
Lecture notes: Histogram, convolution, smoothing

Histogram. A plot of the intensity distribution in an image.

intensity

frequency

(# occurrences)

The following shows an example image and its histogram:

If we denote a greyscale image as I[r,c] then the histgram H[i] can be

computed as

icrI

icrI
iH

cr 








],[

],[

0

1
][

,

The histogram is often used in image restoration or cleaning.

Histogram equalization. Stretch the contrast evenly through the

intensity range by manipulating the histogram. The distribution of

intensity is remapped to come as close as possible to uniform:

i1 i2

f1 f2

We desire to find a transform T for each original intensity i1 to a new

value i2 so that the histogram becomes uniform.

)(12 iTi 

However, because the function H[i] is discrete the output will only be

approximately uniform.

Assuming we have an image of ROWS by COLS 8-bit pixels, the histogram

equalization transform can be written as

255*
*

1
*][)(

1

0

12
COLSROWS

xHiTi
i

x






where the summation on H[] computes how much of the image has an

intensity less than or equal to i1 (this is the cumulative histogram),

the fraction 1/(ROWS*COLS) normalizes these percentages (this is the

normalized cumulative histogram), and the value 255 scales the output i2

to the desired range 0...255.

The following shows the image from above after histogram equalization,

along with the equalized histogram:

In C code, it can be computed as follows:

unsigned char *image;

int ROWS,COLS;

int hist[256],x;

double nhist[256],chist[256];

for (x=0; x<256; x++)

 hist[x]=0;

for (x=0; x<ROWS*COLS; x++)

 hist[image[x]]++;

for (x=0; x<256; x++) /* normalized distribution */

 nhist[x]=(double)hist[x]/(double)(ROWS*COLS);

chist[0]=nhist[0];

for (x=1; x<256; x++) /* cumulative distribution */

 chist[x]=chist[x-1]+nhist[x];

for (x=0; x<ROWS*COLS; x++) /* remap pixels according to chist */

 image[x]=(unsigned char)(255.0 * chist[image[x]]);

What purpose does histogram equalization serve? It tends to sharpen the

details visible in an image, by increasing their contrast. For a human

viewer, this can be quite useful. For a machine vision system, it is

generally useless, as no new information is gleaned through the process.

Convolution. Combining local-area information.

Image convolution can be written as

 









W

Wdc

W

Wdr

dcdrfdccdrrIcrO],[*],[],[

where the range –W...+W is a window of local-area information. The

function f[] is called a filter, and weights how much each pixel in the

local area contributes to the output. I[] is the input image and O[] is

the output image.

Smoothing. Suppressing noise in an image.

Consider a portion of an image

X

in which a pixel X is corrupted by noise. How could we go about

suppressing this noise, and determining a good value for the pixel?

One way is to take the average of all the pixels in the local

neighborhood. For example, we could convolve the image with W=1 and



















919191

919191

919191

f

This is a mean filter. Mean filtering is good when nothing is known

about the type of noise affecting the image.

Often we assume that the noise has a Gaussian distribution (for no

better reason that because lots of naturally occurring things have a

Gaussian distribution). In this case we can perform Gaussian smoothing

using a Gaussian-shaped filter:

2

22

2

22

1
],[








dcdr

edcdrf

where  is the standard deviation of the Gaussian noise, and the stuff

in front of e is a normalizing constant (may need to be adjusted).

Suppose the corrupted pixel X is a spike, caused by a temporary loss or

saturation of signal? In that case, averaging would be bad, because the

spike would clearly bias the mean. This type of noise is often called

salt-and-pepper noise.

A median filter is good for spike noise. Each pixel X is replaced by

the median (middle) value in its local neighborhood. A median filter

cannot be implemented by convolution.

When working with a segmentation, another convenient smoothing filter is

the mode filter. Each pixel X is replacted by the mode (most commonly

occurring) value in its local neighborhood. A mode filter cannot be

implemented by convolution.

The following shows the above image smoothed with a 3x3 mean, median,

and mode filter. Note the very different results.

An example of salt-and-pepper noise will be demonstrated in class, along

with the result from using these different methods to smooth it.

Separable filters. Convolution can be slow as W gets large. Separating

a 2D filter into two 1D filters can greatly speed convolution.
















W

Wdr

r

W

Wdc

c

drfcdrrOcrO

dcfdccrIcrO

][*],[],[

][*],[],[

1

1

For example, the mean filter could be implemented using W=1 and

separating f[] into the filters

 





















31

31

31

313131

r

c

f

f

The choice of which filter fc or fr to convolve first is arbitrary.

Note the need of an intermediary result image O1[].

Sliding window. In the case where W is large, convolution can also be

sped up by using the summation from the preceeding pixel. For example:

W1 W2

How does the summation f*W1 differ from f*W2? Only by the subtraction

and addition of a single column at each end. As W gets large, computing

the summation this way can save a great deal of time.

The sliding window and separable filter tricks can be applied together,

speeding the computation even more.

