
Lecture notes:  Matched filter, Wiener filter 
 
 
A previous lecture introduced template matching and matched spatial 
filtering.  A matched filter process can also be modeled as follows: 
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where m(t) is the desired signal (the thing to be found, or matched), 
n(t) is a noise signal (or background or clutter), x(t) is the observed 
signal (or sensor output), k(t) is the matched filter, and y(t) is the 
desired output. 
 
As we saw last time, the “best” filter k(t) is a copy (reflection) of 
the desired signal m(t).  However, various problems affect the 
performance of matched filtering, including (a) variation in the signal 
m(t) to be detected, (b) occlusion of the signal of interest, and (c) 
non-Gaussian noise.  This lecture covers methods that can be used to 
help overcome these problems. 
 
First, the template does not always have to come from an example of the 
input.  Instead it can be generated using a mathematical model.  An 
advantage is that the model can help express the variability in the 
expected appearance of the signal.  At the web site is a paper on using 
matched spatial filters for finding blood vessels in a retinal image.  
In this case, the filter was created by developing a model of a blood 
vessel from an inverted Gaussian. 
 
Second, a filter bank can help overcome variance in the desired signal, 
by giving templates for several desired variations.  The paper on blood 
vessel detection shows an example of using 16 filters for finding blood 
vessels.  Each filter describes a small segment of blood vessel in 
another orientation, where the 16 orientations span 360 degrees. 
 
Another method is to use deformable templates.  Deformable templates 
are created by warping a given template using a geometric function.  
The function is selected in an attempt to mimic the warpings expected 
in the desired signal.  For example, in handwriting one can expect 
variations in the slanting of the written characters.  This is 
demonstrated in another paper posted at the web site.  Note in this 
case, the model is of the expected deformations rather than the 
underlying signal appearance. 
 



Closely related to the matched filter is the Wiener filter, which can 
be modeled as: 
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The Wiener filter is applied when the original signal s(t) is corrupted 
by noise that is unknown and does not satisfy any of the “standard” 
models (Gaussian, salt and pepper, etc.).  We wish to construct a 
filter custom designed to mitigate the noise in an image/signal, 
restoring the signal to as close an approximation to the original as is 
possible.  How do we design h(t) for this purpose? 
 
The Wiener filter can be designed when we do not know the noise signal 
n(t), but we can measure its power.  The Wiener filter is implemented 
via convolution after constructing it in the following steps: 
 

1. Obtain a sample of the input signal s(t). 
2. Autocorrelate the input signal: 

𝑅𝑅𝑠𝑠(𝜏𝜏) = � 𝑠𝑠(𝜏𝜏)𝑠𝑠(𝑡𝑡 + 𝜏𝜏)𝑑𝑑𝑡𝑡
+∞

−∞
 

3. Calculate the Fourier transform of the autocorrelated signal.  
The symbol f indicates the frequency space. 

𝑃𝑃𝑠𝑠(𝑓𝑓) = ℱ(𝑅𝑅𝑠𝑠(𝜏𝜏)) 
4. Obtain a sample of the input signal without noise (or build a 

sample from a model, or build it from an average of multiple 
samples).  Call this sample x(t) (see above figure). 

5. Cross-correlate the noise-less signal with the actual signal. 

𝑅𝑅𝑥𝑥𝑠𝑠(𝜏𝜏) = � 𝑠𝑠(𝜏𝜏)𝑥𝑥(𝑡𝑡 + 𝜏𝜏)𝑑𝑑𝜏𝜏
+∞

−∞
 

6. Calculate the Fourier transform of the result. 
𝑃𝑃𝑥𝑥𝑠𝑠(𝑓𝑓) = ℱ(𝑅𝑅𝑥𝑥𝑠𝑠(𝜏𝜏)) 

7. Calculate the transfer function: 

𝐻𝐻(𝑠𝑠) =
𝑃𝑃𝑥𝑥𝑠𝑠(𝑓𝑓)
𝑃𝑃𝑠𝑠(𝑓𝑓)  

8. Calculate the filter: 
ℎ(𝑡𝑡) =  ℱ−1(𝐻𝐻(𝑠𝑠)) 

 
The filter produced by the last step can be used in convolution with 
new instances of the signal s(t) to reduce the noise in the data.  At 
the website is an excerpt from Castleman’s textbook showing an example. 
 
In practice, the two most common problems to which Wiener filtering is 
applied are motion blur and focus blur.  The following image (from 
Wikipedia) shows an example of motion blur: 
 



 
Original (left), with motion blur (middle), after Wiener filter (right) 
 
 
The following shows another example (courtesy San Diego State Univ.) 

 
 
In practice, the Wiener transform for smoothing is most useful when the 
noise spectrum is constant.  Mathematically it is interesting because 
convolution, filtering, and the Fourier transform have relationships 
that guide its construction, as shown above.  But in practice, a 
reasonably-sized Gaussian kernel will perform nearly the same for many 
problems, with the exception of motion and focus blur. 
 


