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In recent years there has been a tremendous increase in computer vision research using 
range images (or depth maps) as sensor input data. The most attractive feature of range images 
is the explicitness of the surface information. Many industrial and navigational robotic tasks 
will be more easily accomplished if such explicit depth information can be efficiently obtained 
and interpreted. Intensity image understanding research has shown that the early processing of 
sensor data should be data-driven. The goal of early processing is to generate a rich description 
for later processing. Classical differential geometry provides a complete local description of 
smooth surfaces. The first and second fundamental forms of surfaces provide a set of 
differential-geometric shape descriptors that capture domain-independent surface information. 
Meun curvature and Guussian curvuture are the fundamental second-order surface characteris- 
tics that possess desirable invariance properties and represent extrinsic and intrinsic surface 
geometry respectively. The signs of these surface curvatures are used to classify range image 
regions into one of eight basic viewpoint-independent surface types. Experimental results for 
real and synthetic range images show the properties, usefulness, and importance of 
differential-geometric SurfaCe characteristics, 0 1986 Academic Press. Inc. 

1. INTRODUCTION 

The quality of the digitized range data available from active and passive sensors 
has improved steadily with time. As a result, there has been a tremendous increase in 
computer vision research using range data in recent years. Range data is often 
obtained as an array of numbers, which is referred to as a range image (or depth 
map), where the numbers quantify the distances from the focal plane of the sensor to 
the surfaces of objects within the field of view along rays emanating from a regularly 
spaced grid. Range images are obtained using a variety of different techniques 
described in [l, 4, 26, 28, 29, 35, 47, 49, 53, 541. The most attractive feature of range 
images is the explicitness of object surface information. Indeed, the three-dimen- 
sional (3-D) shape of range image regions directly approximates the 3-D shape of 
the corresponding uisibfe object surfaces in the field of view. Because of the 
explicitness of this type of information, recognizing objects by their geometric shape 
should be much easier using range images instead of the intensity images conven- 
tionally used in computer vision. Many industrial and navigational robotic tasks will 
be more easily accomplished if such explicit depth information can be efficiently 
obtained and interpreted. 

Contrary to common belief, the problems confronted by range data systems are 
not that much different from those of visual systems. Intensity images and range 
images have identical image formats; only the interpretation of pixel values differs. 

*This work was supported in part by IBM Corp., Data Systems Div., Kingston, N.Y., under the 
monitorship of Dr. Jack Contino and in part by the Air Force O&e of Scientific Research under 
Contract F49620-82-C-0089. 
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Several recent techniques for processing range images are reminiscent of those used 
by vision researchers in the early 1970’s. Intensity image understanding research has 
shown that the early processing of sensor data should be completely data-driven. 
The goal of early processing is to generate a rich description of the sensor data for 
later processing by higher level modules of a vision system. The data-driven 
rich-description concept is equally valid for range images. 

Our approach to range image description is motivated by a detailed analysis of the 
range image object recognition problem. This analysis suggests that objects in range 
images should be recognized by the characteristics of the family of depth map 
surface functions associated with an object. Classical differential geometry provides 
a complete local description of smooth surfaces and guides our selection of surface 
characteristics. Mean curvature and Gaussian curvature are identified as the local 
second-order surface characteristics that possess several desirable invariance proper- 
ties and represent extrinsic and intrinsic surface geometry respectively. The signs of 
these surface curvatures are used to classify range image surface regions into one of 
eight basic types. We have identified a set of differential-geometric descriptors that 
capture domain-independent, view independent surface information based on the 
first and second fundamental forms of surfaces. An approach for computing these 
surface characteristics using window operators is presented, and experimental results 
of this computational approach are included to demonstrate its performance on real 
range images and synthetic depth maps with varying amounts of noise. 

This paper is structured as follows. First, the object recognition problem is 
defined. This general problem is only partially addressed by existing computer vision 
systems. Second, the recognition problem is given a precise mathematical interpre- 
tation as a generalized inverse set mapping. Third, our approach for computing this 
mapping is outlined, and the concept of “visible-invariance” is discussed. Next, we 
review the relevant differential geometry of surfaces to point out the importance of 
the selected surface curvature characteristics. Other related techniques from the 
literature are briefly reviewed at this point in light of the previously discussed topics. 
Our method for computing various surface characteristics is then presented followed 
by experimental results. We conclude with a brief list of future research directions. 

2. DEFINITION OF OBJECT RECOGNITION PROBLEM 

Three-dimensional object recognition is a rather nebulous term. A survey of the 
literature on this subject demonstrates this point [4]. Therefore, we attempt to give a 
reasonably precise definition to the object recognition problem. We first discuss 
desirable human visual capabilities and then describe how these relate to computer 
vision. 

The real world that we see and touch is primarily composed of solid objects. When 
people are given a new object they have never seen before, they are able to gather 
information about that object from many different viewpoints. The process of 
gathering detailed object information and storing that information is referred to as 
model formation. Once we are familiar with many objects, we can normally identify 
those objects from an arbitrary stationary viewpoint without further investigation. 

People are also to identify, locate, and qualitatively describe the orientation of 
objects in black-and-white photographs. This basic capability is signit%nt to 
computer vision research because it involves the spatial variation of only a single 
parameter within a framed rectangular region corresponding to a fixed view of the 
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real world. Human color vision is more difficult to analyze and generally involves a 
three parameter color variation within a large, almost hemispherical solid angle 
corresponding to a continually changing viewpoint. Because we are interested in an 
automatic, computerized recognition process, input data must be compatible with 
digital computers, The term digitized sensor data refers to any input matrix of 
numerical values (which can represent intensity, range, or any other scalar parame- 
ter) and associated auxiliary information about how the matrix of values was 
obtained. 

The above discussion motivates the following definition of the autonomous 
single-arbitrary-view 3-D object recognition problem: 

(1) Given any collection of labeled rigid solid objects: 
(a) These objects may be examined in any way desired (automatically or 

manually) as long as the objects are not deformed. 
(b) Labeled object models may be formed using information from this 

examination. 

(2) Given digitized sensor data corresponding to one particular, but arbitrary, 
field-of-view of the real world as it existed at the time of data acquisition; 

Given any data stored previously during the model formation process; and 
Given a list of distinguishable objects; the following issues must be addressed 
for each object in the list using the capabilities of an autonomous processing 
unit: 
(a) Does the object appear in the digitized sensor data? (That is, does the 

object permit a consistent interpretation of a subset of the sensor data?) 
(b) If so, how many times does the object occur? 
(c) For each occurrence of the object: 

(i) determine the locution within the sensor data; 
(ii) determine the 3-D location (or translation parameters) of that object 

with respect to a known coordinate system (if possible with the given 
sensor); and 

(iii) determine the 3-D orientation (or rotation parameters) of that object 
with respect to a known coordinate system (if possible with the given 
sensor). 

(3) If there are any regions in the sensor data that do not correspond to objects 
in the known list, characterize these regions in a way that will make them recogniz- 
able should they occur again in future images. 

We refer to the problem of successfully completing these assigned tasks using real 
world sensor data while obeying the given constraints as the 3-D object recognition 
problem. This problem is not successfully addressed in many of the object recogni- 
tion systems discussed in the literature (see [4]); more constrained problems, which 
are limited to particular surface types or particular applications, are typically 
addressed. If the stated 3-D object recognition problem could be solved successfully 
by a vision system, that system would be extremely useful in a wide variety of 
applications, including automatic inspection and assembly, and autonomous vehicle 
navigation. The problem is stated so that it may be feasible to use computers to solve 
the problem, and it is also clearly solvable by human beings. 
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3. MATHEMAmCAL PROBLEM FORMULATION 

We now leave the general problem to focus on range images as sensor data. It is 
often beneficial to define a problem in a stricter mathematical form to eliminate 
possible problem ambiguities. For example, we have not yet discussed how a system 
should respond if several distinct objects appear to be identical from a given 
viewpoint. Therefore, we redefine range image object recognition in precise mathe- 
matical terms as a generalized inverse set mapping. 

First, we consider world modeling issues. We approximate the world as consisting 
of N,,, objects. The number of “distinguishable” objects is Nobj. Hence, Nobj I N,,,, 
in general. Two objects are considered distinguishable if a human being can tell 
them apart without reading surface markings of any sort. We give each distinguisha- 
ble object an index i, and we refer to that object as Aj. The number of occurrences, 
or instances, of that object is denoted as Ni. This yields the general relationship 

People can recognize an enormous number of objects depending on personal 
experience. The number of objects to be recognized by an object recognition system 
depends on the application and the appropriate system training. 

In certain cases, it is diflkult to decide what is an object and what is an assembly 
of objects. Each object should therefore be considered as possessing its own 
coordinate system and list of sub-objects for complete generality. In this discussion, 
we consider only simple objects with no sub-parts and with only one occurrence, or 
instance. That is, we let Nobj = N,, and N, = 1 for simplicity. The general case of 
multiple instances of objects with sub-parts is not conceptually different with respect 
to the surface characterization.problem discussed subsequently. Nevertheless, it does 
present important notation problems and implementation difficulties for higher level 
recognition processing. We define the origin of the object coordinate system at the 
center of mass of the object with three orthogonal axes aligned with the principal 
axes of the object because these parameters can be uniquely determined for any 
given solid object. 

Each object occupies space, and at most one object can occupy any given point in 
space. It is necessary to describe the spatial relationships between each object and 
the rest of the world. One way to describe spatial relationships is with coordinate 
systems. For reference purposes, we assume the existence of a world coordinate 
system that is placed at any convenient location. Objects are positioned in space 
relative to this coordinate system using translation and rotation parameters. We 
refer to the translation parameters of an object as the vector a, and the rotation 
parameters of an object as the vector 8. The number of parameters for each vector 
depends on the dimension of the range image recognition problem. For example, the 
2-D problem would require only three parameters total. For the 3-D case, we write 
the six 3-D parameters as follows: 

a = (a, 8, Y) 8 = (09 $2 $1. 

See Fig. 1 for the graphical illustration of these parameters. We can now precisely 
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Translation = a - (c&l) 
Rotation = Q = (I+$,+) 

6 
ar 

FIG. 1. 3-Dimensional translation and rotation parameters. 

define our world model W as a set of ordered triples (object, translation, rotation) in 
the world reference coordinate system: 

W= {(Ai,ai,Qi)},tL, 

We consider object A, to be the sensor object with position a0 and orientation t3,. If 
a time-varying world model is required, all parameters can be functions of time. For 
our current purposes of single-view object recognition, we concern ourselves with 
only static parameter values. We denote the set of all objects (the object list) as 
L = { Ai}. The set of all translations is denoted R’, and the set of all rotations is 
denoted R’. In the 3-D problem, t = 3 and r = 3. R is the set of all real numbers. 

A depth sensor (or range tinder) obtains a depth map projection of a scene. We 
model this projection as a mathematical operator P that maps the set 52 = L X R’ x 
R’ into the set of all scalar functions of t - 1 variables, which we denote as F: 

P: 52 + F. 

These real-valued functions are referred to as depth map surface functions (or range 
image functions). This projection operator could be orthographic or perspective, but 
we consider only the orthographic projection in this discussion. We write the 
projection operation as 

f(x) = gA,o,B(x) = PM a? 0) 

where x is the vector of t - 1 spatial variables of the focal plane of the sensor. The 
spatial parameters of the sensor object (the location a,, and the orientation tIO) are 
implicitly assumed arguments of the projection operator. This is done to simplify our 
expressions because we only have one sensor in this formalism. We refer to the 
depth-map surface function as f when the identity of the object and its parameters 
are unknown. The symbol g with subscripts refers to the depth-map surface 
function of a known object at a known location and orientation. This formalism 
points out that the set of depth map functions associated with a single object is an 
infinite family of functions. Two of the rotation parameters in the 0 vector have a 
particularly profound effect on this family of functions: the 3-D shape of the depth 
map function changes as the object rotates. Translation parameters have no effect on 
shape whatsoever under orthographic projection, and they have minimal effect under 
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the perspective projection unless the sensor is very close to the object of interest (e.g., 
closer than 10 times the maximum object width). 

Since objects do not occupy all space, we need a convention for the value of the 
depth map function for values of the spatial vector x that do not correspond to 
object surface points. If the point (x, f(x)) cannot lie on an object surface, we assign 
the value of - 00 to f(x). Hence, we can write the projection of a set of M objects as 

f(x) = max &,,u,,B,W 
lii5M 

The depth map object recognition problem is now rephrased as follows: Given a 
depth map function f(x) that results from depth map projection of a 3-D world 
scene, determine the sets of possible objects with the corresponding sets of transla- 
tion and rotation parameters that could be projected to obtain the given depth map 
function. That is, determine the set of all wJ, subsets of LI, such that uJ = 
{(Ai, I+ f$)}j,, projects to the depth map f(x), where J is an index set that 
depends on the possible valid interpretations of the depth map. 

We can write these ideas more precisely using inverse set mappings. For every 
single object depth-map function, there is a corresponding inverse set mapping that 
yields all single objects that could have created that object depth-map function. We 
denote the inverse set mapping of P as P-', where 

P-‘(f(x)) = {(A, a, 0) E QlP(A, a, 0) = f(x)}. 

In general, an inverse set mapping takes sets from the power set of the range into 
sets in the power set of the domain: 

p-1: 2F-3 2Q2. 

For our purposes, we restrict the input sets in 2F to be singletons (i.e., single 
depth-map functions); therefore, we can replace 2F with F. For multiple object 
depth-map functions, we must generalize P-' one step further. A generalization is 
necessary because of the possible combinations of objects that can occur, as shown 
in Fig. 2. Hence, given f(x) E F, we seek a “generalized” inverse set mapping P- ’ 
such that 

P-l(f(X)) = ( UJ C 2’lyEyP( A,, aj> ej) =f(x)). 

P-l= ( (FI),(B.C>D)>(D.C,B) ) 

FIG. 2. Different, valid interpretations of a simple scene 
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This mapping takes elements of the depth map function space into the power set of 
the power set of 52: 

p-‘: F + z2’. 

The dimensionality of such a range space is huge even for relatively small finite sets, 
and the task of computing such an inverse for infinite sets appears formidable. We 
know that human beings can do similar “computations” quickly, easily, and accu- 
rately, using extremely compact biological “equipment.” These computations are 
possibly being performed at several different levels using a variety of features and a 
large knowledge base. Knowing that the problem is solvable, we search for methods 
so that computers can handle such tasks. 

The depth-map object recognition problem can now be stated in terms of the 
modeled world as follows: given the world model W with NObl simple objects and 
given any realizable depth-map function f(x), compute the inverse projection set 
mapping P-‘( f(x)) to obtain all possible explanations of the function f(x) in terms 
of the world model. In many cases, there is only one valid scene interpretation. 
Nonetheless, ambiguous situations, such as that in Fig. 2, should be recognized as 
ambiguous when given only a single view. A general-purpose single-view vision 
system must generate the list of all valid scene interpretations. 

Since there is no general theory regarding how to efficiently compute such a 
mapping, we suggest a computational surface-recognition theory based on surface 
characterization and surface matching constrained by known object structures. We 
propose that the generalized inverse projection set mapping should be computed by 
matching the individual, isolated surface regions with the g,, u, @(x) depth-map surface 
function families of the individual objects in such a way that viewpoint-dependent 
effects are accounted for. The differential geometry of surfaces provides us with 
features that are useful for this purpose. We believe that it is necessary to do the 
matching required by the recognition process on data with lower dimensionality and 
with more explicit invariance properties than the discrete depth-map surface data 
itself. Invariance properties are necessary to reduce view-independent surface match- 
ing computations. 

It is interesting to note that the formalism above can be augmented to state the 
object recognition problem for intensity images. By adding an illumination-reflectance 
operator Z to the depth map function f, we obtain an intensity image i(x) given by 

i(x) = Z( maxP(A,, ai, fli)). 

The intensity image object recognition problem is generally more difficult because of 
the additional inversion of the Z operator. Note that the mux computation is the 
multiple object occlusion operator. To expand our world model for understanding 
intensity images, we would also need to add objects that generate light in addition to 
the single sensor object that receives light. Shape from shading [24], shape from 
photometric stereo [12, 561, and shape from texture [55] techniques attempt to 
uniquely invert the Z operator producing the depth map function f. 

It is also interesting to note that people can understand images even when other 
shading operators besides ilhunination-reflectance are used to color visible surfaces. 
For example, people can correctly interpret photographic negatives or pseudo-col- 
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ored images where the usual color and/or light-dark relationships are completely 
distorted. 

The intensity-image object recognition problem is generally regarded as an ill-posed 
problem because of the lack of knowledge about light sources and surface reflectance 
functions even if possible object shapes are known. In contrast, we feel that the 
range-image object recognition problem as stated is a well-posed problem. In this 
paper, we focus on the viewpoint-invariant surface characteristics of these object 
depth-map surface-function families. 

4. OVERVIEW OF OBJECT RECOGNITION APPROACH 

Computing surface characteristics is an intermediate step toward the final goals of 
object recognition and range image understanding. Several approaches to the range 
image 3-D object recognition problem have already been developed [6, 8, 14, 25,33. 
44, 46, 51, 521. A literature survey by Besl and Jain [4] discusses these approaches 
and points out that no general purpose vision systems have been developed that can 
use range-image input in a completely satisfactory manner. We are addressing the 
range-image object recognition problem with the aim of developing a general 
purpose approach that handles arbitrary surface shapes and arbitrary viewing 
directions. To have any hope of doing this, we require view-invariant surface 
characteristics that are robust enough to describe both polyhedra and curved objects. 
This notion of invariance is extremely important and is often confused in the vision 
literature. We therefore elaborate on this topic. 

The term “invariant” refers to a quantity that does not change under a specified 
group of transformations. Opaque physical objects do not, in general, possess 
explicit surface or edge features that are visible from any viewing angle. There are 
almost always degenerate viewing angles in which object features are radically 
different. Consider, for example, an object as simple as a cylinder. One sees a flat 
planar surface with a circular boundary when one looks down the axis of a cylinder. 
On the other hand, one sees a curved surface with a rectangular projected boundary 
when one looks perpendicular to the axis direction. See Fig. 3 for the two views 
under consideration. There are no explicit invariant features even in this simple case. 
(For example, we do not consider the minimum projected silhouette area as an 
explicit feature.) The roundness of the cylinder manifests itself in both views, but in 
different ways: in the first case, we get an explicit circular arc depth-discontinuity 
boundary surrounding a flat region while, in the second case, we get a constant-nega- 
tive-mean-curvature, zero-Gaussian-curvature surface bounded by a projected rect- 
angular depth-discontinuity boundary. There are papers in the computer vision 
literature that use the term “invariant” to mean “invariant if visible.” The term 
“ visible-invariant” should be used to be more specific. A “ visible-invariant” surface 
characteristic is a quantitative feature of a surface region that does not change under 
viewpoint transformations that do not affect the visibility of that region. A general 

ocP= 
u1ew 1 U1eu 2 

FIG. 3. Two views of a cylinder with no cormnon features. 
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purpose vision system must be aware that key object features may not be visible even 
when an object is present and visible in thefierd of view. In situations where it is not 
possible to take intelligent actions based on what is currently visible, the general 
purpose system should automatically request the acquisition of image data from new 
vantage points [32]. 

The visible-invariant surface characteristics that we have decided to use are the 
Gaussian curvature (K) and the mean curvature (H), which are referred to collec- 
tively as surface curvature. We abbreviate this term as S-curvature. When a surface 
region is visible, its S-curvature is invariant to changes in surface parameterization 
and to translations and rotations of object surfaces. In addition, mean curvature is an 
extrinsic surface property whereas Gaussian curvature is intrinsic. These terms are 
discussed later. Differential geometry emphasizes that these are quite reasonable 
surface features to consider. 

Since we can seldom obtain perfect sensor data from the real world, it is desirable 
to compute a “rich” characterization of a surface that preserves the surface structure 
information and is insensitive to noise. Noise insensitivity may be achieved by 
computing redundant, or at least “overlapping,” information about a surface. In 
order to have a very rich geometric representation, we propose to combine surface 
critical points (local maxima, minima, and saddle points) and large metric determi- 
nant points (depth-discontinuities) with the surface curvature information to char- 
acterize a depth map surface in more detail. They provide useful complementary 
information and can be computed for a small additional cost. Given a depth map 
surface characterization, we suggest that depth map surface region characteristics 
can be matched against pre-computed object model surface region characteristics 
guided by depth-discontinuity and critical point information to achieve object 
recognition. 

The matching algorithm of a robust 3-D object recognition system must be 
view-independent. One could use multiple view ideas similar to those of Koenderink 
and van Doorn (visual potential) [30, 311 or Chakravarty and Freeman (characteris- 
tic views) [lo], but we are pursuing a new, more compact, scheme that does not 
increase its storage requirements so dramatically as object complexity increases. 
After the matching algorithm has produced a list of possible objects and their 
respective locations and orientations, we can use a depth-buffer algorithm to create a 
synthetic depth map using the world model. Verification matching could be done 
directly between the synthetic depth map and the sensor data, or we may run the 
surface characterization algorithm on the synthetic data to yield a synthetic scene 
description that could be matched against the surface characterization scene descrip- 
tion computed from the sensor data. If major discrepancies exist, the system should 
try to remedy the problems in its understanding automatically. It may also be 
necessary to compute our surface characterization using different window sizes 
(scales) and correlate features in this scale-space dimension to help overcome the 
effects of noise. The matching algorithm, the matching object representation, the 
feedback process, and scale-space ideas require further study. 

5. REVIEW OF DIFFERENTIAL GEOMETRY OF SURFACES 

In Section 3, we discussed how range-image object recognition might be decom- 
posed into a surface recognition problem. We assume that surfaces can be recog- 
nized by their characteristics. But what does this term “surface characteristic” mean? 
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We define a characteristic of a mathematical entity, such as a surface function, to be 
any well-defined feature that can be used to distinguish between different mathe- 
matical entities of the same type. We may consider characteristics that uniquely 
determine a corresponding entity or characteristics that are many-to-one although 
the former are more desirable. One simple example of a characteristic that uniquely 
determines a function is a detailed description of the function itself. Another simple 
example of a many-to-one characteristic is the following: A circle and an ellipse are 
round figures. This round characteristic distinguishes them from rectangles, trian- 
gles, and other polygons; however, it does not distinguish between circles and 
ellipses. In this section, we aim to find a good mathematical characterization of 
depth-map function surfaces. 

It is well known that curvature, torsion, and speed uniquely determine the shape 
of 3-D space curves [5, 15, 23, 37, 451. We must assume that the reader is familiar 
with these basic concepts. These characteristics are the ideal type of characteristic for 
a mathematical entity. They are invariant to coordinate transformations and they 
have a one-to-one relationship with curve shapes. We now discuss surface character- 
istics with similar properties. 

We first write down the explicit parametric form of a general surface S with 
respect to a known coordinate system: 

S = {(x, y, z): x = d(u, u), y = e(u, u), z =f(u, u), (u, u) E D c R2). 

We refer to this general parametric representation as x( U, u), where the x component 
of the x function is d(u,u), the y component of x is e( u,u), and the z component is 
f( U, u). In a later section, we use the graph surface (Monge patch surface) form to 
describe depth map surface functions. In the graph surface case, d(u, u) = u and 
e( U, u) = u, which are extremely simple functions. We consider only smooth surfaces, 
where all three parametric functions possess continuous second partial derivatives. 

There are two basic mathematical entities that are considered in the classical 
analysis of smooth surfaces. They are referred to as the first and second fundamental 
forms of a surface [23, 37,451. It is shown subsequently how complete knowledge of 
these forms uniquely characterizes and quantifies general smooth surface shape. 
Modern mathematics favors an equivalent formulation of this knowledge in terms of 
the metric tensor and the Weingarten mapping (the “shape” operator), which we 
also discuss. We begin our review by defining the fundamental forms of a surface in 
terms of the general explicit surface parameterization x( U, u). 

The first fundamental form I of a surface defined by x(u, u) is given by the 
following quadratic form: 

Z(u, u, du, du) = dx * dx = [du du] 

where the [g] matrix elements are defined to be 

811 = E = x, . x, g22 = G = x, . x, g12 = ET21 = F = x, * xv 
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where the subscripts denote partial differentiation 

X”(U, u) = f X”(& 0) = 

43 

l3X 

z 

x u and x o are referred to as the u tangent vector and the u tangent vector functions, 
respectively, and they may or may not be orthogonal to each other. These two 
tangent vectors are shown in Fig. 4 and are said to lie in (and form a basis for) the 
tangent plane T( U, u) of the surface at the point x( u, u). We refer to the [g] matrix 
as the first fundamental form matrix or, more simply, as the metric (or metric tensor) 
of the surface. Since the vector dot product is commutative, this [g] matrix is 
symmetric and only has three independent components. We have used the E, F, G 
notation of Gauss along with the matrix element subscript notation because both are 
useful in different circumstances, and both occur often in the literature of differential 
geometry. 

The first fundamental form I(u, u, du, du) measures the small amount of move- 
ment ldxl* on the surface at a point (u, u) for a given small movement in the 
parameter space (du, du) as shown in Fig. 4. This function is invariant to surface 
parameterization changes and to translations and rotations of the surface. The first 
fundamental form and the metric depend only on the surface itself. They do not 
depend on how the surface is embedded in 3-D space, and are therefore referred to 
as intrinsic properties of a surface. In fact, the metric functions E, F, G determine 

xu x xv 
dx=sdu++dv - 

tl= - Ix -u x I,1 
P 

dn=n+du+%dv - 
n - 

Normal Curvature = Knormal = II/I - - 

II=-dX.dn -- 

FIG. 4. Local coordinate frame at surface point. 
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all intrinsic properties of a surface. The metric 2 X 2 matrix function plays the same 
role as the scalar speed function does for curves. The intrinsic geometry of a curve is 
one-dimensional whereas that of a surface is two-dimensional. 

In contrast, the second fundamental form of a surface is dependent on the 
embedding of the surface in 3-D space and is therefore considered as an extrinsic 
property of the surface. The second fundamental form ZZ is given by 

ZZ(u, u, du, du) = -dx . dn = [du do] [;;; fj[;] = duT[b]du 

where the [b] matrix elements are defined to be 

b,, = L = x,, . n b,, = N = x,,, . n b,, = b,, = M = x.,, . n 

n(u, u) = 
x, x x, 
IX” x XVI 

= unit normal vector 

where the double subscript implies second partial derivatives 

The [b] matrix is the second fundamental form matrix and is also symmetric if the 
surface is well behaved (i.e., if the mixed partial derivatives are equal). The 
Gauss-like L, M, N notation is introduced again as above. These definitions allow 
us to discuss the “state” equation for surfaces. 

The second fundamental form measures the correlation between the change in the 
normal vector dn and the change in the surface position dx at a surface point (u, u) 
as a function of a small movement (du, du) in the parameter space. This is also 
indicated in Fig. 4. The differential normal vector dn always lies in the tangent plane 
T( u,u). The ratio of ZZ (u, u, du, du)/Z( U, u, du, du) is known as the the normal 
curvature function ~~~~~~ Normal curvature at a surface point varies only as a 
function of the direction of the differential vector (du, du) in the parameter space. If 
dn and dx are aligned for a particular direction of (du, du), that direction is called a 
principal direction of the surface at that surface point. The extrema of the normal 
curvature function at a given point occur in these directions and are referred to as 
principal curuatures. 

The Gauss-Weingarten equations for 3-D surfaces play the same role as the 
Frenet-Serret equations for 3-D curves. We write the Gauss-Weingarten equations as 
a matrix differential equation where the differential operator is a type of gradient 
operator that acts on the normal, u-tangent, u-tangent coordinate frame field: 
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The “transition” matrix in this state equation contains twelve coefficient functions 
that we need to define. The Christoffel symbols of the second kind I’lf (connection 
coefficients) depend only on the metric functions gij(u, u) and are defined as 
follows: 

r;<u, “) = f ;: gk” -fJ + $f - + 
[ 

%?. ag ag.. 
m-1 1 

where gk” is the matrix inverse of gkm, which is the tensor notation for the metric 
[g] already defined, and where u1 = u and u* = u. Note that Icr = I,: since the 
metric is a symmetric matrix. 

The last two row equations of the matrix equation are referred to as the 
Weingarten equations for 3-D surfaces. The Weingarten equations’ coefficients bj 
depend on both the first and second fundamental form matrices: 

p,! = i bjkgki or [PI = [d id. 
k=l 

The [p] matrix is referred to as the “ shape operator” matrix [45] or the Weingurten 
mapping matrix. The Weingarten mapping maps tangent vectors to other tangent 
vectors in the tangent plane T( u, u) associated with each point x( u, u). For example, 
n .( u, u) is specified as a linear combination of the u- and u-tangent vectors. One can 
view the [/3] matrix as the entity that determines surface shape by relating the 
intrinsic geometry of the surface to the Euclidean geometry of 3-D space. It is the 
generalization of the curvature of plane curves. In summary, we have now seen that 
all of the sixteen non-zero “state” matrix coefficient functions depend on only six 
scalar functions of two variables: 

gllb~ 4 g12h 4 g22b~ 4 b,,(u, 4 b,*(u, 4 b22b 4. 

Assuming we can solve the first-order linear homogeneous space-varying partial 
differential matrix equation for the x u, xv, n coordinate frame, we can also solve for 
the parametric surface function in the neighborhood of a point (u,,, uO) using the 
following 3-D surface reconstruction formulae: 

x(u, u) = fha, ui,) da + /“xu(u, /iI) d/3 x E R3. 
UO UO 

There is a fundamental existence and uniqueness theorem for 3-D surfaces (which is 
credited to 0. Bonnet): 

(1) Existence. Let g,,(u, D), g,,(u, u), g,,( u, u) be continuous functions with 
continuous second partial derivatives. Let b,,(u, u), b,,(u, u), b,,(u, u) be continu- 
ous functions with continuous first partial derivatives. Assume all six functions are 
defined in an open set D containing the point (uO, ua). If all six functions satisfy the 
following set of compatibility equations and sign restrictions, then there exists a 
unique surface patch defined in the neighborhood of (uO, u,,) such that gij and bjj 
are the first and second fundamental form matrices respectively. Uniqueness is 
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determined up to a translation and rotation. The sign restrictions are as follows: 

g11 ’ 0 g22 ’ 0 det[d = (gllgz2 - kd2) > 0 

The compatibility equations are as follows: 

(b,,)” -@12L = w,: + &2(C2 - C*) - b22G 

(h2)o -(b2du = ~2, + b,,(r,2, - r:J - b,,r,: 

(W,, -@d2) = g,,(@%)u -(r:z)zx + r:,r:, - r:,r:,) 

+gn(p-l2L -N2L, + r:,r;, + r;2r:2 - r:,r:, - r&r:, ). 

The first two compatibility equations are often referred to as the Mainardi-Codazzi 
equations. The third compatibility equation is a statement that the determinant of 
the second fundamental form matrix is a function only of the metric and is therefore 
an intrinsic property of the surface. This equation may be written in several different 
forms. It is referred to as the Gauss equation because it proves the Theorema 
Egregium of Gauss, which states that Gaussian curvature is a function of only 
E, F, G and their derivatives. 

(2) Uniqueness. If two surfaces S and S* possess fundamental form matrices 
gij and bj, and g*ii and b*,j, respectively, such that the following matrix equalities 
hold: 

g;, = g*;, bij = b*ij, 

then there exists an appropriate translation and rotation such that S and S* 
coincide exactly. 

This tells us that arbitrary smooth surface shape is captured by six scalar functions: 
gri, gi2, g22, b,,, blZ, b,,. We also refer to these as the E, F, G, L, M, N functions. 

It is difficult to interpret what each of these functions are individually telling us 
about surface shape however. It would be advantageous if there were combinations 
of these functions that would give us easily interpretable surface shape characteris- 
tics. Fortunately, there are two curvature functions that combine the information in 
the six E, F, G, L, M, N functions in two different ways. These two curvature 
functions do not, in general, contain all the “information” contained in the six 
E, F,G, L, M, N functions, but they do contain a substantial amount of useful 
information, which we describe subsequently. However, if we use only two functions 
as surface characteristcs, we are using characteristics that may not uniquely de- 
termine surface shape in general. However, we note that for compact convex 
surfaces (LN > M2 at every point), there is a single scalar function (the Gaussian 
curvature function K( u, u)) that uniquely specifies surface shape 111, 23, 411. It can 
be shown that if simply-connected bounded regions of positive Gaussian curvature 
are isolated, surface shape is uniquely determined within those regions if the 
Gaussian curvature function of the surface is known. In Section 7.1, we also discuss 
conditions where the mean curvature function uniquely determines surface shape. 
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In conclusion, we have looked at general smooth 3-D surfaces and have identified 
six functions that uniquely characterize the shape of these geometric entities. This 
review was intended to motivate the following simple qualitative statement on which 
we base our work: 

If one wants to characterize the shape of a geometric entity, such as a curve or 
surface, the characteristics that one choose should have a well-dejined relation- 
ship to those functions that uniquely determine shape according to the mathe- 
matics of diflerential geometry. 

6. SURFACE CURVATURE 

It is established that surfaces are uniquely characterized by six functions that 
completely determine surface shape and intrinsic surface geometry. These six func- 
tions are the independent elements of two 2 x 2 symmetric matrix functions of the 
surface. We now examine two curvature functions that combine the information 
from the six E, F, G, L, M, N functions. 

We defined the shape operator (Weingarten mapping) matrix [/3] in the previous 
section as the matrix product [g-‘][b]. Hence, the [fl] matrix combines the first and 
second fundamental form matrices into one matrix. This matrix is a linear operator 
that maps vectors in the tangent plane to other vectors in the tangent plane at each 
point on a surface. The metric [g] is the generalization of the speed of a planar curve 
whereas the shape operator [/I] is a generalization of the curvature of a planar curve. 
The Gaussian curvature function K of a surface can be defined from the first and 
second fundamental form matrices as the determinant of the shape operator matrix 
function as follows: 

K = det[ j?] = det 
([ ;:: 

The mean curvature function of a surface can be defined similarly as half the trace of 
the shape operator matrix function as follows: 

H = $tr[j3] = jtr 
([i:: ;::l-l[::: :::I). 

Hence, we see that these two different surface curvature functions are obtained by 
mapping the two fundamental form matrix functions into one scalar function. The 
surface curvature functions (H and K) are the natural algebraic invariants (char- 
acteristic polynomial coefficients) of the shape operator, which is the generalization 
of curvature of a planar curve. Since a 2 X 2 matrix only has two natural algebraic 
invariants (the trace and determinant), we see that these two surface curvature 
functions arise naturally in a detailed analysis of surface curvature. 

There are other ways of looking at surface curvature based on the curves that lie 
in the surface. At each point on a surface, there is a direction of maximum normal 
curvature and a direction of minimum normal curvature for all space curves that (1) 
lie in the surface, (2) pass through that point, and (3) have (curve) normals that align 
with the surface normal at that point. If we let K~ be the maximum principal 
curvature (the maximum of the normal curvature function) and let K* be the 
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minimum principal curvature (the minimum of the normal curvature function), then 
one can compute the Gaussian and mean curvature in terms of these principal 
curvatures: 

K = K1K2 H= 
(‘5 + ‘Q) 

2 . 

Note that K~ and K* are the two roots of the quadratic equation: 

Hence, if K and H are known at each point in a depth map, it is straightforward to 
determine the two principal curvatures: 

If H2 = K at a surface point, the point is referred to as an umbilic point to denote 
that the principal curvatures are equal and every direction is a principal direction 
(i.e., the normal curvature function at an umbilic point is constant). A surface must 
be either flat or spherical in the neighborhood of an umbilic point. 

The principal curvatures K~ and ~~ are a perfectly valid pair of surface curvature 
descriptors, which are analytically equivalent to the mean and Gaussian curvature 
pair. The principal curvatures are the two eigenvalues of the 2 x 2 matrix shqve 
operator. They are also the extrema of the normal curvature function. They specify 
the curvature of surface curves in the directions of maximal and minimal normal 
curvature at each point. We now compare the surface curvatures { H, K } to the 
principal surface curvatures { K~, ~~ } : 

(1) Principal curvatures are associated with certain directions whereas mean 
and Gaussian curvature are direction-free quantities. 

(4 K2 

ICI - 0 + 
- Peak Ridge Saddle 
0 Ridge Flat Valley 
+ Saddle Valley Pit 

(b) K 

H + 0 - 
- Peak Ridge Saddle 

ridge 
0 (none) Flat Minimal 

surface 
+ Pit Valley Saddle 

valley 

FIG. 5. Surface types determined by sign of surface curvatures: (a) table of surface shapes from 
principal curvature signs; (b) table of surface shapes from Gaussian (K) and mean (H) curvature-signs. 
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Peak Surface HcO K>O Flat Surface H=Q K*O 

r----III 

Pit Surface Ha0 K,O Minimal Surface H=O K<O 

Ridge Surface He0 K=O Saddle Ridge H<O Kc0 

Valley Surface H>O K=O Saddle Valley Ha0 Kc0 

FIG. 6. Eight basic visible-invariant surface types. 

(2) If only the signs of the principal curvatures are used to determine basic 
surface types, six surface types result: peak, pit, ridge, valley, flat, and saddle as 
shown in Fig. 5a. The signs of mean and Gaussian curvature yield eight basic 
surface types, as shown in Fig. 5b, because saddle surfaces can be resolved into 
saddle ridge, saddle valley, and minimal surfaces. Figure 6 shows the shapes of the 
eight surfaces. Note that K cannot be strictly positive when H is zero. 

(3) Gaussian curvature exhibits isometric invariance properties. That is, Gauss- 
ian curvature is an intrinsic property of a surface. Both principal curvatures and the 
mean curvature are extrinsic properties of a surface. Isometric invariance and 
intrinsic and extrinsic properties are discussed in more detail later in this section. 

(4) The mean curvature is the average of the principal curvatures. Therefore, it 
is slightly less sensitive to noise in numerical computations than the principal 
curvatures. Gaussian curvature is slightly more sensitive to noise. 
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(5) As mentioned earlier, the Gaussian curvature function of a convex surface 
uniquely determines the surface. A single principal curvature function does not 
permit a comparable theorem because of its directional nature. 

(6) As discussed in Section 7, the mean curvature function of a graph surface 
taken together with the boundary curve of a graph surface uniquely determines the 
graph (Monge patch) surface from which it was computed. Range images are 
sampled graph surfaces. A single principal curvature function does not permit a 
comparable theorem because of its directional nature. 

(7) It appears that a few more numerical computations are required to compute 
principal curvatures as compared to mean and Gaussian curvature. 

To summarize, the pair { K~, K*} contain the exact same surface curvature informa- 
tion as the pair { H, K }. There are slight advantages or disadvantages working with 
either pair depending on the application. Researchers have also worked with other 
pairs of surface curvatures, such as { K~, K } [40]. The same surface curvature 
information is maintained. For our purposes, we have found that sign of the mean 
and Gaussian curvatures can be computed easily yielding the best classification of 
surface types in a range image. 

The mathematical properties of the Gaussian curvature K and the mean curvature 
H are now discussed in more detail to stress the importance of these quantities to 
surface characterization and to give a better, more complete understanding of their 
qualities: 

(1) Gaussian and mean curvature are invariant to arbitrary transformations of 
the (u, u)-parameters of a surface as long as the Jacobian of the (u, u)-transforma- 
tion is always non-zero. In contrast, the six E, F, G, L, M, N functions all oat-y with 
(u, u)-transformations. This means that the E, F, G, L, M, N functions depend 
directly on the choice of the U, u coordinate system even though they uniquely 
characterize the 3-D shape of the surface. Therefore, it is not desirable to use these 
six functions as shape characteristics because of their dependence on parameteriza- 
tion. 

(2) Gaussian and mean curvature are invariant to arbitrary rotations and 
translations of a surface. This is due to the fact that E, F, G, L, M, N are invariant 
to rotations and translations. This is clear from the definition of these functions and 
the properties of dot products and cross products. Rotational and translationaf 
invariance are extremely important properties for uiew-independent shape character- 
istics. 

(3) Gaussian curvature is an isometric invariant of a surface. An isometric 
invariant is a surface property that depends only on the E, F, G functions(and 
possibly their derivatives). Consider that any surface S with Gaussian curvature K 
may be mapped to any other surface S* with Gaussian curvature K *. If the 
mapping is a distance-preserving (isometric) bijection, then K = K * at correspond- 
ing points on the two surfaces. An isometric mapping of surfaces is a continuous 
mapping where corresponding arcs on the surfaces have the same length. 

(4) Isometric invariants are also referred to as intrinsic surface properties. 
Therefore, Gaussian curvature is an intrinsic surface quantity. Intrinsic properties 
have important interpretations. For example, the Gaussian curvature function K of 
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a surface does not “care” how the surface is embedded in a higher dimensional 
space. In contrast, the mean curvature function H does “care” about the embed- 
ding; it is an extrinsic surface quantity and is not an isometric invariant. The surface 
defined by a sheet of paper is readily used to demonstrate these ideas: If the paper 
lies flat on a desk top, we have K = 0 and H = 0 at each point on the sheet of 
paper. If we bend the paper making sure that no kinks occur, we still have K = 0 but 
now H # 0. When we bend the paper, we change how the surface is embedded in 
3-D space, but we do not change the metric (intrinsic) properties of the surface. The 
within-surface distances between points on the paper remain the same, and the 
interior angles of a triangle still sum to ?r radians. In this example, Gaussian 
curvature is seen to be intrinsic whereas mean curvature is seen to be extrinsic. If the 
paper were deformed as if it were made of rubber, then Gaussian curvature would 
change as well as mean curvature. It should be clear that surface area is also an 
intrinsic surface property (can only depend on E, F, G). 

(5) Another way of looking at intrinsic properties is that they do not change 
sign when the direction of the normal vector of the surface is reversed. Outward- 
pointing normals are usually chosen for surfaces of objects. If the surface is just an 
orientable surface patch floating in space, we could choose the normal to point in 
either direction. It should be clear that Gaussian curvature maintains its sign when 
the direction of the normal vector is flipped whereas mean curvature flips its sign. 
This is because the first fundamental form does not change sign while the second 
fundamental form does when the sign of the normal is flipped (see definitions 
above). 

(6) Gaussian curvature indicates surface shape at individual surface points. 
When K( U, u > 0 at the surface point x(u, u), then the surface is shaped like an 
ellipsoid in the neighborhood of that point. When K( u, u) < 0, the surface is locally 
saddle-shaped. When K( u, u) = 0, the surface is locally flat, ridge-shaped, or valley- 
shaped. If K = 0 at every point on a surface, then that surface is referred to as a 
deuelopuble surface. Mean curvature also indicates surface shape at individual 
surface points when considered together with the Gaussian curvature. Figure 6 
shows drawings of the eight basic surface shapes. If H < 0 and K = 0, the surface is 
locally ridge shaped. If H > 0 and K = 0, the surface is locally valley shaped. If 
H = 0 and K = 0, the surface is locally flat or planar. If H < 0 and K > 0, the 
surface is locally ellipsoidal and peaked (i.e., the surface bulges in the direction of 
the surface normal). If H > 0 and K > 0, the surface is locally ellipsoidal and 
cupped (i.e., the surface bulges in the direction opposite that of the surface normal). 
If K > 0, we can never have H = 0. When K < 0, H # 0 indicates if the saddle 
surface is predominantly valley shaped (H > 0) or ridge shaped (H < 0). When 
H = 0 at every point on a surface, then that surface is referred to as a minimal 
surface. Minimal surfaces have interesting mathematical properties. The minimal 
surface equation is studied in detail in many texts discussing partial differential 
equations. 

(7) Gaussian and mean curvature are local surface properties. Tl& allows 
surface curvature to be used in situations where occlusion is a problem because K 
and H do not depend on global properties of a surface. 

(8) As a final note of comparison between H and K, a spherical surface of 
radius a has H = f l/u at every point on the surface where the sign depends on the 
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direction of the normal (outward or inward pointing) whereas K = l/a2 at every 
point independent of the direction of the normal vector. This also points out the 
dimensions of the curvature quantities and indicates how these quantities will 
change under 3-D scale transformations. 

There are many other interesting properties of Gaussian and mean curvature, but the 
above list highlights the important ones for our needs. For example, one can use 
these facts in a surface matching algorithm as follows: Two surfaces that can be 
made to coincide exactly via a rotation and a translation are said to be congruent. 
Congruence implies that an isometry exists between the two surfaces and that the 
shape operators of the two surfaces are equivalent. If the two surfaces are congruent, 
then there exists a matching between the mean and Gaussian curvature values on the 
two surfaces. This implies that there is a matching between regions of constant sign 
of the mean and Gaussian curvatures on the two surfaces. Therefore, if there does 
not exist a matching between regions of constant sign of the mean and Gaussian 
curvatures of the two surfaces, then the two surfaces are cannot have the same 3-D 
shape and therefore cannot be congruent. Since a combined mean and Gaussian 
curvature sign image has only eight levels, it should be possible to easily discard 
surfaces that do not have similar shape. 

Gaussian curvature and/or mean curvature can be defined and/or computed in 
several different ways: 

(1) Gauss Map Area Derivative Definition for Convex Surfaces. In order to 
give this definition, we need first to describe the Gauss map, which is shown 
pictorially in Fig. 7. The Gauss mapping takes areas on surfaces to areas on the unit 
sphere. The unit surface normals at the surface points within the area As on the 
surface are arranged in the unit sphere so that the tail of each normal vector is 
located at the sphere’s center and the tip of the normal vector lies on the unit 
sphere’s surface while preserving the direction of the normal vector. The surface area 
on the unit sphere (solid angle) subtended by these corresponding normal vectors is 
denoted AA. We can define the Gaussian curvature using the limit of the ratio of 
these two areas when the surface is convex: 

FIG. 7. Gaussian curvature = Gauss mapping derivative 
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This popular definition seems to imply that K is a dimensionless quantity, which is 
not true of course. The quantity AA should be measured in solid angle units, such as 
steradians, rather than area units, This definition can be extended to handle 
non-convex surfaces, but one needs to be careful about how the solid angle on the 
unit sphere is computed. 

(2) Parallel Transport Definition [42]. We start at a point P on a surface 
holding a vector that always points in the same direction in space (similar to a 
gyroscope). That direction is marked in a permanent fashion at the starting point. 
We go for a walk where we leave the point P and later return to it without crossing 
our path. Our path has enclosed an area we call AS. When we arrive back at P, we 
compare the direction of our vector with the reference direction that was marked 
when we left and obtain the angle Aa. We can define the Gaussian curvature of the 
surface at the point P to be 

K= ,lms$ 
-4 . 

Note that the sign of K is given correctly here. There is a definite relationship 
between angles, area, and curvature on a surface. 

(3) Gauss Map Jacobian Definition. This definition is closely related to the area 
derivative definition, but in this case we can define K in terms of the surface normal 
and U- and u-tangent vectors: 

K = I% x ““I xu x XlJ 
Ix, x X”l wheren = Ix, x x,I. 

(4) Fundamental Form Matrix Coefficients Definitions. These definitions of K 
and H are a restatement of the first matrix definitions given above, but may appear 
more familiar. We define g = det[g] andb = det[b]: 

K = b = hb,z - (bd* LM - N2 

g g11g22 - (g,2)2 
= EG-F2 

g,,b,, + g,A - 2gA EN-kGL-2FM 
H= 

2( g11g22 - (g12)z) = 2(EG - F2) . 

(5) Partial Derivative Expressions. We can express K and H directly in terms 
of partial derivatives of the parameterization if desired. We introduce the triple- 
product notation [a b c] = a . (b x c) to simplify the expressions: 

K = bLu%x”Itx”“v”I - [x.“x.x,12 
lx, x X”14 

H= 6”. x,hA4x,1 + (XI4 * %Jhmx,x,1 - 2(x, * x”)[xu”xux”12 
21x, x x,13. 

A few of the many different ways of looking at the mean and Gaussian curvature 
of a surface have been summarized. This list was intended to further stress the 
properties of these functions as shape descriptors and indicate how they are 



54 BESL AND JAIN 

computed given a general surface parameterization. Note that the two curvature 
functions are both nonlinear combinations of all six E, F, G, L, M, N functions. 

The most important invariance properties of surface curvature for view indepen- 
dent range image object recognition are the following: (1) invariance under changes 
in (u, u)-parameterization and (2) invariance under 3-D translations and 3-D 
rotations. In addition, we see that mean curvature information significantly comple- 
ments Gaussian curvature information and vice versa in determining surface shape 
because H is extrinsic while K is intrinsic. Only eight basic local surface types are 
possible as discussed above, and these types are determined solely from the signs of 
the mean and Gaussian curvature. Note also that when K and H are considered 
together, we have a good generalization of the curvature function of space curves. 
There exist other functions of the E, F, G, L, A4, N functions that are also useful, 
but we have attempted to show that the emphasis on K and H is reasonable. 
Henceforth, we consider only mean curvature and Gaussian curvature as surface 
curvature characteristics. Remember that we can compute principal curvatures, if 
needed, if we already know mean and Gaussian curvature. We have not proved that 
K and H are the “optimal” surface characteristics in any sense, but we have given 
substantial justification for their use as surface characteristics. Computation of 
surface characteristics is discussed in Section 7, but first we briefly review surface 
characterization research done by others. 

6.1. Literature Review 
Surface characterization and surface matching have been addressed in the litera- 

ture by many [9, 14, 20, 22, 27, 34, 36, 40, 43, 48, 501 and are surveyed in [4]. Many 
different approaches have been used. One or both principal curvatures have often 
been used to characterize surface shape by finding surface edges. The approaches 
most related to our own technique are discussed here: 

(1) Dreschler and Nagel [13] proposed the use of Gaussian curvature to find 
corner points in intensity images. They compute Gaussian curvature using the 5 X 5 
window operators of Beaudet [3] to estimate the necessary partial derivatives. This is 
basically the same method that we use to compute the Gaussian curvature. Our 
emphasis, however, is on the collective use of different surface descriptors to provide 
surface characterization of range-image surfaces. 

(2) Extended Gaussian images (EGIs) have been studied in detail by Horn and 
Ikeuchi et al. [22, 251. This orientation histogram approach provides unique rota- 
tionally invariant shape description for convex objects [38, 411, but does not 
maintain this property for non-convex objects. This concept has been extended by 
Ikeuchi et al. [25] so that each discrete view of a non-convex objects has its own 
orientation histogram. The properties of Gaussian curvature are important to the 
EGI concept because the EGI is a discrete approximation of the Gaussian curvature 
function over all latitudes and longitudes on the unit sphere. This is discussed in 
detail in [22]. The EGI approach requires only surface orientation information. 
Hence, photometric stereo is used to obtain sensor data for input to the EGI 
algorithm, but depth information can also be used to provide such data. Object 
surface regions are assumed to be pre-segmented by another process. 

(3) Faugeras [14] uses an approach that is similar to the EGI approach in its 
dependence on surface normal information and its assumption that object surfaee 



3D OBJECT RECOGNITION 55 

regions have been pre-segmented by another process. Planar patches are isolated in 
range data using a region growing approach. Rotational matching on planar 
components of an object surface is performed using a quatemion-based algorithm 
that finds the best-fit rotation matrix to align a set of planar normal vectors. 
Mathematics for quadric surface set matching is also described. 

(4) Medioni and Nevatia [40] present their shape description ideas in the 
context of differential geometry, but limit themselves to the zero crossings of the 
Gaussian curvature and the maximum principal curvature, and the maxima of 
the maximum principal curvature. This set of shape descriptors is a subset of the 
descriptors that we compute. Their derivative operators are primitive one-dimen- 
sional sums along a single row or column and are therefore more sensitive to noise 
than our approach. 

(5) Brady et al. [9] use differential geometric features to describe surfaces, but 
they concentrate only on lines of curvature, asymptotes, bounding contours, surface 
intersections, and planar and spherical (umbilic) surface patches. By relying on 
surface curves to constrain surface shapes, the curvature primal sketch work of 
Asada and Brady [2] is used for planar curve shape description of surface curves. 
One problem is that lines of curvature are not necessarily planar. Also, while lines 
are necessary for most 3-D surface plots, the implicit premise that lines are necessary 
for a rich 3-D surface description does not necessarily follow. They compute 
principal curvatures and principal directions, but rely on an ad hoc scheme using a 
breadth-first search to link principal directions at each point into lines of curvature. 
They also propose a surface primal sketch that combines information on significant 
surface discontinuities. 

(6) Nackman [43] discusses the use of critical point configuration graphs for 
surface characterization. He isolates four canonical types of slope districts of smooth 
surfaces. He suggests the use of curvature districts, but does not pursue it in his 
paper. Slope districts are bounded by the ridge and course (valley) lines that can be 
computed as the zero crossings of the first partial derivatives of a surface. This 
research does not address viewpoint-independent surface characterization. 

(7) Marimont [39] identifies patterns of curvature sign changes as view-indepen- 
dent properties of planar curues in 3-D space. Our emphasis on sign of mean and 
Gaussian curvature generalizes these ideas for surfaces. 

(8) The topographic primal sketch (TPS) proposed by Haralick et al. [20] labels 
each pixel of an intensity image surface with one of ten possible topographic labels: 
peak, pit, flat, ridge, ravine (valley), saddle, convex hillside, concave hillside, saddle 
hillside, or slope; or an edge (step-edge) label. Gradients, Hessians, and first and 
second directional derivatives are computed and used for labeling, but not in the 
context of surface differential geometry. That is, an intensity image function is 
viewed more as a function of two variables than as a movable geometric surface in 
the TPS approach. Our IX-sign surface categorization combined with critical point 
classifications is different than the TPS labeling in that more than four different 
types of hillsides are resolved. TPS quantities are proven to be invariant to 
monotonic grayscale transformations because this technique was originally intended 
for intensity images, not range images. However, all TPS labels are, in general, not 
invariant to even slight changes in viewpoint relative to a surface. The viewpoint 
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Surface-Type Pixel Labels for Digital Images (Range or Intensity) 

HK-Sign + critical point labels 

Peak critical point pixel 
Peak region pixel 
Ridge critical point pixel 
Ridge region pixel 
Saddle ridge critical point pixel 
Saddle ridge region pixel 
Flat critical point pixel 
Flat region pixel 
Minimal critical point pixel 
Minimal region pixel 
Saddle valley critical point pixel 
Saddle valley region pixel 
Valley critical point pixel 
Valley region pixel 
Pit critical point pixel 
Pit region pixel 

Topographic primal sketch label 

-+ Peak 
---, Concave hillside 
-+ Ridge 
--* Concave hillside 
-+ Saddle 
4 Saddle hillside 
-+ Flat 
-+ Slope 
-+ Saddle 
+ Saddle hillside 
-+ Saddle 
-+ Saddle hillside 
-+ Ravine (valley) 
+ Convex hillside 
-+ Pit 
+ Convex hillside 

FIG. 8. TPS Pixel labels for HK-Sign + critical point labels. 

dependent nature of the TPS labels is the key to understanding the difference 
between the TPS approach and our approach. 

In an attempt to clarify the differences of these two similar approaches, we have 
constructed a list of the 16 possible pixel labels from our surface characterization 
technique discussed in Section 7. This list forms the left-hand column of the table in 
Fig. 8. The eight basic viewpoint-independent surface-type labels (see Fig. 6) are the 
most important pixel labels for our approach. We also compute the zero crossings of 
the first partial derivatives to find the critical points of a surface (discussed in.Sect. 
7). Critical point labels are uiewpoint-dependent labels. If these labels are used to 
distinguish between non-critical points and critical points of a given surface type, we 
get the 16 labels mentioned above. In the table in Fig. 8, we list our label and-the 
corresponding TPS label that it is mapped to. Hence, 16 labels are being mapped to 
10 labels. However, the TPS labeling scheme incorporates additional viewpoint- 
dependent non-critical-point ridge (convex-roof-edge) labels, ravine or valley (con- 
cave-roof-edge) labels, and step-edge labels that we have not included in this 
comparison table. Figure 9 shows different types of edges that occur in range images. 
We have not attempted to include our edge labeling scheme into the above table 

convex concave concave step COtWE-X 
ROOf “RooC ” Ramp Edge RIP 
Edge Edge Edge Edge 

FIG. 9. Range image edge types 
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because (1) edge types are viewpoint-dependent, (2) the table becomes too com- 
plicated when the five different edge types in Fig. 9 are also included, and (3) edges 
are boundaries of visible surface regions, and in our opinion, edge-type pixel labeling 
and surface-type pixel labeling are two distinctly different issues. To complete this 
detailed comparison, it is sufficient to note that (1) the TPS ridge and ravine labels 
include other pixels where the first directional derivative is zero besides just the 
critical points noted in the table in Fig. 8, and (2) the TPS step-edge label at the zero 
crossings of the second directional derivative is a key part of the TPS labeling 
scheme and is not mentioned in the table. We summarize this discussion by pointing 
out that although the TPS approach and our approach appear to be similar, (1) the 
properties of the labels under viewpoint transformations are quite different, and (2) 
the TPS mixes edge and surface labels together whereas the edge labeling process of 
our approach is a completely separate issue not included in this comparison. 

7. RANGE IMAGE COMPUTATIONS 

7. I. Surface Curvature from Partial Derivatives 

We have seen that 3-D surface shape is well characterized by two scalar functions, 
Gaussian curvature and mean curvature, which are independent of parameterization 
and invariant to rotations and translations. Given a “2.5-D” range image with only 
discrete data, how can we compute surface curvature? To compute surface curvature 
of range images, we need estimates of the first and second partial derivatives of the 
depth map. In order to see this, we simplify the expressions for K and H for graph 
(Monge patch) surfaces because all range images are sampled graph surfaces. 

First, we recall that the parameterization for a graph surface takes a very simple 
form: X(U, U) = [u v f(u, v)IT. The T superscript indicates transpose so that x is 
column vector. This yields the following formulas for the surface partial derivatives 
and the surface normal: 

x, = 11 0 ful’ X” = 10 1 fol’ 
X UU = Lo 0 f,,l’ X”, = P 0 f”“]’ x,, = [O 0 fu,lT 

n = /& l-f, -f” l1’. 

These vectors are combined using the dot product definitions given earlier to form 
the six fundamental form coefficients: 

g1, = 1 + f,’ g22 = 1 + fLY g12 = fUf” 

bll = /& 
f 

b12 = /* b22 = &+ 

Hence, we see that the five partial derivatives f,, f,, f,,,, f,,, f,,, are all we need to 
compute the six fundamental form coefficient functions for a graph surface. 

Next, we recall that we can compute Gaussian curvature as the ratio of the 
determinants of the two fundamental form matrices. That expression is written 
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directly in terms of the depth-map function (graph surface) derivatives as follows: 

K = fUUf”O - f,z det(vvTf) 
(1 +f,’ +f,y)2 = lvf14 ’ 

v is the two-dimensional (u, u) gradient operator, and v v T is the Hessian matrix 
operator. Hence, if we are given a depth-map function (u, u) that possesses first and 
second partial derivatives, we can compute the Gaussian curvature directly. 

We also recall that we can compute mean curvature as half the trace of the shape 
operator. This expression can also be written directly in terms of the depth-map 
function derivatives as follows: 

2H = f,, + f”” + fuufo’ + f”“f,’ - 2fUfUfU” 
(1 + f,” + f,‘)3’2 =O. /i-G&. (‘1 

(V . ) is the divergence operator of vector calculus. Again, if we are given a depth 
map function f(u, u) that possesses first and second partial derivatives, we can 
compute the mean curvature directly. It is important to note that the above equation 
(where H is known but f is not) is a second-order elliptic quasilinear partial 
differential equation. If D is a subset of R* and H is an arbitrary function of two 
variables with continuous first partial derivatives defined over D, it is not possible to 
say whether or not a solution to the differential equation above even exists. By 
imposing certain restrictions, it is sometimes possible to prove the existence and the 
uniqueness of solutions. For example, Guisti [18] has proven that under certain 
extremal conditions, H alone without Dirichlet boundary conditions can uniquely 
determine f up to an additive constant (translations in depth). Also, Gilbarg and 
Trudinger [17] show that, under a set of certain other conditions (which include the 
restriction that the boundary curue’s curvature must be greater than or equal to the 
absolute value of the sum of the principal curvatures of the surface at the boundary 
of the domain), then there exists a unique solution f to the Dirichlet boundary value 
problem defined by H plus the function f restricted to the boundary of the region 
D. However, there is separate uniqueness theorem [17] (that does not address 
existence) that states that if (1) H is continuously differentiable, (2) fi and f2 are 
both solutions to the partial differential equation above in D, and (3) f, = f2 on the 
boundary of the domain D, then fi = f2 throughout that domain. In this sense, a 
smooth surface function f(u, u) defined over a compact domain D with a simple 
closed contour boundary aD is essentially equivalent to that surface’s mean curva- 
ture function H taken together with the boundary curve of the surface f restricted 
to aD. Hence, H plus f on c?D constitute an ideal type of surface characteristic; all 
“information” present in the original smooth depth map function is maintained in 
the characteristic data. Given f (u, u), one can compute H( u, u), and, in theory, the 
Dirichlet problem can be solved to reproduce f (u, u). The mean curvature surface 
characteristic is valuable to an object recognition algorithm because of its invariance 
properties. We stress that this property of the mean curvature is only valid for graph 
surfaces, but since all range images (and all intensity images) are sampled graph 
surfaces, this is an extremely important concept for digital surface character&&on. 
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Principal curvatures do not have similar uniqueness theorems because of their 
directional nature. 

Since any sampled depth map function encountered in practice may be approxi- 
mated arbitrarily well by a sufficiently smooth function that possesses first and 
second partial derivatives, our next problem is how to compute estimates of these 
partial derivatives given the sampled data. 

7.2. Estimating Partial Derivatives of Depth Maps 

In general, direct numerical differentiation is discouraged if a problem can be 
addressed using other means. The basic approach for our current method is the 
following: (1) given discrete sample data, determine a continuous differentiable 
function that “best” fits the data, and (2) compute the derivatives of the continuous 
function analytically and evaluate them at the corresponding discrete points. Ideally, 
it might be desirable to fit all data with one smooth surface. This problem is 
computationally intensive and should only be used as a last resort if no simpler 
methods work. Instead, we compute only a local surface fit within each N x N 
window of discrete depth map surface data. Our experimental results show that this 
approach is adequate. This method uses a local quadratic surface model that is 
discussed in detail in several papers [3, 5, 7, 191. For this reason, we state only the 
final results required to implement our approach. 

Each data point in a given N x N window is associated with a position (u, v) 
from the set U x U where N is odd: 

U= 
-(N-l) 

2 ,-**, -l,O,l,..., 

The following discrete orthogonal polynomials provide the quadratic surface fit: 

+(u> = 1 +1(u) = u +2(u) = ( u2 - M(M+ l’ ) 

where M = (N - 1)/2. The bi( u) functions are normalized versions of the orthogo- 
nal polymomials: 

b,(u) = ; b,(u) = 
3 

M(M + 1)(2M + 1) ’ 

b,(u) = L u 
2 M(M+l) 

- 
fwf) 3 

where P(M) is a fifth-order polynomial in M: 

P(M) = &MS + $M4 + $M3 - $M2 - +M. 

The recipe for computing derivatives at a sample point using odd size data windows 
is simple since the hi(u) vectors are precomputed and stored for any given window 
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size. We can obtain a surface function estimate f( a, u) of the form 

that minimizes the mean square error term 

The solution for the unknown coefficients is given by 

a,j = C  f(“3 u)bi(u)bj(u). 

(u, “ ) G t P  

The first and second partial derivative estimates are then given by 

fu = a10 f” = a01 fll” = a11 flu = 2a20 f,, = 2a02. 

The fit error is computed after the ujj coefficients are determined: 

Since the discrete orthogonal quadratic polynomials over the 2-D window are 
separable in u and u as shown in the above equations, we can compute our partial 
derivative estimates for an entire depth map using a separable convolution operator. 
This is quite efficient. These derivative estimates can then be plugged into the 
equations for the Gaussian curvature and the mean curvature. This describes all the 
mathematical details necessary to compute curvature functions K( u, u) and H(u, u) 
given samples from a continuous depth-map function f (u, u). 

The disadvantages of this local surface fit method are: 

(1) A different quadratic surface is fitted to the neighborhood of each point. No 
compatibility constraints are imposed on these surfaces so that the net continuous 
surface interpretation is meaningful. Unfortunately, one may need to make a priori 
assumptions about the surface in order to correct this, and making these kind of 
assumptions is contrary to our goal of using as few a priori assumptions as possible 
in our data-driven processing. 

(2) It seems counter-intuitive that all columns (or rows) in a least squares 
derivative window operator are weighted equally. If one asks for a 9 x 9 wiridow 
least squares estimate of the first derivative of a depth map at a particular pixel, the 
data that runs four pixels away has the same impact on the final estimate as does the 
data that runs directly through the pixel at which we are estimating the derivative. 
This situation can be modified using weighted least squares techniques. The question 
then arises: What is the best assignment of weights? A particular triangular weight 
assignment was quickly tried on a few particular depth maps in experiments and was 
found to give different, but neither better nor worse results. One might argue that 
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Surface Triangularization 
about the point P 

FIG. 10. Discrete Gaussian curvature at a point. 

Gaussian weights should be used, but this is not likely to change our results too 
much. Haralick [21] is addressing this issue. 

7.3. Computing Gaussian Curvature without Partial Derivatives 

It is interesting to note that there is at least one way to compute Gaussian 
curvature without using explicit derivative estimates [36]. This technique originates 
in the Regge calculus of general relativity in which geometry is analyzed without 
coordinates. One must first obtain a discrete triangularization of a surface to use this 
technique. If we look at a particular point xk on the triangularized surface, it is the 
vertex for N different triangles. See Fig. 10 for an example of the geometry. We 
assume that the lengths of sides of the ith triangle are aj, bi, ci where ci is the length 
of the side opposite the point of interest and where ai + 1 = b,. The angle deficit Ak 
at the point xk is then given by 

Ak = 2lr - $9; where r#+ = cos 
i=l 

Gaussian curvature at a point is computed based on angle deficit as 

26, - 8(x - xk) 
Jw = / N \ 

where 

Ai = /s(s - ai)(s - bi)(s - ci) and 
ai + bj + ci 

s= 
2 

and where S( -) is the Dirac delta function. This method is related to our parallel 
transport definition of Gaussian curvature mentioned earlier. We have obtained 
amazingly accurate estimates of the Gaussian curvature of a sphere using only five 
points on the surface of a hemisphere. However, we still prefer our current method 



62 BESL AND JAIN 

over this method because our method determines Gaussian curvature in addition to 
many other characteristics with comparable results and comparable noise sensitivity. 
It is impossible to compute mean curvature with a similar approach because of its 
extrinsic nature. 

7.4. Critical Points 

The use of surface critical points for surface characterization has been discussed 
by Nackman [43]. He notes that critical points and ridge and course (valiey) lines 
surround slope districts in only four canonical ways. The critical points of a function 
f(u, v) are those points (u, u), where f,(u, u) = 0 and f,(u, u) = 0. Since we have to 
compute f, and f,, functions to compute K and H anyway, it is a trivial mathemati- 
cal step to additionally determine the critical points of the given depth map by 
detecting the zero crossings of the first partial derivatives. For surfaces, there are 
seven kinds of non-degenerate critical points where f, = f,, = 0 and K # 0 # H: 

(1) peak critical points: H < 0 and K > 0, 

(2) ridge critical points: H < 0 and K = 0, 

(3) saddle ridge critical points: H < 0 and K < 0, 

(4) minimal critical points: H = 0 and K < 0, 

(5) saddle valley critical points: H > 0 and K < 0, 

(6) valley critical points: H > 0 and K = 0, and 
(7) pit critical points: H > 0 and K > 0. 

In addition, there is one kind of degenerate critical point where f, = f,, = 0 and 
K = 0 and H = 0: planar critical points. Hence, if we compute the zero crossings of 
the first partial derivatives in addition to Gaussian and mean curvature, then we 
have a richer structural description of the range image surface. 

The proposed characterization is a generalization of the 1-D function characteriza- 
tion techniques. Computing critical points is the generalization of computing the 
zeros of the first derivative of a function of one variable. Computing the sign of 
Gaussian and mean curvature is a generalization of computing the sign of the second 
derivative to see if the function is concave up or down. 

7.5. Other Features 

It is also convenient to compute four other quantities that are of interest in surface 
characterization and range image segmentation. The first of these quantities is the 
square root of the determinant of the first fundamental form matrix: 

Jr;=~zizF=fi+f,z+f~. 

This metric determinant quantity can be summed over depth map regions to obtain 
the approximate surface area of the region. This summation corresponds to the 
continuous formulation 

SurfaceArea = //\li+f,2+f,zdudu. 

It can also be considered as an edge magnitude map since it is approximately equal 
to the square root of the sum of the squares of the first partial derivatives. This 
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output is similar to the output of many edge detectors. It could be thresholded using 
a minimum depth separation distance to create a simple binary edge image. In depth 
maps, these edges generally correspond to depth discontinuities, which generally 
correspond to the occluding boundary of an object. Thus, the existence of a depth 
discontinuity and a surface region boundary along a curve will reinforce the 
interpretation of that curve as an occluding object boundary for segmentation 
purposes. 

A second extrinsic quantity that is easy to compute given the derivatives already 
computed is the quadratic variation 

Q = f,‘, + 2f,2, + f,‘,. 

When this function is integrated (summed) over a depth map region, the integral 
(sum) is a measure of the fIatrum of that region. This image function and the metric 
determinant image could be computed in parallel with the Gaussian and mean 
curvature using the computed derivative information and could be used to quickly 
provide surface area and flatness measures of the surface regions segmented later in 
the processing. 

A third (intrinsic) quantity is the coordinate angle function 0, which is defined as 

0 = cos-‘(F/m) = cos-l 
L 

fUf” 
. 1 + f,’ + f; + f:f: I 

This function measures the non-orthogonality of the u, v parameterization at each 
point: 0 = s/2 when the u- and v-tangent vectors are orthogonal and ranges 
between 0 and rr when they are not orthogonal. Also cos 0 = 0 implies that at least 
one of the first partial derivatives is zero in the graph surface formulation. It is not 
clear how this intrinsic surface feature can contribute in general to segmentation. 
However, the zeros of this function form the ridge and course lines discussed by 
Nackman [43]. 

The last quantities that we mention are the principal directions of the surface at 
each point. The principal direction vectors of the surface along with H and K 
completely determine the shape operator of the surface. We can compute the 
principal direction angles in the u-v plane as follows: 

a r,z = tan-’ ( -B+&C-Z 

C i 

where 

A=EIkf-FL 2B=EN-GL C = FN - GM. 

Note that these directions are in general not orthogonal in the (u, v) plane even 
though the 3-D principal direction vectors in the tangent planes are orthogonal. We 
do not currently propose to use these angles as surface descriptors as Brady et al. [9] 
do because they appear to be rather noisy to us. Nethertheless, we have included 
them in the discussion for completeness of the continuous surface description. We 
conjecture that the ZJ, K, g, 8, @i, a2 function description of a surface is equivalent 
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to the E, F, G, L, M, N function description as related to the fundamental existence 
and uniqueness theorem of general surfaces. The main difficulty in proving this 
conjecture lies in the complexity of the differential equation for K in terms of 
E, F, G and their derivatives. If this conjecture is true, there would be an interesting 
split between angular and non-angular functions that describe a surface. 

7.6. Summary of Computational Approach 

We summarize the computational characterization process prescribed above in the 
continuous and discrete cases: 

(1) Continuous Case. Input. A function f(u, u) defined on a subset of the 
plane. 

Process. (a) Compute f , f,, f,,, f,,, f,, using analytical techniques, 
(b) Compute K K 6, cos 8, and Q using the formulas given above, 
(c) Compute zeros of f,, f,, K, and H. 
Output. (a) Two three-level functions sgn( K) and sgn( H) where sgn( ) is the 
Signum function that yields 1 if the argument is positive, 0 if the argument is 
zero, and - 1 if the argument is negative. These two functions can be 
combined into one eight-level function. 
(b) Three non-negative functions IH(, IK 1, and d- that describe the 

magnitude of the two surface curvatures and the magnitude of the 
difference of the principal curvatures, respectively. 

(c) A binary c( U, v) that is 1 when (u, v) is critical and 0 when it not. Peak, 
pit, saddle ridge, saddle valley, and minimal critical points of smooth 
surfaces are always isolated critical points. Ridge and valley critical 
points can form planar curves. Planar critical points can form planar 
areas. Each resulting point, curve, or area should be labeled with its 
appropriate classification. 

(d) Two non-negative functions & and Q. These functions are integrated in 
later processing to provide descriptive features of segmented surface 
regions. 

(e) The binary image functions denoting the zeros of K, H, and cos 0. 
(2) Discrete case. Input. A matrix of values f(i, j) where 0 I i zz (N,, - 1) 

andO<j<(N,-l)andOsf<2 %ls - 1 where Nbits is the number of bits used 
for sensor data quantization. 

Process. (a) Compute fu, L, fu,, L,, juu matrices using window convolution 
techniques described above, 
(b) Compute K, H, 6, cos0, Q, and E matrices using the analytical 

formulas given above, 
(c) Compute the zeros of fU, f’,, K, and H. 
Output. (a) Two three-level images, or matrices, sgn( K) and sgn( H). These 
two images can be combined into one eight-level ima e. 
(b) Three non-negative images IHI, 1 K I, and d---+ H - K that describe the 

magnitude of the two surface curvatures and the magnitude of the 
difference of the principal curvatures, respectively. 

(c) A binary image matrix c(i, j) that is 1 when (i, j) is critical and 0 when 
it is not. Each critical pixel is classified into one of the eight categories 
listed above using the corresponding S-curvature values. 
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FIG. 11. Range image processing algorithm structure. 

(d) Three non-negative images 6 Q, and E are useful for computing region 
features, such as surface area and flatness. Fit error indicates the reliabil- 
ity of the partial derivative estimates. 

(e) The binary images denoting the zeros of K, H, and cos 0. 

Note that we can “compress” much useful structural surface information about an 
Nbits- digitized depth map into eight levels (onb three bits) if we use the signs of the 
Gaussian and mean curvature. This second-order sign information substantially 
constrains the possibilities of visible surfaces. Also, the sign of a second-order 
quantity computed from digital sensor data is more reliable than the magnitude. In 
addition, we can create a classified list of critical points that constrains the surface. 
This list normally contains only a small number of points compared to the total 
number of pixels in the range image and could be used as starting points for a 
matching algorithm as described in [5]. The other images provide additional useful, 
overlapping information. 

8. EXPERIMENTAL RESULTS 

A range image processing program has been written (in C) to do the surface 
characterization computations. The potentially parallel computational structure of 
this program is shown in Fig. 11. All five derivative images could be computed 
simultaneously after initial smoothing. Subsequently, all surface characteristics could 
be computed simultaneously after the derivative estimation stage. Our software 
currently accepts a square range image (with &bits of depth) as input and generates 
the following images as output: 

(1) smoothed range image:f,,,,; 
(2) square root of metric determinant (edge magnitude) image: &; 
(3) quadratic variation (flatness measure) image: Q; 
(4) local quadratic surface fit error image: E; 
(5) zeros of the mean curvature: H = 0; 
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(6) zeros of the Gaussian curvature: K = 0; 

(7) zeros of the cosine-of-the-coordinate-angle function: cos 0 = 0; 
(8) cosine-of-the-coordinate-angle function: cos 0; 
(9) sign regions of mean curvature: sgn(H); 

(10) sign regions of Gaussian curvature: sgn( K ); 

(11) magnitude of principal curvatures difference: \/H * - K ; 

(12) principal direction angle: ql; 
(13) magnitude of Gaussian curvature: ] K (; 

(14) magnitude of mean curvature: JHI; 

(15) non-degenerate critical points image: j,, = j, = 0 z Q; and 
(16) critical points image: j, = j, = 0. 

This output data characterizes the input depth map in a way that is quite useful both 
for segmentation of sensor data and recognition of objects. We get a decomposition 
of a range image into eight surface-type regions by using a combination of the 
sgn( H) and sgn( K) images. We can get step edges and surface area from the fi 
image. It is possible to detect roof edges and ramp edges using the ] H 1 and dm 
images. Critical point configurations describe surfaces as discussed in Nackman [43]. 
Data-driven processing can yield rich, interrelated surface, edge, and point informa- 
tion. 

In the experimental results that follow, several computational steps were per- 
formed that have not been mentioned yet. The following points should be made: 

(1) Our original depth map data is quantized to eight bits. Quantization noise 
alone caused many problems in our first tests on analytically computed surfaces. To 
fix this problem, the original image is smoothed using a window operator that is two 
pixels larger than the window operators used to do the derivative estimation, and the 
results are stored in floating point form. This smoothing also compensates for 
random noise in the two or three least significant bits of range data. 

(2) The output curvature images are smoothed using the same smoothing 
operator that was used on the input to even out the variations in the S-curvature 
output. 

(3) The S-curvature sign images are obtained using a threshold about zero. 
That is, sgn(K) = 0 if IK1-c E~JKI,,,~. Also, sgn(H) = 0 if IHI < eHIHlmax. The 
two thresholds were set to 1% for synthetic range images with no noise. This seems 
like a fairly reasonable number because the original g-bit data can only measure zero 
to within 0.4% of the maximum value. Noisy images required larger percentage 
thresholds to obtain good HK-sign images. 

These items are critical to the results displayed in this paper. Different smoothing 
schemes will create different S-curvature results. Different thresholds create diRerent 
S-curvature sign images. Our future research will analyze and experiment with 
different smoothing and threshold-setting alternatives. 

Experimental results for different object depth maps are shown in Figs. 13 through 
28. Each depth map is briefly discussed individually below. The results are shown in 
the sixteen subimage format. The contents of each subimage are noted in Fig. 12. 
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f smooth 
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zeros(K) zeros(cos @3) cos 8 
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FIG. 12. Surface characterization results format: f = surface function; H = mean curvature; K = 
Gaussian curvature; g = metric determinant; Q = quadratic variation; E = local surface fit error; 
0 = coordinate angle; @I = principal direction angle. 

Zeros images are white when the quantity is zero and black otherwise. Surface 
curvature sign images are coded as follows: white for positiue, gray for zero, black for 
negative. Other images are scaled so that the image minimum is black and the image 
maximum is white. The exception to this rule is the depth map itself: white is used 
for pixels closest to the observer (depth is a minimum), whereas black is used for 
pixels farthest from the observer (depth is a maximum). This convention is some- 
times reversed; our experience is that it is generally more difficult to interpret such 
reversed range images. There are odd-looking convolution-window effects near the 
edges of these 16 subimages; please ignore these artifacts. For several range images, 
we also provide a surface plot of the range data. 

We obtained the range images used in this paper in two different ways. We can 
generate synthetic range images of arbitrary 3-D object models from arbitrary views 
using a combination of the SDRC/GEOMOD solid modeler [16] developed by 
Structural Dynamics Research Corporation (which is used to create object models) 
and our own software (which uses a depth-buffer algorithm to create the depth 
maps.) We have also obtained real range images from the Environmental Research 
Institute of Michigan (ERIM), which were obtained using the ERIM laser rangefinder 
[53]. The range-image points in these images are obtained using equal-increment 
azimuth and elevation angle sampling. This equal-angle-increment sampling causes 
flat surfaces in the real world to be mapped into slightly warped surfaces in range 
images. 

We now consider the results for each object individually. Our first object is a 
coffee cup. Two gray scale images of two depth maps of this object are shown in Fig. 
13 along with a surface plot of one of them. The two depth maps were obtained from 
the ERIM laser rangefinder. The quality of these depth maps is almost comparable 
to what we obtain from our model-based synthetic depth map generation program. 
The surface curvature characterization of these depth maps are shown in Fig. 14; a 
7 X 7 derivative window operator was used. We find that the zeros of the mean 
curvature form a good line drawing of the object shape. The square root of the 
metric determinant, the quadratic variation, and the quadratic surface fit error 
provide an interesting sequence of edge-detector-like images. Clusters of local 
maxima and saddle ridge critical points are found at the closer and farther rims of 
the cup respectively whereas local minima critical points are found on the inside of 
the cup. Despite the noise present in this real image, very few spurious critical points 
are found. The magnitude of the principal curvature difference image shows that the 
principal curvatures on the surface differ the most on the rim of the cup. 
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FIG. 13. Coffee cup range images and surface plot (128 x 128 ERIM range images) 

A second depth map from the laser rangetinder is shown in Fig. 15 along with a 
surface plot of the same data. A histogram of this image shows that all &bit depth 
values are confined to the 32 to 128 range with most values in the 96 to 128 range. 
This image represents a portion of a keyboard. Two S-curvature characterizations 
are shown in Fig. 16. The top characterization was computed using a 3 x 3 
derivative window operator and the bottom was computed using a 5 x 5 window. 
The reader can easily see the effect of an increase in window size. The concave shape 
of the top surface of the keyboard keys is detected by the small white regions in the 
mean curvature sign image. Again the zeros of the mean curvature image yields a 
very good line drawing of the keyboard. There are a large number of critical points 
on this surface as one might expect. The critical points are fairly well clustered into 
groups for the 5 x 5 window operator case. 

We now discuss two views of a road scene extracted from a range image sequence 
acquired by the laser rangefinder. Figure 17 shows the original range images (with 
phase wraparound lines at 32 and 64 ft), the processed range images with the first 
wraparound transition removed, and a surface plot of one of the processed images. 
The 64 ft line was not removed because most of the data beyond that level is 
excessively noisy. Figure 18 shows the S-curvature characterization results for a 
9 x 9 derivative window operator. The zeros of the mean curvature effectively 
isolate the ditches at the side of the road. The mean curvature sign image points out 
that the surface corresponding to the road itself is not fiat in this image as expected 
from the angular sampling. The zeros of the cosine-of-the-coordinate-angle occur 
whenever either of the fhst partial derivatives is zero. Because of the equal-a&e- 
increment sampling, the flat road samples are slightly warped yielding a line right up 
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IG. 14. S-curvature characterizations of two views of coffee cup (7 X 7 derivative window opera 
threshold = 4%). 

Itor. 

the center of the cos 0 zeros image. Because the noise beyond the 64 ft line was left 
in the image unwrapped, the maximum curvature points and the critical points all 
occur in this region but have no physical meaning. 

Figure 19 is a surface plot of the range image of a tilted torus. The S-curvature 
results for two different synthetic range views of the torus are shown in Fig. 20. In 
the other view, the torus is tilted only five degrees. Note how well the surface critical 
points were detected. The structure of the ridge and course lines in the zeros of the 
cosine-of-the-coordinate-angle image gives important view-dependent information 
about the surface in terms of slope districts. The irregularities in the curvature 
magnitude images occur because the object model from which the range image was 
generated is a faceted polyhedral model. Note that the mean-curvature sign-image is 
almost exactly correct. The Gaussian curvature sign image shows that, to within the 
1% threshold, many parts of the surface are approximately flat. 
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FIG. 15. Keyboard range image and surface plot (128 x 128 ERIM range image). 

A free-form undulating surface was created by “stretching a skin” over a series of 
curves using SDRC/GEOMOD. The depth map for this surface is shown in Fig. 21. 
The S-curvature results for two different views using 5 x 5 window derivative 
operator are shown in Fig. 22. The critical points that are also maximum Gaussian 
curvature points tend to line up along the joining curve in the center of the range 
image when we look straight down on the surface. These points move predictably in 
the second view. These depth maps have no substantial depth-discontinuities; 
therefore, detailed slope magnitude variations are seen in the scaled edge map (6) 
image. Note the slight changes in S-curvature sign images between the two views. 

To give the reader an idea of how window size and noise level affect the results of 
the surface characterization algorithm, we use a synthetic image of a cube with three 
holes in it. We added pseudo-random pseudo-Gaussian noise (rounded to the 
nearest integer) to the original image to create four different synthetic noisy images. 
These four images are shown in Fig. 23 and correspond to noise standard deviations 
(u’s) of 2.3, 9.2, 16.0, and 22.9 gray levels (depth levels) added to an original image 
with a dynamic range of 256 levels. The resulting noisy images were resealed to fit 
into the 8-bit depth range. These images were then processed with 5 x 5, 7 x 7, 
9 x 9, 11 X 11, and 13 X 13 derivative window operators. We have sekxted ~the 
following five figures to demonstrate the noise performance: 

l Figure 24. 5 X 5 operator applied to u = 2.3 noisy image. 
l Figure 25. 7 x 7 operator applied to u = 9.2 noisy image. 
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FIG. 16. S-curvature characterizations of keyboard (3 x 3 window operator results-top; 5 x 5 
window results-bottom). 

l Figure 26. 9 x 9 operator applied to the u = 16.0 noisy image. 
l Figure 27. 11 x 11 operator applied to the u = 22.9 noisy image. 
l Figure 28. 13 x 13 operator applied to the u = 22.9 noisy image. 

Note how well the sign of the mean curvature represents the important surface 
variations of the cube even in the presence of significant’ noise. The mean curvature 
images are surprisingly consistent and qualitatively meaningful in all five figures 
even though second derivatives are involved in its computation. The Gaussian 
curvature images seem to be more susceptible to noise, but the closest vertex of the 
cube is consistently marked as a high curvature spot. The degradation in the zeros of 
the cosine-of-the-coordinate-angle is quite interesting. The critical point images are 
quite consistent and demonstrate the necessity of a large window size to suppress 
spurious critical points in the presence of noise. Note that fewer spurious critical 
points result in the 11 X 11 u = 22.9 results shown in Fig. 27 than in the 5 X 5 
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FIG. 17. Original and unwrapped range images of road scene (128 x 128 ERIM range images) 

u = 2.3 results shown in Fig. 24. Our conclusion is that even though we are using 
second derivative information, our surface descriptors are still useful in the presence 
of noise. Moreover, the surface characteristics appear to degrade slowly as the noise 
level increases. 

9. FUTURE RESEARCH DIRECTIONS 

An object recognition problem has been defined and surface characteristics for 
range image segmentation and surface/object matching have been identified.- Our 
experimental results indicate the efficacy of our surface characterization approach. 
We summarize the topics that need to be addressed in future research: 

(1) Noise. Sensor noise and quantization noise are important problems in range 
data processing. Fundamental trade-off decisions between smoothing and spatial 
localization of surface region edges must be addressed. While our current results are 
good, we believe even better results can be obtained by providing more elaborate 
control over smoothing operations and other additional processing. For example, 
Brady et al. [9] show results where smoothing is inhibited around ramp edges. 
Techniques like this will help to improve these results. 

(2) High-level data-driven description. Each basic isolated surface type is struc- 
turally simple. We have had some preliminary success building a high&eve1 
data-driven geometric description of range images using low order- 
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FIG. 19. Surface plot of torus depth map (128 X 128 synthetic depth map). 
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FIG. 21. Surface plot of undulating surface depth map (128 x 128 synthetic depth map). 
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FIG. 22. S-curvature characterizations of two views of undulating surface (5 x 5 derivative u 
operator, zero threshold = 1%). 

FIG. 23. Block with different noise levels (2.3, 9.2, 16.0, 22.9) (128 X 128 synthetic depth maps). 
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FIG. 24. S-curvature results for 5 X 5 operator with sigma = 2.3 (zero threshold = 6%) 

surface patches. The RMS fit errors are typically less than 1.2 depth levels for real 
range images. The dimensional&y of this higher-level description is extremely small 
compared to the range image itself whenever surfaces occupy more than a hundred 
pixels in an image. This method is not limited to planes, sphere, cones, cylinders, 
and other quadrics often treated in the literature. More research is needed to develop 
this concept. 

(3) Matching. There are many matching algorithm problems that need to be 
solved before these characteristics are used for recognition purposes. A view-inde- 
pendent matching representation is needed. We would like to compute that represen- 
tation automatically from given object models of arbitrary shape. 

FIG. 25. S-curvature results for 7 x 7 operator with sigma = 9.2 (zero threshdd = 12%). 
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FIG. 26. S-curvature results for 9 x 9 operator with sigma = 16.0 (zero threshold = 14%). 

(4) Feedback. We mentioned verification feedback earlier. An interaction of 
data-driven and model-driven processes is required for robust recognition. The use 
of feedback within vision systems must be analyzed. 

(5) Occlusion. We hope to include minor occlusion handling as part of the 
general purpose matching algorithm. The surface characteristics are suitable, but the 
higher level processes require research. 

(6) Learning. Eventually, vision systems will have to learn about their environ- 
ment from what they sense. Research is needed to determine how a system should 
handle data with surface characteristics that do not match any known models in the 
object list. 

FIG. 27. S-curvature results for 11 X 11 operator with sigma = 22.9 (zero threshold = 14%). 
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FIG. 28. S-Curvature results ofr 13 X 13 operator with sigma = 22.9 (zero threshold = 14%). 

One applied goal of this research is to develop a system that will correctly 
recognize objects from any view selected at random from an object list that contains 
20 or 30 objects with curved and flat surfaces. These objects will span a range of 
object complexities and include objects of similar appearance to challenge the 
system. We believe that visible-invariant surface characteristics can be used to 
achieve this goal. 
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