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ABSTRACT: The purpose of this study was to identify baseline procedures that are equally
sensitive to negative and positive changes in heart rate variability, specifically in the
context of moment-to-moment comparisons. Participants were engaged in a dual-task
paradigm consisting of either a high- or low-workload primary task paired with a sec-
ondary task. Shifts between primary tasks occurred at set intervals. Average arousal was
calculated for each primary task in relation to six different baseline procedures. A 2 x 6
repeated-measures ANOVA revealed a significant main effect for the baseline type, 
F(1, 58) = 3.90, p = .04, η2 = .08. Planned comparisons revealed that certain procedures
were biased to detect positive change and others negative change. The results of this
study provide evidence that when developing physiologically based measures for
detecting behavioral and/or cognitive state changes, the method used to calibrate
these measures requires special consideration. 

Introduction

THE PURPOSE OF THIS STUDY WAS TO IDENTIFY EFFECTIVE COMPARISON CONDITIONS (I.E.,
baselines) for detecting state change in heart rate variability data. Researchers have
struggled with change detection for many decades, and the problem has been defined
and labeled in a variety of ways over time. Although the issue of physiological base-
lines is applicable across many disciplines and areas of study, the emphasis of this
paper will be on how this issue is relevant to augmented cognition and the develop-
ment of a closed-loop human-machine system. Specifically, this paper discusses the
importance of appropriate physiological baseline, or calibration, procedures for use
in paradigms in which accurate moment-to-moment, “real-time,” comparisons of
physiological data are made with the purpose of detecting cognitive and/or behav-
ioral state changes. 

The act of detecting physiological change traditionally involves comparing the
information of interest (e.g., current physiological state) with a baseline period (Stern,
Ray, & Quigley, 2001). The quality of the baseline against which a change is detect-
ed and interpreted is dependent on the methodology used to collect and establish the
baseline data. As noted by Jennings, Kamarck, Stewart, Eddy, and Johnson (1992),
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“baselines contribute as much as response levels to change measures and thus require
equal methodological care in their assessment” (p. 742). In general terms, the base-
line period sets the standard against which the information of interest is compared.
Setting the standard for any given system is typically referred to as calibration. We will
use the term calibration throughout this paper to refer to the process of comparing
the mean output of a given standardized period of data (i.e., baseline data) with the
new data of interest (e.g., experimental data). 

In psychophysiology literature, calibration usually consists of comparing data
collected while an individual is at rest but awake for a given period with the data of
interest – for example, during an experimental stimulus of interest (Hastrup, 1986;
Jennings et al., 1992). Recently, some researchers have explored using a vanilla base-
line technique, which replaces the resting baseline period with a simple, minimally
demanding task to maintain consistent alertness and baseline stability (Jennings et al.,
1992). Although both the resting and vanilla baseline techniques are commonly used
when measuring physiological reactivity (e.g., an increase in heart rate), these meth-
ods of calibrating a physiological measure may result in biased state detection in
comparison with other calibration methods when used to detect both increases and
decreases in physiological activity that are required by augmented cognition systems. 

The qualities of the calibration period will determine the level of bias present
when the data of interest are interpreted (Jennings et al., 1992; Kamarck, Jennings,
& Manuck, 1993) and the precision of the system as a whole in differentiating var-
ious states. The qualities refer to the content of the calibration period relative to the
state changes of interest. For example, the calibration period could be the tradition-
al resting baseline as described previously, or a period of combined states such as rest
or light activity. Given the possibility of real-time wearable physiological measures,
it could conceivably also consist of an individual’s total physiological life history from
when the system was first activated to the current time. The aforementioned calibra-
tion or comparison periods are very different; therefore, they have different uses, some
of which are of interest to the area of augmented cognition. 

Augmented cognition typically involves detecting positive and negative physio-
logical state changes, particularly those in which performance may be compromised.
For example, one physiological construct of interest, as it relates to performance,
is autonomic arousal. Research has shown that changes in physiological indicators of
arousal are often associated with changes in workload (Grossman, Stemmler, & Mein-
hardt, 1990; Porges, 1992). Changes in arousal in turn have effects on performance.
Arousal that is too low has been associated with a lack of energy (Dickman, 2002),
whereas high arousal has been associated with changes in attention and concentration
(Dickman, 2002) as well as with increased muscle tension (Cathcart & Pritchard,
1998) and coordination difficulties (Robazza, Bortoli, & Nougier, 1998). Midrange
arousal, on the other hand, has been associated with enhanced memory (Nielson,
Yee, & Erickson, 2005) and accuracy (Dickman, 2002).

In augmented cognition scenarios, low physiological arousal (e.g., fatigue) and
high physiological arousal (e.g., stress) may need to be monitored in order to prevent
detrimental effects on performance. Because the two states differ dramatically and

Establishing Appropriate Physiological Baseline 287



are extreme opposites, calibration should allow for distinguishing those states from
one another with accuracy. Accuracy, in this sense, entails both correctly identifying
the presence of a state change and determining the actual magnitude and direction
of that state change relative to the calibration or comparison period. 

Researchers studying cardiovascular reactivity have noticed differences in their
findings based on whether they used a resting baseline or a vanilla baseline in their cal-
culations to assess the degree of cardiac reactivity (i.e., positive physiological change)
when participants performed a variety of stimulating cognitive and psychomotor tasks
(Jennings et al., 1992; Kamarck et al., 1993). Those results suggest that an even great-
er number of discrepancies may exist between calibration methods when trying to
detect physiological change in both positive and negative directions. For example,
if the mean heart rate during a resting baseline is compared with the mean heart rate
during a period in which an individual is on the verge of falling asleep, the difference
between the two would be rather small. The difference would increase slightly if a
vanilla baseline were used instead. 

If, on the other hand, the mean heart rate values obtained during the resting base-
line and the vanilla baseline are compared with the mean heart rate during a period
in which an individual is experiencing stress, the difference in mean heart rate be-
tween the resting baseline and the stress would be larger than the difference between
the mean heart rate values obtained during the vanilla baseline and the period of stress
(Jennings et al., 1992). Those differences point to the need to carefully consider what
state changes are of interest in a closed-loop system and how to equally optimize de-
tection of them so that the system is “honest” rather than biased in the sense of being
more sensitive to either positive or negative physiological change. As Jennings et al.
(1992) pointed out, a baseline should be conceptualized as “a comparison condition
rather than a basal state” (p. 743), and “differences between baseline levels might be
functionally significant if they modified the size of responses to tasks” (p. 746).

The problem of accurate magnitude detection is analogous to the well-known
physiological Law of Initial Values (LIV; Wilder, 1957), which states that the magni-
tude of the physiological response to a stimulus will depend on the initial prestim-
ulus state of the individual. This effect is present for those physiological phenomena,
such as heart rate and respiration, that are subject to rapid antagonistic action by the
autonomic nervous system (Hord, Johnson, & Lubin, 1964). 

Keeping the LIV in mind, if the calibration period (i.e., prestimulus state) of the
physiological data is not well balanced and is biased toward the low end of a phys-
iological measure, for instance, then some environmental conditions experienced
by an individual that result in physiological responses that are excitatory in nature
(e.g., stress) may appear to be more severe than other inhibitory physiological con-
ditions of equally detrimental nature (e.g., fatigue). 

In order to have a truly accurate augmented cognition system, the calibration peri-
od must be well balanced such that both the low- and high-end states can be equally
and successfully detected. Achieving a well-balanced calibration period requires care-
ful consideration of a principle often encountered in statistics and probability, regres-
sion to the mean. Regression to the mean is the idea that over time, repeated sampling
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from a given population will ultimately lead to the leveling out of a given sample’s
mean. In the case of physiological measurement, each data point collected makes up
a sample of an individual’s physiological population for a particular measure. In gen-
eral, when a greater number of cases are used to compute the mean of a sample taken
from a given population, the sample mean tends to be more accurate, less error prone,
and, in the end, more statistically powerful (Rosenthal & Rosnow, 1991). 

It is useful to think of the calibration period as sampling from an individual’s
physiological population. Ideally, to detect phasic physiological changes, a measure
would have access to many data points. Using several years of data, for example, one
would find that the individual’s physiological measure would have unsurpassable sen-
sitivity and accuracy for detecting state changes. However, in practical terms, this is
not currently possible. 

Researchers studying cardiovascular reactivity have previously demonstrated that
resting and vanilla baseline values obtained by averaging several values, such as mul-
tiple blood pressure recordings, have increased reliability over using a single value
for a given period at both a resting or vanilla state when used to derive reactivity
(Jacob & Shapiro, 1994; Kamarck et al., 1993). Specifically, the reactivity scores ob-
tained were less inflated when aggregated baseline values were used across a variety
of typical resting and vanilla baseline settings. Based on these results, which exam-
ined only positive changes relative to a calibration period, it is reasonable to believe
that calibration periods used to examine both negative (e.g., fatigue) and positive
(e.g., excitement) state changes should contain as many data points as possible.
Further, those data points should be from the entire range of values that might be
encountered so that the calibration value represents the median state from which
change is measured. 

For example, if we are interested in using the same calibration period to differ-
entiate a fatigue state and a stressful state, then we might have an individual carry out
tasks such as sleeping, perform light active tasks, and even exercise to push his or her
heart rate to both ends of the continuum so that we can, in effect, obtain a thorough
sampling of that individual’s heart rate population. If we use tasks to evoke low, mid-
dle, and high heart rates equally, and if we use a sufficient number of data points,
then our comparison sample mean (i.e., calibration period) should level out. Also,
the mean value should be truly representative of a medial state of being because it
involved sampling heart rates under a variety of conditions. 

Currently, it appears that the aforementioned mixed method is being applied off-
line by some augmented cognition researchers using electroencephalography (EEG;
Belyavin, 2005; Berka et al., 2005). Essentially, they have developed a procedure con-
sisting of a variety of tasks and then use baseline data collected during specific tasks
to train the EEG so that classification of incoming data can occur based on the train-
ing data. This calibration method appears to serve well for that purpose and allows
a high degree of sensitivity and accuracy as long as the training data used for calibra-
tion tap into the full range of variability experienced in the actual experimental ses-
sion. In fact, Belyavin (2005) argued in favor of this type of calibration. He approached
his argument from a cognitive perspective rather than the physiological perspective
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presented in this paper. He stated that calibration tasks should be representative of
relatively “pure” cognitive states that were readily identified and associated with the
states that the measurement is trying to differentiate. In this paper, we state that the
physiology evoked from these cognitive states should be representative of the range
of physiology expected during the states of interest. Belyavin’s argument can be ex-
tended even further into the idea that the calibration period should contain tasks that
represent all the pure cognitive states, behavioral states, workload states, or other states
to which one would expect the measure to be sensitive. 

It is important to note that these researchers employ one of two approaches to
calibrating physiological data. Their approach is similar to that of a cluster analy-
sis, in which classifiers are developed to determine whether incoming data can be
classified as having properties of high-workload situations or low-workload situa-
tions. Although that approach differs from the “calculate and compare with baseline
value” approach presented in this paper, the same concerns exist, as the difference in
technique simply results in a variation of the same issues. From the perspective of this
paper, if one manipulates the physiological measure directly in a way that adequate-
ly represents the population of physiological responses expected, one will adequately
calibrate the measurement for the state one is trying to detect regardless of the analy-
sis approach to data calibration that has been employed.

Some researchers, on the other hand, who are also interested in cognitive state
measurement, appear to continue using biased calibration periods when attempting
to detect both low and high cognitive states. Backs, Shelly, and Lenneman (2005),
for example, used a resting baseline for comparison when examining the operation
of the different autonomic control modes of the heart in response to a variety of 
information-processing tasks, including driving. Utilizing only a resting baseline for
calibration purposes may have limited the magnitude of the resulting inhibitory
changes of the autonomic nervous system that they found, resulting in lower accu-
racy in the detection of state changes. Interestingly, the authors acknowledged the
baseline calibration period issue as a concern when examining the physiological
correlates of information processing in real time. 

In addition, consider the work of Prinzel, Freeman, Scerbo, Mikuka, and Pope
(2003), who examined adaptive automation by a system based on levels of engage-
ment. Using EEG technology, the researchers calculated an engagement index to re-
flect changes in arousal and attention and used the index to drive automated changes
in experimental conditions in an effort to improve participant performance. At any
given moment in the experiment, the participant’s current engagement index was
compared with a baseline engagement index mean. The baseline engagement index
was determined by having participants sit quietly for 5 min with their eyes closed
and another 5 min with their eyes open. The data obtained during those periods were
averaged to create a baseline engagement index. Based on the behaviors performed
by the participants during the baseline, it appears that the mean engagement index
during that time would be quite low and any comparison with that value will be
sensitive to positive changes in cognitive state more so than negative changes in
cognitive state. 
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The authors stated that in determining adaptive automation, “an EEG index
above baseline was taken to indicate that the participant’s engagement level was high,
whereas an EEG index below baseline was taken to indicate that engagement level
was low” (p. 605). Essentially, the authors were saying that attention and arousal
at any moment above the attention and arousal evoked by 5 min of eyes-open data
averaged with 5 min of eyes-closed data equates to high engagement. This logic seems
flawed in that the engagement of the participant during the baseline is already quite
low in comparison with the task requirements. In other words, most of the time, a
participant may appear to be “highly engaged” when, in fact, he is only engaged more
than he was when compared with the very low baseline. 

A similar phenomenon may have also been present in the work by Freeman,
Mikulka, Scerbo, and Scott (2004), who used a 12-min practice session to establish
their baseline engagement index. For their adaptive automation paradigm, shifts in
the experimental conditions occurred when the engagement index at any moment
was more or less than 0.2 SD from the baseline engagement index. Although the base-
line engagement index values were not reported, it appears that the calibration period
may have been biased toward detecting negative changes in the cognitive state attrib-
utable to the calibration period, which consisted entirely of an engaging practice ses-
sion in which participants were trying to learn about the task.

Overall, it appears that the quality of the calibration period methodology used
for detecting state changes in the positive and negative directions in augmented cog-
nition systems varies. We use heart rate variability data, as measured by the Clemson
University-developed Arousal Meter (Hoover & Muth, 2004), to illustrate the com-
plexity and level of involvement necessary to address the problem of optimizing
physiological state detection through the use of an appropriate calibration method
for just one physiological measure. Given that closed-loop augmented cognition sys-
tems intend to function with a battery of physiological measures, the complexity of
the problem can quickly multiply.

Using the Arousal Meter, a study was conducted to examine the issue of physi-
ological state detection with respect to the calibration method used. Six calibration
methods were used to examine arousal state detection in response to experimentally
created low- and high-workload states. We compared five of the calibration methods
with what we feel to be the gold standard calibration method based on the quality
and length of the calibration period. The against-self method was considered the gold
standard and involved using all the data collected during an experimental session to
calculate a mean calibration value for that data series. All the data were then com-
pared with that value sequentially. The large sample size and the wide range of vari-
ance in the sample give this method a reliability advantage (Jacob & Shapiro, 1994;
Kamarck et al., 1993) and should have maximized the likelihood that the method
would detect both negative and positive state changes equally. 

The previously discussed and frequently used traditional resting baseline was
used in the study and compared with and against the self-calibration method. In addi-
tion, we included two less commonly used calibration methods – a comprehensive
baseline and a practice baseline. The comprehensive baseline included data from the
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tasks used in the study as well as resting data. The practice baseline included only task
practice data. Last, we included two running calibration methods, running with base-
line and running without baseline, which, unlike the other calibration methods, allow
for uninterrupted, real-time data collection, analyses, and interpretation. These running
calibration methods involve the physiological measure constantly refining and up-
dating the calibration value as new data enter the computational system, which in
this case was the Arousal Meter. The running-with baseline calibration method used
incoming data from the comprehensive baseline and the experimental task data to
continually refine the calibration value. The running-without baseline calibration
method used only task data to continually refine the calibration value. Specific details
about each calibration method can be found in the Method section. 

Based on the previously discussed literature and the statistical properties of the
calibration periods used, we formulated hypotheses regarding the ability for each of
the calibration methods to detect the low and high arousal states that were experi-
mentally created by manipulating workload in comparison with the ability of our gold
standard against-self calibration method. Specifically, we first hypothesized that the
resting baseline method would be biased to detect high arousal states and would
inflate those effects while having decreased sensitivity to detect low arousal states. This
prediction was based on the resting baseline period being composed of low arousal
states only and having little variance. 

Second, we hypothesized the opposite effect for the practice baseline, in that it
would be biased to detect low arousal states and would inflate those effects while hav-
ing decreased sensitivity to high arousal states. This prediction was based on the prac-
tice baseline period being composed primarily of medium to high arousal states and
having little variance. 

Third, we hypothesized that the state detection capabilities of the comprehensive
baseline for low and high arousal states would not differ significantly from the gold
standard against-self because the comprehensive baseline period was most similar
to the gold standard. Presumably, it was composed of a wide range of arousal values
from practicing the low- and high-workload tasks as well as a resting baseline and
therefore had more representative variability. 

Fourth, we hypothesized that the state detection capabilities of the running-with
baseline for low and high arousal states would not differ significantly from the gold
standard because calibration began at the start of the comprehensive baseline peri-
od. The running-with baseline method may have equal sensitivity to state changes in
the negative and positive directions provided that the individual’s physiology is suf-
ficiently manipulated in a controlled and comprehensive manner prior to the data
collection and analysis period of interest. Based on some of our previous pilot work,
we determined that approximately 20 min of data are needed to stabilize the mean
and standard deviation of an individual’s arousal measure when performing a given
task or set of tasks. Thus, for the Arousal Meter, the running-with baseline calibra-
tion method should allow for adequate accuracy and sensitivity for detecting changes
after 20 min of data have been collected prior to experimental manipulation. In this
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case, more than 20 min of comprehensive baseline data were used, motivating the
prediction that this calibration method would perform well. 

Our fifth hypothesis was that the running-without baseline calibration method
would be biased toward detecting low arousal states and would inflate those effects
while having decreased sensitivity to high arousal states. This prediction was based on
the fact that the running calibration always began at the start of the high-workload
task in the experimental paradigm. Therefore, the incoming high-workload data at
the beginning of the experiment were being compared with the high calibration val-
ues. The low-workload task data, collected later in the experiment, were also being
compared with the high calibration values. Hence, the running-without baseline cal-
ibration method would be biased toward detecting low arousal states.

Summary of Hypotheses
1. The resting baseline method would be biased toward detecting high arousal

states and would inflate those effects while having decreased sensitivity to
detect low arousal states (positive directionality).

2. The practice baseline would be biased toward detecting low arousal states and
would inflate those effects while having decreased sensitivity to high arousal
states (negative directionality).

3. The state detection capabilities of the comprehensive baseline for low and high
arousal states would not differ significantly from the gold standard against-self
(nondirectional).

4. The state detection capabilities of the running-with baseline for low and high
arousal states would not differ significantly from the gold standard against-self
(nondirectional).

5. The running-without baseline calibration method would be biased toward
detecting low arousal states and would inflate those effects while having de-
creased sensitivity to high arousal states (negative directionality). 

Method
Participants

Fifty-six participants, 27 males and 29 females, with a mean age of 19.29 years
(SD = 1.04 years) were recruited using Clemson University’s online participant pool.
All participants read and signed a consent form approved by the Clemson University
Institutional Research Board prior to participating.

Participants were monetarily compensated for their time. They were given $4.00
for simply participating. Bonus compensation was commensurate with performance
in the form of a monetary composite score on the primary and secondary tasks as a
whole. Participants received half the amount earned on the primary and secondary
tasks combined. This was attributable to participants performing better than expect-
ed in pilot testing. In order to preserve the ratio of money gain to money loss that
was observed during pilot testing, the amount earned was halved. 
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Apparatus

Physiological recording equipment and software. Arousal was objectively measured
by connecting participants to a fetrode-based EZ-IBI device (UFI, Morro Bay, CA).
The EZ-IBI derived inter-beat intervals (IBIs) as they naturally occurred in time (i.e.,
asynchronously). IBIs are the distance in time (milliseconds) between the R-waves of
the electrocardiogram (EKG) series. The asynchronous IBIs were recorded and ana-
lyzed using the desktop version 2.4b of the Arousal Meter (Hoover & Muth, 2004). 

The Arousal Meter algorithm first passes the IBIs through a buffer, and errors in
the IBI series are automatically detected and corrected. The asynchronous IBIs are
then read into a 64-s data window as they are sampled 4 times every second (4 Hz;
i.e., synchronously). Hence, the data window moves forward in time every 0.25 s. It
is important to keep in mind, however, that on average, IBIs occur once per second
(1 Hz). So, although the data window may theoretically contain new data from a
computational point of view, from a physiological point of view, new IBIs must be
produced by the human physiology before they can be detected by the EZ-IBI and
used by the Arousal Meter. Until new IBIs occur, the previous IBIs are over-sampled
at a rate of 4 Hz. 

As the data window moves, the IBIs are plotted over time. When plotted over
time, the IBIs form a wave-form. The IBI wave-form is broken into its component fre-
quencies using spectral analysis. The high-frequency component between 0.15 and
0.5 Hz, also known as respiratory sinus arrhythmia (RSA), has been established as an
index of parasympathetic nervous system activity, the branch of the nervous system
responsible for relaxing the body (Eckberg, 1983; Grossman, Karemaker, & Wieling,
1991; Katona & Jih, 1975). RSA data are continuously derived from the IBI data. To
standardize the physiological data, log RSA data are converted into standardized
Z-scores that are updated at a rate of 4 Hz. Standardizing the log RSA data allows for
comparisons both between and within participants. The standardized Z-score rep-
resents the individual’s arousal at that given point in time. When RSA is low, arousal
is high and vice versa. Therefore, standardized scores are negated to account for this
inverse relationship, such that positive standardized arousal corresponds to increas-
es in ANS arousal.

In order to obtain the aforementioned physiological data, ConMed Cleartrace
electrodes (ConMed Corp., Utica, NY) were applied to participants’ skin following
skin preparation using Omni Prep abrasive cleansing paste (D.O. Weaver & Co.,
Aurora, CO). Participants were connected to the EZ-IBI module using three elec-
trodes. Electrode placement was as follows: positive below the lowest left false or
vertebrochondral rib, negative in the upper center region of the sternum (i.e., breast-
bone), and reference below the lowest right false or vertebrochondral rib.

Dual-task paradigm. The dual-task paradigm designed for the purposes of this study
consisted of both a primary and a secondary task (see Figure 1). The primary task
switched between a shooting task and a surveillance task. A modified mental arith-
metic task based on the one developed by Turner et al. (1986) served as the sec-
ondary task. 
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The shooting task was designed to be a high-workload task. During the task, a
spaceship was visible at the bottom of the screen. The spaceship could only move
horizontally. Waves of enemy spaceships containing 3 to 15 ships appeared, as well
as ammunition and life packets. The enemy ship pacing varied such that each wave
of enemies contained fast-moving ships and slow-moving ships. The fast-moving
ships took approximately 1–2 s to move across the screen. The slow-moving ships
took approximately 6 s to move across the screen. The enemies also varied in ap-
proach such that some were heat seekers (i.e., followed the player ship) and some
simply moved vertically down the screen, horizontally across the screen, or diago-
nally across the screen. The enemy fire rate was high throughout the task such that
at least one enemy, if not more, was firing at any given time. The goals of the task were
to shoot the enemy spaceships using the left mouse button, keep from getting hit with
enemy fire, and sustain ammunition and life by collecting the falling ammunition
and life packets. 

Participants earned $0.02 on the task by hitting enemy spaceships and lost $0.02
when struck by enemy fire or an enemy ship. In addition, participants lost $5.00 when
a life was lost. A life was lost if the participant ran out of life points. One life point
was lost each time the participant’s ship was hit with enemy fire and 10 points were
lost when the participant’s ship collided with an enemy ship. Once a life was lost, the
life gauge automatically refilled to the original 100 points. Finally, participants lost
money if they depleted their ammunition. Running out of ammunition did not result
in the loss of life, but the participants lost $2.00 when the computer had to refill the
gauge for them. Both life points and ammunition appeared on the screen routinely

Figure 1. Screenshot of the high-workload scenario containing the shooting task and
mental arithmetic.



throughout the game for the participants to collect. Upon collecting a life point or
ammunition packet, the respective gauge was filled to 100 points. The shooting task
monetary score was visible to the participants at all times and was located in the right-
hand corner of the left-hand portion of the screen. 

The surveillance portion of the primary task was designed to be a low-workload
task and consisted of a warrior detection task. The participants were instructed to
watch for a distinct red warrior ship with red engines among all the “regular” gray
enemies. The warrior ship could appear randomly from any direction or angle on
the screen. In fact, a regular enemy could transform into a warrior ship at any mo-
ment. Warrior ships appeared every 30 s to 60 s. Performance was measured as how
long it took participants to detect the warrior ship (i.e., reaction time). When the ship
appeared, two behind-the-scenes clocks started. The first was a monetary clock that
counted down and continued to count down until the ship was noticed, as regis-
tered by a mouse button press. The clock started at $3.00. For every second that the
participant took to recognize the warrior ship, the monetary clock decreased by $0.60.
The resulting monetary amount was then added to or subtracted from the overall
surveillance task monetary score. The second clock was a reaction-time clock that
started at zero and continued to increase until the participant indicated that he or she
saw the warrior ship by pressing the left mouse button.

The mental arithmetic task consisted of three levels of math problems. Level one
consisted of 1-digit + 1-digit problems; level two, 2-digit + 1-digit problems; and level
three, 2-digit + 2-digit problems. The participants were presented with one hori-
zontal math problem at a time beginning with level one. A correct answer resulted
in a jump of one level and an incorrect answer resulted in lowering of one level. Parti-
cipants were given 5 s to answer level-one problems, 10 s for level-two problems,
and 15 s for level three. The score for the mental arithmetic task was located in the far
right-hand corner of the computer monitor right above the mental arithmetic task.

A green overall mental arithmetic monetary score indicated that the participant
gave a correct answer, and a red overall mental arithmetic score indicated that the par-
ticipant gave a wrong answer. To keep participants’ motivation high, correct respons-
es resulted in an increase in their mental arithmetic score, and monetary earnings and
incorrect responses resulted in a decrease in their mental arithmetic monetary score.
Failure to answer a problem in the allotted time resulted in a decrease in the monetary
score. Level-one problems were worth $0.02, level two $0.04, and level three $0.06.

Both tasks performed by participants were locally developed and modified to
meet the needs of the current study and were displayed on a PC with dual 800Mhz
Pentium III processors, 1 GB of RAM, Windows 2000 Professional operating sys-
tem, and a 15-inch LCD display. Participants’ eyes were approximately 25 inches and
no more than 34 inches from the monitor. They were instructed to focus most of their
attention on the primary task without neglecting the secondary task. The primary
task was located on the left-hand portion of the monitor and occupied 75% of the
total screen space (see Figure 1). It was described to the participants as the most
important and crucial task. If participants performed well on the primary task, they
had the potential to earn significantly more money relative to the secondary task.
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If they performed poorly, they could lose significantly more money relative to the
secondary task. 

When the primary tasks switched, the participant’s representation in the game –
a spaceship – changed in appearance from a solid red ship during the shooting task
to a black-filled ship outlined in red during the surveillance task. In addition, the
word “Shooting” or “Surveillance” temporarily appeared in the center of the screen
in a large font the moment the tasks switched. With the exception of ship appearance,
the two primary tasks were identical in appearance but differed in operation.

Experimental Design
This study examined the ability of six calibration types to differentiate the low-

workload task (surveillance task) and the high-workload task (shooting task). There
were two independent variables: the type of primary task (surveillance task or shoot-
ing task) and the calibration type (calibration against self, calibration against a com-
prehensive baseline, calibration against a resting baseline, calibration against a practice
baseline, running calibration with a comprehensive baseline, and running calibration
without a baseline). Hence, the design of the study was a 2 (task) × 6 (calibration type)
repeated-measures design. There was one dependent variable – estimated arousal de-
rived from heart rate variability data and calculated by the Arousal Meter.

Procedure
Upon entering the laboratory, participants were given an informed consent form

to read and sign. In addition, any questions the participants had were answered. They
were then connected to the EZ-IBI recording device via three electrodes. The Arousal
Meter was started and physiological data collection began. Participants were then intro-
duced to an extensive tutorial that described in detail how to complete each task. The
compensation method was also explained in the tutorial. Participants were instruct-
ed to complete the tutorial at a pace that would lead to a complete understanding
of the tasks. The mean time to complete the tutorial was 7.78 min (SD = 1.84 min).
After completing the tutorial, participants were asked several questions (orally) by
the experimenter to ensure full understanding of the dual-task paradigm and the
compensation method.

In order to collect resting physiological data, participants were instructed to sit
quietly with their eyes closed for 10 min without falling asleep. They were also in-
structed to keep movement to a minimum. After the resting data were collected, par-
ticipants were allowed to practice one of the primary tasks with the secondary math
task for 5 min. Practice sessions were counterbalanced across all participants so that
approximately half the participants received the shooting and math task practice first
and the other half received the surveillance and math task practice first.

After practicing the first task combination for 5 min, participants read the NASA-
TLX instructions and completed it accordingly, keeping in mind the task scenario they
had just practiced (i.e., either the shooting task or surveillance task, paired with men-
tal arithmetic). They were allowed as much time as necessary. The participants then
practiced the remaining task combination for 5 min and completed the NASA-TLX,
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again keeping in mind the task scenario they had just practiced. Completion of the
tutorial, resting baseline, and the NASA-TLX marked the end of the pre-experimental
physiological recording period. The mean duration of this period was 41.24 min
(SD = 3.80 min) across all participants. 

The participants were then told that the experimental portion of the study was
about to begin and they were allowed to make any necessary adjustments or changes
to the mouse and keypad setup. They were also given the opportunity to ask any
clarifying questions. Participants were told that the experimenter would not be pres-
ent in the room throughout the experiment and that they were to continue perform-
ing the tasks until the computer froze, marking the end of the study. They were then
reminded for a final time that they would be receiving half the monetary amount
in the bottom right-hand corner upon completion of the study.

Participants were instructed to begin. The mental arithmetic task and the primary
task were presented simultaneously. The computer automatically switched the pri-
mary tasks at random paired time intervals of 30 s, 1 min, 2 min, 4 min, and 8 min.
Only the 8-min intervals were used in the data analysis for reasons that will be dis-
cussed later. So that the timing intervals for each task duration could be preserved, the
shooting task always came before the surveillance task. This resulted in the utiliza-
tion of a partial Latin square method whereby only the starting and ending condi-
tions were different and task order was kept the same. This method resulted in five
possible ordering conditions that were duplicated. Each ordering setup was used for
approximately 11 participants. Participants were assigned to the condition order
based on when they participated in the study. An entire experimental session lasted
no more than 2 hr including the pre-experimental physiological recording period.
Following the experimental session, participants completed the computerized ver-
sion of the NASA-TLX for each primary task. They were then compensated, debriefed,
offered a consent form, and were allowed to ask any questions.

Data Screening
Prior to data analyses, all data were screened to determine inclusion in the final

analyses. Initially, inclusion criteria were based on the participant’s performance on
the dual-task paradigm and the nature of the participant’s IBI data. A third criterion
was later added based on suspect RSA data. 

Five participants were excluded from the final data set based on their perform-
ance scores alone. Of the five, three were because of experimenter error. The other
two participants were low statistical outliers with regard to their overall performance
scores of -$24.90 and -$36.26 and were excluded because of being more than two
standard deviations from the mean performance scores (M = $33.30; SD = $20.68).

Three participants were excluded from the final data set based on their IBI files.
Because the error detection and correction portion of the Arousal Meter algorithm is
relatively immature, the asynchronous and synchronous IBI data for all 56 partici-
pants run in the study were visually examined for errors using Microsoft Excel as well
as locally created programs AViewer and IBI Edit. IBI files were triaged into one of
the following categories: (a) IBIs usable as is without any corrections, (b) erroneous
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IBIs present that are not manually correctable, or (c) erroneous IBIs present that are
potentially manually correctable. Two participants fell into the second category and
were not used because of having a large number of uncorrectable errors in their raw
asynchronous IBI file. Of those participants who fell into the third category, only one
had unusable data. Even after manual correction, the synchronous IBI data file for
that participant contained several errors that were not present in the raw asynchro-
nous IBI file. This indicated that the error detection and correction functions of the
Arousal Meter were correcting errors that were not present. 

Finally, three participants were excluded from the final data set based on their
RSA power. Those participants’ raw RSA power was so low that the mean log RSA
was negative, indicating that perhaps we were not getting an accurate measure of
RSA and arousal from those participants. 

The final data set used in the data analyses consisted of 45 participants (21 males,
24 females) with a mean age of 19.22 years (SD = 1.00 years). 

Data Reduction and Analysis
Six calibration periods were used to calculate the arousal data for the 8-min 

primary-task intervals. Only the two 8-min intervals were used because the arousal
state change between an 8-min low-workload task should be easily detectable com-
pared with an 8-min high-workload task, as our previous work has shown the sen-
sitivity of the Arousal Meter to be 2 min (Fishel, Muth, Hoover, & Gugerty, 2006).
Further, the intended applications of the Arousal Meter are for periods greater than
this interval. Because the purpose of this study was to compare different calibration
techniques at a gross level, it was felt that the state change should be well differen-
tiated so that if it were not detected, it would be clear that the calibration technique
was flawed.

First, a gold standard against-self calibration period was created by taking the
entire data stream for each participant from start to finish, including the compre-
hensive baseline as well as the experimental data, and calibrating the entire data file
against that. In other words, the data stream was calibrated against itself. On average,
this calibration period was 72.24 min in length (SD = 3.80). The experimental por-
tion of the against-self calibration period was composed of all the task time intervals
in an effort to simulate a calibration period that is both well balanced and has a
large sample size. 

The second calibration type was a comprehensive baseline. The entire baseline
period including the tutorial, practice, and resting data was used as the calibration
period against which to compare the physiological data from the 8-min task inter-
vals. This calibration period had an average length of 41.24 min (SD = 3.80). 

The third calibration type was a resting baseline. The 10-min resting baseline
period served as the comparison condition for the experimental data. 

The fourth calibration type was a practice baseline. The pre-experimental task
practice session and NASA-TLX completions served as the comparison condition
for the experimental data. This calibration type had an average length of 20.47 min
(SD = 2.07). 
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The fifth calibration type was a running-with baseline calibration period. The
entire pre-experimental physiological recording period (i.e., comprehensive base-
line) along with the experimental data was run through the Arousal Meter. Essen-
tially, the calibration value changed and continued to be refined throughout the data
processing, and the new incoming data were compared with the calibration value at
that point in time as they were run through the Arousal Meter. Because the calibra-
tion period changes with each new data point, the duration of the calibration peri-
od changes as well; therefore, calculating a length for this calibration period carries
no meaning.

The sixth and final calibration type was a running-without baseline calibration
period. Two minutes of IBI data, occurring immediately before the 8-min primary
tasks, as well as the data from the primary tasks, were run through the Arousal Meter
(18 min total). The 2 min of IBI data were necessary to fill the data-processing buffer
of the Arousal Meter so that arousal values could be computed for the 8-min task in-
tervals in their entirety. As with the running-with baseline calibration method, for this
method, the calibration value constantly changed throughout data processing.

Following calibration, the arousal data for each participant were averaged across
each of the 8-min shooting and surveillance task intervals for each calibration type,
for a total of 16 arousal values per participant. A 2 (task) × 6 (calibration type)
repeated-measures analysis of variance (ANOVA) was performed as a manipulation
check to determine if the high- and low-workload tasks resulted in significantly dif-
ferent arousal values. In addition, the ANOVA was used to determine if detection of
the high- and low-workload tasks was affected by calibration type and to determine
the presence or absence of an interaction between calibration type and task. For hy-
pothesis testing, planned comparison tests were performed comparing the arousal
values obtained for each of the primary tasks using the gold standard against-self
calibration method against the values obtained for each of the remaining five calibra-
tion types. Depending on the specific hypothesis tested, and as previously noted in
the Summary of Hypotheses section, some of the planned comparisons were direc-
tional and some were nondirectional. 

Results

A 2 × 6 repeated-measures ANOVA with Greenhouse-Geisser corrections for
sphericity revealed a significant main effect for task and calibration type, F(1, 44) =
46.97, p = .00, η2 = .52 and F(1, 58) = 3.90, p = .04, η2 = .08 respectively. In addi-
tion, a significant task × calibration type interaction was found, F(2, 79) = 3.95, p =
.03, η2 = .08.

Planned comparison t-tests, which compared the against-self calibration method
with the other five calibration methods for each of the tasks, revealed some signifi-
cant differences. Figure 2 provides a graphical representation of the mean arousal val-
ues by task and calibration type. As shown in Table 1, the planned comparison t tests
revealed three significant differences between the gold standard against-self calibra-
tion method compared with the other calibration methods. For the shooting task,
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Figure 2. Mean arousal values by calibration method and task. Note: + denotes statistical
significance in the positive direction; * denotes statistical significance in the negative
direction.

the resting baseline calibration method resulted in a significantly higher mean arous-
al (M = .55; SD = 1.34) than the against-self method (M = .19; SD = .42). The running-
with baseline calibration method, on the other hand, resulted in a significantly lower
mean arousal (M = .09; SD = 0.54). For the surveillance task, the practice baseline
calibration method resulted in a significantly lower mean arousal (M = -.45; SD =
0.57) than the against-self calibration method (M = –.34; SD = 0.44). 

Discussion

The aim of this paper was to illustrate the effect that the chosen baseline calibra-
tion periods can have on the analysis of physiological data. Specifically, the calibration
procedure used can lead to biased detection of some physiological state changes over
others. Therefore, unique considerations and thorough forethought should be given
to calibration periods used to compare data of interest in closed-loop systems, such
as those discussed in the area of augmented cognition. Arousal data derived from
heart rate variability were provided to illustrate the effects that different calibration



methods can have on the sensitivity of a single physiological measure when detect-
ing physiological state changes. 

Six calibration methods were examined for effects on arousal values as determined
by the Arousal Meter. The calibration methods possessed characteristics that caused
them to vary on both the level of bias of the calibration period and the length (i.e.,
sample size) of the calibration period. The data support the idea that the output of a
real-time physiological measure can vary depending on the calibration method uti-
lized. In fact, 8% of the variance in the arousal values was accounted for simply by
the calibration type used. Given that a methodological choice can account for that
much variance in the measure of interest, great care should be taken to appropriate-
ly calibrate a given measure. 

Our results indicated that all the calibration methods allowed for distinguishing
the low-workload task from the high-workload task, but some of them distinguished
the two tasks in a biased manner. Overall, three of the study predictions were sup-
ported and two were not. As predicted, the comprehensive baseline method was not
significantly different from the gold standard against-self method on either of the
primary tasks. The resting baseline method, on the other hand, resulted in signifi-
cantly higher arousal values on the shooting task. In addition, the practice baseline
method resulted in significantly lower arousal values on the surveillance task. It ap-
pears that the resting baseline method was biased toward detecting positive phys-
iological changes and the practice baseline was biased toward detecting negative
physiological state changes, as hypothesized. 

One of the study predictions not supported by the data was that the running-
with baseline calibration method would not differ significantly from the gold stan-
dard against-self method. The data, on the other hand, revealed that the running-with
baseline method resulted in significantly lower arousal values on the shooting task.
This unexpected finding will be discussed in more detail later. 

The final prediction of the study was also not supported. The prediction was that
the running-without baseline method would differ significantly from the gold stan-
dard calibration method. The results revealed that the running-without baseline meth-
od did not result in arousal values that were significantly different from the gold
standard. Our suspected reason for this result will be discussed later.
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Table 1. Planned Comparison Results for Calibration Types Compared With Against-
Self Calibration
Ca libration Type Pairwise Comparisons Shooting Task Surveillance Task 

t p t p

Against-self – comprehensive baseline –1.60 .12 –1.55 .13
Against-self – resting baseline –2.13 .02 –1.42 .08
Against-self – practice baseline 1.58 .06 2.38 .01
Against-self – running-with baseline 2.34 .02 1.25 .22
Against-self – running-without baseline 1.03 .31 1.37 .18



Given that all three calibration methods that were successfully examined in the
current study (although sometimes in a biased way) detected the differences in
arousal associated with task workload changes, the advantages and disadvantages of
each method from a statistical point of view as well as the potential sources of bias
should be addressed. In examining each method, methodological and practical issues
should also be considered.

As previously stated, the against-self method was utilized as the gold standard
in this study against which all other calibration methods were compared. The cal-
ibration period that was utilized for this method was longer compared with the
other methods and more or similarly balanced than the other methods, which gave
it a sensitivity advantage when detecting physiological state changes. The against-
self method involves using all the data collected during an experimental session to
calculate mean and standard deviation calibration values for that data series. All
the data can then be compared with that value sequentially. 

In general, the advantage of using this method is that the sensitivity at detecting
state changes is high because there is a large sample size and more variance in the
sample. In addition, high accuracy in detecting the magnitude of state changes can
also be achieved the closer the physiologically evoked balance of low and high states
is to 100%. A disadvantage of this method, particularly from an augmented cognition
standpoint, is that this method is essentially useless for real-time data collection and
analysis. In order to use this method, all the data have to be collected offline and then
analyzed offline by comparing the data with the calculated calibration value. 

The traditional resting baseline method is commonly used, simple to implement,
straightforward, and not very time intensive. It is useful for simple examinations
of the presence or absence of change as well as the direction of that change relative
to the baseline. Problems occur with this method when precise measures of change
magnitude are needed. Specifically, physiological changes associated with states below
wakeful rest will be difficult to detect because of a floor effect analogous to those ob-
served in studies examining the LIV. A resting baseline may suffice for some meas-
ures in which only excitatory states are of interest (e.g., cardiovascular reactivity), as
a resting baseline is essentially at the lowest range of that measure. However, misin-
terpretations of evoked state changes of interest that are at the low and middle ranges
of inhibitory and excitatory states compared with the resting baseline may occur. For
example, as in some of the research previously discussed, the inhibitory responses
of the autonomic nervous system in response to changes in information processing
(Backs et al., 2005), as well as the level of engagement by an individual in response
to a variety of experimentally created arousal and attention changes (Prinzel et al.,
2003), may be under- or overestimated. 

The practice baseline, consisting of practice with or exposure to the state changes
of interest, is similar to the resting baseline in that it is fairly easy to implement and
straightforward and has low temporal requirements. The practice baseline method
may lead to biased and amplified state detection of negative state changes. Biased de-
tection of negative states may be present in current literature, such as in the work by
Freeman et al. (2004), in which a 12-min practice baseline was used in establishing
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a calibration value to compare incoming EEG data against for adaptive automation.
This effect may be attributable to the learning and/or excitement associated with expo-
sure to a task or stimulus of interest for the first time, leading to a mean calibration
value that is on the high side, even though it may contain values from low and high
task periods of interest. 

As was evident in our findings that the comprehensive baseline was not signifi-
cantly different from the gold standard against-self calibration method (by incorpo-
rating resting physiological values into the calibration period mean), the likelihood
of biased-state detection greatly decreases. In a sense, using a resting period in addi-
tion to practice periods may add balance to the physiological values obtained during
the practice periods, which may be higher during the true periods of interest because
of learning and first-exposure effects.

The comprehensive baseline method used in the study resulted in values similar
to the against-self method. It involves calculating a calibration value from a calibra-
tion period that consists of tasks that manipulate an individual’s physiology in the
range of variability expected during the experimental tasks of interest. Some augment-
ed cognition researchers have successfully employed this method (Berka et al., 2005);
Belyavin (2005) even advocated the use of this method. In addition to the accuracy
achieved when using this method, there are also several methodological advantages.
First, this method is useful when the length of the calibration period needs to be
short in contrast to the running-with baseline calibration method, which requires a
longer calibration period. The time requirements to implement this method can be
equal to those of the resting and practice baseline methods. For most measures, a high-
er degree of sensitivity for detecting state changes can be achieved using this method. 

The comprehensive baseline method can essentially be thought of as a condensed
version of the running-with baseline method in that a planned, comprehensive cal-
ibration period can lead to having an accurate calibration value against which incom-
ing data can be compared. This method of calibration is measure-independent in the
sense that one would not be constrained by physiological measure specifications
(e.g., sampling rate) that might affect the time necessary for calibration value stabi-
lization. In other words, if the running-with baseline method requires 20 min of data
for calibration value stabilization to occur, then one could condense that period by
using shortened versions of tasks and still end up with a comprehensive and accu-
rate calibration value. 

In addition, the comprehensive baseline method is not limited to offline data col-
lection and analysis. Real-time data collection and interpretation using this method
can occur by having a given physiological measure run continuously and then sim-
ply locking the calibration values at the end of the calibration period. Data collection
can then resume.

It is important to note, as stated in the introduction, that the establishment of a
comprehensive baseline can be done in several ways. One can choose representa-
tive workload or cognitive, behavioral, physiological, or other states to manipulate
during the baseline. After collection of the baseline data, a variety of analysis tech-
niques can be employed. These techniques include, but are not limited to, descriptive 
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statistics, classification techniques, and training methods. The strengths and weak-
nesses of these various analysis methods are beyond the scope of this paper. However,
the critical factor is that the baseline data used in those measures should be compre-
hensive no matter which analysis technique is employed.

In addition to the calibration periods that are already being used by researchers,
we introduced two new “real-time” running calibration methods that are not current-
ly utilized. The running-with baseline calibration method involves the physiological
measure constantly refining and updating the calibration value as more data are col-
lected, beginning with a baseline and ending with the conclusion of the experimen-
tal period. The baseline used in this study to begin the running calibration was
comprehensive in nature. Our results surprisingly revealed that this method blunt-
ed the high-workload shooting task arousal values compared with the gold standard.
This may have been attributable to the comprehensive baseline period not being
100% balanced, in the sense that the resting baseline comprised only 10 min of the
period, whereas, on average, over 30 min of the baseline was composed of learning
about the tasks and practicing them. Perhaps if a more balanced comprehensive
baseline period was used to start the running calibration, the high-workload arous-
al values may not have been blunted. 

The advantage of this method is that it allows uninterrupted real-time data col-
lection, analyses, and interpretation. In addition, a high degree of sensitivity and accu-
racy can be achieved if the physiological measure is allowed to run for an adequate
amount of time and if an individual’s physiology is sufficiently manipulated in a con-
trolled and comprehensive manner prior to the data collection and analysis period
of interest. The necessary calibration period length may vary depending on the phys-
iological measure used, and thus needs to be determined for a measure on an indi-
vidual basis. If the calibration values used in the running-with baseline method have
not had a chance to stabilize, then the incoming data are essentially being compared
with a calibration value that is still changing too greatly. This may lead to decreased
accuracy of the output values, which may then be misinterpreted as a state change,
or a given state change may be misclassified. Hence, a disadvantage of this method
is that it requires a longer period in comparison with the traditional resting and vanil-
la baseline methods in order for stabilization of the calibration value to occur via
regression to the mean. Although this may not be an issue for some, it may add un-
wanted time to an experimental procedure, thereby lengthening the time required
of the participant.

The final calibration method utilized in the study, the running-without baseline,
resulted in a finding that was unexpected at first glance. This method used only task
data to continually refine the calibration value and was not found to result in signif-
icantly different arousal values compared with the gold standard against-self method.
This may be explained by the fact that we had to use 2 min of data prior to the 8-min
tasks in order to fill the data-processing buffer so we could obtain actual arousal val-
ues starting at the beginning of the first 8-min period rather than zeros. The 2 min
of data prior to the first 8-min task consisted of data from the low-workload sur-
veillance task for most participants. Those data, in combination with the incoming
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high-workload data from the first 8-min period, most likely resulted in a seemingly
well balanced calibration mean with which the data were being compared. This effect
most likely continued when the second 8-min low-workload interval began, result-
ing in the low-workload values when compared with a seemingly balanced, yet con-
stantly updating, calibration value. 

The balance of the calibration period may have been maintained because of fa-
tigue effects at the end of the high-workload 8-min period, which may have dropped
the arousal values slightly. Without the inclusion of the 2-min buffer period of low-
workload data, it is reasonable to predict that the incoming high-workload data would
have been significantly blunted because of being compared with high values. The
incoming low-workload surveillance data also would have been inappropriately am-
plified because of being compared with high values. Although not statistically sig-
nificant, the running-without baseline method did result in lower arousal values for
the high-workload task and lower values for the low-workload task compared with
to the against-self method. 

Although this method appeared to perform well in this study, it is important to
note that the calibration value was continually changing throughout the running cal-
ibration in a manner that was probably more dramatic than desired. Rather than fine
tuning the mean calibration value, the mean was essentially still being established
throughout the entire calibration time because the entire period lasted only 18 min-
utes. As stated before, the design of the study may have led to the mean calibration
value being rather balanced. 

On the surface, an advantage of this system may be that it requires no planning
or forethought with regard to a calibration or baseline period. However, a large amount
of accuracy may be sacrificed using this method because of the instability of the cal-
ibration values against which the incoming data are compared. Given the need for
accuracy in augmented cognition systems, we recommend that this method not be
used to evaluate incoming data simply because of the lack of an established mean
calibration value against which to compare the data.

Conclusions

Overall, the issue of physiological measure calibration is a fundamental challenge
associated with using physiological sensors in the closed-loop augmented cognition
system. As previously discussed, a variety of factors must be considered when deter-
mining which appropriate calibration method to use. In essence, physiological meas-
ure calibration must be fully understood and correctly implemented for complete
success and accuracy of augmented cognition systems, because calibration is a key
factor in increasing a measure’s sensitivity to state changes. 

Future studies involving physiological measures in the augmented cognition
realm and beyond will greatly benefit from choosing appropriate calibration proce-
dures and specifying the calibration method used in documentation of those studies.
Not fully understanding and accounting for this issue for all physiological measures
that are involved in an augmented cognition “state detector” can lead to undesired
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outcomes because of misclassification and interpretation of data, which in the end
can result in an ineffective state detector. Given that closed-loop augmented cogni-
tion systems are intended to function with a battery of physiological measures, the
challenge of calibration will no doubt be greater than the single physiological meas-
ure calibration presented in this paper.
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