
ronment abnormalities (Taghizadeh et al. 2015). The differences between unhealthy
and healthy tissues can be used to design targeted therapies. For example, based on
the fact that tumor microenvironments are slightly hyperthermic, thermosensitive
polymers and liposomes can be used as targeted drug carriers to effectively deliver
drugs to tumor cells without harming healthy cells (Perez-Herrero and Fernandez-
Medarde 2015). However, developing thermosensitive drug delivery techniques
with controllable drug release in non-isothermal processes requires a fundamental
understanding of the mesoscopic thermal transport and knowledge of the role
thermal fluctuations play in biological processes. This section introduces two
mesoscopic modeling methods that can provide such fundamental understanding
and knowledge.

First, Avalos and Mackie (1997) and Español (1997) developed an energy-
conserving DPD (eDPD) model that augments the classical DPD model with the
internal energy as an additional property of each DPD particle. The classical DPD
model was developed based on equilibrium thermodynamics (Español and Warren
1995), where the dissipative and random forces satisfying the fluctuation-dissipation
theorem act as a thermostat to maintain the system at a constant temperature.
Thus, the classical DPD method is limited to modeling isothermal systems and can
neither sustain temperature gradients nor model thermal transport in non-isothermal
processes (Li et al. 2017). In contrast, in the eDPD method, each eDPD particle is
considered as a coarse-grained particle associated with an internal energy in addition
to other quantities, such as position and momentum. The stochastic differential
equations governing the dynamics of eDPD particles include the conservations of
momentum and energy in the form of (Li et al. 2014):

mi

d2ri

dt2
= mi

dvi

dt
= Fi =

∑

i �=j

(FC
ij + FD

ij + FR
ij ) ,

Cv

dTi

dt
= qi =

∑

i �=j

(qC
ij + qV

ij + qR
ij ) ,

(1)

where m, t , ri , vi , and Fi denote mass, time, position, velocity, and force vectors,
respectively. Ti represents the temperature, Cv the thermal capacity, and qi the net
heat flux of particle i. The summations of force and heat flux are carried out over all
particles within a cutoff radius rcf from particle i for forces and a cutoff radius rct
for heat fluxes.

The three components of Fi , including conservative, dissipative, and random
forces, are given by FC

ij = aijwC(rij )eij , FD
ij = −γijwD(rij )(eij · vij )eij , and

FR
ij dt = σijwR(rij )dWij eij , respectively (Groot and Warren 1997). The coefficients

a, γ , and σ determine the strength of each force. The weight functions wC(r),
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wD(r), and wR(r) are defined with a cutoff radius rcf beyond which these weight
functions vanish. dWij = dWji are independent increments of the Wiener process.
Using the assumption of local thermodynamic equilibrium, Español (1997) derived
a Fokker-Planck equation (FPE) for the stochastic equation (1). The FPE solution
gives the relationship between the dissipative force and the random force, which
requires σ 2

ij = 4γij kBTiTj /(Ti + Tj ) and wD(r) = w2
R(r). It indicates that the

fluctuation-dissipation theorem is applied locally based on the particle temperature
Ti instead of the system’s thermodynamic temperature, stressing the local nature of
the eDPD model (Avalos and Mackie 1997). The heat fluxes between two particles
i and j , accounting for the thermal conduction qC

ij , viscous heating qV
ij , and random

heat flux qR
ij , are given by (Li et al. 2014)

qC
ij = kijwCT (rij )

(
T −1

i − T −1
j

)
, (2a)

qV
ij = 1

2Cv

{
wD(rij )

[
γij

(
eij · vij

)2 − m−1
i σ 2

ij

]
− σijwR(rij )

(
eij · vij

)
ξij

}
,

(2b)

qR
ij = βijwRT (rij )ξ

e
ij , (2c)

where the thermal conduction qC
ij contains T −1 rather than T because the thermo-

dynamic quantity conjugated to the internal energy is the inverse of the temperature
instead of the temperature itself (Español 1997). The parameters kij and βij

determine the strength of the thermal conduction and the random heat flux,
respectively. In particular, kij plays the role of a thermal conductivity given as
kij = C2

vκ(Ti + Tj )
2/4kB , where κ is interpreted as a mesoscale heat friction

coefficient. The relationships β2
ij = 2kBkij and wCT (r) = w2

RT (r) are required
to satisfy the fluctuation-dissipation theorem. A common choice of the weight
functions is wCT (r) = w2

RT (r) = (1 − r/rct)
sT with a cutoff radius rct, where

the case of sT = 2.0 corresponds to the typical quadratic weighting function (Groot
and Warren 1997).

For an eDPD particle, the characteristic scale of the kinetic energy related to its
momentum is kBT , while the characteristic scale of the internal energy related to
its temperature is CvT . A scaling factor kBT /CvT is required to convert kinetic
energy into internal energy. Therefore, the heat flux qV

ij due to viscous heating
given by Eq. (2b) has a factor 1/Cv when the kinetic energy kBT is taken as the
energy unit. Also, the factor 2 in the denominator guarantees that the heat generated
by nonconservative interactions is distributed evenly to both particles of a pair.
Through numerical experimentation, Li et al. (2014) demonstrated that Eqs. (1)
and (2) conserve energy.

The transport properties, such as diffusivity and viscosity, do not need to be
prescribed in eDPD. Groot and Warren (1997) and Marsh et al. (1997) have derived
the expressions of diffusivity and kinematic viscosity in terms of DPD parameters,
which are given as
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D = 3kBT

4πγρ

(∫ ∞

0
r2g(r)wD(r)dr

)−1

, ν = D

2
+ 2πγρ

15

∫ ∞

0
r4g(r)wD(r)dr,

(3)

where g(r) is the radial distribution function. A rough analytical prediction of D and
ν can be obtained by substituting wD(r) = w2

R(r) = (1 − r/rcf)
s and g(r) = 1.0

into Eq. (3), which leads to D = 3kBT
∏3

i=1(s + i)/8πγρr3
cf and ν = D/2 +

16πγρr5
cf/5

∏5
i=1(s + i).

The DPD fluid’s thermal conductivity also can be calculated in terms of the
model parameters. When the energy transport is dominated by thermal conduction,
the macroscopic thermal conductivity λ can be calculated as (Mackie et al. 1999)

λ = 2π

3

ρ2

T 2

∫ ∞

0
r4kwCT (r)g(r)dr , (4)

where k = C2
vκT 2/kB and wCT (r) is the weight function. Given wCT (r) =

(1 − r/rct)
sT and g(r) = 1.0, an analytical estimate for the thermal conduc-

tivity λ can be obtained as λ = 16πρ2κC2
v r5

ct/kB

∏5
i=1(sT + i). In particular,

when the typical quadratic weight function (1 − r/rct)
2 is adopted for wCT (r),

λ = 2πρ2κC2
v r5

ct/315kB . Let Pr = ρνCv/λ be the Prandtl number, which is a
dimensionless number whose value can be obtained from experiments. By replacing
λ with Pr, the result is a formula for determining the mesoscale heat friction κ given
by κ = 315kBν/2πρPrCvr

5
ct. Notably, this formula is obtained from the typical

quadratic weight function. When a different weight function is employed, a similar
formula could be derived from Eq. (4).

The expression of Eq. (3) indicates that both the diffusivity D and kinematic
viscosity ν of the eDPD fluid increase linearly with the temperature if other variables
in Eq. (3) remain constant. However, for most of the liquids, including water,
ethanol, and glycerin, the diffusivity increases, but the kinematic viscosity decreases
with increasing temperature. To correct the temperature-dependent properties (diffu-
sivity, viscosity, and thermal conductivity) of these liquids, Li et al. (2014) analyzed
the sensitivity of D, ν, and λ with respect to the model parameters and defined
the exponent of the weighting function s as a function of temperature. They took
liquid water as an example and demonstrated that the eDPD model can produce the
correct temperature-dependent diffusivity and viscosity, as well as Prandtl numbers,
for various temperatures, which is consistent with available experimental data. For
details on the eDPD model parameterization, refer to Li et al. (2014) and Lei et al.
(2017).

Alternatively to the bottom-up eDPD model, a top-down particle-based model
for mesoscopic thermal transport can be derived from macroscopic PDEs governing
the conservations of continuity, momentum, and energy. By introducing thermal
fluctuations into an SPH discretization of the (deterministic) Navier-Stokes equa-
tions, Español and Revenga (2003) developed the SDPD model. The following SPH
discretization was used:
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mi

d2ri

dt2 = mi

dvi

dt
=

∑

j

[
Pi

d2
i

+ Pj

d2
j

]
Fij rij − 5η

3

∑

j

Fij

didj

[
vij + (vij · eij )eij

]
,

Ti

dSi

dt
= 5η

6

∑

j

Fij

didj

[
v2
ij + (vij · eij )

2
]

− 2κ
∑

j

Fij

didj

(Ti − Tj ) ,

(5)

where P and T are the pressure and temperature given by the local equilib-
rium assumption. The number density d of the fluid particles is computed as
di = ∑

j W(|ri − rj |), where W(r) is a compact bell-shaped smoothing kernel
(Monaghan 2005). The geometrical factor Fij is given by Fij = −∇W(rij )/rij .
The transport coefficients are the shear viscosity η and the thermal conductivity
κ . The relationship between pressure and density should be specified via an
equation of state. The popular choices in SDPD simulations are p = c2ρ and
p = p0(ρ/ρ0)

γ + b (Vázquez-Quesada et al. 2009). The first term in the entropy
equation is the viscous heating term that captures the physical mechanism by which
the energy dissipated by viscous forces transforms into the internal energy. The last
term is the heat conduction term induced by the temperature difference between
particles.

Using the GENERIC (General Equation for Non-Equilibrium Reversible-
Irreversible Coupling) formalism (Grmela and Öttinger 1997; Öttinger and Grmela
1997), thermal fluctuations are then systematically introduced to satisfy the first and
second laws of thermodynamics. The velocity and entropy random terms are given
by (Español and Revenga 2003)

midṽi =
∑

j

Aij dŴij · eij ,

TidS̃i = −1

2

∑

j

Aij dŴij : eij vij +
∑

j

Cij dWH
ij ,

(6)

respectively, where dŴij = (dWij + dWT
ij )/2 is the symmetric part of a matrix

of independent increments of the Wiener process dWij . dWH
ij is an independent

increment of the Wiener process for each pair of particles, giving rise to the heat
conduction terms. Using the fluctuation-dissipation theorem, the parameters Aij and
Cij are related to viscosity η and thermal conductivity κ as

Aij =
[

40

3
ηkB

TiTj

Ti + Tj

Fij

didj

]1/2

, Cij =
[

4κkBTiTj

Fij

didj

]1/2

. (7)

Thus, the equations of an SDPD model are obtained by adding the stochastic
terms in Eq. (6) to the SPH equations in Eq. (5). Kordilla et al. (2014) derived
similar stochastic equations by directly discretizing the fluctuating hydrodynamics
equations (Ortiz de Zárate and Sengers 2006) with the SPH method.
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Although derived using different approaches, the “bottom-up” eDPD and “top-
down” SDPD methods have many similarities. Both SDPD and eDPD momentum
equations have a conservative force that comes from the gradient of potential
energy, a dissipative force induced by viscous friction, and a stochastic term
representing thermal fluctuations. SDPD and eDPD energy equations include a
heat conduction term to reduce temperature differences between neighboring fluid
particles, a viscous heating term to account for the internal energy generated by the
viscous dissipation, and a stochastic term induced by thermal fluctuations. In each
method, the stochastic contributions in velocities and energies directly relate to the
dissipative terms via the fluctuation-dissipation theorem.

Because eDPD was derived from coarse-graining microscopic dynam-
ics (Español et al. 2016), phenomenological expressions for the particle interactions
in Eq. (1) can be easily derived to account for complex physics. In the last
decade, the bottom-up eDPD approach has been successfully applied to diverse
problems involving non-isothermal processes. For example, Cao et al. (2013) used
eDPD to simulate natural convection in an eccentric annulus and investigated
the effects of various factors on the streamlines and temperature distributions
(shown in Fig. 1a). Tang et al. (2016) applied the eDPD method to modeling
thermosensitive polymers and simulated the thermally induced self-assembly
process of thermoresponsive micelles and vesicles (Fig. 1b). Other examples include
heat-stiffening polymer nanocomposites (Cudjoe et al. 2017), thermophoretic
microswimmers (Fedosov et al. 2015), natural convection in microchannels (Abu-
Nada 2010), and thermoresponsive microgels (Li et al. 2015a).

Due to the similar form of the equations, it should be possible to include complex
physics in SDPD using the eDPD coarse-graining procedure. To date, most SDPD
applications are concerned with complex fluids and colloidal suspensions (Litvinov
et al. 2008; Bian et al. 2012; Lei et al. 2016). The advantage of SDPD for such
applications is that the properties of each fluid component, including density,
viscosity, and speed of sound, are prescribed directly as model parameters and do
not need to be estimated from other model parameters as with eDPD.

3 Mesoscopic Diffusive and Reactive Transport

Many biological processes depend on the concentrations of specific proteins, ions,
or other biochemical factors (Anand et al. 2003). For example, proteins in an
aqueous solution diffuse in a living cell due to Brownian motion and some collisions
of appropriate proteins may lead to chemical reactions. Thus, diffusion and reaction
are two fundamental transport processes in biological systems.

For modeling mesoscopic diffusive and reactive transport, Li et al. (2015b)
developed a transport dissipative particle dynamics (tDPD) model by defining
concentration carried by each DPD particle in addition to other quantities, such as
position and momentum. The time evolution of the position and solute concentration
of a tDPD particle i with unit mass mi ≡ 1 is governed by the mass and momentum
conservation laws, which can be described by the following set of equations:
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Fig. 1 (a) Thermal (left) and flow (right) fields of the natural convection in an eccentric annulus
with two different eccentricities. (Adapted from Cao et al. 2013). (b) Thermally induced inversion
of a unilamellar vesicle formed by triblock copolymers and a proper orthogonal decomposition
(POD) analysis showing two dominant molecular movement modes, i.e., flip and slip, during
membrane inversion. (Adapted from Tang et al. 2016)

d2ri

dt2 = dvi

dt
= Fi =

∑

i �=j

(FC
ij + FD

ij + FR
ij ) + Fext

i ,

dCi

dt
= Qi =

∑

i �=j

(QD
ij + QR

ij ) + QS
i ,

(8)

where t , ri , vi , and Fi denote time and position, velocity, and force vectors,
respectively. Fext

i is the force on particle i from an external force field. Just as
in the classical DPD model, the pairwise interaction between tDPD particles i

and j consists of the conservative force FC
ij = aijwC(rij )eij , dissipative force

FD
ij = −γijwD(rij )(eij · vij )eij , and random force FR

ij dt = σijwR(rij )dWij eij .
Ci represents the concentration of one species defined as the number of a chemical
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species carried by a tDPD particle i and Qi , the corresponding concentration flux.
The net concentration flux on a particle i accounts for the Fickian flux QD

ij , the

random flux QR
ij , and a source term QS

ij generated by local chemical reactions.
Because tDPD particles have unit mass, this definition of concentration is equivalent
to the concentration in terms of chemical species per unit mass. Then, the volume
concentration, i.e., chemical species per unit volume, is ρCi , where ρ is the number
density of tDPD particles. Of note, Ci can be a vector Ci containing N components,
i.e., {C1, C2, . . . , CN }i , when N chemical species are considered.

The driving force for diffusion of each species is the gradient of chemical
potential Q = −DC∇μ/RT , where D is the diffusion coefficient, R the universal
gas constant, T the absolute temperature, and μ the chemical potential given by
μ = μ0 + RT ln C for dilute solutions (Ortiz de Zárate and Sengers 2006).
By substituting the chemical potential μ into the expression for Q, the diffusion
driving force is found to be proportional to the concentration gradient ∇C, which
corresponds to a concentration difference between two neighboring tDPD particles.
It follows that the Fickian and random fluxes in the tDPD model are given by

QD
ij = −κijwDC(rij )

(
Ci − Cj

)
, QR

ij dt = εijwRC(rij )dWcc
ij , (9)

where κij and εij determine the strength of the Fickian and random fluxes. dWcc
ij =

dWcc
ji are independent increments of the Wiener process. wDC(r) and wRC(r) are

weight functions with a cutoff radius rcc. The Fickian friction parameter κ plays
the analogous role for concentration differences between tDPD particles, as γ does
for momentum. In general, the concentration friction κ is a N × N matrix when the
interdiffusivities of N different chemical species are involved. However, considering
N chemical species in dilute solution and neglecting the interdiffusivities of
different species, the system is then reduced to a set of uncoupled diffusion
equations with independent diffusivities between species. Hence, κ becomes a
diagonal matrix (Balluffi et al. 2005).

By applying the local-equilibrium assumption to the tDPD system, the random
term QR

ij is related to the dissipative term QD
ij by satisfying the fluctuation-

dissipation theorem (Li et al. 2015b)

ε2
ij = m2

s κij ρ(Ci + Cj ) , wDC(rij ) = w2
RC(rij ) , (10)

where ms is the mass of a single solute molecule, while Ci and Cj are the respective
concentrations on particles i and j . For detailed derivations for obtaining Eq. (10),
refer to Li et al. (2015b). In general, the mass of a single solute molecule ms is much
smaller than that of a tDPD particle m, which is often chosen as the mass unit.
Consequently, the magnitude of ε is small for ms � m, which indicates that the
contribution of the random flux QR

ij to the total diffusion coefficient D is negligible
unless ms becomes comparable to m in nanoscale systems.

The macroscopic properties, including viscosity and diffusivity of a tDPD
system, are output properties rather than input parameters. Due to the random
movements of tDPD particles generated by stochastic forces, the effective dif-
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fusion coefficient D consists of both the random diffusion Dξ and the Fickian
diffusion DF . In general, the random contribution Dξ is a combined result of the
random movements of tDPD particles and random flux QR

ij in Eq. (9). However, the

variance of random flux QR
ij has a small prefactor m2

s as given by Eq. (10). Thus,

the contribution of the random flux QR
ij to Dξ is negligible in practical applications.

In the derivations, it is assumed that Dξ is induced by the random movements
of tDPD particles. In particular, for a tDPD system in thermal equilibrium, the
diffusion coefficient Dξ induced by the random movements of tDPD particles and
the macroscopic diffusion coefficient DF due to the Fickian flux can be calculated
by Li et al. (2015b)

Dξ = 3kBT

4πγρ · ∫ rc
0 r2wD(r)g(r)dr

, DF = 2πκρ

3

∫ rcc

0
r4wDC(r)g(r)dr ,

(11)

where rc is the cutoff radius for forces and rcc is the cutoff radius for concentration
flux. Let wD(r) = (1− r/rc)

s1 and wDC(r) = (1− r/rcc)
s2 be the weight functions

of the dissipative force FD
ij and the Fickian flux QD

ij , respectively. When the radial

distribution function of ideal gas g(r) = 1.0 is employed, both Dξ and DF can
be evaluated analytically as D = Dξ + DF = 3kBT

∏3
i=1(s1 + i)/8πγρr3

c +
16πκρr5

cc/
∏5

i=1(s2 + i), where s1 and s2 are the exponents of wD(r) and wDC(r).
Because the particle-based tDPD method satisfies the conservation of concen-

tration automatically, it provides an economical way to solve advection-diffusion-
reaction (ADR) equations with a large number of species. Xu et al. (2011) used
a two-dimensional model to investigate biofilm growth in a narrow channel and
demonstrated the effects of flow velocity, growth parameter, and hydrodynamic
interaction on the biofilm growth regime and morphology. Li et al. (2015b)
employed tDPD to study the dynamic process of blood coagulation, modeled by
a set of 23 coupled ADR equations for the evolution of 25 biological reactants
involved in a combined model of intrinsic and extrinsic pathways of blood coagula-
tion process and fibrinolysis. They reported the tDPD simulation correctly produced
the thrombin burst followed by a drop and provided qualitatively correct evolution
of fibrin concentration initialized by an injured vessel wall in flowing blood (shown
in Fig. 2a).

Alternatively, mesoscopic mass transport can be modeled by a top-down
approach: numerically solving the fluctuating hydrodynamics equations, including
the continuity equation dρ/dt = −ρ(∇ · v) and momentum conservation equation
ρdv/dt = −∇P + ∇ · τ + ∇ · s with a random stress tensor s and the stochastic
advection-diffusion equation ρdC/dt = ∇·(D∇C)+∇·J with a random flux vector
J (Ortiz de Zárate and Sengers 2006). Using the fluctuation-dissipation theorem, the
random stress in the momentum equation is related to the viscous stress, while the
random concentration flux in the advection-diffusion equation relates to the Fickian
diffusion. Kordilla et al. (2014) used SPH discretization to solve these equations.
Similar to the tDPD model, the effective diffusion coefficient D in the SPH-based
model (Kordilla et al. 2014) consists of a deterministic Fickian coefficient DF and
stochastic contribution Dξ .
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Fig. 2 (a) Time evolution of the fibrin concentration field during the dynamic process of blood
coagulation in flowing blood and the concentrations of thrombin and fibrin at the center of the
injured wall region. (Adapted from Li et al. 2015b). (b) Formation of “giant fluctuations” of the
front between light and heavy fluids with and without gravity, where the light fluid is on the top of
the heavy fluid. The map shows the concentration field, and the plot shows corresponding power
spectra of the concentration field. (Adapted from Kordilla et al. 2014)



2584 Z. Li et al.

Kordilla et al. (2014) applied this SPH-based model for studying the formation
of “giant fluctuations” of the front between light and heavy fluids with and
without gravity, where the light fluid is on top of the heavy fluid (shown in
Fig. 2b). Their results indicate that the presence of gravity significantly reduces
front perturbations for all considered values of Fickian diffusion DF , but the effect
of gravity becomes less pronounced as DF increases. When the Fickian diffusion
DF becomes significantly larger than Dξ , the stochastic diffusion reduces to a
deterministic diffusion, and fluctuations completely disappear. Kordilla et al. (2014)
also demonstrated that in the absence of gravity, the SPH-based model recovers
the characteristic q−4 divergence of the interface power spectrum and its scale-
invariant nature, which are in good agreement with the experiments and analytical
solutions.

4 Mesoscopic Ionic Transport

Ionic transport is ubiquitous in biological processes and is extremely important
in the vital activity of all organisms. The concentration gradient of potassium
ion K+, sodium ion Na+, and calcium ion Ca2+ across the cell membrane is
the basis for the transmission of excitation in organisms. It is not surprising that
ionic transport is implicated in numerous diseases. For example, cystic fibrosis is
an autosomal recessive disease, which is induced by defective ion transport and
characterized by hyperabsorption of Na+ in the airway epithelia (Kunzelmann and
Mall 2003). Transport of Ca2+ from muscle cells leads to relaxation of muscles,
while the entry of these ions into the cytoplasm upon excitation produces muscle
contraction (Rüegg 1992). An inherited skeletal muscle disorder, named Brody
disease, is clinically characterized by exercise-induced muscle stiffness, rooted from
abnormal Ca2+ transport (Guglielmi et al. 2013). Also, the flux of ions across
the membranes of neurons changes the electrochemical gradient and results in the
production of an electrical signal sent between neurons in the brain (Purves et al.
2004). Disruption of ionic homeostasis significantly affects the neuron activities.
Alzheimer’s disease is associated with increased intracellular Na+ and K+ levels
in brain regions, which is induced by imbalanced ionic transport contributed to the
pathophysiology of Alzheimer’s disease (Vitvitsky et al. 2012). Understanding the
functional role and mechanism of ionic transport at cellular/subcellular levels is of
crucial physiological importance to develop new diagnostic tests for diseases and to
discover novel drug molecules (Modi et al. 2012).

However, simulating fluctuating electrohydrodynamic phenomena with fully
coupled hydrodynamics and electrostatics with long-range Coulomb interactions
is challenging. Here, a variant of DPD method is used to tackle this challenge.
It extends the classical DPD method that has proven accurate and effective in
modeling mesoscopic fluctuating hydrodynamics (Groot and Warren 1997) and
introduces ions represented by explicit charged particles in a DPD system. The
electrostatic interactions between these ions can be computed by two approaches:
(1) all interactions between the charged particles are summed in real space, and (2)
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all charged particles are projected onto a local electrostatic field that is governed by
the Poisson’s equation ∇(ε∇ϕ) = −βe2ρ and solved separately.

As a consequence of the soft interactions in the DPD model, charged particles
may overlap and form infinitely strongly bound ion pairs through electrostatic inter-
actions. To avoid overlapping of charged DPD particles, Groot (2003) distributed
the charge within an electrostatic smearing radius Re using a charge distribution
f (r) = 3(1 − r/Re)/πR3

e , while González-Melchor et al. (2006) used a Slater-
type charge distribution f (r) = exp(−2r/λ)/πλ3 with a decay length λ. With
explicit ions, the Ewald summation method (Ewald 1921) is a widely used route
to calculate electrostatic interactions in particle systems. Because point charges
interact according to Coulomb’s law, the total electrostatic energy for a periodic
cubic system of side L is given by

U(r) = 1

4πε0εr

∑

i

∑

j>i

∑

r

qiqj

|rij + nL| , (12)

where n = (nx, ny, nz) with nx , ny , and nz being integer numbers. The sum over n
takes into account the periodic images. The Ewald treatment decomposes the long-
range electrostatic energy in a real space and the reciprocal space contributions,
so both the real and reciprocal parts can be computed by short-ranged sums as
an approach to 1/r , capturing the full long-range nature of electrostatic interac-
tions (González-Melchor et al. 2006).

Different from a direct calculation of the electrostatic forces, Groot (2003)
introduced a lattice to the DPD system and spread out the charges over the lattice
nodes. Then, the long-range portion of the interaction potential was calculated by
solving the Poisson equation on the grid based on a particle-particle particle-mesh
(PPPM) algorithm by transferring quantities (charges and forces) from the particles
to the mesh and vice versa. It has been noted that the PPPM method works efficiently
in DPD if the grid size equals the particle size. Because the mesh defines a coarse-
graining length for electrostatic interactions, correlation effects on length scales
shorter than the mesh size cannot be properly accounted for. Explicit treatment
of the ions is computationally expensive, especially for systems with high ionic
concentrations. To this end, Medina et al. (2015) developed a Condiff-DPD model
with ions represented by the concentration of the ionic species. They used DPD
equations for fluid particles and Brownian pseudo particles to describe the evolution
of the ionic concentrations. Instead of direct interactions, the pseudo-ions and DPD
particles are coupled through a lattice, where the Poisson equation is solved using
the PPPM algorithm. Compared to “explicit-ion” simulations whose computational
costs depend on the number of ions, the cost for electrostatic calculations in a
simulation with “implicit ions” is dominated by the cost for solving the Poisson
equation. Using the PPPM method, the cost primarily depends on the number of
mesh points.

Although, the particle-to-mesh and then mesh-to-particle mapping/redistribution
can solve the Poisson equation for particle-based systems (Groot 2003), its depen-
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dence on a grid may contradict the original motivation for using a Lagrangian
method, and additional computational complexity and inefficiencies are introduced.
To abandon grids and use a unifying Lagrangian description for mesoscopic
electrokinetic phenomena, Deng et al. (2016) developed a charged DPD, or cDPD,
model, where the Poisson equation is solved on moving cDPD particles rather than
grids. Specifically, cDPD describes the solvent explicitly in a coarse-graining sense
as DPD particles, while the ion species are described semi-implicitly, i.e., using a
Lagrangian description of ionic concentration fields, associated with each moving
cDPD particle, which provides a natural coupling between fluctuating electrostatics
and hydrodynamics.

The state vector of a cDPD particle can be written as (r, v, cα, φ), which is not
only characterized by its position r and velocity v as in the classical DPD model
but also by ionic species concentration cα (with α representing the αth ion type)
and electrostatic potential φ on the particle. A cDPD particle is then viewed as a
coarse-grained fluid volume, which contains the solvent and other charged species.
Exchange of the concentration flux of charged species occurs between neighboring
cDPD particles, much like the momentum exchange in the classical DPD model.
The time evolution of the state vector of a cDPD particle i with unit mass mi ≡ 1 is
governed by the following set of stochastic differential equations:

d2ri

dt2 = dvi

dt
= Fi =

∑

i �=j

(FC
ij + FD

ij + FR
ij + FE

ij ),

dcαi

dt
= qαi =

∑

i �=j

(qD
αij + qE

αij + qR
αij ),

(13)

where the total force Fi consists of three pairwise forces as in classical DPD
method, i.e., the conservative force FC

ij = aijwC(rij )eij , dissipative force FD
ij =

−γijwD(rij )(eij · vij )eij , and random force FR
ij = σijwR(rij )ξij eij , as well as an

electrostatic force FE coupling hydrodynamics and electrokinetics, given by

FE
ij = λijρeiEij , Eij = (φi − φj )ωE(rij )r̂ij , (14)

where the coupling parameter λij is linearly related to the macroscopic dimension-
less coupling parameter Λ = c0kBT τ 2/(ρ0r

2
0 ) with c0 and ρ0 as the reference

concentration and reference mass density, which are chosen as the respective salt
concentration and mass density of bulk solution. r0 and τ are the unit length and
time in DPD. ρei = ∑

α zαcαi is the total charge density within the ith particle,
and Eij is the relative electric field determined by the difference of electrostatic
potential field between particles i and j and a weighting function ωE(r). Although
the electrostatic forces are essentially not pairwise, i.e., FE

ij �= FE
ji , a zero total force

condition
∑

i,j FE
ij = 0 is always satisfied because of the charge neutrality condition∑

i

∑
α zαcαi = 0, which guarantees the global momentum conservation if there is

no external electrostatic field.
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Transport equations of ionic species are implemented in the cDPD model
by introducing extra degrees of freedom and corresponding evolution equations
associated with each cDPD particle. Diffusion of ionic species is driven by three flux
terms, i.e., the Fickian flux qD

ij induced by the concentration gradient, electrostatic

flux qE
ij induced by electrostatic potential gradient, and random flux qR

ij due to
thermal fluctuations, which can be written as

qD
αij = −καij (cαi − cαj ) ωqD(rij ),

qE
αij = −καij zα cαij (φi − φj ) ωqD(rij ),

qR
αij = ξαij ωqR(rij ) θij δt−1/2,

(15)

where cαij = (cαi + cαj )/2 is the average ionic concentration, καij is the diffusion
coefficients of the αth species, and ωqD(rij ) is a weighting function. The parameters
in qD

ij and qR
ij are related via the generalized fluctuation-dissipation theorem, i.e.,

ωqD(r) = ω2
qR(r) and ξ2

αij = καij (cαi +cαj )/c0r
3
0 , which suggests that the variance

of random flux is proportional to r−3
0 . Thus, the random flux cannot be neglected in

micro-/nanoscales where r0 � 10−6m.
The electrostatic potential φ on each cDPD particle is determined by solving the

Poisson equation at every time step. Consider the dimensionless Poisson equation
rescaled by the DPD units ∇(ε(r)∇φ(r)) = −Γρe(r), where ε(r) is the local
relative permittivity and Γ = e2c0r

2
0/ε0kBT . The Poisson equation should be

solved at every time step using, for example, a successive over-relaxation iteration
scheme. Then, the electrostatic potential φi on the ith cDPD particle is obtained
iteratively as

φk
i = φk−1

i + ϑ

[
χρei −

∑

j �=i

εij φ
k
ijωφ(rij )

]
, (16)

where χ is linearly related to the macroscopic parameter Γ that characterizes the
strength of the electrostatic interactions, εij = (εi+εj )/2 is the average permittivity,
ωφ(r) is a weight function, and ϑ is a relaxation factor. The value of ϑ can be
adaptively changed during the iteration process, and the value of φi at the previous
time step can be taken as an initial estimate of φk−1

i to achieve faster convergence.
Then, the iteration of Eq. (16) is performed until the absolute differences |φk

i −φk−1
i |

are below a predefined tolerance.
Both the DPD model based on explicit ions (Groot 2003) and the cDPD model

based on semi-implicit ions (Deng et al. 2016) have been applied to fluctuating
electrohydrodynamic phenomena investigations. Posel et al. (2014) applied Groot’s
DPD model with explicit ions (Groot 2003) to study pH-dependent self-assembly
of poly(2-vinylpyridine)-block-poly(ethylene oxide) diblock copolymers in aqueous
media. They quantified the dependences of the apparent radius of gyration and
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Fig. 3 (a) Apparent radius of
gyration (RG)(AS)w and
weight-averaged association
number 〈AS〉w as functions of
the pHap, where the effect of
the salt is depicted by the
shift in the radius of gyration.
(Adapted from Posel et al.
2014). (b) Mass density
distribution for both positive
(blue squares)- and negative
(red circles)-charged
polyelectrolytes drifting in
electroosmotic flow between
two positively charged
surfaces. (Adapted from
Deng et al. 2016)

weight-averaged association number on pH, shown in Fig. 3a, and simulated
the micellization process that coincides credibly with experimental observations.
Deng et al. (2016) used the cDPD model to simulate the dilute polyelectrolyte
solution drifting by electroosmotic flow in a microchannel. Unlike the migration
of an uncharged polymer in the channel flow, they reported that negative-charged
polyelectrolytes are likely to remain at the channel center because of the electrostatic
repulsion from the charged surface, while the positive-charged polyelectrolytes drift
away from the center with double peaks (Fig. 3b). Moreover, Zhou et al. (2013)
investigated the response of a charged colloid and its surrounding microion cloud
to an alternating electric field. Moshfegh and Jabbarzadeh (2016) simulated the
electroosmotic flow in narrow nanochannels via explicit electrostatic interactions
computed using the Ewald summation method. The authors acknowledge they
currently are not aware of any top-down mesoscopic particle-based methods for
ionic transport that consistently incorporate thermal fluctuations.
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5 Summary

This chapter has considered different particle-based methods for mesoscopic trans-
port processes, including thermal transport, reactive biochemical transport, and
ionic transport in mesoscopic systems. These mesoscopic methods consistently
incorporate thermal fluctuations based on non-equilibrium thermodynamics and are
capable of describing certain mesoscopic features that deterministic macroscopic
methods cannot model. The equations of a particle-based mesoscopic model can
be derived from either bottom-up coarse-graining of microscopic dynamics or
top-down discretization of macroscopic PDEs. Regardless of how mesoscopic
models are obtained, they have similar structures, representing relevant physical
mechanisms that dominate mesoscopic processes. Because mesoscopic methods
are grounded in both macroscale and micro-/nanoscale models, they can play
an important role in multiscale modeling of diseases and relevant bioengineering
applications by seamlessly bridging the gap between microscopic molecular biology
and macroscopic bulk behavior.

Despite considerable developments in recent years, particle-based mesoscopic
methods are still evolving. New variations in models, novel theoretical inter-
pretations, and innovative numerical algorithms often appear in literature. These
methods have been applied to a large number of problems, including polymer and
colloidal suspensions, multiphase fluids, biological materials, cell dynamics, and
blood rheology, and new applications in different areas are still emerging. In the near
future, these methods likely will be used even more widely for tackling challenging
problems in biorheology, cellular biology, and bioengineering.

Additional research is needed in several areas, including the parameterization
of mesoscopic models. Tuning model parameters manually by trial and error
only works for simple systems. For problems with high-dimensional parameter
spaces, Bayesian and/or machine-learning methods hold significant promise for
inferring the model parameters (Lei et al. 2017). Coupling mesoscopic methods
with other micro-/macroscopic methods to handle multiscale problems is another
emerging research area. With concurrent coupling algorithms, i.e., domain decom-
position (Tang et al. 2015) or adaptive resolution scheme (Praprotnik et al. 2006),
in the lower limits, the mesoscopic methods can be coupled with microscale
techniques, while in the upper bounds, the mesoscopic methods can be coupled
with discretized PDEs. However, in concurrently coupled system, preserving correct
fluctuations across the interface of heterogeneous solvers remains a challenging
problem. Moreover, there is a need to decrease the computational cost of mesoscale
methods, which could be achieved, for example, by improving the integration algo-
rithms (Leimkuhler and Shang 2015) and efficient parallel implementations with
graphics processing units (Blumers et al. 2017). Domain decomposition is routinely
used to improve the scalability of particle codes. Parallel-in-time algorithms should
be also investigated to further increase mesoscale method performance.
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