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Abstract—This paper describes a novel approach of segmenting
and classifying eating gestures from wrist motion using a deep
learning neural network. It is inspired by the approach of fully-
convolutional neural networks in the task of image segmentation.
Our idea is to segment 1D gestures the same way 2D image
regions are segmented, by treating each inertial measurement
unit (IMU) datum like a pixel. The novelty of our approach lies in
training a neural network to recognize data points that describe
an eating gesture just like it would be trained to recognize pixels
describing an image region. The data for this research is known
as the Clemson Cafeteria Dataset. It was collected from 276
participants that ate an unscripted meal at the Harcombe Dining
Hall at Clemson University. Each meal consisted of 1 - 4 courses,
and 488 such recordings were used for the experiments described
in this paper. Sensor readings consist of measurements taken by
an accelerometer (x, y, z) and a gyroscope (yaw, pitch, roll). A
total of 51,614 unique gestures associated with different activities
commonly seen during a meal were identified by 18 trained
raters. Our neural network classifier recognized an average of
79.7% of ‘bite’ and 84.7% of ‘drink’ gestures correctly per
meal. Overall 77.7% of all gestures were recognized correctly
on average per meal. This indicates that a deep learning model
can successfully be used to segment eating gestures from a time
series recording of IMU data using a technique similar to pixel
segmentation within an image.

Index Terms—Deep learning, eating gestures, energy intake,
IMU sensors, segmentation.

I. INTRODUCTION

This paper describes a novel approach of using a deep
learning classifier for segmenting eating gestures from wrist-
motion. These are associated with upper limb motion of short
duration during activities such as moving food from the plate
towards the mouth, taking a drink from a cup, stirring soup
and cutting food into bite sized pieces. Tracking such activity
can prove useful in estimating calorie intake in humans.

This research is motivated by the rise of obesity. In the
United States of America, from 1999-2000 to 2017-2018
the prevalence of obesity increased from 30.5% to 42.4%
[8] and at least 20% of the adult population in each state
considers themselves overweight or obese [9]. Worldwide it
affects people of all ages [7] and can often lean to serious
conditions such as certain types of cancer, cardiovascular
diseases, diabetes and even premature death [6], [8]. As per the
World Health Organization (WHO) monitoring energy intake
and expenditure can promote people to take healthier life

choices and thus manage obesity [7]. However the former has
received relatively less interest, often being limited to self-
reporting and 24-hour recalls such as those described in [10]
and [11]. These are tedious and time-consuming, and often
lead to non-compliance over long periods of time [2].

Different sensing modalities have been studied to measure
consumption [19] including acoustic sensors that detect chew-
ing or swallowing sounds within the ear canal or around
the throat region [20], [21], [22], [23], camera sensors that
estimate the 3D volume of food [2] or serve as retrospective
memory aids in 24-hour recalls [24], [25], [26] and smart eye-
glasses that track activity in the temporalis muscle (associated
with mastication) using an electromyography (EMG) sensor
alone [27] or one integrated with an accelerometer [28], [29].

In comparison to these inertial measurement unit (IMU)
sensors that are fitted in wrist worn devices such as smart-
watches offer a convenient, reliable and comfortable way of
monitoring eating activity as discussed in [2] and [5]. Our
group has been studying the recognition of eating activities
using IMU sensors for 10 years. The original algorithm known
as the ‘Bite Counter’ [12], [13], [14] detects specific patterns
of wrist motion associated with the intake of a single bite
of food using a set of heuristics and thresholds. More recent
work has focused on using hidden Markov models (HMM)
to classify wrist activity into a fixed number of categories
using inter-gesture sequential dependencies [17]. This method
achieves 96.5% accuracy at detecting eating gestures from a
data set of 25 meals eaten by different subjects. This was
extended to three main variations of HMM for studying the
effect of contextual variables such as age, gender and ethnicity
in [2] and [18].

Another group of researchers detected food intake from
IMU data recorded using commercial smartwatches as re-
ported in [30]. They modeled eating activity as a combination
of five specific wrist micromovements or micro gestures that
were detected using a deep learning neural network. Using
convolutional layers to learn the probability distribution of
each micromovement, which is then fed into long short-
term memory (LSTM) layers their model detects sequences
containing food intake cycles. It achieves the highest F1
detection score of 0.913 in a leave-one-out crossvalidation
approach, when compared to other state-of-the-art methods
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including the one in [13]. This is motivating since it suggests
that a deep learning classifier can be used to detect eating
activity from an IMU time-series recording.

In [2], [17] and [30] the authors considered IMU recordings
that were manually segmented. In addition the data used in
[30] only contains recordings of people eating using forks
and knives. Other utensils and eating with the hands are not
considered at all, neither is activity such as drinking which
often occurs along with eating during a meal. On the other
hand, the data used in this research [1] contains recordings
of multiple gesture types including drink, and also contains
recordings of people eating with a variety of utensils and their
hands as well. The neural network proposed as part of this
research builds on the works reported in [2], [17] and [30], but
extends to data that is unsegmented and contains recordings
for different gesture types using a variety of utensils. It is
similar to the approach for image segmentation as seen in [3]
and [4]. In these 2D pixels are spatially grouped and labeled
as belonging to a particular region [3], [31], [32]. In a similar
manner we treat a single datum recorded using IMU sensors
as a part of an eating gesture and detect multiple consecutive
instances that form a complete gesture. Our approach is novel
since it trains a neural network to simultaneously detect
periods of specific wrist motion, and classify these as eating
gestures accordingly. The rest of this paper describes this idea
in greater detail.

II. METHODS

A. Data

The data used for this research is part of the Clemson
Cafeteria Dataset [1]. It was collected from 276 participants
that each ate a single meal consisting of 1-4 courses at the
Harcombe Dining Hall at Clemson University. A total of 380
different food and beverage types were considered including
stir fried vegetables, shoestring French fries, pasta, water
and soda. Four different utensils were considered, viz. forks,
spoons, chopsticks and hands. The group consisted of 131
male and 140 female participants, of which 114 were in the
age group 18 - 23, 76 in 24 - 30, 27 in 31 - 40, 33 in 41 - 50
and 21 were between 51 - 75 years old.

Wrist motion was recorded using a custom device that
measured wrist-acceleration using an accelerometer (x, y, z)
and wrist-rotation using a gyroscope (yaw, pitch, roll) at 15
Hz. In previous works [2], [17] our group had identified five
unique gesture categories including ‘bite’, ‘drink’, ‘utensiling’,
‘rest’ and ‘other’. A total of 18 trained raters observed a syn-
chronized video feed and the measured signals simultaneously
to identify gestures in each recording as shown in Figure 1. In
this figure, the green line indicates the current position of the
recording while gestures are identified using a color code; red
for ‘bite’, aqua for ‘drink’, ‘orange’ for utensiling, ‘black’ for
rest and gray for ‘other’. A total of 51,614 unique gestures,
each of unequal duration were identified by the raters. The
category ‘unlabeled’ (shown in plain white) was identified
in this research to mark all instances of time not having a
unique label in the ground truth. This is necessary to train

Fig. 1: Custom tool for observing video feed and recorded
signals simultaneously. From top to bottom signals are: ac-
celerometer (x, y, z) and gyroscope (yaw, pitch, roll). Gesture
labels are red: bite, aqua: drink, gray: other, black: rest, orange:
utensiling.

a neural network for segmenting eating gestures from within
each recording of IMU data. For a detailed description of the
labeling process, including the complete gesture definitions the
interested reader is referred to [2] and [5].

B. Deep learning neural network

The neural network architecture developed as part of this
research is shown in Figure 2. It consists of three convolutional
blocks that form the encoder stage of the network, and three
deconvolutional blocks as part of the decoder stage. It is
inspired by the U-Net models used for image segmentation
in [3] and [4]. In these models the convolutional blocks learn
a set of filters for transforming the input into its feature-
space representation. This stage extracts the high resolution
information from the input. At the end of each encoder block
the output is downsampled using max-pooling to retain only
the strongest responses to the learned filters in that block.
In contrast, each decoder block combines the output of its
preceding decoder block with that from an appropriate encoder
block and increases its resolution through a process known as
deconvolution [15], [16]. The resolution is steadily increased
till it is the same as that of the input. This structure helps
a U-Net model achieve high contextual accuracy through
the information extracted in the encoding phase and high
localization accuracy through the decoding phase [3]. For a
detailed description of each encoder and decoder block, the
reader is referred to the author’s earlier work [5].

In order to train the neural network on input sequences of
arbitrary length, each recording was separated into multiple
consecutive and overlapping segments known as sliding win-
dows. Each window was of 30 seconds duration, correspond-
ing to 450 samples due to the sampling rate of 15 Hz. In each
iteration the window was shifted by 1 second or 15 samples.
This process continued till the last sliding window fit within
the recording without zero-padding the input sequence. Further
each sliding window was reshaped from size 450 × 6 to an
array of size 1 × 450 × 6 as shown in Figure 3. This means
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Fig. 2: Encoder-decoder architecture: Arrow blocks show filter size (top) and layer depth (bottom) in that particular block.
Other numbers indicate the size of the output after previous operation. Concatenate layers merge connected arrays.
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Fig. 3: Reshaping input for compatibility with the neural
network.

that each datum within an IMU time-series recording is treated
like a pixel within an image. This is the true novelty of this
research. By treating each datum like a pixel within an image,
a gesture is then similar to a region within an image that needs
to be segmented as demonstrated in [3] and [4]. The neural
network thus learns to classify and group all such segments
corresponding to the eating gestures from each recording.
All data was normalized using min-max normalization for an
entire meal before being used to train the neural network.

C. Training the neural network

The neural network was trained to minimize the categorical
cross-entropy loss between the model prediction for each
datum and its ground truth label. Each ground truth label was
converted into its one-hot representation as explained in [5].
The model was trained using a 5-fold cross validation, with
the number of epochs fixed at 200 during each training fold.
This number was empirically determined after observing that
the model performance improved steadily after 100 epochs
but showed no improvement beyond 200 epochs. The training

process including the one-hot representation is described in
greater detail in [5].

D. Model output and evaluation

Due to the softmax activation used in the final decoder block
the neural network output for each datum is a probability
distribution over the class labels [4]. The class having the
highest value is then retained as the final prediction for each
datum. For data points that occur in more than one sliding
window the max-voting strategy was used to retain the label
that occurred most frequently as explained in [5]. For data
points that have ambiguous labels the label of the preceding
datum was used as the final model output instead. Such data
points were observed at the boundary of two gestures owing
to the differences in temporal relationships between such data
points and their neighbors in consecutive sliding windows.

Once the final model output was generated the gestures
were compared with the ground truth labels using a method
similar to the one used to measure inter-rater reliability in [2].
In [2] inter-rater reliability was used to resolve discrepancies
between two ground truth labels made by two different human
raters. Instead in this research we assume that the ground truth
labels are correct, and only the classifier output needed to
be evaluated in order to assess its accuracy. Model accuracy
was assessed in three stages, first by counting the agreement
between indices of the ground truth and the model output, then
by measuring total agreement between gestures in the ground
truth and model output for the entire recording and finally by
evaluating the agreement between different gesture types. The
category ‘unlabeled’ was not considered during the evaluation
phase, nor were the gestures that occurred outside the start
and end of the ground truth gestures.
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Fig. 4: Comparing ground truth (top) and classifier output (bot-
tom). Top row, (a), (b) and (c) represent agreement between
gestures. In the bottom row we see, from left to right: missed
(d), mislabeled (e), mangled (f) and false positive (g).

Agreement among indices was evaluated using a percentage
of matching between the model output and the ground truth.
A high percentage of agreement between indices indicates that
the model output closely resembles the ground truth label for
a particular recording. In the later stages agreement between
all gestures in a meal was evaluated using the different types
of overlap between model output and ground truth as shown in
Figure 4. As seen in parts (a), (b) and (c) the model output has
more than 50% overlap with the ground truth gestures along
with the correct label and is hence considered as agreement
between gestures. On the other hand in parts (d), (e), (f) and (g)
the model misses the ground truth gesture, mislabels its output,
identifies at least one wrong gesture category and falsely
identifies a gesture where none exists in the ground truth file.
Thus these overlaps are treated as erroneous model output,
termed as missed, mislabeled, mangled and false positive
respectively. It should be clear to the reader that classifier
outputs from (d) to (g) are undesired as they indicate that
the model was unable to identify that particular ground truth
gesture.

III. RESULTS

A. Correctly identifying indices

The model correctly matched 71.3% of indices on average
per meal between the ground truth and the classifier output.
The average standard deviation per meal of this matching was
10.8%, indicating that the model output closely resembles the
ground truth at the index level on average per meal.

B. Correctly identifying all gestures from a meal

As it can be seen from Table I, the model correctly
identified 77.7% of all gestures on average per meal which
is sufficiently high for the chosen application. In addition the
average standard deviation of correctly identified gestures per
meal of 13.7% is reasonably low, while the average standard
deviation of all incorrect mappings per meal is even lower.
This indicates that the neural network is robust to differences
in wrist motion for the large group of people considered and
can be used to segment eating gestures from each recording.

C. Identifying eating related gestures from a meal

The model performs well at identifying eating-related ges-
tures such as ‘bite’ and ‘drink’, and other gestures associated

TABLE I: Percentage of inter-gesture mapping per meal.

Metric correct missed mislabeled mangled false positive
Avg. 77.7 11.2 5.9 6.2 16.6

St. dev. 13.7 8.4 5.8 4.9 11.1

TABLE II: Percentage of correctly identified gestures per meal
by category.

Metric bite drink utensiling rest other
Avg. 79.7 84.7 79.5 81.1 0

St. dev. 19.1 20.3 17.3 17.6 0

with eating such as ‘utensiling’ and ‘rest’ as seen in Table II.
The average accuracy per meal for each of these gesture types
is close to 80%, and the average standard deviation per meal
is close to 20% in each case. However we also observe that
the model was unable to identify any gestures from the ‘other’
category. This gesture was used to mark all activities that could
not be categorized in the other four main categories, including
periods of ambiguous behavior [2]. Hence it contains a lot of
variation, especially for the large group of people considered.
In addition it was observed that this gesture occurred very
infrequently in only 123 meals out of 488 in the data set.
Hence the data set is imbalanced with respect to the ‘other’
category of gestures. As machine learning models such as
neural networks do not perform well on such type of data,
we can expect that the model was unable to identify even a
single gesture from this particular category.

Figure 5 displays a typical result for one segment of the
meal 215/c3. The image is plotted using CafeView, the custom
tool designed to compare model output and ground truth for
each file. For this meal the percentage of individual gestures
recognized is 88.4%, 88.8%, 71.4% and 80% for ‘bite’,
‘drink’, ‘utensiling’ and ‘rest’ respectively, which indicates
a high degree of matching with the ground truth. Note that
this recording contained no gestures labeled as ‘other’ in the
ground truth and classifier output as well, and hence this
category is not mentioned or displayed.

On the other hand the model performed very poorly on

Fig. 5: An example typical result shown for the meal 215/c3
with ground truth (top) compared against model output (bot-
tom). Gesture labels are red: bite, aqua: drink, gray: other,
black: rest, orange: utensiling.
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Fig. 6: Plotting histogram to identify meals with lower total
gesture agreement.

some meals within the data set. On observing the distribution
of correctly identified gestures per meal as a histogram in
Figure 6, we see that the distribution is long tailed falling
sharply beyond 3 standard deviations away from the mean.
One such segment corresponding to the recording 170/c1
is shown in Figure 7. In this recording the percentage of
‘bite’ and ‘drink’ gestures correctly recognized was 18.5%
and 50% respectively, while the percentage of total gestures
correctly identified was 37.5%. On observing the third and
fourth ‘bite’ gestures to the right of the green marker within
this segment we see that the sensor did not record any activity
for the duration of the gesture marked by the rater. It is very
likely that the rater did in fact observe eating activity, but
failed to notice that it occurred with the uninstrumented hand,
which did not have the recording device mounted. Other meals
on which the model performed poorly also contain multiple
gestures accidentally marked for the uninstrumented hand by
the rater. These were classified as ‘rest’ by the model owing
to the relative inactivity as measured by the electronic sensors.
This is thought to be the main reason for the mismatch between
the classifier output and the ground truth gesture for these
meals. However since the main goal of this research is to
detect and classify all gestures associated with eating activity,
it is important that the classifier identify such periods of wrist
motion as well. It is known from the principle of symmetry
in biology that motion in one arm/wrist/hand tends to cause
related motions in the other arm/wrist/hand. Hence a strategy
is discussed in section IV which can potentially help design a
classifier that can detect such periods of associated motion in
the instrumented hand.

IV. CONCLUSION

This research considers the problem of designing and imple-
menting a deep learning model for simultaneously detecting
and classifying periods of wrist motion into specific eating
related categories or gestures. Wrist motion data such as
the one considered in this research can be recorded using
IMU sensors fitted inside a watch-like device such as a

Fig. 7: A meal containing multiple gestures marked for the
uninstrumented hand, corresponding to the recording 170/c1.
Ground truth (top) and classifier output (bottom) are identified
using labels are red: bite, aqua: drink, gray: other, black: rest,
orange: utensiling.

smartwatch or a fitness tracker. This works builds on HMM
based classifiers, especially those designed previously in our
research group [2], [17] and extends their application to data
that is previously unsegmented. The deep learning model in
particular is inspired by the success of similar approaches used
for image segmentation, such as [3], [4], [31] and [32].

The deep learning model was able to successfully segment
and classify 77.7% of all gestures on average per meal. It was
also able to detect and identify individual gestures including
‘bite’,‘drink’,‘utensiling’ and ‘rest’ with an average accuracy
of 79.7%, 84.7%, 79.5% and 81.1% respectively per meal.
However it was unable to identify gestures belonging to the
category ‘other’. This is most likely because this category
contains a lot of variation in the recorded signals, especially
for the large group of people considered. It is also the
most infrequently occurring category, as only 123 meals have
ground truth gestures marked as ‘other’ and the presence of
these gestures is limited in these meals as well. Thus the data
set is very imbalanced with respect to this category, and hence
the classifier performs poorly at detecting these gestures.

It was also observed that the neural network performed
very poorly at identifying gestures correctly in some meals.
These meals contain multiple periods of activity marked for the
uninstrumented hand by the human rater as seen in Figure 7.
This is thought to be the main reason for the poor performance
of the neural network on such meals. It is however known from
the principle of symmetry in biology that motion in one wrist
tends to cause related motion in the other. Hence it is possible
that a classifier can be designed that can detect motion in an
instrumented hand that occurs relative to eating gestures by
the other hand. This is discussed in section IV-A.

A. Future work

One way to improve the accuracy of the neural network at
identifying gestures in the instrumented hand is to consider a
deeper neural network consisting of more convolutional and
deconvolutional blocks. It is expected that a larger number of
blocks will generate better feature mappings corresponding to
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wrist-micromovements that occur during eating and non-eating
gestures [30]. This might help to capture subtle movements in
the instrumented hand that occur relative to specific motion
in the uninstrumented hand when the subject eats with the
wrong hand. These may also prove useful to improve the
accuracy of the classifier for the ‘other’ category of gestures
thus improving the overall gesture recognition accuracy of the
model.

Another way to improve the accuracy of the classifier is
by expanding the set of ground truth labels considered. This
can be done by including the hand with which the gesture
occurred, which would improve the contextual meaning of the
ground truth much like the work done in [2]. This is expected
to improve the accuracy of the classifier at detecting gestures
in both hands as well.

Finally considering sliding windows having different lengths
of time can also be considered to improve the accuracy of
the model. Longer sequences than the one considered in this
research would mean more temporal relationships would be
seen by the neural network, thereby improving the feature-
mappings generated. However these would require larger
memory for training the neural network in practice and longer
training times as well. Hence the trade-off between the length
of the sliding window and the accuracy of the neural ntwork
needs to be carefully studied.
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