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Abstract—This work is motivated by the growing prevalence self-report methods, with estimates of underreportingyirag
of obesity, a health problem affecting over 500 million people. from 10-30% for normal weight subjects to 20-50% for obese
Measurements of energy intake are commonly used for the study adults and children [6], [14], [16], [19], [24], [32], [37TThe
and treatment of obesity. However, the most widely used tools Y ’ ’ ’ ' '
rely upon self-report and require a considerable manual effort, goal of our rese_arch is to develop body-worn sensing methods
leading to underreporting of consumption, non-compliance, and that can objectively measure El. The need for such tools has
discontinued use over the long term. The purpose of this paper been widely advocated within the dietetics community [21],
is to describe a new method that uses a watch-like configuration [36] and in funding programs from the US National Science
of sensors to continuously track wrist motion throughout the Foundation and National Institutes of Health [11].

day and automatically detect periods of eating. Our method uses Th f thi . d ib hod
the novel idea that meals tend to be preceded and succeeded e purpose of this paper Is to describe a new metho

by periods of vigorous wrist motion. We describe an algorithm that uses a watch-like configuration of sensors to contislyou
that segments and classifies such periods as eating or non-eatingrack wrist motion throughout the day and automaticallyedet
activities. We also evaluate our method on a large data set (43 perjods of eating. The problem of using body-worn sensors to
subjects, 449 total hours of data, containing 116 periods of &aty) 5 ;1omatically measure EI may be broken into two parts. The
collected during free-living. Our results show an accuracy of _ L o . .

81% for detecting eating at 1 second resolution in comparison flrst part_ '_3_ identifying periods O_f con_sump’uon am(_)ngst all

to manually marked event logs of periods eating. These results daily activities. The second part is estimating El duringsi
indicate that vigorous wrist motion is a useful indicator for periods. Previous research has focused on the second part of

identifying the boundaries of eating activities, and that our the problem, such as counting the numbers of chews [31],
method should prove useful in the continued development of swallows [27], [29], drinks [4], bites [9], or specific eagin
body-worn sensor tools for monitoring energy intake. gestures [2], [3]. This paper is the first to describe a method
Index Terms—obesity, energy intake, activity recognition, body - that detects entire periods of eating (e.g. meals and shacks
motion tracking, accelerometer, gyroscope during all-day tracking. It is also significant that we eakd
our method on a data set that was collected during freeglivin
|. INTRODUCTION as opposed to in a laboratory environment, so that our method
This work is motivated by the growing prevalence otould be tested on unscripted eating behaviors.
obesity. The World Health Organization reports that in 2008
1.4 billion adults (age 20+) were overweight (body massxnde
> 25) and 500 million adults were obese (BN 30) [41].
Reports for 2012 show that one in three adults and one in sixOur method assumes a person is wearing a watch-like
children in the United States were obese [13], [25]. Obesitpnfiguration of accelerometers and gyroscopes, as ddpicte
is a major risk factor for diabetes, heart disease, highdlot Figure 1. The sensors track the linear and rotational anoti
pressure, stroke and cancer [39]. Deaths attributed toitgbe®f the wrist. We have discovered that prior to an eating #gtiv
continue to increase [12], [23]; 65% of the world’s popwati (e.g. a meal/snack), there tends to be a period of larget wris
lives in countries where more people die from complicatiomaotion energy, caused by things like bringing food to a table
due to overweight or obesity than from complications due tdjusting the position of utensils, opening food container
underweight [41]. and unwrapping food. During an eating activity, the total
Energy expenditure (EE) and energy intake (EI) are com#ist motion energy tends to be reduced. At the end of an
monly used measurements in the study and treatment of obating activity, there tends to be another period of largéstw
sity [30]. The former measures the energy cost of homeastasiotion energy, caused by things like putting remaining food
(body maintenance) plus physical activities, the latteasaees away, washing hands, standing up, and putting dishes away.
consumption. Many studies have shown that self-report¥ée have designed an algorithm that uses this idea to detect
estimates of EE suffer from bias [8], [20], [28]; body-worrperiods of eating. It calculates a continuous estimate @twr
motion sensors provide more objective measurements witiotion energy and uses a hysteresis-based peak detector to
less user burden at less cost [40]. Similarly, numerousiesudsegment periods of time in-between vigorous motions. For
have shown that people tend to underreport their El usiegch segmented period, features are calculated and used to

Il. METHODS

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.or



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

loop t (data index)
reset (T1,T2)
while (E[t] < T2)
t=t+1
if (E[t] < T1)
reset (T1,T2)
end while
while (E[t] > T1)
t=t+1
end while
end | oop

Fig. 3. Pseudocode for peak detector used to segment data.

Fig. 1. A watch-like configuration of accelerometers and ggopes tracks l
wrist motion continuously throughout the day (shown herehanright hand). u l

[

—

classify the period as an eating or non-eating activity. \A¢ fi
describe the details of the algorithm. We then describe the
data collected and the evaluation metrics used to determin
the efficacy of this approach.

Fig. 4. Detected peaks on the first 2 hours of data from figurArtbws
A. Algorithm indicate the points used for segmentation, lines above ariodicate the
. . spans of the detected peaks.
1) PreprocessingData from the sensors are first :smoothedp

to reduce the effects of noise:

0 eXp(z_Ti) energy of a person over a 12 hour period (the Y-axis is clipped
Sy = Z Riti— —(a—N)? (1) to save space). The start and stop times of the meals/snacks
i=—N 2a—0xP(— 3Rz ) shown in the figure were manually logged by the person being

where R, is the raw datum and; is the smoothed datum atrecorded. It can be seen that all 4 eating activities show a
time t. Equation 1 implements a Gaussian-weighted windawonounced peak before and after eating. Of course, other
centered on the current measurement, so that only half op@aks occur throughout the day, so this feature alone cannot
Gaussian distribution is used for smoothing. The varialle be used for classification. But it does provide a reasonable
is a window size andR is the sigma of the Gaussian. Thenechanism for segmenting the data.
particular values used for these variables will depend upen  To automatically identify peaks we developed a custom peak
guality of the sensors used; we provide values for our tgstidetector using the concept of a hysteresis threshold [38]. O
device later. Equation 1 is applied independently to the daletector identifies peaks at local maxima that are suffigient
from each accelerometer and gyroscope axis. pronounced while suppressing marginal local maxima. Pseu-
2) SegmentationWrist motion energy can be characterizedocode for the algorithm is given in Figure 3. The algorithm
by the total amount of motion. We tested both the sum d&fops through the data from beginning to end, with each pass
accelerometer readings and the sum of gyroscope readirthspugh the two while loops identifying a single peak. The tw
finding similar results [10]. Because accelerometers use dpresholdsl'l and7'2 are set equal to the value of the signal
proximately one-tenth the power of gyroscopes [34], [35{wrist motion energy) at the current index, and two timeg tha
it is preferable to use accelerometers for continuous afl-dvalue. The first while loop iterates until the signal exceeds
monitoring. We therefore calculate wrist motion energy as the second (larger) threshold, in essence requiring theakig
to go 2x above its previously observed minimum. During this

t+5 . . . :
1 search, if a signal value is found that is lower ttH#h, then
Ee W +1 ZW el + 1Syl +19:.4] (2) the required thresholds are recalculated. Once the sigisal h
i=t— 5

exceeded the second threshold, the second while loopegerat
where S, , Sy, and S,, are the smoothed acceleratioruntil the signal falls below the first (lower) threshold. The
readings at time. The parametei? is a window size; we index of the peak is taken as the location with the maximum
have found a sliding 1 minute window to be sufficient fosignal value found during the two while loops. Figure 4 shows
smoothing over brief vigorous motions while still captugin the result of the peak detector on the first 2 hours of data from
longer vigorous motions indicative of the boundaries ofrept Figure 2.
activities [10]. The indices of the detected peaks are used to segment the
The following example demonstrates the presence of vidata. We have noticed that sometimes, a meal/snack can have
orous wrist motions before and after eating, and is helpfal peak inside the period of eating. An example of this can
for explaining the algorithm. Figure 2 shows the wrist motiobe seen in the period labeled “dinner” in Figure 2. This is
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morning snack

|

breakfast

7:30 11:30

afternoon snack

11:30 15:30

|

dinner

|

ba aim il it b dis

15:30 19:30

Fig. 2.  An example of accelerometer-based wrist motion enefgyerson over a 12 hour period. Manually logged meal times arkada

likely caused by the person conducting activities like eaied  calculation includes the time the wrist roll is at least 10

application of condiments, or preparing a second courseeSi deg/sec, plus a period of 8 sec after each occurrence of wrist

the wrist motion energy is calculated over a sliding 1 minut®ll motion falling below 10 deg/sec. The latter two feature

window, brief periods of intense motion such as single gestu are inspired by our previous work [9] in which wrist roll was

will not trigger our segmentation algorithm. In the case of ased to detect bites during eating. The values 10 deg/sec and

longer vigorous activity, the result is that the period dirggis 8 sec were found to be optimal for characterizing a typical

oversegmented. If desired, this could be overcome by mgrgibite motion and interval.

consecutive segmented periods after classification. 4) Classification: For classification we used a naive Bayes
3) Features: We investigated numerous features for claslassifier [22]. The Bayesian approach to classificatiorois t

sification [10]; this paper reports on the 4 features found assign the most probable classe C, given feature values

be most useful. Each feature is calculated over each im&k-p f1, fo, ..., fnv. Using the naive assumption of independence of

segmented period. We refer to the first feature as manipulatifeatures, the classification problem can be written as:

It is calculated as:

W ¢ = argénaa: P(c;) H P(fjlei) @)
IR e L e M e j
fiw=1g7 203 Syl +18 )
[Sa,el + 1Sy.e] + 15z For our problem there are only two classes, eating and

where is the span of the segmented periods the index non-eating(c;). We set eachP(¢;) = 0.5. We modeled the

that iterates across that span, afids the smoothed datum probabilities of each feature given each class using a rlorma

(¢, 0,4 = yaw, pitch, roll). This feature measures the ratio distribution:

rotational motion to linear motion. The second featurerigdir 1 (f; — i)

acceleration, and is calculated as: P(fjle;) = ——=exp <—]”> (8)
2oy j

2
205,

1 w
fow = W Z S, +[Sy,el + 1524l “) wherey; ; ando?; are the mean and variance of featyirfor
The third feature is the amount of wrist roll motion, and i§lassi.
calculated as:
B. Data collection

1 & 1 &
faw =35 D 1Sy — W > Sudl () An iPhone 4 (Apple Inc., 1 Infinite Loop, Cupertino, CA
95014, http://lwww.apple.com/iPhone/) was used to cotlata
to develop and evaluate our algorithm. This device was ahose
1 r because it is programmable, equipped with the appropriate
faw = —/ LVte[|Sy >10°...t+8sed¢ (6) sensors, and has a sufficiently large memory (16GB) and
W Jw battery (1420 mAh) to record continuous data for an entire
This feature takes on a value between 0 and 1, representitay. Commercial activity monitors exist in the form of wrist
the percentage of time that the wrist is in roll motion. Thavatches, but they only contain accelerometers (no gyr@&sjop

The fourth feature is the regularity of wrist roll motion,dan
is calculated as:
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female, ages 20-50) used the updated version of the iPhone
program.

During post-review, the experimenter interviewed each sub
ject to identify possible errors for exclusion. Out of thesfir
batch of 30 recordings, 10 had to be discarded due to poor
compliance with keeping records. Two subjects forgot taewri
down start or stop times for 1 or more meals/snacks. Three
subjects stated that they filled the log out at the end of the
day based upon memory, instead of writing down the start and
stop times as they occurred. Five subjects misinterpreted o
instructions and started/stopped the iPhone recordingrano
for meals only. These problems motivated the reprogramming
of the iPhone recording program to remove the halt/resume
tton, and to include an event marker on the iPhone screen
place of using a written time log. For the second batch of

Fig. 5. Data collection using an iPhone 4 on the wrist.

and so could not be used for this work. Although the iPho
is larger than a watch, it is important to note that a mu

fsmaller device could be constructed; this is discussedhédurt 25 recordings, button press logs were reviewed with subject
n sectlgn V. o ] the day after recording to eliminate inadvertent markenst O
The iPhone was placed inside a pouch which could Bg 294 total marks, 172 recorded 86 discrete, verified eating
wrapped snugly around the forearm (see Figure 5). The tgpyvities with event marks at the actual start and stop deun
of the device was aligned with the wrist joint but positionedyies as verified by the participants. Most of the remaining
so that it would not inhibit movement of the wrist. A custom 2o marks were identifiable as inadvertent due to being sing|
program was written to run on the iPhone, recording the rayg ks (as opposed to marks that could be paired into start/st
data for later transfer to a computer through a USB port. OUgis). Given the sensitivity of the iPhone touchscreensite
segmentation and classification algorithms were implegtentys the event marker button (% 2 cm), and the fact that
in the C programming language using a Win32 graphicghch supject wore the device for a whole day, this number
user interface to wsua}llze the data and results. I_:or smpth s inadvertent presses was not surprising. Nine marks were
sensor data from the iPhone, we found that a window 8ize renorted as intentional by the subjects to test that thecdevi
of 1 second with a Gaussian signtaof 10 produced good \yas siill recording, but were not associated with meals. Six
results. marks were identified as double presses of the button due
The Clemson University Institutional Review Board apto being less than 10 seconds apart. Two subjects reported
proved the data collection and each subject provided infdrmforgetting to press the button at the end of one or more meals;
consent. Subjects were given the device in a brief laboratahese recordings were discarded.
visit prior to the day of their recording, and were instracte |n total, our data collection yielded 449 hours of data from
in its use. They were asked to put the device on and st3# subjects, including a cumulative 22.4 hours of eating ove
the custom program soon after waking in the morning, and 6 total meals/snacks. It is important to note that the géal
to conduct all activities throughout the day as naturally afe data collection was to capture a sample of eating detvit
possible while the device continuously recorded their Wrigovering a variety of individuals, meals, environments and
motion. Subjects were asked to remove the device only whgies of day. The purpose of the data set was to enable algo-
engaging in activities that could damage it, such as takingrighm development for automatically detecting such pesiod
shower. On the day following recording, each subject retdrn|t was not a goal of the data collection to capture total daily
the iPhone to the experimenter for data download and revigntake. We asked that participants try to capture all theiing
Data was collected in two separate batches. In the fitsttivities, but the goal of this work was not contingent on
batch, 30 subjects (12 male, 18 female, ages 18-32) weneeting this criteria.
instructed to manually write down the start and stop times
of their actual meals and snacks in a provided log book, usin
the time displayed on the device for reference. The iPhore
program recorded data at 60 Hz and drained the battery afteiVe used two sets of evaluation metrics. The first metrics
approximately 8.5 hours. Subsequent to this batch, weégarrevaluate the classifier by the total amount of time correctly
that 15 Hz data was sufficient for our method, and were abt&assified, the second metrics evaluate the classifier biptak
to extend recording time to approximately 12 hours. We alsgnount of eating activities (segments) correctly clagsifiehe
learned that subjects had trouble using the provided writg boundaries of manually logged periods of eating were rezmbrd
to record the times of eating. We therefore discontinuedgusiat 1 second resolution. The boundaries of automatically-cla
the manually written log and instead added an event marlgified periods of time were rounded to the nearest second.
button to the iPhone program that subjects were instructedror the first metrics, true positives (TP) were counted as
to press when they started and ended meals or snacks. thée number of seconds of time that were labeled as eating
also removed the function from the program that alloweid the manual logs and classified as eating. False positives
participants to halt/resume recording, to avoid confusion (FP) were counted as the number of seconds of time that
the second batch of data collection, 25 subjects (8 male, @Wére labeled as non-eating in the manual logs and classified

Evaluation
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notation feature eating non-eating
mean | var mean | var
f1 manipulation ((deg/sec)/G) 791 | 45785 | 395 | 57284

fo acceleration (G) 0.039 | 0.0002 | 0.054 | 0.0043

f3 roll motion (deg/sec) 9.1 18.2 6.8 39.2

fa roll regularity (%time) 0.58 0.02 0.37 0.07
TABLE |

AVERAGE FEATURE VALUES FOUND DURING TRAINING

. . . features sensitivity | specificity | accuracy
as eating. True negatives (TN) and false negatives (FN) were il 80% =5% 75%

counted similarly by comparing the manual log labels to the T, f2, 3. fa 76% 82% 79%
data classified as non-eating. Sensitivity and specificityew TABLE Il

calculated as TP/(TP+FN) and TN/(TN+FP). Accuracy was ReSuULTS USING LEAVEONE-OUT CROSS VALIDATION ON ALL DATA.
calculated as:

accuracy— TPx20+TN ©)
(TP + FN)x 20 + (TN + FP) features | sensitivity | specificity | accuracy

. . . " , 78% 79% 79%
The factor of 20 in equation 9 weights true positives to true flgﬁ T 81% sl T
negatives at a ratio of 20:1. This is used because eatingccu TABLE I
mUCh IeSS frequently_than non-e_atln_g n ge_neral freegvm_ RESULTS USING LEAVEONE-OUT CROSS VALIDATION SEPARATELY ON
The importance of using 20:1 weighting during evaluation is EACH OF THE TWO BATCHES OF DATA
demonstrated in our results and further discussed in sectio
V.

For the second metrics, consecutive segments that were
labeled as eating by the classme_r were merged into S'.n%lgtches of data collected. The accuracy achieved was 79%.
whole segments (see end of section II-A2). True det?Ct'O[]Jszing just the first two features (manipulation and linear
were counted as the number of manually logged entries t

. .acceleration) produced the same accuracy as using all 4
overlapped segments _th_qt were labeled eating by the d.HSS' eatures. However, since our data was recorded in two baitche
Undetected eating activities were counted as the remaifder

. : e also analyzed the results using separate leave-oneeamst ¢
the manually logged entries. False detections were CO[HEEJNaIidation for each batch. Specifically, for the 20 recoggiin

::T:Srseizfrir::mder of the segments that were labeled eating by HS first batch, each was tested using the other 19 for tiguinin
' the classifier; for the 23 recordings in the second batch) eac
was tested using the other 22 for training the classifierleTab
ll. RESULTS Il shows these results. In this case an accuracy of 81% was
The classifier was trained using leave-one-out crosgchieved, and the use of all 4 features improved sensitivity
validation. Thus, for testing each of the 43 recordings @pecificity, and accuracy. We hypothesize that this is due to
per person), the classifier was trained using the other e different amounts of data recorded in each batch. The firs
recordings to calculate values for the classifier probidsli batch averaged 8.5 hours per recording, spanning 10AM to
(ui; ando; ;). Table | lists the average means and varianc€s30PM on average. The second batch averaged 12 hours per
for the features for each class. We use the notafioto refer recording, spanning 10AM to 10PM on average. Since the
generically to the feature manipulation (see equation B, asecond set included more evening and night activities, we
1. to refer to that feature calcualted over a specific windo@kPPose that the different training produced more accurate
W. The probabilities for the eating class were calculated &ature values for the classifier.
the average feature values for all segments labeled agjdmtin ~ The valuesP(c0), P(cl) in our classifier (see section |1-A4)
the subjects. For the non-eating class, all the remaining ddetermine the likelihood of a segment being classified as an
from the recordings was broken into 5 minute windows arghting or non-eating activity. We tested across the range of
the probabilities were calculated as the average featunesa values P(c0), P(cl) = {0,1},{.05,.95},{.1,.9},...{1,0} to
As can be seen in Table I, during eating there tends to fied the maximum accuracy. Table IV shows the importance of
higher values for manipulation, roll motion and roll regitly  Weighting accuracy at 20:1 for evaluating total time catigec
and lower values for linear acceleration. The variancesfior classified. Weighted at 1:1, our classifier achieves a maximu
features for the non-eating class are higher than for eatimg accuracy of 95% but this occurs at a sensitivity of 0%, in
to the variety of activities grouped together in this cldé&so- other words when all data are labeled as non-eating. Welghte
tailed independent t-tests comparing all paired distidmgt at 20:1, our classifier achieves a maximum accuracy of 81%
showed the differences are statistically significant (&l 4@ which is less than 95%, but the sensitivity and specificity ar
0.001). balanced.
Table Il shows the results of testing the classifier us- The accuracy per person ranged from 35-97%, with a
ing leave-one-out cross validation combined across the twwedian of 82%. The accuracy was above 70% for 38 out of

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.or



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

- __ - _ 3
g | ey | SEECotly | acCady previous works used between 4 and 11 specific foods and

5071 819% 82% 81% directed subjects through a scripted sequence of eating and
TABLE IV rest_ activities [2], [3], [17], [27], [29], [31]. I_n one styd
EVALUATION OF CLASSIFIER AT MAXIMUM ACCURACY UsING 1:1versus designed to detect drinking gestures, each subject waseto
20:1WEIGHTING OF TIME CORRECTLY CLASSIFIED AS EATING VERSUS  jn an approximately one hour session that included scripted
NON-EATING. activities of office work, gaming, and leisure [4]. In our
previous work that studied an automated bite counting nektho
no restrictions were placed on food or beverage types, but al
_ ] o _ data was still collected in a lab [9]. In contrast, for thisrwo
43 people (88%), with the five remaining having much low&ach of our subjects was recorded for a day (10.4 hours on
accuracies. This suggests that for most people, our meth@grage) during normal daily free-living, and we placed no
may be suitable for detecting eating activities, but that fQestrictions on eating behavior. To our knowledge this i th
some people our method may not work. It could be that SOMgst study using body-worn sensors to detect eating aietivit
people are less likely to engage in vigorous wrist motiong free-living conditions. Although lab studies offer a eon
before and after eating activities. However, each subjext Wyojled environment in which eating period detection cobid
only recorded for a single day, so this result may be morejectively confirmed by video recording or direct obseiat
function of the particular meals/snacks eaten on the day gdqy-worn sensors that detect eating are designed with the
recording than individual habits. ultimate intention of being used in free-living. Free-figi
We also evaluated our classifier at the segment level usigggies face the challenge of recording the actual at#vitif
the second set of metrics described in section II-C. Th@piects in order to evaluate the automated methods, as seen
classifier correctly detected 100 actual eating activitieissed ; this paper. However, event markers are commonly used in
16, and had 379 false detections. The average time betwegsyile physiological monitors, such as Holter EKG monifors
the start of manual log entries and correctly detected @atifyr 5 wearer to note a significant event, e.g. a panic attack.
activities was -0.6 minutes. The average time between tie §fance, event markers are an accepted approach to idegtifyin
of manual log entries and correctly detected eating aEs/it significant behavioral events from among other free living
was +1.5 mlnute_s. This suggests thaF the peaks detectedbyé}gﬁvities_ The advantage of studying eating in free-tiviss
method occur slightly before and slightly after actual ®@ti that eating behaviors, schedules and activities are asahatu

begins and ends, respectively. as possible.
A third contribution of this paper is that we tested our
IV. DiscussION method on the largest data set (449 total hours) that has been

Table V summarizes the present study in comparison tteported in the related literature. This is partly due to e
related works. The first contribution of this paper is that that eating occurs much less frequently than non-eatinggi f
is the first to describe a method to detect entire periods lofing. In our data set we observed 22.4 hours of eating out
eating (i.e. meals, shacks) as opposed to counting inditidof 449 total hours, a ratio of 1 to 20. In contrast, previous
swallows, chews, bites or specific gestures during eating. Fvorks that used data collected in the lab were based on an
example, Amft and colleagues studied the recognition of founrealistic equal ratio of eating and non-eating data [37],[
different gestures related to eating: using a fork and ktafe [29]. This confounds comparisons of accuracies betweesethe
eat from a plate, using a spoon to eat from a bowl, using hamigethods and the results reported in this paper. As shown in
to eat, and drinking from a glass [3], [17]. In a related workur results, using equal weighting for eating and non-gatin
they recognized gestures specific to 11 food categoriesafi?], data achieves 95% accuracy for a classifier that blindlyl$abe
in a recent study they detected drinking gestures (sip awt feall data as non-eating; this is obviously not desirable. We
motions) [4]. Sazonov and colleagues studied the recagnitiachieved 81% accuracy classifying 1 second epochs as eating
of chews [31] and swallows [29]. @Rler and colleaguesor non-eating at a more realistic 20:1 weighting that more
developed a method to recognize swallows associated wilbbsely conforms to actual behavior. Contrasting our tesul
different types of foods [27]. Our group developed a methabainst previous works, Sazonov and colleagues achievid 97
to recognize and count bites of food and sips of liquid takeatcuracy classifying 1.5 second epochs as containing ausll
during a meal [9]. All these methods make progress towards not, 85% accuracy detecting individual swallows, and 81%
the goal of using body-worn sensors to automatically measurccuracy classifying 30 second epochs as containing chews o
El. However, when operated all day, all these methods fanet [29], [31]. RaRler and colleagues achieved 83% accuracy
the challenge of false positives occuring during non-eatirdetecting swallows and 79% accuracy recognizing the food
activities. The method described in this paper could be asedtype swallowed [27]. Amft and colleagues achieved 80%
an automated on/off switch, activating any of these methodscuracy recognizing 11 different foods being eaten by@lein
only during a detected meal/snack. This has the potentslbject [2], and 94% precision with 84% recall recognizing
to greatly reduce the incidence of false positives in ajl-dalrinking motions of 6 subjects [4]. Our previous work acleidv
automated EI measures. 86% sensitivity at 81% positive predictive value at detegti

A second contribution of this paper is that we tested obites during meals [9]. However, we reiterate that all the
method on data collected during free-living, as comparedlated works weighted the detection of eating activitiss v
to scripted eating activities in the lab. For example, mosbn-eating activities at a 1:1 ratio, whereas we weighted.20
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study activities test total total sensor
detected environment | subjects| hours location

3], [17] | gestures lab, 4 foods 4 5 arm, wrist, back

2 gestures lab, 11 foods 1 - neck, ear, wrist, arm

4 drinks lab 6 6 wrist

29 swallows lab, 5 foods 20 65 neck, throat

31 chews lab, 5 foods 20 65 jaw

27 swallows lab, 8 foods 51 21 jaw

9] bites lab 47 14 wrist

present | meals/snacky free-living 43 449 wrist

TABLE V

SUMMARY OF DISCUSSION COMPARING THIS WORK TO RELATED WORKS

It also bears repeating that the related works limited gatithat a multi-class approach with a more sophisticated ifikiss
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