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This  work  presents  a novel  approach  to  detecting  real-time  changes  in  workload  using  heart  rate  vari-
ability  (HRV).  We  propose  that  for  a given  workload  state,  the  values  of  HRV  vary  in  a sub-range
of  a  Gaussian  distribution.  We  describe  methods  to monitor  a HRV  signal  in  real-time  for  change
points  based  upon  sub-Gaussian  fitting.  We  tested  our  method  on  subjects  sitting at  a  computer
performing  a  low  workload  surveillance  task  and  a high  workload  video  game  task.  The proposed
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algorithm  showed  superior  performance  compared  to the  classic  CUSUM  method  for  detecting  task
changes.

© 2011 Elsevier Ltd. All rights reserved.
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. Introduction

The purpose of this study is to determine if heart rate vari-
bility (HRV) can be used to detect mental workload changes in
eal-time. We  define mental workload as the task demand placed
pon a sedentary person. Higher levels of workload have been
hown to result in physiological and cognitive changes including
ecreased attention and concentration [9],  increased muscle ten-
ion [5],  and coordination difficulties [41]. Those changes often
egatively impact performance [3,11,17,21].

The autonomic nervous system (ANS) plays a crucial role in reg-
lating physiological changes in response to workload [8,21,53,54].
he parasympathetic nervous system (PNS), the branch of the ANS
esponsible for relaxing the body, decreases in activity in response
o increases in workload. Thus, a variety of physiological indicators
f arousal respond to changes in workload [20,37].

In the present study, we consider the effect of changing men-
al workload upon HRV. Researchers have demonstrated that
ncreased task complexity and attention results in decreased HRV
1,33,38,49]. The high frequency component of HRV between 0.15
nd 0.5 Hz, also known as respiratory sinus arrhythmia (RSA),

as been widely established as an indirect index of the PNS
10,18,19,24]. We  successfully demonstrated that RSA can be used

� This work was  supported by an Office of Naval Research grant.
∗ Corresponding author. Tel.: +1 864 656 3377.

E-mail address: ahoover@clemson.edu (A. Hoover).

746-8094/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
oi:10.1016/j.bspc.2011.07.004
off-line to measure changes in mental workload between a high
and low workload task [12,13].

In recent years, however, there has been an increased inter-
est in adaptive automation [35]. Adaptive automation requires
the real-time measurement and analysis of physiological signals.
Specifically, adaptive systems can modify a task or set of tasks in
real-time to help optimize performance or mediate negative mental
effects. For example, Katsis et al. [25] studied the use of heartrate,
galvanic skin response and respiration for classifying the anxiety
state of a subject during therapeutic sessions. Cannon et al. [4] stud-
ied the use of EEG and ECG signals for monitoring the cognitive load
of a subject. Potential applications of these types of works include
aviation [14,36,55],  driving [27], and other tasks requiring vigilance
[15]. Real-time measurement and analysis of HRV data may pro-
vide an unobtrusive and continuous means for adaptive systems
to prevent detrimental effects to performance from high levels of
workload [3,11,17,21].

1.1. Change point detection

The goal of the current work is to detect change points in HRV in
real-time. Fig. 1 illustrates the problem of change point detection.
A signal is being monitored over time, and at some point changes
from one state (e.g., reasonable workload) to a second state (e.g.,
detrimental workload). The goal is to detect the point in time at

which the change occurs. Several issues make the problem diffi-
cult, including noise in the measurements, natural variations in
the signal, and ambiguity about the definition of “state”. The lat-
ter issue can be approached through the use of statistics to model

dx.doi.org/10.1016/j.bspc.2011.07.004
http://www.sciencedirect.com/science/journal/17468094
http://www.elsevier.com/locate/bspc
mailto:ahoover@clemson.edu
dx.doi.org/10.1016/j.bspc.2011.07.004
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Fig. 1. A change point for a signal.

he properties of the signal. This approach can be traced to work in
ndustrial control in the 1920s [44], where the concern was to mon-
tor manufacturing processes and detect deteriorating conditions
r failures. Today, the same approach can be found in a number of
elds, including economics [26], weather monitoring [42], biology
nd genetics [7],  signal processing and voice monitoring [46], and
omputer network security [51]. Reviews of related work in the
ost recent decades can be found in [2,16,43].
The problem differs depending upon whether or not the changes

re being detected off-line versus in real-time. In the off-line case,
n entire data set is available for analysis, and classic data grouping
nd segmentation methods can be applied. In the real-time case,
e desire to detect changes as soon as possible while the signal

s being monitored. Fig. 2 illustrates the additional facets of the
roblem. It is expected that some amount of time must elapse after

he change has occurred before it can be detected. The delay is the
ime between the change and its detection. Statistics concerning
his delay must be considered in addition to the true positive and

time

signal

change
time

detection
time

detection
delay

Fig. 2. Detecting a change in real-time.

time

signal

(a)

(b)

Fig. 3. The state of a signal can be defined as 
sing and Control 7 (2012) 333– 341

false alarm rates, collectively indicating how well the change point
detector is performing [2,16].  Real-time change point detection is
prevalent in biomedical problems, such as monitoring intensive
care patients [6],  monitoring anesthesia [56], and monitoring preg-
nancy contractions [28].

Most methods for change point detection model the signal in
terms of its statistics, and look for changes in those statistics. Tradi-
tional solutions to the problem have taken one of two  approaches:
(a) segment the data at the change point into two distributions,
each having its own  statistics, or (b) detect a substantial change in
the distribution statistics as new samples are obtained. Perhaps the
most popular example of the latter approach is the cumulative sum
(CUSUM) method [34] (see [50] for recent work), monitoring for a
change in the mean.

Other approaches have been proposed. Due to their nature,
physiological signals may  in some cases be modeled as a slowly
changing signal plus a noise component [39]; separating these two
components allows for simpler change detection. Outliers in the
sampled data can be considered a separate problem or incorpo-
rated into the change detection problem [48] (we do not consider
outliers in this work). In the case of a slowly changing signal, poly-
nomials can be fit to the data, using deviations from the polynomials
to detect changes [32]. Wavelets can be used to detect changes in
the frequency space of a signal [30].

In this paper, we propose a new approach to the problem of HRV
change detection. Our approach was  motivated by casual observa-
tion of our data. We  observed that HRV data during different tasks
often accumulated into distributions that looked “sub-Gaussian”
[45]. We  have developed a method to solve for sub-Gaussian ranges
using least-squares fitting, and for monitoring for change points
using an overlap statistic. This differs from all previous works in
that we  do not monitor for changes in the mean and standard devi-
ation of the distribution of the signal. Instead, we consider the case
where samples are primarily drawn from one portion of the dis-
tribution, and then in a subsequent interval from another portion
of the same distribution. This type of change may  occur in many
biomedical and physiological signals, where it is not the underly-
ing distribution that changes, but rather the range of operation of
the system.

In Section 2, we describe a method to monitor a HRV signal
in real-time for change points based upon sub-Gaussian fitting.
In Section 3, we present experiments on HRV where we use our
methods to detect state changes. We  compare our approach to
the CUSUM method and show that our method provides superior
results for this data. While HRV change detection is our primary
focus, we believe our methods could be applied to many other
problems involving the monitoring of other biomedical and physi-

ological signals.

frequency

signal

(a)

(b)

a subrange in its Gaussian distribution.
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Fig. 4. The indices and variables used in our method.

. Methods

Fig. 3 illustrates our approach. We  assume that during inter-
al (a), data samples are primarily drawn from one subrange (the
eft side of the distribution in this example); during interval (b),
amples are primarily drawn from a different subrange.

Our change point detector requires all the data obtained since
he last detected change point to be buffered. Each time a new data
oint is acquired and added to the buffer, the following steps are
aken. A range of possible split points in the buffer is analyzed. Each
ossible split point breaks the data into two sequences, one prior to
he split point and one after the split point. A sub-Gaussian function
s fit to the frequency distribution of both sequences. The possible
plit point with the best sub-Gaussian fits (smallest residuals) is
dentified as the best split. These two sub-Gaussian fits are then
nalyzed for overlap. A change point occurs when the sub-Gaussian
ts of the two sequences are substantially separate, as determined
y an overlap statistic. Once a change point is detected, the buffer is
ushed of all data prior to the change point, and the process repeats.

Formally, let a signal be represented as xi, xi+1, . . .,  xt where i − 1
s the index of the last detected change point and t is the index of
he most recently acquired data point. Fig. 4 illustrates the timeline
f the process. We  search for the index s such that the range of data
i, . . .,  xs and the range of data xs+1, . . .,  xt yield the best fitting sub-
aussian distributions. The variable w is the minimum amount of
ata required on either side of the change point. Therefore, at least
w data needs to be buffered during the operation of our algorithm.
n index j (not pictured in Fig. 4) is varied from i + w to t − w to
earch for the ideal split point s in the data sequence.

The steps to implement our method may  be stated as follows:

. Let the input signal be represented by xi, xi+1, . . .,  xt where each
xi is a discrete measurement, the current time is represented by
t, and xi−1 is the last detected change point.

. Let a proposed change point time j iterate from i + w to t − w
where w is the minimum window size (see Fig. 4). The minimum
window size refers to the minimum amount of data that can be
aggregated into a state.

. Compute the frequency distribution fi,j for data prior to the pro-
posed split point j and the frequency distribution fj+1,t for data
subsequent to the proposed split point j.

. Compute E(fi,j) and E(fj+1,t) as the residuals of the sub-Gaussian
fits to the two frequency distributions.

. The index j that provides the smallest residual E(fi,j) + E(fj1,t) is
chosen as the best split point.

. An overlap statistic O([a1, b1], [a2, b2]) is computed from the sub-
Gaussian fits of the two window sequences using the parameters
a1, b1, a2, b2 calculated during the sub-Gaussian fitting.

. Compare the calculated overlap statistic O to a threshold P (dis-
cussed further in Section 2.3) to decide if a state change has

occurred.

. If a state change is detected, then output the detected change
point, flush the buffer of all data prior to j, and let i = j + 1.

. Read the new data point, increment t and continue from step 1.
sing and Control 7 (2012) 333– 341 335

A frequency distribution is computed by tabulating the occurrences
of each possible signal value xn. Formally, the frequency distribu-
tion fi,j can be defined as

∀n, freq(xn) =
∫ j

i

(x = xn) (1)

In practice, the frequency distribution f(xn) is calculated as a
histogram with appropriate bin sizes. For example, assuming the
signal is normalized with a mean equal to zero and a standard
deviation equal to one, then the frequency distribution could be
calculated using a histogram with bins ranging from −4 to +4 where
each bin size is 0.2, providing a 40 point function for sub-Gaussian
fitting.

The following subsections describe our methods for sub-
Gaussian fitting and computing an overlap statistic.

2.1. Gaussian fitting

The function for a Gaussian distribution may be written as

y = ke−(x−�)2/2�2
(2)

where � and � are the mean and standard deviation of the distri-
bution, and k is a scaling constant. Fitting a Gaussian curve to a set
of data generally involves solving for these three parameters. How-
ever, we  assume that the mean and standard deviation are known a
priori, and so are only interested in solving for k. Given a frequency
distribution f(xn), an error function for fitting can be defined as

en = f (xn) − ke−(xn−�)2/2�2
(3)

where in practice n is discretized in bin intervals as previously
described. The total residual error can be defined as:

E =
∑

(e2
n) =

∑
n

(f (xn) − ke−(xn−�)2/2�2
)2 (4)

To solve for the k that provides the best fit, we take the partial
derivative of E with respect to k and set this function equal to zero:

∂E

∂k
= 0 (5)

Thus we  get:

2
∑

n

(f (xn) − ke−(xn−�)2/2�2
)(−e−(xn−�)2/2�2

) = 0 (6)

Solving for k gives:

k =

∑
n

(f (xn)e−(xn−�)2/2�2
)

∑
n

(e−(xn−�)2/2�2 )2
(7)

Fig. 5 shows an example of a Gaussian function fit to a discrete
frequency distribution with � = 0 and � = 1.

2.2. Sub-Gaussian fitting

We  define a function for a sub-Gaussian distribution as follows:

y =

⎧⎪⎨ 0 x  < a

−(x − �)2

2�2
(8)
⎩

0 x > b

The function follows a regular Gaussian distribution within the
range a to b, and is zero otherwise. As before, we assume that the
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Fig. 5. A Gaussian function fit to a set of data.

arameters � and � are known a priori, and so we are only inter-
sted in solving for the parameters k, a and b. Given a frequency
istribution f(xn), an error function for fitting can be defined as

n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (xn) x < a

f (xn) − ke

−(xn − �)2

2�2 a ≤ x ≤ b
f (xn) x > b

(9)

The total residual error can be defined as:

 =
∑

(e2
n) =

∑
n<a

f (xn)2 +
b∑

n=a

(f (xn) − ke−(xn−�)2/2�2
)2

+
∑
n>b

f (xn)2 (10)

Given specific values for a and b, the parameter k can be found
sing Eq. (5).  For the partial derivative of E with respect to k, the
arts of the function for x < a and x > b are constants. Thus,

∂E

∂k
= 2

b∑
n=a

(f (xn) − ke−(xn−�)2/2�2
)(−e−(xn−�)2/2�2

) (11)

Setting Eq. (11) equal to zero and solving for k gives:

 =

b∑
n=a

(f (xn)e−(xn−�)2/2�2
)

b∑
n=a

(e−(xn−�)2/2�2 )2

(12)

The parameters a and b are obtained through a brute force
pproach. For each possible combination of a and b, the parame-
er k is found using Eq. (12). The total residual E for each set of
alues (a, b, k) is found using Eq. (10). Each E is scaled according to
ts respective k as E/k, in order to compare across sets. The set that
roduces the minimum E/k is selected as the optimal fit. In practice,
he frequency space f(xn) is discretized, so that the total number of
ets (a, b) evaluated is finite. The search space for a and b can be
urther reduced by requiring a minimum range b − a, for example
qual to 1�, a minimum value for a, for example −4�, and a maxi-
um  value for b, for example 4�. In this case the search range for
a, b) is ([− 4� . . . 2�], [a + � . . . 4�]).
Fig. 6 shows an example of a sub-Gaussian function fit to a dis-

rete frequency distribution with � = 0, � = 1, a = − 0.8 and b = 2.2.
Fig. 6. A sub-Gaussian function fit to a set of data.

2.3. Overlap statistic

Given two sequences of data with sub-Gaussian fits, we  seek to
determine the amount of overlap of the sub-Gaussians. We  do this
by determining the amount of overlap of the range [a1, b1] of the
first sub-Gaussian to the range [a2, b2] of the second sub-Gaussian.
Because these ranges may  or may  not overlap, we first compute the
intersection [a ′ , b ′] of the two ranges as follows:

a′ =
{

a1 a2 ≤ a1 and a1 ≤ b2
a2 a1 < a2 and a2 ≤ b1
0 otherwise

(13)

b′ =
{

b1 a2 ≤ b1 and b1 ≤ b2
b2 a1 ≤ b2 and b2 < b1
0 otherwise

Using these values, the overlap with respect to [a1, b1] is

P1 = b′ − a′
b1 − a1

(14)

The overlap with respect to [a2, b2] is

P2 = b′ − a′
b2 − a2

(15)

The total overlap is computed as the average of the two:

Overlap = P1 + P2

2
(16)

The range of values that the overlap statistic can take is [0, 1].

2.4. Pseudocode

Our algorithm can be implemented by the following pseudo
code:
Read data point xt

while (xt )
Update buffer: xi, xi+1, xi+2, . . . , xt

for j = i + w to t − w
E(j) = subGaussianFits(i, j, t)

min(E(j)) → s, [a1, b1], [a2, b2]
O  = Overlap(a1, b1, a2, b2)
if O < P then state change detected at s, i = s + 1

3. Experimental results
We  tested our methods on data obtained from the monitoring
of HRV. We  first describe our measure of HRV. We  then describe
our data set and the experiments performed on this data.
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.1. Measure of HRV

The electrical activity of the heart, as measured by the electro-
ardiogram (ECG), can be used to construct an event series that
ndicates the time between individual heartbeats. HRV describes
yclical variations in an inter-beat interval (IBI) series related to
utonomic nervous system activity [47]. Roughly speaking, this
nalysis can provide a measure of the restfulness of the partici-
ant. Our measure of HRV is described in detail in [23,40]. Briefly, a
4 second window of the most recent IBI values is analyzed using

 fast Fourier transform. The magnitude of the power in the fre-
uency range 9–30 cycles per minute is found. This magnitude is

og-normalized and taken as our measure of HRV. In general, larger
alues indicate the subject is more rested, while smaller values
ndicate the subject is more aroused. The window of IBI data is
ontinuously updated as new heartbeats are detected.

.2. Tasks and workload changes

We created a custom program that engages the participant in
wo different tasks, a “shooting task” and a “surveillance task”. The
hooting task was intended to increase mental workload, causing a
ecrease in our HRV measure. The surveillance task was intended
o decrease mental workload, causing an increase in our HRV mea-
ure. Fig. 7 shows a screenshot of the shooting task. The participant
ontrols the spaceship at the bottom of the screen in action that
esembles a video game. Waves of enemy space ships appear in
equence, containing anywhere from 5 to 10 ships. At random times
nd at random places, ammunition and health icons appear at the
op of the screen and fall towards the bottom. The goals of the shoot-
ng task are to shoot the enemy space ships using the left mouse
utton, avoid getting hit with enemy fire, and replenish ammuni-
ion and life by moving over the randomly falling ammunition and
ife icons.

The surveillance task used the same general graphics. The main
ifference was that all firing was disabled; the enemies did not fire
t the participant, and the participant could not fire at the enemies.
eaths could not occur, and the amount of health and ammuni-

ion of the participant could not be changed. Instead, at random
imes, a special red-colored enemy ship would appear among the
ormally grey-colored enemy ships. At such times, the participant
as instructed to press the spacebar.

Our program was designed to randomly switch between these
wo tasks at paired time intervals of 30 s, 1 min, 2 min, 4 min,
nd 8 min. Participant performance on the combined tasks was
sed to calculate monetary compensation, on the order of $4–$70
US). Simultaneous to both tasks, the program also posed mental
rithmetic questions as a secondary task [13], to simulate realistic
ulti-tasking conditions.

.3. Data

Forty-five participants participated in the dual-task paradigm.
ach trial lasted 31 min  (2 × each interval of 30 s, 1 min, 2 min,

 min  and 8 min). The order of the sequence of task pairs for each
articipant was determined using a Latin square counterbalancing
ethod. The NASA-TLX (Task Load Index) [22], a subjective work-

oad questionnaire, confirmed that the tasks had the desired effects
f evoking more or less mental workload [12].

In off-line analysis, it was found that the minimum amount of
ime per task for which a difference in the HRV measure could be
ound was 2 min  [12]. This reflects the nature of the measure as
 minute-to-minute indicator of the restfulness of the participant.
or this experiment, we considered only those portions of the data
or each participant consisting of the 4 min  and 8 min  task pairs;
he HRV data for each of these was manually segmented out of the
sing and Control 7 (2012) 333– 341 337

31 min  recording, giving us 90 total test segments. Fig. 8 presents
some examples of these segments. For both these plots, and for
every recording in our data set, the task was changed exactly in
the middle of the recording. Thus, in this experiment we define our
goal as the automatic detection of a change point occurring at the
middle of each recorded segment. Due to the nature of our HRV
measure, and some small variability in the start and switch times
for tasks, we define a correct detection as any within ±30 s of the
task change. Any other change points detected are considered false
positives.

These examples demonstrate the difficulty of our change point
detection problem. In the left plot, a relative change in the signal
is visible to the naked eye. The data in the first half of the record-
ing appears on average higher than the data in the second half of
the recording. However, simple thresholding techniques would fail
badly at identifying the change because of the oscillatory nature of
the signal. In the right plot, there is very little discernible difference
between the signal in each half of the recording. In this case, most of
the visually apparent difference is due to the increased oscillatory
behavior in the latter half of the recording.

3.4. Results

Fig. 9 demonstrates the key point of our methods. It shows sub-
Gaussian fits to the data for each task for the recordings shown in
Fig. 8. The top row shows the fits for the left recording, the bottom
row shows the fits for the right recording. In both cases, the split
point was  fixed to the exact middle of the recording, so that the
result of an ideal detection could be considered. The plot on the
left shows the sub-Gaussian fit to the data recorded during the first
task, the plot in the middle shows the sub-Gaussian fit to the data
recorded during the second task, and the plot on the right shows
the overlap of the two  fits.

In the case of the upper row, the raw data overlap on either side
of the change point. However, the strongest fitting sub-Gaussians
to each side do not overlap at all, indicating a strong likelihood of
a state change. For the lower row, there is an even larger amount
of overlap, so there is less likelihood of a state change. Even so, the
sub-Gaussian fits show a visually apparent difference, especially
when compared to the minimal visual difference in the raw signal.

We coded our methods in C, compiled using the gnu gcc com-
piler, and executed on a standard desktop computer running the
Ubuntu linux operating system. For all sub-Gaussian fits, we com-
puted the frequency space using a 40 point histogram and searched
the [a, b] space as described in Section 2. The parameter w was set
to 2 min, reflecting the minimum amount of data to aggregate into a
state. The overlap statistic threshold was  chosen as 0.25. Processing
each recording took only a few seconds; our methods could easily
run in real-time.

Fig. 10 shows some examples where our method found a change
point corresponding to the task change, with no false positives. The
dashed line indicates the change point (s in our algorithm), the dot-
ted line indicates when the change was  found (t in our algorithm).
The example on the left demonstrates that our approach can detect
a change that is quite subtle, and occurs somewhat gradually. The
example on the right shows a signal with a visually more apparent
change point. However, the signal also shows oscillatory behavior
that would cause problems for any simple thresholding approach.
Our method successfully identified the change point without trig-
gering false positives during the oscillations.

Fig. 11 shows some examples where our method detected a
change point at the task change, but also detected a change point at

another time. Visually, the false detections do not appear to truly
be false; they occur at places where the signal appears to actu-
ally be changing. This is discussed more below. Fig. 12 shows some
examples where our method did not find any change points at all.
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Fig. 7. Screenshot of the higher workload “shooting task”.
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Fig. 8. Two examples from our data set.
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Fig. 9. Sub-Gaussian fits for the two recordings shown in Fig. 8. The plot on the left is for the first half of the data, the plot in the middle is for the second half of the data, and
the  plot on the right shows the overlap.
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Fig. 10. Two examples where a change point was  detected at the task change, with no false positives (dashed line = change point; dotted line = time of detection).
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Fig. 11. Two examples where a superfluous change point was  detected in addition to the change point at the task change (dashed line = change point; dotted line = detection).
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e no change points were detected.
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Fig. 12. Two examples wher

In order to evaluate our approach, we compared it against the
lassic CUSUM method [2,34].  The CUSUM statistic was calculated
n the running sample mean.1 We  ran our entire data set of 90
ecordings several times, varying the threshold for change point
etection from 0.005 to 0.02. For our sub-Gaussian method, we
imilarly ran our entire data several times, varying the overlap
hreshold from 0.05 to 0.5. Fig. 13 shows the ROC plots com-
aring the performance of both methods, in terms of total true
ositives versus total false positives, across the 90 recordings. Our
ub-Gaussian method clearly performed better than the CUSUM
ethod.
As can be seen in these examples, the type of change we  are
eeking to detect is subtle, if it is there at all. The plot on the
ight of Fig. 12 shows a slight downward trend in value over time,
hile the plot on the left does not appear to show any change. This

1 Several other statistics were tested, such as the actual mean (computed a priori);
he  reported results are for the statistic that showed the best results in the CUSUM

ethod.
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FP

Fig. 13. Comparison of our sub-Gaussian method to the classic CUSUM method on
our data. The units are total true positives versus total false positives across 90
recordings, varying the detection threshold for each method.
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an be explained by considering the nature of the scenario under
hich our data was gathered. The original intent was to deter-
ine if a change in task caused a change in the HRV measure. In

his experiment we are addressing the opposite question; namely,
an we automatically detect a task change by monitoring HRV. Our
oal is hampered by the fact that the task may  not have caused
he participant to change his or her HRV, or that changes in the
RV measure may  have occurred at times other than when the

ask changed. For example, a participant may  rouse him or her-
elf during the surveillance task, at times causing a fluctuation in
ur measure that is independent of the task change. It has been
emonstrated previously that vigilance tasks can raise workload,
or example depending on the stressfulness of the task [31,52]. We
onducted a two-tail independent samples t-test on each of our
0 test segments, comparing the data prior to the task change to
he data after the task change. For 27 of the segments, the t statis-
ic (  ̨ = 0.05) showed either no difference or a reverse (from the
xpected) change in workload. Thus, our results must be viewed
n the context of what our change point detector is being chal-
enged to detect. We  believe that the type of result shown in Fig. 10
emonstrates the potential of our approach.

. Conclusions

In this paper, we presented a novel approach to detect a change
n mental workload based upon the real-time monitoring of HRV.
ur methods are based upon fitting a sub-Gaussian function to the

equences of data preceding and succeeding a suspected change
oint. An overlap statistic evaluates the overlap of the two  fits,
hich can be thresholded to determine whether or not a change
as occurred. We  described an algorithm to implement our method,
nd demonstrated its use on detecting task changes between a
omputer shooting game and a computer vigilance game for 45
articipants. For this data, our method showed better performance
ompared to the classic CUSUM method for detecting task changes.

As can be seen in the examples from Section 3, we feel that our
ethods can successfully detect changes that are quite subtle. In

uture work we would like to apply our methods to other types
f data, particularly where the ground truth could be more easily
efined. We  believe our methods could be applied to many other
roblems, such as those involving the monitoring of biomedical and
hysiological signals. In these cases and perhaps others, it is viable
o consider a system where it is the range of operation that changes
ather than the distribution statistics.

Concerning the detection of mental workload from heart mon-
toring, it may  be that other measures besides HRV (or besides
ur particular measure of HRV) may  provide a better indicator for
etecting state change. The method described in this paper could
e applied to any measure, and allows for the comparison of differ-
nt measures, which is an interesting direction for future work. In
ddition, while we assumed our measure follows a Gaussian dis-
ribution over the long term, it may  be that for other measures or
ther data sets another distribution is more appropriate. Frisen [16]
iscusses this issue in the context of the CUSUM method. In future
ork it would be interesting to adapt our method to alternative
istributions.
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