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Abstract—The prevalence of obesity is a growing, worldwide
health concern. Self-monitoring of eating consumption is widely
recognized as a necessity for weight loss. In this paper we describe
a novel method for automated monitoring of eating. Our method
uses a single sensor that is worn on the wrist, similar in form
to a watch. Wrist orientation was captured at a rate of 60 Hz
for an entire day while four subjects conducted their natural
daily routine. In our first experiment, we manually segmented
the wrist motion data according to task logs kept by the subjects,
and developed an algorithm to classify the tasks, achieving an
accuracy of 91%. In our second experiment, we automatically
segmented the wrist motion data in order to detect eating sessions,
achieving a detection accuracy of 82%. Our methods will enable
new opportunities in the study of dietetics, weight loss and
management, nutrition, and health monitoring.

Index Terms—activity recognition, orientation sensor, body
motion tracking, eating

I. I NTRODUCTION

This work is motivated by the growing prevalence of obesity
in the world. In 2007-2008, the National Health and Nutrition
Examination Survey showed that 68.3% of Americans were
overweight and 33.9% of Americans were obese [1]. The
World Health Organization reported that 1.5 billion adults
(age 20+) were overweight and 500 million adults were obese
worldwide [2]. Obesity is strongly associated with several
major health risk factors, such as diabetes, heart disease,high
blood pressure, stroke and higher rates of certain cancers [3].
In the United States, the annual medical expense of obesity
has been estimated at $147 billion in 2008 compared to $78.5
billion in 1998 [4].

Weight control can be assisted by self-monitoring of intake
consumption, which has been consistently related to successful
weight loss [5]. The most well known tool for monitoring food
intake is an eating diary; however, this tool places the burden
on the user to manually record all foods eaten. In addition,
people have a tendency to forget or underreport the calorie
consumption [6] [7]. Some researchers have investigated using
a scale embedded in a dining table [8] [9]. However, this
method can only monitor consumption when people eat at
the instrumented table. Another method is to use a PDA
or a cell phone to take photos before and after the eating
and use image processing to estimate the amount of food
intake [10] [11]. However, because foods must be carefully
separated and positioned for imaging, these methods have not
yet been studied in natural daily living. Combinations of neck,

ear, arm, and back worn sensors have been investigated for
recognizing eating activities [12]. While these configurations
may find applications in a laboratory or clinic, they are not
suitable for day-to-day living. In summary, none of the existing
methods automates the process of self-monitoring of eating
consumption in an easy-to-use manner.

Our group has previously described methods using a micro-
electro-mechanical system (MEMS) sensor to track wrist mo-
tion in order to measure the number of bites eaten during a
meal [13]. We have discovered that while eating, the wrist
motion of a person undergoes a characteristic rolling motion
that is indicative of the person taking a bite of food [14].
However, our device requires the user to press a button to turn
the device on before eating and turn the device off after eating.
In this paper, we explore methods to overcome this limitation
by differentiating eating sessions from other activities using
the same MEMS sensor.

With their low power and small size, MEMS sensors can be
comfortably worn on the human body and operated for hours at
a time. Researchers have investigated their use for recognizing
common daily activities such as walking, running, sitting
and resting [15] [16] [17] [18], accidental falls [19], sports
activities [20], assembly tasks [21], and tremors associated
with Parkinson’s disease [22]. Sensors can be placed on
different parts of the body, such as the chest [15], shoulder
[19], waist [18] [19], thigh [19], ankle [20], hip [17] and wrist
[17]. The sensor type varies as well. The most common type is
accelerometers [15] [18] [19] [20] [21] [23], while ECGs [16]
[17], light sensors [19], microphones [19] [21] and temperature
sensors [17] have also been used.

None of these works has considered the problem of de-
tecting eating activities during normal daily life. To our
knowledge, the methods we describe herein are the first to
look at this difficult problem. In addition, many of the previous
works on activity recognition require a large set of sensors[17]
[19] [23], that together with the wiring, are difficult to wear
outside the laboratory. Experiments are typically performed
in a laboratory setting where subjects are asked to repeat
activities of interest, interspersed with other motions [15] [16]
[17] [20]. In contrast, we instrumented our subjects with a
single sensor and instructed them to conduct normal activities
for an entire day. While the results presented in this paper
are preliminary and on a limited number of subjects, we
believe our methods will ultimately enable new opportunities



Fig. 1. InertiaCube3 prototype

for weight management and weight loss paradigms.
The rest of the paper is organized as follows: In section II

we describe our approach of classifying eating activity on pre-
segmented motion data and detecting eating sessions in real
time. In section III we present experimental results to validate
our proposed algorithms. Finally, we conclude our paper and
discuss future work in section IV.

II. M ETHODS

A. Hardware and prototype

A wired InertiaCube3 sensor produced by InterSense Corpo-
ration (InterSense, Inc., 36 Crosby Drive, Suite 150, Bedford,
MA 01730, www.isense.com) was used to record the wrist
motion data. It is composed of an accelerometer, a gyroscope
and a magnetometer on each of the three axes which provide
an orientation heading in each of these three orientations:
roll, pitch, and yaw. Figure 1 shows the wired Inertiacube3
sensor and its size compared to a US quarter. The sensor was
connected to an external 9V battery as a power source and a
laptop with a running program to store collected data through
an RS232 interface. Both the external battery and the laptop
were carried by the subject in a backpack. The adjustable wire
connecting the two parts was long enough to make sure the
subject’s normal behaviors were not being affected.

B. Data collection

Subjects were asked to wear the sensor and carry the
backpack to record their wrist motion data when they got up
in the morning, and to stop recording the data when they went
to bed at night. As shown in Figure 2, the subject placed the
sensor on the dominant eating hand, and then wrapped the
band tightly around the forearm to ensure it would not slide
around the arm. The program running on the laptop in the
backpack (Figure 3) was set up to collect the orientation data
from the sensor in real time.

Using the recording program on the laptop was straight-
forward. Double clicking the program icon on the desktop
would automatically start it to record the pitch, yaw and roll

Fig. 2. Data collection using a single orientation sensor onthe wrist

Fig. 3. Data collection using a single orientation sensor onthe wrist

orientation at a rate of 60Hz. Due to the fact that the battery
in the laptop could only last for about four hours, the program
generated continuous beeping for 3 minutes when the battery
level of the laptop dropped to 10%. The subject was asked
to close the program and replace the battery (an extra was
provided in the backpack) when he or she heard the beeping
reminder. He or she was asked to restart the program afterward
to continue recording.

During recording, subjects were asked to conduct daily
activities as naturally as possible. The subject was asked to
remove the device when engaging in activities which would
damage the device, such as taking a shower or playing contact
sports. The subject was asked to record activity behaviors in a
written log book. The subject was asked to record the start time
and the name of the activity for each new task. For example,
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Fig. 4. Diagram of offline detection

08:02:04 eating; 13:24:58 walking. A task was defined as a
piece of work or activity to be finished. The log information
written by the subject was used for segmenting the ground
truth tasks from the wrist motion data later.

A total of 4 subjects participated in this experiment. Two
were male and two were female. All the data was collected in
a completely free living condition, with no supervision.

C. Offline eating classification

For our first experiment, we consider the problem of classi-
fying the eating activity using both the collected motion data
and time information in the log book. An outline of the process
for the offline eating classification is shown in Figure 4.

Since different subjects might wear the sensor at different
angles, it is difficult to define the task if we use the absolute
value of the orientation data. Therefore, we calculate the
derivative data, which is comparable. Since we have recorded
the data at 60Hz, the simplest way to calculate the derivative
data is in Equation 1 wheredt is the derivative data at timet
andot is the orientation data at timet.

dt = (ot − ot−1)× 60 (1)

The second step is to segment the derivative data into tasks
based on the log file. In the log file, subjects recorded the
start time for each new task. We use the start time of current
task as one boundary and the start time of the next task as the
other boundary for the current task to segment the derivative
data. For each segmented data, we categorize it based on the
content in the log file into one of 23 categories, as shown in
Table I.

Although we were able to map most user defined tasks into
Table I, a few tasks were difficult to categorize. First, two

TABLE I
ACTIVITY CATEGORY

Eating activity Sedentary activity Ambulatory activity
Eating Using computer Cooking

Using phone Walking
Reading Driving
Writing Washing dishes
Napping Cleaning
Talking Doing laundry
Watching TV Packing
Changing laptop battery Brushing
Filing nail Shopping
Playing card game
Going to restroom
Being passenger in car
Playing video game

categories may happen at the same time, such as eating apples
and working on a computer. Second, different people can make
notes on the same activity in different ways. For instance,
some subjects may categorize “walk to car, stop to talk to a
friend” as one log entry, but some other subjects put it into two
categories. Because we are interested in eating activities, any
note with eating is categorized as “eating”. Any notes without
eating mentioned were categorized to the best of our ability.

Since eating is the most important activity to us, we do
not need to classify all these 23 tasks. We cluster these 23
categories into three clusters:

1) Eating activity: eating activity is a task which related to
eating food or drinking liquid.

2) Sedentary activity: sedentary activity is a task (except
eating) which involves sitting down, not moving or not
exercising. All tasks in the middle column of Table I
belong to this category.

3) Ambulatory activity: ambulatory activity is a task which
is related to walking, moving or exercising. All tasks in
the right column of Table I belong to this category.

These clusters were chosen because it is typically easier to
distinguish sedentary and ambulatory activities. Once these
have been separated, eating activities can be recognized asa
subset of sedentary activities.

To classify the segmented tasks, we calculate five features
for each task:

1) Variance of yaw velocity (YVAR)
2) Variance of pitch velocity (PVAR)
3) Variance of roll velocity (RVAR)
4) Bites per minute (BPM) using bite detection method.

The method to detect bite counts using the derivative
data is described in our previous work [13].

5) Occurrences when the bite detection method does not
detect a bite over a span of at least one minute
(NOT EAT).

Using these features, each task is classified as follows:

1) A task is classified as an ambulatory activity if any of
the following conditions are met:

a) Y VAR + P VAR + R VAR > T1
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Fig. 5. Diagram of real time detection

b) Y VAR > T2
c) P VAR > T3
d) R VAR > T4

2) A task is classified as an eating activity if all of the
following conditions are met:

a) Y VAR < T5 and Y VAR > T6
b) P VAR < T7 and PVAR > T8
c) R VAR < T9 and R VAR > T10
d) BPM > T11
e) NOT EAT < T12

3) Otherwise a task is classified as a sedentary activity

Here,{T1, T2, ... T12} is a set of thresholds. In our default
setting, these values are{8500, 5000, 1000, 5000, 3000, 200,
900, 150, 5000, 600, 2, 3}. If the variance of the task’s
velocity data is large, it is considered as an ambulatory task.
If this criterion is not met, the task is considered as either
an eating task or a sedentary task. The eating activity has
the following characteristics: the variance of pitch, yaw and
roll should be within a certain range. In addition, the eating
activity should have reached certain bite counts per minuteand
should not include a long period where no bite is detected.
These characteristics are used to separate eating tasks from
sedentary tasks.

D. Real time eating detection

Our second experiment considers the problem of detecting
eating activity without knowing the start time of each task in
the log file. This method has the potential to detect the eating
activity in real time as we collect the data. The outline of our
method is shown in Figure 5. In our algorithm, we only use
the roll orientation data.

We calculate the roll velocity data from the orientation data,
same as in section II-C. To identify eating activity in real time,
we use a sliding window to extract the motion feature. The
window size is set to 10 minutes and we update the motion
feature every 1 minute. For each 10 minute window, the data is
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Fig. 6. State machine of potential eating session detection

segmented into 2 parts, one fromt−10 to t−5 and one fromt−
5 to t. Each of these two parts is classified using the methods
outlined in section II-C. Based on these classifications, the
point at timet− 5 is categorized as one of 4 categories:

1) category 1: this point may be a start boundary for an
eating task.

2) category 2: this point may be an end boundary for an
eating task.

3) category 3: this point cannot be inside an eating task.
4) category 4: this point may be inside or outside an eating

task.

Figure 6 illustrates a state machine that shows our method.
Initially we are in the state “not eating”. After that, we update
the transition condition (category of the time stamp) every
1 minute. If the transition condition is category 1, the state
transits to “possibly eating”, at the same time, we update the
potential start time of an eating session. While in the state
“possibly-eating”, if the transition condition is category 1, we
update the start time; if the transition condition is category 3,
we go back to state “not eating”; if the transition conditionis
category 2, we have detected a potential eating session. We
output the start time and the end time of the potential eating
session and go back to state “not eating”.

For every potential eating session, we examine the duration.
If the duration is too short or too long, it is not to be considered
as an eating activity.

We also extract the features and run the same algorithm
illustrated in section II-C to classify the potential eating
session. If all criteria are met, an eating session is detected.

III. R ESULTS

As described in Section II-B, a total of 4 subjects were
recorded, each for an entire day. We had no restriction on
how subjects should do their activities and how long they
should do each task. For any eating task, subjects could eat



their own food and liquid, and use any utensils they preferred
(hand, spoon, fork, or chopsticks). Each recording sessionwas
completely unsupervised.

Table II shows some statistics of all the tasks for these
subjects. The total time recorded for these four subjects
ranged from 9.4 hours to 13.4 hours. The total number of
tasks for each subject was between 23 and 39. Table II also
shows the shortest task duration, longest task duration, average
task duration, and standard deviation of task duration for
each subject. In addition, the most frequent task for different
subjects varied.

We also include the statistics of eating tasks for these 4
subjects in Table III. The total eating time of each subject
was from 0.7 hour to 1 hour. This was consistent with the
“American Time Use Survey” from the United States Bureau
of Labor Statistics [24] which reported an average of 1.18
hours on eating and drinking per weekday. The total number
of eating tasks was within a range from 4 to 6 times. Table III
also shows the shortest eating session, longest eating session,
average eating session, and standard deviation of eating session
for each subject.

Table IV shows the results of task classification using
the information on the log file. There were 125 total tasks
across all 4 subjects; 16% of the tasks were eating activity,
43% of the tasks were sedentary activity, and the rest were
ambulatory activity. The classification accuracy is calculated
using Equation 2. In our experiment, the classifcation accuracy
was 91%.

sensitivity =
sum of correct classifications

total number of classifications
(2)

Table V shows the results of real time eating activity
recognition without knowing any information in the log file.
In the table, the second and the third column show the ground
truth time of each eating task. The second column shows the
start time of the eating task and the third column shows the
end time of the corresponding eating task. The fourth column
and the fifth column show the computer detected boundary
for each eating task. The fourth column shows the detected
start time of each eating task and the fifth column shows the
detected end time of the corresponding eating task. All of
these numbers are in minutes. A row without any number in
the fourth and fifth column indicates that there is an undetected
eating task. A row without any number in the second column
and third column indicates that there is a false detection of
an eating task. A row with numbers in all columns indicates
that this is a detected eating task. The sensitivity is calculated
using Equation 3 and the positive predictive value (PPV) is
calculated using Equation 4

sensitivity =
true detected

true detected+ undetected
(3)

PPV =
true detected

true detected+ false detected
(4)

TABLE V
REAL TIME CLASSIFICATION RESULT (MINUTES)

Ground Truth PC Detect
Subject Start time End time Start time End time

S1 11 17 9 17
S1 195 205 194 205
S1 393 400 393 399
S1 537 547 537 549
S1 654 673 653 674
S1 685 700
S2 78 91 78 96
S2 523 538
S2 565 573
S2 100 112
S2 192 201
S2 538 548
S3 85 94 85 94
S3 166 178 166 179
S3 257 269 258 272
S3 412 424 412 426
S3 603 615 601 615
S3 362 370
S4 14 27
S4 270 277 270 276
S4 462 484 466 475
S4 518 527 515 528

Although there were a total of 20 eating sessions recorded
by the subjects, 3 of them lasted for less than 3 minutes
so they were not included in Table V. We excluded these
tasks because they were so short that our feature set did not
adequately describe them. For the remaining 17 eating tasks,
3 of them were not detected. There were 6 false detections.
Thus the sensitivity was 82% and the positive predictive value
was 70%. In addition, for the 14 eating sessions detected, 10
of them were detected with start and end boundaries which
match the log file within 2 minutes. For the other 4 sessions,
the boundary errors are (0, 5), (1, 3), (4, 9), (3, 1) minutes
respectively. We hypothesize that these boundary errors are
likely due to timing misalignments between the user logs and
wrist motion data, as well as judgment calls by the subjects
as to when they actually started and stopped eating.

IV. CONCLUSIONS

The prevalence of obesity is a growing, worldwide health
concern. Self-monitoring of eating consumption is widely
recognized as a necessity for weight loss. However, there
are currently no automated methods for monitoring eating
consumption in natural daily living. In this paper we have
described preliminary experiments that use a single wrist-
worn sensor to track wrist motion throughout the day, in
order to detect eating sessions. Four subjects were recorded
for an average period of 11 hours, performing an average
of 31 self-classified tasks, of which an average of 5 were
eating. In our first experiment, we segmented the wrist motion
data according to the subjects’ logs, and demonstrated a 91%
accuracy in classifying the tasks. In our second experiment,
we automatically segmented the wrist motion data and demon-
strated an 82% accuracy in detecting eating sessions. While



TABLE II
STATISTICS OF ALL THE TASKS FOR THESE SUBJECTS

Subject 1 Subject 2 Subject 3 Subject 4
total time of all tasks (h) 13.4 9.8 10.1 9.4
total number of tasks 39 36 23 27
shortest task (min) 3 1.2 3.3 3.5
longest task (min) 93.3 90.7 97.5 78.7
average task (min) 20.6 16.3 26.3 20.9
standard deviation of task (min) 20.6 19.1 27.4 21.7
most frequent task Using computer Driving Eating Using computer

TABLE III
STATISTICS OF EATING TASKS FOR THESE SUBJECTS

Subject 1 Subject 2 Subject 3 Subject 4
total time of eating (h) 0.8 0.7 1 0.8
total number of eating sessions 5 5 6 4
shortest session (min) 5.8 1.2 3.3 7
longest session (min) 18.6 15.3 12.3 21.7
average session (min) 10.2 7.9 10 12.6
standard deviation of session (min) 5.2 6 3.6 6.5

TABLE IV
OFFLINE CLASSIFICATION RESULT

Classify: Eating Classify: Sedentary Classify: Ambulatory
GT: Eating 17 2 1

GT: Sedentary 4 49 1
GT: Ambulatory 2 1 48

the number of subjects tested was small, this is the first work
to examine the problem of automatically monitoring eating
during daily living. In the future we plan to continue this
experiment on a much larger number of subjects. We also
intend to simplify the apparatus to something that can be worn
completely on the wrist. For these first experiments, we used
a laptop in a backpack in order to record the large amount of
data generated during an entire day. For our next experiments
we intend to use a “smart phone”.
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