
Appl. Math. Mech. -Engl. Ed., 2008, 29(8):975–984
DOI 10.1007/s10483-008-0801-y
c©Shanghai University and Springer-Verlag 2008

Applied Mathematics
and Mechanics
(English Edition)

Floquet instability of a large density ratio liquid-gas coaxial jet with
periodic fluctuation ∗

LI Zhen (李振), HU Guo-hui (胡国辉), ZHOU Zhe-wei (周哲玮)

(Shanghai Institute of Applied Mathematics and Mechanics,

Shanghai Key Laboratory of Mechanics in Energy and Environment Engineering,

Shanghai University, Shanghai 200072, P. R. China)

(Contributed by ZHOU Zhe-wei)

Abstract By numerical simulation of basic flow, this paper extends Floquet stability
analysis of interfacial flow with periodic fluctuation into large density ratio range. Sta-
bility of a liquid aluminum jet in a coaxial nitrogen stream with velocity fluctuation is
investigated by Chebyshev collocation method and the Floquet theory. Parametric reso-
nance of the jet and the influences of different physical parameters on the instability are
discussed. The results show qualitative agreement with the available experimental data.
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Introduction

Plateau[1] observed that a cylindrical liquid jet tends to break up into segments of equal
length which is nine times the jet radius. Neglecting the effects of gravity and ambient gas,
Rayleigh[2] showed that the origin of the jet breakup is the hydrodynamic instability. He
indicated that the fastest growing disturbances had a wavelength equaling nine times the jet
radius. Weber[3] and Chandrasekhar[4] found that the liquid viscosity has stabilizing effects of
reducing the breakup rate and increasing the drop size. Keller, Rubinow and Tu[5] analysed
the spatially amplifying capillary waves by transforming Rayleigh’s dispersion relation to a
moving jet and keeping the frequency real while allowing the wavenumber to be complex. They
found that the temporal and spatial growth rates only agree in the infinite Weber number limit.
Previous studies[6−8] found that jet breakup has two distinctively different modes of instability.
One is the Rayleigh-mode instability due to capillary force in low-speed jets and the other is the
Taylor-mode instability due to interfacial pressure and shear in high-speed jets. The Rayleigh-
mode instability leads to the breakup of the liquid jet into drops of diameter comparable to
the nozzle diameter, while the Taylor-mode instability leads the jet to break up into droplets
of diameter much smaller than the nozzle diameter, which is also called atomization. There are
experimental results[9−11] available showed that the atomized gas with velocity fluctuation of
high frequency is helpful to produce smaller droplets and narrower size distribution, resulting
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in products with higher quality. So, it is worthwhile to investigate the stability of the jet with
velocity fluctuation.

There are not much results of liquid-gas jet with velocity fluctuation, especially for viscous
fluid. When investigating the parametric resonance of inviscid liquid - gas jet with pulsation,
Zhou and Tang[12] obtained Mathieu Equation and discussed the stable and unstable regions.
Wang, Hu and Zhou[13] examined the stability of two-layer flow with periodic fluctuation in a
pipe, and discussed the influences of different physical parameters on stability. Woods, Lin[14]

and Burya et al.[15] studied liquid film flow over a vibrating inclined plane. However, the
previous researchers neglected the effect of viscosity of fluid and seldom studied the cases
involving high density ratio and velocity fluctuation. But there are many applications of large
density ratio liquid - gas jet, for example, in Spray Forming, the density ratio of liquid metal
to gas ranges from 2 000 to 10 000, bringing difficulties to stability analysis. The primary
purpose of this paper is to extend Wang Yanxia et al.’s work[13] into large density ratio range
to investigate the stability of a coaxial viscous liquid - gas jet with velocity fluctuation.

1 Formulation

A cylindrical viscous liquid jet discharged from a nozzle into a coaxial viscous gas stream,

Vg

VL
R1

O z

r

Vg

Gas

Liquid

Gas

η

Fig. 1 Coaxial viscous liquid-gas
jet with periodic velocity
fluctuation

both with velocity fluctuation, as shown in Fig. 1.
The two fluids are assumed to be incompressible.

Impose a small disturbance on the basic flow
V̄ we have Vi = V̄i + V ′

i , i = 1, 2 the subscript 1
stands for liquid and 2 for gas. Substituting it into
the governing equations and boundary conditions
and linearizing the system with respect to the dis-
turbance, and utilizing the normal mode method,
we can obtain like Wang Yanxia et al.[13] equations
in terms of disturbance stream function as follows:
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The dimensionless quantities above are Reynolds number Re = ρ1W0R1
µ1

, Froude number

Fr = W 2
0

gR1
, Weber number We = σ

ρ1W 2
0 R1

, density ratio of gas to liquid Q = ρ2
ρ1

, the ratio of

Reynolds number to Froude number R = Re
Fr , the ratio of dynamic viscosity of gas to liquid

N = µ2
µ1

respectively. Here µ is the dynamic viscosity, ρ is the density, and g is the gravitational
acceleration in negative z-direction.

Boundary conditions at axis and interface are given as follows:
1) At axis r = 0, the axisymmetric boundary conditions:

ϕ1 =
∂ϕ1

∂r
= 0. (3)

2) On the gas-liquid interface r = 1, the stream function satisfies:
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kinematic condition
∂η
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3) At gas stream outer boundary r = R2
R1

= Rmax,

ϕ2 = 0,
∂ϕ2

∂r
−Rmax · ∂2ϕ2

∂r2
= 0. (9)

2 Basic flow

Since the periodic velocity fluctuation are considered, the basic flows can be written as
Ui = (0, 0, V̄i(r, t)), in which the axial velocity V̄i(r, t) = Z̄i(r) + W̄i(r, t), i = 1, 2, and Z̄i(r)
and W̄i(r, t) are the steady and the unsteady part of axial velocity components respectively.

If the pressure gradients are assumed to be constant and dP2/dz
dP1/dz = β[16], the exact solutions

of steady part of basic flow can be obtained as
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where W10 is the magnitude of the jet velocity on the z-axis, W0 is the relative velocity between
gas and liquid. L is the thickness of shear layer which is determined by interfacial condition
Z1(1) = Z2(1). The relations between L and β was discussed in detail by Li Xiaojun et al[16].

The governing equations and boundary conditions of the unsteady part of basic flow are
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W̄1(1, t) = W̄2(1, t), r = 1; (11)

∂W̄1(1, t)
∂r

= N · ∂W̄2(1, t)
∂r

, r = 1; (12)

∂W̄2(∞, t)
∂r

= 0, r →∞. (13)

If the frequency of the periodic fluctuation is ω, according to the interfacial condition
p̄1(z, t)− p̄2(z, t) = We, the pressure in unsteady flow can be written as

{
p̄1(z, t) = C · eiωt · z + We,

p̄2(z, t) = C · eiωt · z,

where C is a complex coefficient[13], and define the real of Wc = −C/(ω · Q) as amplitude
factor of the fluctuating velocity. Let the velocity of unsteady flow W̄i(r, t) = Vi(r)eiωt, we can
obtain the exact solution of (10)–(13) represented by Bessel functions[13]. When the variable
of Bessel function is very large or very small, the velocity of unsteady flow calculated from the
exact solution is inaccurate. This leads to difficulties in the stability analysis of large density
ratio liquid-gas jet. In the present paper, the Chebyshev collocation method is used to solve
the equations (10)–(13).

Nonlinear transformations are applied to map the physical space to computational space in
order to improve the computational efficiency and accuracy. The nonlinear transformations on
the inner liquid flow and outer gas flow are

r1 = 1 +
A(y1 − 1)

y1 + 2A + 1
, r2 = 1 +

A1(y2 − 1)
A2 − y2

, (14)

in which A2 = −1 2A1
Rmax−1 , A and A1 are adjustable parameters. The transformations tend to

be linear if A and A1 become large. For smaller A and A1, there will be more collocation points
distributed within the shear layer at gas-liquid interface.

Then, Vi(r) can be expanded by Chebyshev polynomials as Vi(r) =
N∑

k=0

Vi(rk)ψk(r), in which

ψk(r)|Nk=0 are Lagrangian cardinal functions with Gauss-Lobatto collocation points. Then the
differential coefficient on Vi(r) can be written as dm

drm Vi(rj) =
∑N

k=0 Vi(rk)(Dm)jk, thus we can
solve the equations (10)–(13) and obtain numerical solution of unsteady flow.

3 Chebyshev collocation method

Chebyshev collocation method[17] with Gauss-Lobatto collocation points and the nonlinear
coordinates transformations (14) are used to solve the governing equations (1)–(9). We can
obtain the equations as follows:
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where
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M1 and M2 are the numbers of the collocation points in the liquid and the gas region respec-
tively, and I1 and I2 are identity matrix of M1 and M2 dimensions respectively. The boundary
and the interfacial conditions are:

1) At axis y1 = −1, the axisymmetric boundary conditions:
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3) At gas stream boundary y2 = −1,
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Using the Lanczos method, eight equations in (15) are replaced by eight boundary conditions
(16), (18)–(22). The interfacial function is an additional unknown variable, which can be solved
by equation (17).

Then we obtain a system of ordinary differential equations with M1 + M2 + 1 unknowns
ϕ11, ϕ12, · · · , ϕ1M1 ; ϕ21, ϕ22, · · · , ϕ2M2 ; h:

M
∂ϕ

∂t
= [B + C · cos(ωt) + D · sin(ωt)]ϕ, (23)

where ϕ = (ϕ11, ϕ12, · · · , ϕ1M1 , ϕ21, ϕ22, · · · , ϕ2M2 , h)′ and M ,B,C,D are constant matrixes
whose elements are given in (15)–(22). It can be found that the equation (23) are ordinary
differential equations with periodic coefficients. So the solutions can be obtained by Floquet
theory.

According to Floquet theory[18], there exists a constant matrix R satisfies ψ(t+T ) = R·ψ(t),
in which T = 2π/ω, ψ(t) is the fundamental solution matrix for system (23). If the eigenvalues
of the matrix R are λi(i = 1, · · · ,M1+M2+1), which are called Floquet multipliers, the solution
of the linear system (23) can be written in the form of ϕi = eγitZi(t), where γi = 1

T lnλi, Zi(t)
is a periodic function with a periods of 2π/ω, and γi are called as characteristic exponents.

In the present paper λmax represents the largest modulus of all Floquet multipliers of fun-
damental solution matrix ψ(T ), and Re(γ)max is the growth rate of the most unstable mode,
which corresponds to the real parts of characteristic exponent. The stability of system can be
determined by λmax or Re(γ)max, If λmax > 1, namely Re(γ)max > 0, the system is unstable; if
λmax < 1, namely Re(γ)max < 0, the system will be stable, if λmax = 1, namely Re(γ)max = 0
the system is neutrally stable.

4 Floquet stability analysis

Based on the works of Zhou and Tang[12] who investigated the parametric resonance of
inviscid liquid metal-gas jet with periodic fluctuation, and Wang, Hu and Zhou[13] who inves-
tigated the stability of two-layer flow with periodic fluctuation in a pipe, this study focus on
the stability analysis of coaxial large density ratio viscous liquid-gas jet with periodic fluctu-
ation. The physical parameters of liquid are based on liquid aluminum, and gas is nitrogen
or argon. Thus ρ1 = 2500 kg/m3, µ1 = 0.86 × 10−3 Pa · s, S = 0.836 N/m; ρ2 = 0.5 kg/m3,
µ2 = 3.14 × 10−5 Pa · s, The dimensionless parameters are given in the captions of figures
presented, Re(γ) is growth rate of the system, k is wave number.

Varying the Weber number while keeping other parameters constant, Fig. 2 shows that there
are three main unstable regions, they are the first one due to surface tension, the second one
due to gas-liquid shear, and the third one with larger wave number due to velocity fluctuation.
When Weber number is small, the unstable region caused by surface tension is dominated by the
unstable region due to shear. Therefore the curves of We = 7.3 × 10−5 and We = 1.0 × 10−4

have only two unstable regions. As Weber number is increased, the unstable region due to
shear becomes smaller and the growth rate decreases. It can be observed that the unstable
region caused by surface tension appears in the curve of We = 5.0 × 10−4. So the effects of
surface tension on the different unstable regions are quite different. Surface tension can cause
instability, and it can suppress the instability due to shear, while it can hardly influence the
instability caused by velocity fluctuation.

Figure 3 shows the effect of the viscosity of fluid with the stable and unstable regions in
(k, Re) plane plotted. Because Reynolds number is inversely proportional to viscosity, the
variation of Reynolds number will reflect the change of viscosity if other parameters are fixed.
For small Reynolds number i.e. large viscosity, there is only one small unstable region. More
and larger unstable regions appear with larger Reynolds numbers. It shows that the unstable
regions dwindle and even disappear when the viscosity of fluid increase. So the viscosity of
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fluid suppresses the occurrence of the oscillating modes. When they investigated the parametric
resonance of nonlinearly coupled micromechanical oscillators, Zhu and Ru[19] made the similar
conclusion that the increasing damping is helpful to stabilize the system.

Figure 4 shows the effect of the velocity amplitudes on the stability. Zhou and Tang[12] found
that when the velocity amplitudes is 0.1, there is obvious parametric resonance in the inviscid
jet. For viscous jet with amplitude factor Wc = 0.1, only one unstable region is found with quite
small growth rate. If increasing Wc to 0.5, two oscillating modes will appear in Fig. 4(a). When
Wc = 2, the growth rate becomes larger and the unstable regions due to velocity fluctuation
become evidently observable, as shown in Fig. 4(b). Along the wavenumber axis, the system
goes through unstable–stable–unstable–stable–unstable–stable, which is a similar result with
that of Zhou and Tang[12]. This concludes that the strength of velocity fluctuation enhances
the parametric resonance of the system.
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Fig. 5 Effect of frequency on stability

Figure 5 studies the influences of applied frequency on growth rate in (k,Re(γ)) plane.
As the frequency of velocity fluctuation increasing, the unstable region caused by fluctuation
enlarges while the wave number of the most unstable wave increase, which implies that the
diameter of breakup droplets will decrease. Zhou and Tang[12] and Wang, Hu and Zhou[13]

also found that the increase of frequency will decrease diameter of breakup droplets, which is
consistent with the present results.

The unstable region due to gas-liquid shear enlarges monotonously with the increase of
frequency. Figure 6 shows that the growth rate of the most unstable wave due to shear increases
monotonously. This is because the thickness of shear layer in unsteady flow decreases with the
increase of frequency, as shown in Fig. 7.

To compare the theoretical results with the experiment of aluminum atomization by argon,
which is conducted by Rai et al.[10,11,20] in USGA Process. Figure 8 shows the curves of sta-
bility analysis in (k,Re(γ)) plane for three different experimental conditions, Vg is velocity of
argon. Results indicate that: (i) The first unstable region with smaller wave-number is caused by
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surface tension. As the velocity of argon is increased, its growth rate decreases. (ii) The liquid-
gas shear or the velocity difference between gas and liquid will be helpful to enlarge the unstable
region caused by shear. (iii) With the increase of gas velocity, the effect of the oscillation of
argon become stronger, the unstable region duo to velocity fluctuation will become larger.

Although in most of cases we calculated the growth rate induced by shear is larger than
that by fluctuation, it might be interesting to note that sometimes the later exceeds the former
one, as shown in Fig. 2. Assuming the half wavelength of the most unstable wave is the average
diameter of droplets, some results obtained are compared with the experimental data of Rai et
al.[11] in Fig. 9. d0 is the average powder size (sieved in microns), Pgas is atomizing gas pressure.
It is found that the diameter of droplets in our result is in the same order of magnitude with
experimental data and the tendency of variation of powder size agrees well with experimental
data.
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Fig. 9 Compare computational result with
experimental data

5 Conclusions

The stability of a cylindrical viscous liquid metal jet in a coaxial viscous gas stream with
periodic velocity fluctuation is investigated by Chebyshev collocation method and the Floquet
theory. Since the exact solution with Bessel function for the unsteady basic flow is inaccurate
when density ratio of liquid to gas is large, a Chebyshev collocation method is applied to
solve the basic flow numerically. The effect of different physical parameters on the stability
characteristics in liquid-gas jet are investigated in the present study. There are three possible
unstable regions：the first one due to surface tension, the second one due to gas-liquid shear,
and the third one with larger wave number due to velocity fluctuation.

Results show the amplitudes of velocity fluctuation have great impact on the stability of
jet. The system becomes more unstable for larger amplitudes. The viscosity of fluid suppresses
the occurrence of unstable mode induced by fluctuation. The unstable regions will dwindle,
even disappear, with the increase of the viscosity of fluid. The surface tension of liquid hardly
influences the instability which is caused by fluctuation, whereas affects the instability due to
shear greatly. The frequency of velocity fluctuation has effect on both of the instability due
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to fluctuation and shear by changing the thickness of shear layer in unsteady basic flow. The
enhancement of gas-liquid shear can decrease the unstable region due to surface tension, but
increase the unstable region due to shear. Finally, the comparison of the present theoretical
results of average diameter of droplets show qualitative agreement with the experimental data
available.
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