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Abstract— This paper evaluates the use of a sensor mounted
on a finger to detect bites during food consumption. Previous
works have demonstrated the capability to detect bites by
tracking wrist motion. The key motion is the roll of the wrist
that occurs between picking up food and delivering it to the
mouth. We hypothesize that the roll axes of the wrist, hand,
and finger are congruent, and that therefore the roll motion
measured at the wrist can be similarly measured at the finger.
We collected data for 10 meals of subjects wearing sensors
on both the wrist and finger. Results indicate that the bite
counting algorithm obtains similar accuracy at both locations.
The practical implication is that an eating activity monitor
could be embedded in the form of a ring worn on the finger,
and that this form factor could work as well as a watch-like
device.

I. INTRODUCTION

This paper considers the problem of detecting bites by
tracking finger motion during a meal. A bite refers to the
process of picking up a morsel of food and placing it into
the mouth for consumption [2]. Automated bite counting has
recently emerged as an alternative method to self-reporting
of energy intake [6], [8], [13]. Although bites do not provide
indicators of nutrition (what types of foods were consumed),
they can be automatically and objectively counted [7]. When
aggregated at the meal level they can provide unbiased
approximations of energy intake [14]. A study of 271 people
in a cafeteria setting, using video to identify the ground
truth of 24,088 bites of 374 different food and beverage
items, found that wrist tracking could detect bites with a
sensitivity of 75% and a positive predictive value of 89%
during natural, unrestricted eating [16]. Another study of
77 people compared automatic bite count versus kilocalories
measured using 24-hour recall over a 2 week period (2,975
meals/snacks) and found a per-individual correlation of 0.53
[15]. Inspired by the Mifflin-St. Jeor formula, this data was
used to derive a kilocalories per bite (KPB) formula based
upon gender, age, height and weight [14]. The formula was
fit to the 2 week data set and tested on the cafeteria data
set, finding that a bite-based estimate of energy intake was
more accurate than participant self-estimates of energy intake
during the cafeteria meal [14].

Wearable sensors are receiving growing interest for their
potential for automated dietary monitoring [11]. Approaches
that have been investigated include acoustic sensing in the
ear and neck areas of the body [4], [10]. Swallowing sounds
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can be detected and associated with consumption, but the
presence of background noise presents a significant chal-
lenge. Another approach is the detection of jaw and throat
motion caused by mastication and swallowing [3]. However,
face and throat mounted wearable devices are likely to
present challenges in terms of social acceptability. A recent
approach is the detection of chewing motions via sensors
mounted in eyeglasses [1], [12], [20]. While eyeglasses have
widespread social acceptance, not everyone wears them, and
it is not clear how someone without a vision problem could
be motivated to wear them solely for tracking energy intake.

This paper is motivated by the detection of bites by
tracking wrist motion [2], [16], [8], [18]. The wrist can
be instrumented with a device that looks like a watch.
Wristwatches have widespread social acceptance, so that
someone wearing a watch for the purpose of tracking energy
intake is unlikely to be stigmatized. However, not everyone
likes to wear a watch, especially now that smartphones
provide a comparable measure of time of day. In this paper
we investigate the possibility of counting bites by tracking
finger motion instead. We hypothesize that a device in the
shape of a common ring could be worn on the finger and
that it could track motion comparable to what is tracked by
wrist-mounted sensors to detect bites.

The novelty of this paper is as follows. First, we collected
a data set of 10 meals with a person wearing sensors on
both the wrist and middle finger. Second, we compare the
accuracy of a classic algorithm for detecting and counting
bites using wrist motion [2] versus the exact same algorithm
using finger motion. The primary objective is to determine if
finger tracking could serve as a substitute for wrist tracking.
If it can be made viable, then people could be given an option
to wear either a watch or ring depending on their comfort
level with body-worn sensors at different positions on the
hand and wrist.

II. METHODS

During eating, our group discovered that the wrist of
a person undergoes a characteristic rolling motion that is
indicative of the person taking a bite of food [2]. The concept
is demonstrated in Figure 1. As food is picked up and brought
towards the mouth, the wrist rotates. The rolling part of
the motion is independent of whatever else the arm does. It
can therefore be tracked using a wrist-mounted gyroscope.
Using appropriate filtering and heuristics, features based
upon wrist-roll motions can be reliably associated with eating
and drinking. Although the wrist-roll shown in Figure 1 is



Fig. 1: Wrist roll motion that occurs during eating.
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Fig. 2: Although the hand and fingers can yaw and pitch
independent of the wrist, the roll motion of the hand and
fingers is locked to the roll motion of the wrist.

emphasized for illustrative effect, a slight-to-moderate wrist
roll occurs very consistently in practice [2], [16].

For this paper, our hypothesis is that it is possible to track
a finger instead of the wrist. Figure 2 illustrates the relevant
anatomy. The hand can yaw and pitch relative to the wrist,
but the roll axis of the hand is locked to the roll axis of the
wrist. The only way to rotate the hand along the roll axis
is to rotate the wrist. Similarly, a finger can yaw and pitch
relative to the hand, but its roll axis is locked to the roll axis
of the hand and thus to the wrist. Therefore, we hypothesize
that it is possible to operate our bite counting method by
tracking finger motion instead of wrist motion. The motion
may be easier to track given that the finger is further from
the fulcrum of the rotation (the elbow) which means that the
radial motion at the finger is slightly larger than the radial
motion at the wrist.

A. Data collection

To collect our data, two Shimmer3 devices were used
to record wrist and finger motion, as shown in figure 3.
A Samsung Galaxy S8+ was positioned on a tripod to
simultaneously record video of subject actions during the
meals, in order to determine the ground truth times of bites.
Two subjects were recorded eating a total of 10 meals.
Utensils and foods were varied and are reported in the results.
Collectively the data spans approximately 170 minutes.

Figure 4 shows a custom program developed by our group
that was used to identify the ground truth times of bites.
The six graphed lines plot the values of accelerometer x,
y, z and gyroscope yaw, pitch, roll over an approximately
1 minute window. The green vertical bar indicates the time
index currently displayed in the synchronized video. Bite
times are marked when the subject is observed to place food
into the mouth. The hand that was used for the bite, the
utensil used (if any), the type of dishware containing the
food, and the food item itself are also specified.

Fig. 3: Photo of both the finger mounted and wrist mounted
sensors

Fig. 4: Screenshot of our ground truthing CafeView program.

B. Algorithm

The algorithm used to detect and count bites is taken from
[2] and uses the following pseudocode:

Let EVENT = 0
Loop

Let Vt = roll velocity at time t
If Vt > T1 and EVENT = 0

EVENT = 1
Let s = t

If Vt < T2 and t-s > T3 and EVENT = 1
Bite detected
Let s = t
EVENT = 2

If EVENT = 2 and t-s > T4
EVENT = 0

End Loop

Roll velocity is measured using the appropriate gyroscope
axis as depicted in figures 1 and 2. The threshold T1
and T2 are used to define the roll velocities that must be
surpassed to identify roll motions associated with a single
bite. The threshold T3 defines the amount of time that
must pass between the positive and negative roll motions.
The threshold T4 defines the amount of time that must
pass before the algorithm can reset to detect another bite.



The original experiments with this algorithm identified the
following optimal values for the four thresholds: T1 = T2 =
10 degrees per second, T3 = 2 seconds, and T4 = 8 seconds
[2].

As illustrated in figure 2, we hypothesize that the same roll
motion measured at the wrist can be measured at the finger.
We therefore operate the exact same algorithm, including
threshold values, for both the wrist and finger sensors.

C. Evaluation

For evaluation of bite detection accuracy we follow the
same procedure described previously in [2], [16]. Briefly,
time indices identified as bites by the algorithm are com-
pared to time indices manually identified as bites in the
ground truth. The comparison matches indices using a greedy
approach matching the closest ground truth bite to each
algorithm-detected bite, while also requiring that matches
occur within a window. The match process identifies a
total count of true positive detections (TP), false positive
detections (FP), and actual bites that were undetected (U).
The true positive rate is calculated as TP/(TP+U) and the
positive predictive value is calculated as TP/(TP+FP).

To compare the accuracy of wrist vs finger tracking for
counting bites, we compare the amount of bites detected,
TP, FP and U values across our set of 10 meals. We also
report the per meal average true positive rate and positive
predictive value. Finally, we conducted t-tests to compare the
distributions of both TP and FP values to determine statistical
significance.

III. RESULTS

Table I lists the results for each of the 10 meals. Foods and
utensils for each meal are listed, along with the ground truth
number of actual bites determined via video. The detected,
TP, FP and missed columns show the results from the finger
sensor vs the wrist sensor. The per-meal average true positive
rate and positive predictive value for the finger sensor were
77.9% and 95.8%. The per-meal average true positive rate
and positive predictive value for the wrist sensor were 74.5%
and 95.8%.

The bottom row of the table shows that the finger sensor
detected 13 more true positives and 2 less false positives
than the wrist sensor. A t-test comparison between the dis-
tributions of true positives revealed no significant difference
between the finger (M=27.3, SD=7.8) and wrist (M=26,
SD=7.3); t(9)=2.1, p=0.7. A t-test comparison between the
distributions of false positives also revealed no significant
difference between the finger (M=1.2, SD=1.8) and wrist
(M=1.4, SD=2.2); t(9)=2.1, p=0.8. Collectively these tests
indicate that the finger sensor performed similar to the wrist
sensor. They also show that the finger sensor showed slightly
better performance in detecting bites, but on this limited
dataset the performance difference was not statistically sig-
nificant.

Figure 5 shows some example data from the finger and
wrist sensors across the same approximately 10 second win-
dow. During the center of that window, a bite was taken. It

Fig. 5: Comparison of raw sensor data during a bite of the
finger mounted sensor (left) and the wrist mounted sensor
(right).

can be seen that amount of motion at the finger is marginally
larger than the amount of motion at the wrist. We believe this
is in part because the finger is further from the fulcrum of
rotation (the elbow) than the wrist, so that slightly larger
rotational motions occur at the finger than at the wrist. This
probably explains at least some of the performance difference
between the finger and wrist sensors.

IV. DISCUSSION

This study tested the ability of a finger mounted sensor
to detect bites compared to a wrist mounted sensor. Across
10 meals of varying foods, eaten with varying utensils, the
sensors performed similarly. The algorithm that was tested
was designed to measure the roll of the wrist that occurs
during eating. The results suggest that the roll that occurs at
the wrist is similarly measurable on the middle finger and
thus a finger location can be used to detect and count bites
with similar accuracy to a wrist location.

The implication of this result is that it should be possible
to build a new device in the shape of a ring that could be
used to automatically measure bite count during a meal. An
important advance for mobile health applications has been
the continuing decrease in power and size of accelerometer
and gyroscope sensors. In the past 5 years, these sensors
have become ubiquitous in smartwatches, and smartwatches
have become commonplace. Smart rings are the current
frontier. At the time of this writing, a few smart rings are
being manufactured that contain accelerometers, but to our
knowledge there are no smart rings that include gyroscopes
or IMU sensors. Our tests therefore used laboratory devices
(Shimmer3 devices), much like our group originally used
laboratory devices for testing wrist motion tracking over 10
years ago. However, we are optimistic that smart rings may
be manufactured in the near future that include the necessary
sensors to operate this algorithm.

It is interesting that the results for the finger sensor
were slightly better than the results for the wrist sensor.
We believe this is in part because the rotational motion
associated with consumption is more pronounced at the
finger than the wrist, because it is further from the elbow.
Although the difference in results reported in this paper did



TABLE I: Finger vs wrist results for bite counting algorithm

Meal Food(s) Utensil Actual Bites Detected TP FP Missed
Finger vs Wrist

1 Dim Sum chopsticks 23 20 19 19 19 1 0 4 4
2 Spaghetti fork 29 34 34 28 28 6 6 1 1
3 Ramen chopsticks 38 30 30 29 29 1 1 9 9
4 Fries hand 56 32 29 32 29 0 0 24 27
5 Dumplings chopsticks / spoon 44 37 40 37 35 0 5 7 9
6 Rice Porridge chopsticks / spoon 51 42 39 41 38 1 1 10 13
7 Sausage & Eggs fork 28 22 19 22 19 0 0 6 9
8 Sausage & Eggs fork 19 19 17 17 16 2 1 2 3
9 Dumplings fork 34 28 27 27 27 1 0 7 7

10 Quesidilla & Vegetables hand / fork 38 21 20 21 20 0 0 17 18
Totals 285 274 273 260 12 14 87 100

not reach statistical significance, we suspect that if the test
was conducted on a suitably large dataset, a significant effect
would be found. It should also be noted that we did not
retrain the algorithm parameters for the finger, and instead
used the same algorithm parameters for the wrist and finger.
It may be that different parameter values for the finger could
improve the performance of the algorithm. A larger dataset
is needed to perform this training and evaluation.

Several approaches to body worn sensors for measuring
energy intake are actively being researched [11]. These
include devices worn on the ear and throat to measure
sounds associated with consumption [4], [10], devices worn
on the neck and face to detect facial motions associated with
consumption [3], and devices worn on the wrist to detect
hand-to-mouth gestures [8], [16]. Recent experiments have
shown that facial motions associated with chewing can be de-
tected using load cells mounted in eyeglasses [1], [12], [20],
removing the need to place sensors at uncommon positions
on the face. Similarly, the experiment in this paper shows that
wrist motions associated with consumption can be detected
at the finger, allowing the sensors to be repositioned to the
finger. It is important that the research community continue
to investigate methods to place sensors at locations where
people are likely to wear them. The measurement of energy
intake needs to be done daily over long periods of time in
order to have an effect on weight change. Comfort and social
acceptance require as much consideratoin as measurement
accuracy if these tools are to achieve widespread use.
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