
Andrew Blake and Michael Isard

Active Contours
The Application of Techniques from
Graphics, Vision, Control Theory and Statistics
to Visual Tracking of Shapes in Motion

Springer

Contents

1 Introduction 1
1.1 Organisation of the book 3
1.2 Applications 5

2 Active shape models 25
2.1 Snakes 26
2.2 Deformable templates 32
2.3 Dynamic contours 34

I Geometrical Fundamentals 39

3 Spline curves 41
3.1 B-spline functions 42
3.2 Finite bases 45
3.3 Multiple knots 46
3.4 Norm and inner product for spline functions 47
3.5 B-spline parametric curves 53
3.6 Curves with vertices 54
3.7 Control vector 57
3.8 Norm for curves 58
3.9 Areas and moments 63

4 Shape-space models 69
4.1 Representing transformations in shape-space 70
4.2 The space of Euclidean similarities 75

vi Contents

4.3 Planar affine shape-space 76
4.4 Norms and moments in a shape-space 79
4.5 Perspective and weak perspective 81
4.6 Three-dimensional affine shape-space 88
4.7 Key-frames 90
4.8 Articulated motion 93

Image processing techniques for feature location 97
5.1 Linear scanning 99
5.2 Image filtering 100
5.3 Using colour 104
5.4 Correlation matching 105
5.5 Background subtraction 110

Fitting spline templates 115
6.1 Regularised matching 115
6.2 Normal displacement in curve fitting 120
6.3 Recursive solution of curve-fitting problems 126
6.4 Examples 134

Pose recovery 141
7.1 Calculating the pose of a planar object 141
7.2 Pose recovery for three-dimensional objects 149
7.3 Separation of rigid and non-rigid motion 153

II Probabilistic Modelling 157

8 Probabilistic models of shape 159
8.1 Probability distributions over curves 160
8.2 Posterior distribution 164
8.3 Probabilistic modelling of image features 169
8.4 Validation gate 172
8.5 Learning the prior 174
8.6 Principal Components Analysis (PCA) 176

Contents vii

9 Dynamical models 185
9.1 Some simple dynamical prior distributions 187
9.2 First-order Auto-regressive processes 193
9.3 Limitations of first-order dynamical models 196
9.4 Second-order dynamical models 200
9.5 Second-order AR processes in shape-space 203
9.6 Setting dynamical parameters 205

10 Dynamic contour tracking 213
10.1 Temporal fusion by Kalman filter 213
10.2 Tracking performance 220
10.3 Choosing dynamical parameters 225
10.4 Case study 231

11 Learning motion 235
11.1 Learning one-dimensional dynamics 236
11.2 Learning AR process dynamics in shape-space 242
11.3 Dynamical modes 247
11.4 Performance of trained trackers 250

12 Non-Gaussian models and random sampling algorithms 255
12.1 Factored sampling 257
12.2 The CONDENSATION algorithm 259
12.3 An observation model 262
12.4 Applications of the CONDENSATION algorithm 267

Appendix 281

A Mathematical background 281
A.I Vectors and matrices 281
A.2 B-spline basis functions 284
A.3 Probability 294

B Stochastic dynamical systems 297
B.I Continuous-time first-order dynamics 297
B.2 Second-order dynamics in continuous time 299

viii Contents

B.3 Accuracy of learning 300

C Further shape-space models 303

C.I Recursive synthesis of shape-spaces 303

Glossary of notation 311

Bibliography 315

Author Index 335

Index 341

Chapter 1

Introduction

Psychologists of vision have delighted in various demonstrations in which prior knowl-
edge helps with interpreting an image. Sometimes the effects are dramatic, to the
point that the viewer can make no sense of the image at all until, when cued with
a single word, the object pops out of the image. This idea of “priming” with prior
knowledge is illustrated (light-heartedly) in figure 1.1. Priming in that example is

Figure 1.1: Priming with prior knowledge. If you have never seen it before this figure
probably means little at first sight. Now look for a cyclist in a Mexican hat.

rather “high-level,” calling on some intricate and diverse common-sense knowledge
concerning wheels, hats and so on. The aim of this book is to look at how prior

2 Chapter 1

knowledge can be applied in machine vision at the lower level of shapes and outlines.
The attraction of using prior knowledge in machine vision is simply that it is so

hard to make progress without it, as a decade or more of research around the 1970s
showed. There was considerable success in converting images into something like
line drawings without resorting to any but the most general prior knowledge about
smoothness and continuity. That led to the problem of “grouping” together the lines
belonging to each object which is difficult in principle, and very demanding of comput-
ing power. One effective escape from this bind has been to design vision processes in a
more goal-directed fashion and this is part of the philosophy of the notably successful
“Active Vision” paradigm of the 1980s. Consider the task of examining visually the
field of view immediately in front of a driverless vehicle, in order to steer automatically
along the road. If the nature of the task is taken into account from the outset, it is
quite unnecessary to examine an entire image; it is sufficient to focus on the expected
appearance and position of the road edge at successive times. Deviations of actual
from expected position can be treated as an error signal to control steering. This
has two great advantages. First there is no need to organise or group features in the
image; the relevant area of the image is simply tested directly against its expected
appearance. Secondly, the fact that analysis can be restricted to a relatively narrow
“region of interest” (around the road edge) eases the computational load. Active Vi-
sion, then, uses task-related prior knowledge to simplify and focus the processing that
is applied to each image.

This book is concerned with the application of prior knowledge of a particular kind,
namely geometrical knowledge. The aim is to strengthen the visual interpretation of
shape via the stabilising influence of prior expectations of the shapes that are likely
to be seen. There have been many influences in the development of this approach
and two in particular are outstanding. First is the seminal work in 1987 of M. Kass,
A. Witkin and D. Terzopoulos on “snakes” which represented a fundamentally new
approach to visual analysis of shape. A snake is an elastic contour which is fitted
to features detected in an image. The nature of its elastic energy draws it more
or less strongly to certain preferred configurations, representing prior information
about shape which is to be balanced with evidence from an image. If also inertia
is attributed to a snake it acquires dynamic behaviour which can be used to apply
prior knowledge of motion, not just of shape. Snakes are described in detail in the
next chapter. The second outstanding influence is “Pattern Theory” founded by U.
Grenander in the 70s and 80s and a popular basis for image interpretation in the
statistical community. It puts the treatment of prior knowledge about shape into a

Introduction 3

probabilistic context by regarding any shape as the result of applying some distortion
to an ideal prototype shape. The nature and extent of the distortion is governed by an
appropriate probability distribution which then effectively defines the range of likely
shapes.

Defining a prior distribution for shape is only part of the problem. The complete
image interpretation task is to modify the prior distribution to take account of image
features, arriving at a “posterior” distribution for what shape is actually likely to
be present in a particular image. Mechanisms for fusing a prior distribution with
“observations” are of crucial importance. Suffice it to say here that a key idea of
pattern theory is “recognition by synthesis,” in which predictions of likely shapes,
based on the prior distribution, are tested against a particular image. Any discrepancy
between what is predicted and what is actually observed can be used as an error signal,
to correct the estimated shape. Fusion mechanisms of this general type exist in the
snake, in the ubiquitous “Kalman filter” described in the next chapter, and in other
more general forms described later in the book.

1.1 Organisation of the book

The organisation of material in the book is as follows. This chapter concludes by
illustrating a range of applications and the next introduces active contour models.
The book is then divided into two parts. Part I deals with the fundamentals of
representing curves geometrically using splines, including basic machinery for least-
squares approximation of spline functions, an essential topic not normally dealt with
in graphics texts. Chapter 4 lays out a design methodology for linear, image-based,
parametric models of shape, an important tool in applying shape constraints. Then
algorithms for image processing and fitting splines to image features are introduced,
leading to practical deformable templates in chapter 6. At this stage, a tool-set has
been amassed sufficient for fitting curves to individual images, under a whole spectrum
of prior assumptions, ranging from the least constrained snake to a two-dimensional
rigid template. The treatment of part I aims to be thorough and complete, accessible
by readers who are not necessarily familiar with the techniques of computer vision,
given just a reasonable background in computing and vector algebra. (Appendix A
reviews the necessary background in vectors and matrices, and gives some additional
implementation details on spline curves.)

Part II introduces two new themes: models of motion and deformation, and prob-

4 Chapter 1

abilistic treatment of shape and motion. It begins (chapter 8) by reinterpreting the
deformable templates of part I, in probabilistic terms. This is extended to dynamical
models in chapter 9, as a preparation for fully probabilistic dynamical contour track-
ing, by Kalman filter, in chapter 10. By this stage, there are numerous parameters
to be chosen to build a competent tracker and clear design guidelines are given on
setting those parameters and on their intuitive physical interpretations. The most
effective dynamical models derive, however, from learning procedures, as described in
chapter 11, in which tracking performance improves automatically with experience.
Finally, probabilistic modelling up to this point has been based on Gaussian distri-
butions. Chapter 12 shows that for the hardest tracking problems, involving dense
background clutter, non-Gaussian models are essential. They can be applied via ran-
dom sampling algorithms, at increased computational cost, but to very considerable
effect in terms of enhanced robustness.

As far as writing conventions go, references to books and papers have been kept
out of the main text, to improve readability, and collected in separate bibliographic
notes, appearing at the end of each chapter. These notes give sources for the ideas
introduced in the body of the text and pointers to references on related ideas. Again
for readability, mathematical derivations are kept from intruding on the main text by
the use of two devices. The most important derivations are sandwiched (stealing a
convention from Knuth’s TEX manual) between

double-bend and all-clear
road signs in the margins. These are optional reading for those who want the math-
ematical details. Still more optional are the results and proofs in appendix B which
support chapter 9 on dynamical models.

Web page

A web page for the book is at URL http://www.robots.ox.ac.uk/~contours/ and
contains MPEG sequences and additional material for those interested in exploring
further the ideas discussed in the book.

Introduction 5

1.2 Applications

A decade ago, it seemed unlikely that the research effort invested in Computer Vision
would be harvested practically in the foreseeable future. Partly this reflected the lack
of computational power of hardware available at the time, a limitation which has been
greatly eased by the passing years. Partly though it was the result of an ambitious
view of the problems of vision, in which the aim was to build a general purpose vision
engine, rather than particular applications. More recently, that view has been rather
overtaken by a more focused, algorithmically driven approach. The result is that
Computer Vision ideas are working their way into a variety of practical applications,
particularly in the areas of robotics, medical imaging and video technology.

The active contour approach is a prime candidate for practical exploitation. This is
because active contours make effective use of specific prior information about objects
and this makes them inherently efficient algorithms. Furthermore, active contours
apply image processing selectively to regions of the image, rather than processing
the entire image. This enhances efficiency further, allowing, in many cases, images
to be processed at the full video rate of 50/60 Hz. Incidentally, the ability to do
vision at real-time rate has an important spin-off in stiffening criteria of acceptability,
amounting to a qualitative re-evaluation of standards. As an example, an algorithm
that locates the outline of a mouth in a single image nine times out of ten might
be considered quite successful. Let loose on a real-time image sequence of a talking
mouth, this is re-interpreted as abject failure — the mouth is virtually certain to be
“lost” within a second or so, and the loss is usually unrecoverable. The ability to
follow the mouth while it speaks an entire paragraph, tracking through perhaps 1000
video frames is an altogether more stringent test.

Ten examples of applications follow. Earlier ones are already promising candidates
for commercial application while later ones are more speculative.

Actor-driven facial animation

A deforming face is reliably tracked to relay information about the variation over
time of expression and head position to a Computer Graphics animated face. The
relayed expression can be reproduced or systematically exaggerated. Tracking can be
accomplished in real time, keeping pace with rate of acquisition of video frames so
the actor can be furnished with valuable visual feedback. Systems currently available
commercially rely on markers affixed to the face. Visual contour tracking allows

6 Chapter 1

marker-free monitoring expression, given a modicum of make-up applied to the face,
something to which actors are well accustomed. An example of real-time re-animation
is illustrated for a cartoon cat in figure 1.2. This was done using two SGI INDY
workstations, linked by network, one for visual tracking and one for mapping tracked
motion onto the cat animation channels and display.

Figure 1.2: Actor-animated cat. Tracked facial motions drive input channels to a cartoon
cat, programmed with some exaggeration of expression. (Figure courtesy of Benedicte Bascle,
Ben North and Julian Morris.)

Traffic monitoring

Roadside video cameras are already familiar in systems for automated speed checks.
Overhead cameras, sited on existing poles, can relay information about the state
of traffic — its density and speed — and anomalies in traffic patterns. Contour
tracking is particularly suited to this task because vehicle outlines form a tightly
constrained class of shapes, undergoing predictable patterns of motion. Already the
state of California has sponsored research leading to successful prototype systems.

Introduction 7

Work in our laboratory, monitoring the motion of traffic along the M40 motorway
near Oxford, is illustrated in figure 1.3. Vehicle velocity is estimated by recording

Figure 1.3: Traffic monitoring. By automatically tracking cars, the emergency services
can, for example, obtain rapid warning of an accident or traffic jam. (Illustration taken from
(Ferrier et al., 1994).)

the distance traversed by the base of a tracked vehicle contour over a known elapsed
time. The measured distance is in image coordinates and this must be converted to
world coordinates to give true distance. The mapping between coordinate systems is
determined as a projective mapping between the image plane and the ground plane.
The mapping is calibrated in standard fashion from the corners of a rectangle on
the ground of known dimensions (known by reference to roadside markers which are
standard fittings on British motorways), and the corresponding rectangle in the image
plane, as in figure 1.4. Analysis of speeds shows clearly a typical pattern of UK
motorway traffic with successively increasing vehicle speeds towards the centre lanes
of the carriageway. This is summarised in the table in figure 1.5.

Automatic crop spraying

Agricultural systems for crop spraying suffer from limited ability to control overspray.
Excess fertiliser seeps into the water table, a problem that is increasingly becoming a

8 Chapter 1

Figure 1.4: Calibration of the image-ground mapping. Positions of the four corners
of a known rectangle on the ground and its projection onto the image plane are sufficient to
determine the mapping, using standard projective methods. (Illustration taken from (Ferrier
et al., 1994).)

target of legislators. It is clearly also highly desirable to ensure that toxic chemicals
used to control weeds are directed away from plants intended for human consumption.
Segmentation of video images on the basis of colour can be an effective means of
visually separating plant from soil but is disrupted by shadows cast by the moving
tractor. Contour tracking, as in figure 1.6, offers an alternative means of detecting
plants that is somewhat immune to such disruption.

Robot grasping

The use of vision in robotics is commonplace in commercial practice, both for inspec-
tion and for coordination of grasp. Figure 1.7 shows an experimental system designed
for use with a camera mounted on the robot’s wrist, to determine stable two-fingered
grasps. A snake is used to capture the outline shape, and geometric calculations
along the B-spline curve, using first and second derivatives to calculate orientation
and curvature, establish a set of safe grasps.

Introduction 9

region start exit distance speed av spd

(lane) (sec) (sec) (yards) (mph) (mph)

1 269.28 273.96 132 58

1 275.92 279.72 127 68

1 297.86 301.56 129 72

1 303.96 308.40 130 60 68

1 314.12 317.24 133 87

1 321.76 325.24 126 74

1 330.20 334.04 132 70

1 343.16 347.58 123 57

2 687.38 692.18 158 67

2 708.46 712.36 164 86

2 727.26 731.20 155 80 76

2 733.12 737.72 164 73

2 749.12 753.64 169 77

3 506.78 510.66 156 83 79

3 513.04 517.04 148 75

Figure 1.5: Analysis of data from tracked cars. Vehicle velocities are measured between
gates space 150 yards apart. (Data from experiments reported in (Ferrier et al., 1994).)

10 Chapter 1

Camera

Sprayers

Plants

Figure 1.6: Robot tractor. An autonomous tractor carrying a camera and computer
for video analysis has the task of spraying earth and plants automatically, using an array of
independently controlled spray nozzles. Plants can be segmented dynamically from the earth
and weeds around it, the spraying of fertiliser and weed-killer to be directed onto or away from
plants as appropriate. (Figures courtesy of David Reynard, Andrew Wildenberg and John
Marchant.)

Introduction 11

K1

2K

Figure 1.7: Robot hand-eye coordination. The white circles are placement regions for
two thin fingers, computed automatically from the outline of the screwdriver handle. Provided
each finger lies within its circle, closing the gripper is bound to capture the screwdriver. (Figure
courtesy of Colin Davidson.)

Surveillance

A combination of visual motion sensing and contour tracking is used to follow an
intruder on a security camera in figure 1.8. The camera is mounted on a computer
controlled pan-tilt platform driven by visual feedback from the tracked contour.

Biometrics: body motion

This application (figure 1.9) involves the measurement of limb motion for the purposes
of analysis of gait as a tool for planning corrective surgery. The tool is also useful for
ergonomic studies and anatomical analysis in sport. It is related to the facial animation
application above, but more taxing technically. Again, marker based systems exist and
are commercially successful as measurement tools both in biology and medicine but it
is attractive to replace them with marker-free techniques. There are also increasingly
applications in Computer Graphics for whole body animation. Capture of the motion
of an entire body from its outline looks feasible but several problems remain to be
solved: the relatively large number of degrees of freedom of the articulating body

12 Chapter 1

Figure 1.8: Tracking a potential intruder on security video. (Figure courtesy of
Simon Rowe, David Murray.)

Introduction 13

poses stability problems for trackers; the agility of, say, a dancing figure requires
careful treatment of “occlusion” — periods during which some limbs and body parts
are obscured by others.

Figure 1.9: Biometrics. Tracking the articulated motion of a human body is applicable both
to biometrics and clinical gait analysis and for actor-driven whole body animation. (Figure
courtesy of Rupert Curwen and Julian Morris.)

14 Chapter 1

Audio-visual speech analysis

Automatic speech-driven dictation systems are now available commercially with large
vocabularies though often restricted to separately articulated words. The functioning
of such a system is dependent on very reliable recognition of a small set of keywords. In
practice, adequately reliable keyword recognition has been realised in low-noise envi-
ronments but is problematic in the presence of background noise, especially cross-talk
from other speakers. Independent experiments in several laboratories have suggested
that lip-reading has an important role to play in augmenting the acoustic signal with
independent information that is immune to cross-talk. Active contour tracking has
been shown to be capable of providing this information (figures 1.10 and 1.11), ro-
bustly and in real time, resulting in substantial improvements in recognition-error
rates.

Figure 1.10: Speech-reading. Performance in automatic speech recognition can be en-
hanced by lip-reading. This is done by tracking visually the moving outlines of lips to obtain
visual signals which are synchronised with the acoustic signal. (Figure courtesy of Robert
Kaucic and Barney Dalton.)

Introduction 15

0 5 10 15 20 25 30 35 40

seven − mouth width

frame number
0 5 10 15 20 25 30 35 40

Window Number

seven 1 clean waveform

Figure 1.11: Audio and visual speech signals This figure shows visual (left) and audio
(right) signals for the spoken word “seven,” over a duration of 0.6 s.

Medical diagnosis

Ultrasound scanners are medical diagnostic imaging devices that are very widely avail-
able owing to their low cost. They are especially suited to dynamic analysis owing
to their ability to deliver real-time video sequences. There are numerous potential
applications for automated analysis of the real-time image sequences, for example the
analysis of abnormalities in cardiac action as in figure 1.12. Noisy artifacts — ultra-
sound speckle — make these images especially hard to analyse. In this context, active
contours are particularly powerful because speckle-induced error tends to be smoothed
by the averaging along the contour that is a characteristic of active contour fitting.
Broadly tuned, learned models of motion are used in tracking as prior constraints on
the moving subject, to aid automated perception. The research issue here is how to
learn more finely tuned models to classify normal and aberrant motions.

Another important imaging modality for medical applications is “Magnetic Res-
onance Imaging” (MRI). It is an expensive technology, but popular because it is as
benign as ultrasound, yet as detailed as tomographic X-rays. Applications are perva-
sive, and one specific example concerning measurements of the cerebral hemispheres
of the brain is illustrated in figure 1.13. In each of successive slices of the brain im-
age, two separate snakes lock onto the outlines of the left and the right hemispheres.
Geometric coherence in successive slices means that a fitted snake from one slice can

16 Chapter 1

Figure 1.12: Medical echocardiogram analysis. The left ventricle beating heart is tracked
by ultrasound imaging for use in medical diagnosis. (Figure courtesy of Alison Noble and Gary
Jacob.)

Introduction 17

Figure 1.13: MRI imaging of brain hemispheres. Each MRI scan (left) of the brain
images one cross-sectional slice of the brain. Separate snakes trace outlines of the left and
right hemispheres. Slices from one hemisphere are stacked (middle), converted to a mesh and
finally rendered as a solid (right). (Figures reproduced from (Marais et al., 1996).)

be used as the initial snake for the next. The entire fitting process can therefore be
initialised by hand fitting snakes around outlines in the first slice. The degree of sym-
metry of the reconstructed hemispheres has been proposed as a possible diagnostic
indicator for schizophrenia.

Automated video editing

It is standard practice to generate photo-composites by “blue-screening” in which
a foreground object, photographed in motion against a blue background is isolated
electronically. It can then be superimposed against a new background to create special
effects. Contour tracking raises the possibility of doing this with objects photographed
against backgrounds that have not been prepared specially in any way, as in figure 1.14.
This increases the versatility of the technique and raises the possibility of extracting
moving objects from existing footage for re-incorporation in new video sequences. In a
second example (figure 1.15), the motion of a cluster of leaves is not only tracked, but
also interpreted as a three-dimensional displacement, so that a computer-generated

18 Chapter 1

Figure 1.14: Automated video editing. Tracking the outline of a foreground object
allows it to be separated automatically from the background, and manipulated as desired, a
special effect which can otherwise only be achieved by “blue-screening” from specially prepared
footage.

object can be “hung” from the cluster and added to the animation. This is achieved
despite the heavy clutter in the background that makes tracking harder by tending to
camouflage the moving leaves.

User interface

The use of body parts as input devices for graphics has of course been thoroughly
explored in “Virtual Reality” applications. Current devices such as data-gloves and
infra-red helmets are cumbersome and restrictive to the wearer. Visual tracking tech-
nology raises the possibility of flexible, non-contact input devices as in figure 1.16.
One aim is to use tracking to realise the “digital desk” concept in which a user manip-
ulates a mixture of real and virtual documents on a desk, the virtual ones generated
by an overhead video-projector.

Introduction 19

Figure 1.15: Automated re-animation. A cluster of leaves is tracked as it moves (top),
its motion interpreted three-dimensionally, and computer-generated pot and flowers are added.
This technique is then applied to a sequence with the leaf cluster moving against heavy clutter
(bottom).

20 Chapter 1

x

y

z

x

y

x

y

z

x

y

Hand translates in x, y and z directions and rotates; object follows hand’s motion.

x

y

z

x

y

x

y

z

x

y

Thumb closed to “lock” object while hand returns to start.

x

y

z

x

y

x

y

z

x

y

Thumb open: object follows hand translating and rotating.

Figure 1.16: A hand tracked in real time by a video camera acts as a three-dimensional
mouse. Moving the thumb towards the hand acts as an “indexing” gesture, equivalent to
lifting a conventional mouse off the desk to reposition it without moving the pointer. (Figure
courtesy of Ben North.)

Introduction 21

Bibliographic notes

Despite enormous research effort, the pinnacle of which is represented by (Marr, 1982),
the goal of defining general low-level processes for vision has proved obstinate and
elusive. Much effort was directed towards finding significant features in images. The
theory and practice of image-feature detection is very fully developed — some of the
landmarks include (Roberts, 1965; O’Gorman, 1978; Haralick, 1980; Marr and Hil-
dreth, 1980; Canny, 1986; Perona and Malik, 1990) on feature detection and (Monta-
nari, 1971; Ramer, 1975; Zucker et al., 1977) on grouping them into linear structures.
See also (Ballard and Brown, 1982) for a broad review. The challenge lies in re-
covering features undamaged and free of breaks, and in successfully grouping them
according to the object to which they belong. In some cases subsequent processes can
tolerate errors — gaps in contours and spurious fragments — and this is particularly
true of certain approaches to object recognition, for instance (Ballard, 1981; Grim-
son and Lozano-Perez, 1984; Faugeras and Hebert, 1986; Mundy and Heller, 1990).
Another important theme in “low-level” vision has been matching using features, in-
cluding (Baker and Binford, 1981; Buxton and Buxton, 1984; Grimson, 1985; Ohta
and Kanade, 1985; Pollard et al., 1985; Ayache and Faverjon, 1987; Belhumeur, 1993),
mostly applied to matching pairs of stereoscopic images.

One notably successful reaction against the tyranny of low-level vision was “active
vision” (Aloimonos et al., 1987; Bajcsy, 1988) whose progress and achievements are
reviewed in (Blake and Yuille, 1992; Aloimonos, 1993; Brown and Terzopoulos, 1994).
Another radical departure was the “snake”, for which the original paper is (Kass et al.,
1987), and many related papers are given in the bibliography to the following chapter.
Pattern theory is a general statistical framework that is important in the study of
active contours. It was developed over a number of years by Grenander (Grenander,
1981), and a lucid summary and interpretation can be found in (Mumford, 1996).
Again, many related papers following the pattern theory approach are given in the
course of the book.

Applications

Actor-driven animation is a classic application for virtual reality systems. Tracking
of changing expressions can be done using VR hardware, or visually with reflective
markers (Williams, 1990), using active contours (Terzopoulos and Waters, 1990; Ter-
zopoulos and Waters, 1993; Lanitis et al., 1995) or using so-called “optical flow” (Essa

22 Chapter 1

and Pentland, 1995; Black and Yacoob, 1995). Underlying muscular motion may be
modelled to constrain tracked expressions.

Traffic monitoring is firmly established as a viable application for machine vision,
for traffic information systems, non-contact sensors, and autonomous vehicle control
(Dreschler and Nagel, 1981; Dickmanns and Graefe, 1988a; Sullivan, 1992; Dickmanns,
1992; Koller et al., 1994; Ferrier et al., 1994). Projective (homogeneous) transforma-
tions (Mundy and Zisserman, 1992; Foley et al., 1990) are used for the conversion
between image and world coordinates.

Automated crop-handling based on vision has become a realistic possibility in the
last decade (Marchant, 1991; Plá et al., 1993), and active contour tracking has a role
to play here (Reynard et al., 1996).

A series of theories of determining stable grasps based on an outline have been
proposed (Faverjon and Ponce, 1991; Blake, 1992; Rimon and Burdick, 1995a; Rimon
and Burdick, 1995b; Rimon and Blake, 1996; Ponce et al., 1995; Davidson and Blake,
1998) and are particularly suited to real-time grasp planning with active contours
(Taylor et al., 1994).

A pioneering advance in the visual tracking of human motion was Hogg’s “Walker”
(Hogg, 1983) which used an articulated model of limb motion to constrain search for
body parts. Active contours have been applied with some success to tracking whole
bodies and body parts (Waite and Welsh, 1990; Baumberg and Hogg, 1994; Lanitis
et al., 1995; Goncalves et al., 1995), though methods based on point features can also
be useful for coarse tracking (Rao et al., 1993; Murray et al., 1993).

Audio-visual speech analysis, or speech-reading, has been the subject of psycho-
logical study for some time (Dodd and Campbell, 1987). The computational problem
has received a good deal of attention recently, using both active contours (Bregler and
Konig, 1994; Bregler and Omohundro, 1995; Kaucic et al., 1996) and methods based
more directly on image intensities (Petajan et al., 1988), or using artificial facial mark-
ers (Finn and Montgomery, 1988; Stork et al., 1992). Generally, as in conventional
speech recognition, Hidden Markov Models (HMMs) (Rabiner and Bing-Hwang, 1993)
are used for classification of utterances, e.g. (Adjoudani and Benoit, 1995).

Several researchers have investigated the application of active contours to the
interpretation of medical images, for example (Amini et al., 1991; Ayache et al., 1992;
Cootes et al., 1994).

The technique of rotoscoping allows film-makers to transfer a complex object from
one image sequence to another. This can be done automatically using blue-screening
(Smith, 1996) if the object can be filmed against a specially prepared background.

Introduction 23

Computer-aided techniques for object segmentation are also of great interest for aug-
mented reality systems, which attach computer-generated imagery to real scenes. Tra-
ditionally mechanical or magnetic 3D tracking devices have been used (Grimson et al.,
1994; Pelizzari et al., 1993; Wloka and Anderson, 1995) to solve this problem, but they
are inaccurate and cumbersome. Vision-based tracking has been used instead (Ku-
tulakos and Valliano, 1996; Uenohara and Kanade, 1995; State et al., 1996; Heuring
and Murray, 1996), especially for medical applications, mostly restricted to tracking
artificial markers. Graphical objects can be made to pass behind real ones (State
et al., 1996), by building models of the real-world objects off-line, using scanned range
maps.

Effective ways of using a gesturing hand as an interface are yet to be generally
established. One very appealing paradigm is the “digital desk” (Wellner, 1993) in
which moving hands interact both with real pieces of paper and with virtual (pro-
jected) ones, on the surface of a real desk. Other body parts may also be useful for
controlling graphics, for instance head (Azarbayejani et al., 1993) and eyes (Gee and
Cipolla, 1994). Gestures need not only to be tracked but also interpreted by classi-
fying segments of trajectories, either in configuration space or phase space (Mardia
et al., 1993; Campbell and Bobick, 1995; Bobick and Wilson, 1995). This is related
both to classification of speech signals (see above) and to classification of signals in
other domains, such as electro-encephalograph (EEG) in sleep (Pardey et al., 1995).

Chapter 2

Active shape models

Active shape models encompass a variety of forms, principally snakes, deformable tem-
plates and dynamic contours. Snakes are a mechanism for bringing a certain degree
of prior knowledge to bear on low-level image interpretation. Rather than expecting
desirable properties such as continuity and smoothness to emerge from image data,
those properties are imposed from the start. Specifically, an elastic model of a con-
tinuous, flexible curve is imposed upon and matched to an image. By varying elastic
parameters, the strength of prior assumptions can be controlled. Prior modelling can
be made more specific by constructing assemblies of flexible curves in which a set
of parameters controls kinematic variables, for instance the sizes of various subparts
and the angles of hinges which join them. Such a model is known as a deformable
template, and is a powerful mechanism for locating structures in an image.

Things become more difficult when it is necessary to locate moving objects in
image sequences — the problem of tracking. This calls for dynamic modelling, for
instance invoking inertia, restoring forces and damping, another key component of
the original snake conception. We refer to curve trackers that use prior dynamical
models as “dynamic contours.” Later parts of the book are all about understanding,
specifying and learning dynamical prior models of varying strength, and applying
them in dynamic contour tracking.

26 Chapter 2

2.1 Snakes

The art of feature detection has been much studied (see bibliographic notes for previ-
ous chapter). The principle is that a “mask” or “operator” is designed which produces
an output signal which is greatest wherever there is a strong presence in an image of a
feature of a particular chosen type. The result is a new image or “feature map” which
codes the strength of response for the chosen feature type, at each pixel. Examples of
feature maps for three different kinds of feature are illustrated in figure 2.1. Details
of the designs of masks and the application to images by digital convolution are given
in chapter 5. For now it is sufficient to say that the operator is a sub-image which
is scanned over an image using “mathematical correlation” or “convolution” (this is
explained in chapter 5). The mask is a prototype image, typically of small size, of the
feature being sought: for a valley feature, for instance, the mask would be a V-shaped
intensity function. The output of the correlation process is a measure of goodness of
fit of the prototype to the image, in each of the image locations evaluated.

However, feature maps are only the beginning. They enhance features of the
desired type but do not unambiguously detect them. Detection requires a decision
to be made at each pixel, the simplest decision rule being that a feature is marked
wherever feature strength exceeds some preset threshold. A constant threshold is
rarely adequate except for the simplest of situations such as an opaque object on a
back-lit table, as commonly used in machine vision systems. However, the features
on a face cannot be back-lit and, if the threshold is set high, gaps appear in edges.
If the threshold is low, spurious edges appear, generated by fine texture. Often no
happy medium exists. More subtle decision schemes than simple thresholds have been
explored but after around two decades of concerted research effort, one cannot expect
to do very much better than the example in figure 2.2. The main structure is present
but the topology of hand contours is disrupted by gaps and spurious fragments.

The lesson is that “low-level” feature detection processes are effective up to a point
but cannot be expected to retrieve entire geometric structures. Snakes constitute a
fundamentally new approach to deal with these limitations of low-level processing. The
essential idea is to take a feature map F (r) like the ones in figure 2.1, and to treat
(−F (r)) as a “landscape” on which the snake, a deformable curve r(s), 0 ≤ s ≤ 1,
can slither. For instance, a filter that gives a particularly high output where image
contrast is high will tend to attract a snake towards object edges. Equilibrium equa-
tions for r(s) are set up in such a way that r(s) tends to cling to high responses of
F , that is, maximising F (r(s)) over 0 ≤ s ≤ 1, in some appropriate sense. This ten-

Active shape models 27

Image Edges

Ridges Valleys

Figure 2.1: Image-feature detectors. Suitably designed image filters can highlight areas
of an image in which particular features occur. The examples shown here filter for areas of
high contrast (“edges”), peaks of intensity (“ridges”) and intensity troughs (“valleys”).

28 Chapter 2

Figure 2.2: Detecting edges. Edges (right) are generated from the image (left) using
horizontally and vertically oriented masks and a decision process (Canny, 1986) that attempts
to repair gaps. Nonetheless, there are breaks at critical locations such as corners or junctions,
and spurious fragments that disrupt the topology of the hand.

dency to maximise F is formalised as the “external” potential energy of the dynamical
system. It is counterbalanced by “internal” potential energy which tends to preserve
smoothness of the curve. The equilibrium equation is:(

∂(w1r)
∂s

− ∂2(w2r)
∂s2

)
︸ ︷︷ ︸

internal forces

+ ∇F︸ ︷︷ ︸
external force

= 0. (2.1)

(Note: s and t subscripts denote differentiation with respect to space and time, and ∇F
is the spatial gradient of F .) If (2.1) is solved iteratively, from a suitable configuration,
it will tend to settle on a ridge of the feature map F , and figure 2.3 illustrates this.
The coefficients w1 and w2 in (2.1), which must be positive, govern the restoring forces
associated with the elasticity and stiffness of the snake respectively. Either of these
coefficients may be allowed to vary with s, along the snake. For example, allowing w2

to dip to 0 at a certain point s = s0 will allow the snake to kink there, as illustrated
at the mouth corners in figure 2.3. Increasing w2 encourages the snake to be smooth,

Active shape models 29

Initial configuration Final configuration

Figure 2.3: Snake equilibrium. Snakes are shown in initial and final configurations.
The eyebrow snake moves over an edge-feature map. The mouth snake is also attracted to
edge-features; smoothness constraints are suspended at mouth corners, to allow the snake to
kink there. Given that the strongest feature on the nose is a ridge (see figure 2.1), the nose
snake is chosen to be attracted to ridges.

like a stiff but flexible rod, but also increases its tendency to regress towards a straight
line. Increasing w1 makes the snake behave like stretched elastic which encourages
an even parameterisation of the curve, but increases the tendency to shortness, even
collapsing to a point unless counterbalanced by external energy or constraints.

Discrete approximation

Practical computations of r(s) must occur over discrete time and space, and approx-
imate the continuous trajectories of (2.1) as closely as possible. The original snake
represented r(s) by a sequence of samples at s = si, i = 1, . . . , N , spaced at intervals

30 Chapter 2

of length h, and used “finite differences” to approximate the spatial derivatives rs and
rss by

rs(si) =
r(si) − r(si−1)

h
and rss(si) =

r(si+1) − 2r(si) + r(si−1)
h2

and solve the resulting simultaneous equations in the variables r(s1), . . . , r(sN). The
system of equations is “sparse,” so that it can be solved efficiently, in time O(N) in
fact.

In finite difference approximations, the variables r(si) are samples of the curve
r(s), at certain discrete points, conveying no information about curve shape between
samples. Modern numerical analysis favours the “finite element” method in which
the variables r(si) are regarded as “nodal” variables or parameters from which the
continuous curve r(s) can be completely reconstructed. The simplest form of finite-
element representation for r(s) is as a polygon with the nodal variables as vertices.
Smoother approximations can be obtained by modelling r(s) as a polynomial “spline
curve” which passes near but not necessarily through the nodal points. This is par-
ticularly efficient because the spline maintains a degree of smoothness, a role which
otherwise falls entirely on the spatial derivative terms in (2.1). The practical upshot
is that with B-splines the smoothness terms can be omitted, allowing a substantial
reduction in the number of nodal variables required, and improving computational
efficiency considerably. For this reason, the B-spline representation of curves is used
throughout this book. Details are given in chapter 3.

Robustness and stability

Regularising terms in the dynamical equations are helpful to stabilise snakes but are
rather restricted in their action. They represent very general constraints on shape,
encouraging the snake to be short and smooth. Very often this is simply not enough,
and more prior knowledge needs to be compiled into the snake model to achieve stable
behaviour. Consider the following example in which a snake is set up with internal
constraints reined back to allow the snake to follow the complex outline of the leaf in
figure 2.4. In fact it is realised as a B-spline snake with sufficient control points to do
justice to the geometric detail of the complex shape. Suppose now the snake is required
to follow an image sequence of the leaf in motion, seeking energy minima repeatedly,
on successive images in the sequence. If all those control points are allowed to vary
somewhat freely over time, the tracked curve can rapidly tie itself into unrecoverable

Active shape models 31

Figure 2.4: The need for shape-spaces. The white curve is a B-spline with sufficient
control points to do justice to the complexity of the leaf ’s shape. Control point positions vary
over time in order to track the leaf outline. However, if the curve momentarily loses lock on the
outline it rapidly becomes too tangled to be able to recover. (Figure by courtesy of R. Curwen.)

knots, as the figure shows. This is a prime example of the sort of insight that can be
gained from real-time experimentation. A regular snake, with suitably chosen internal
energy may succeed in tracking several dozen frames off-line. However, once tracking
is seen as a continuous process, and this is the viewpoint that real-time experiments
enforce, the required standards of robustness are altogether more stringent. What was
an occasional failure in one computation out of every few, becomes virtually certain
eventual failure once the real-time process is allowed to run. It is of paramount
importance that recovery from transients — such as a gust of wind causing the leaf
to twitch — is robust.

32 Chapter 2

This need for robustness is what drives the account of active contours given in
this book. General mechanisms for setting internal shape models are not sufficient.
Finely tunable mechanisms are needed, representing specific prior knowledge about
classes of objects and their motions. The book aims to give a thorough understanding
of the components of such models, initially in geometric terms, and later in terms of
probability, as a means of describing families of plausible shapes and motions.

2.2 Deformable templates

The prior shape constraints implicit in a snake model are soft, encouraging rather
than enforcing a particular class of favoured shapes. What is more, those favoured
shapes have rather limited variety. For example, in the case that w1 = 0 in (2.1)),
they are solutions of

rss = 0

which are simply straight lines. Models of more specific classes of shapes demand
some use of hard constraints, and “default” shapes more interesting than a simple
straight line. This can be achieved by using a parametric shape-model r(s;X), with
relatively few degrees of freedom, known as a “deformable template.” The template is
matched to an image, in a manner similar to the snake, by searching for the value of
the parameter vector X that minimises an external energy Eext(X). Internal energy
Eint(X) may be included as a “regulariser” to favour certain shapes.

As an example of a deformable template, Yuille and Hallinan’s eye template is
illustrated in figure 2.5, showing how the template is parameterised, and results of
fitting to an image of a face. The template r(s;X) has a total of 11 geometric param-
eters in the parameter vector X and it varies non-linearly with X. The non-linearity
is evident because, for example, one of the parameters is an angle θ whose sine and
cosine appear in the functional form of r(s;X). The bounding curves of the eye are
parabolas which also vary non-linearly, as a function of length parameters a, b and c.
The internal energy Eint(X) is a quadratic function of X that encourages the template
to relax back to a default shape. The external energy Eext(X) comprises a sum of var-
ious integrals over the image-feature maps for edges, ridges and valleys. Each integral
is taken over one of the two regions delineated by the eye model or along a template
curve, which causes Eext to vary with X. Finally the total energy is minimised by
iterative, non-linear gradient descent which will tend to find a good minimum, in the
sense of giving a good fit to image data, provided the initial configuration is not too

Active shape models 33

image x

image y

θ

r

a

xt, yt
xc, yc

The First Eye Template

Whites

Iris & Pupil

b

cb p2

p1

Figure 2.5: Deformable eye template An eye template is defined (top) in terms of a mod-
est number of variable geometric parameters. In successive iterations of a “gradient descent”
algorithm, an equilibrium configuration is reached in which the template fits the eye closely.
(Figure reprinted from (Yuille and Hallinan, 1992) which also gives details of external and
internal energy functions.)

34 Chapter 2

far from the desired final fit.
A methodology for setting up linearly parameterised deformable templates — we

term them “shape-spaces” — will be described in chapter 4. Restriction to linear
parameterisation has certain advantages in simplifying fitting algorithms and avoiding
problems with local minima. It is nonetheless surprisingly versatile geometrically. It
should be pointed out that some elegant work has been done with three-dimensional
parametric models (see bibliographic notes) but this is somewhat outside the scope
of this book. Here we deal with three-dimensional motion by modelling directly its
effects on image-based contour models using “affine spaces” amongst other devices.

2.3 Dynamic contours

Active contours can be applied either statically, to single images, or dynamically, to
temporal image sequences. In dynamic applications, an additional layer of modelling is
required to convey any prior knowledge about likely object motions and deformations.
Now both the active contour r(s, t) and the feature map F (t) vary over time. The
contour r(s, t) is drawn towards high responses of F (t) as if it were riding the crest
of a wave on the feature map. The equation of motion for such a system extends the
snake in (2.1) with additional terms governing inertia and viscosity

ρ rtt︸ ︷︷ ︸
inertial force

= −
(
γrt − ∂(w1r)

∂s
+
∂2(w2r)
∂s2

)
︸ ︷︷ ︸

internal forces

+ ∇F︸ ︷︷ ︸
external force

. (2.2)

This is Newton’s law of motion for a snake with mass, driven by internal and exter-
nal forces. New coefficients in (2.2), in addition to w1 and w2 the elastic coefficients
from (2.1), are ρ the mass density and γ the viscous resistance from a medium sur-
rounding the snake. Given that all coefficients are allowed to vary spatially, there is
clearly considerable scope for setting them to impose different forms of prior knowl-
edge. The spatial variation also introduces a multiplicity of degrees of freedom and
potentially complex effects. One of the principal aims of the book is to attain a
detailed understanding of those effects, and to harness them in the design of active
contours.

Most powerful of all is to combine dynamical modelling as in (2.2) with the rich
geometrical structures used in deformable templates, and this is the basis of the dy-
namic contour. It involves defining parameterised shapes r(s;X) as for deformable

Active shape models 35

templates and then specifying a dynamical equation for the shape parameter X. In
the dynamic contour equation (2.2), prior constraints on shape and motion were im-
plicit, but to facilitate systematic design it is far more attractive that they should be
explicit. This can be achieved by separating out a dynamical model for likely motions
from the influence of image measurements. The dynamic contour becomes a two-phase
process in which a dynamical model is used for prediction, to extrapolate motion from
one discrete time to the next. Then the predicted position for each new time-step
is refined using measured image features, as in figure 2.6. The “Kalman filter” is a

prediction

estimate from
previous time

object motion

prediction

 new
estimate

Figure 2.6: Prediction and measurement. Dynamic contour tracking involves a
two-phase process at each successive time. Past motion history and prior knowledge of motion
are extrapolated to predict the displacement between successive times, then predicted position
is refined using image features.

ready made engine for applying the two-phase cycle, and for this reason has been a
very popular and successful paradigm for tracking (see bibliographic notes). It is a
probabilistic mechanism and this is one reason that probabilistic modelling pervades
the treatment of the second part of this book.

Intuitively, predictive models demand probabilistic treatment in order to avoid
being too strong. The two-phase cycle fuses a prediction with some measurements. If
the prediction were deterministic with no allowance for uncertainty, it would dominate
the measurements, which would therefore be ignored. As an example, consider the
task of tracking a pendulum in motion. If the pendulum is believed to be executing
perfect harmonic motion, free of external disturbances, then provided initial condi-
tions are known, the future motion of the pendulum is entirely determined. Knowing
initial conditions, any subsequent observation of the pendulum is redundant. Realistic

36 Chapter 2

visual tracking problems are more like observing a pendulum oscillating in a turbulent
airflow. The mean behaviour of the pendulum may be explained as deterministic sim-
ple harmonic motion, but the airflow drives the motion with random external forces.
In terms of the shape parameter X, this implies a dynamical equation of the form

Ẍ = f(Ẋ,X,w), (2.3)

where Ẋ and Ẍ are the first and second temporal derivatives of X and w is a random
disturbance. Thus the value of initial conditions weaken over time, as the motion of the
pendulum is progressively perturbed away from the ideal deterministic motion. This
increasing uncertainty generates a “gap” in information which sensory observations
can fill. A primary aim of the book is to define design principles for probabilistic
models of shape and motion and explain those principles in terms of their effects both
on representation of prior knowledge and in constraining and conditioning tracking
performance.

Bibliographic notes

The seminal paper on snakes is (Kass et al., 1987). This spawned many variations
and extensions including the use of Fourier parameterisation (Scott, 1987), incorpo-
ration of hard constraints (Amini et al., 1988) and incorporation of explicit dynamics
(Terzopoulos and Waters, 1990; Terzopoulos and Szeliski, 1992). Realisation of snakes
using B-splines was developed by (Cipolla and Blake, 1990; Menet et al., 1990; Hin-
ton et al., 1992) and combined with Lagrangian dynamics in (Curwen et al., 1991).
B-splines used in this way are a form of “finite element,” a standard technique of nu-
merical analysis for solving differential equations by computer (Strang and Fix, 1973;
Zinkiewicz and Morgan, 1983).

The idea of deformable templates predates the development of snakes (Fischler
and Elschlager, 1973; Burr, 1981; Bookstein, 1989) but has enjoyed a revival inspired
by the snake. Variations on the deformable template theme rapidly emerged (Yuille
et al., 1989; Yuille, 1990; Bennett and Craw, 1991; Yuille and Hallinan, 1992; Hinton
et al., 1992; Cootes and Taylor, 1992; Cootes et al., 1993; Cootes et al., 1995). A good
deal of research has been done on matching with three-dimensional models, both rigid
(Thompson and Mundy, 1987; Lowe, 1991; Sullivan, 1992; Lowe, 1992; Harris, 1992b;
Gennery, 1992) and deformable (Terzopoulos et al., 1988; Terzopoulos and Fleischer,
1988; Cohen, 1991; Terzopoulos and Metaxas, 1991; Rehg and Kanade, 1994) but

Active shape models 37

is somewhat outside the scope of this book. As models become more detailed, and
search becomes more exhaustive, the three-dimensional approach merges into visual
object recognition (Grimson, 1990).

The Kalman filter (Gelb, 1974; Bar-Shalom and Fortmann, 1988) is very widely
used in control theory and for target tracking (Rao et al., 1993) and sensor fusion
(Hallam, 1983; Durrant-Whyte, 1988; Hager, 1990) and has become a standard tool
of computer vision (Ayache and Faugeras, 1987; Dickmanns and Graefe, 1988b; Dick-
manns and Graefe, 1988a; Matthies et al., 1989; Deriche and Faugeras, 1990; Harris,
1992b; Terzopoulos and Szeliski, 1992; Faugeras, 1993).

Finally, it seems appropriate at least to give some pointers to approaches to visual
tracking that are rather outside the active contour paradigm.

• (Black and Yacoob, 1995) uses the visual motion field over a region to track and
identify movement

• (Bray, 1990) tracks using a mixture of polyhedral, model-based vision to initialise
and optic-flow vectors along contours for incremental displacement

• (Fischler and Bolles, 1981; Gee and Cipolla, 1996) are very elegant uses of
random generation and testing of point-correspondence hypotheses, respectively
for static and dynamic image matching problems

• (Huttenlocher et al., 1993) used the “Hausdorff metric” to match successive
views in a sequence; the beauty of the approach is that it requires almost no
prior model of shape or motion

• (Allen et al., 1991; Papanikolopoulos et al., 1991; Mayhew et al., 1992; Brown
et al., 1992; Murray et al., 1992; Heuring and Murray, 1996) are control theoretic
approaches to visual-servoing, real-time tracking with robot hands and heads

Part I

Geometrical Fundamentals

Chapter 3

Spline curves

Throughout this book, visual curves are represented in terms of parametric spline
curves, as is common in computer graphics. These are curves (x(s), y(s)) in which s is a
parameter that increases as the curve is traversed, and x and y are particular functions
of s, known as splines. A spline of order d is a piecewise polynomial function, consisting
of concatenated polynomial segments or spans, each of some polynomial order d,
joined together at breakpoints. Parametric spline curves are attractive because they
are capable of representing efficiently sets of boundary curves in an image (figure 3.1).
Simple shapes can be represented by a curve with just a few spans. More complex
shapes could be accommodated by raising the polynomial order d but it is preferable to
increase the number of spans used. Usually the polynomial order is fixed at quadratic
(d = 3) or cubic (d = 4)1. Maintaining a fixed, low polynomial degree, even in the
face of geometric complexity, makes for computational stability and simplicity.

The chapter begins by explaining spline functions and their construction. Later
sections explain how parametric curves are constructed from spline functions and
introduce methods for matching one curve to another. This forms the basis for the
algorithms developed in subsequent chapters for active contour matching.

1The order of a polynomial is the number of its coefficients. Hence a quadratic function a+bx+cx2

has order d = 3. Its degree — the highest power of x — is 2.

42 Chapter 3

Figure 3.1: Image edges represented as parametric spline curves.

3.1 B-spline functions

B-splines are a particular, computationally convenient representation for spline func-
tions. In the B-spline form, a spline function x(s) is constructed as a weighted sum
of NB basis functions (hence ‘B’-splines) Bn(s), n = 0, . . . , NB − 1. In the simplest
(“regular”) case, each basis function consists of d polynomials each defined over a span
of the s-axis. We take each span to have unit length. The spans are joined at knots as
in figure 3.2. It shows the simplest case in which the knots are evenly spaced and the
joins between polynomials are regular — that is, as smooth as possible, having d− 2
continuous derivatives. The quadratic spline, for instance, has continuous gradient in
the regular case. The constructed spline function is

Spline curves 43

0 1 2 3 4

0.2

0.4

0.6

0.8

1.0
B0(s)

s

B-1 (s) B0(s) B1(s) B2(s)

-1 0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

s

Figure 3.2: (top) A single quadratic B-spline basis function B0(s). “Knots” at s =, 0, 1, 2, 3, 4
mark transitions between polynomial segments of the function. (bottom) In the regular case
which has evenly spaced knots (at integral values of s), each B-spline basis function is a trans-
lated copy of the previous one.

x(s) =
NB−1∑
n=0

xnBn(s) (3.1)

where xn are the weights applied to the respective basis functions Bn(s), as in fig-
ure 3.3. This can be expressed compactly in matrix notation as

x(s) = B(s)TQx, (3.2)

44 Chapter 3

a matrix product between a vector of B-spline functions

B(s) = (B0(s), B1(s), . . . , BNB−1(s))T (3.3)

and a vector of weights

Qx =


 x0

...
xNB−1


 . (3.4)

x0 B0 (s)

x4 B4 (s)x0

x1

x2

x3 x4

0 1 2 3 4 5

0.5

1.0

1.5

2.0
x

s

x0

x1

x2

x3 x4B(s)

0 1 2 3 4 5

0.5

1.0

1.5

2.0

s

Figure 3.3: B-spline basis functions Bn(s) are weighted by coefficients xn (top) and combined
linearly to form a spline function x(s) (bottom). Note that the spline function follows the
“control polygon” closely.

By convention, B-spline basis functions are constructed in such a way that they

Spline curves 45

sum to 1 at all points:
NB−1∑
n=0

Bn(s) = 1 for all s. (3.5)

This summation or “convex hull” property is the underlying reason that the B-
spline function in figure 3.3 follows the “control polygon,” made up of the points
(3
2 , x0), (5

2 , x1), . . . quite closely.
In the simple case of a quadratic B-spline with knots spaced regularly at unit

intervals, the first B-spline basis function has the form

B0(s) =




s2/2 if 0 ≤ s < 1
3
4 − (s− 3

2)2 if 1 ≤ s < 2

(s− 3)2/2 if 2 ≤ s < 3

0 otherwise

(3.6)

and the others are simply translated copies:

Bn(s) = B0(s− n).

However, this basis is bi-infinite: there are infinitely many Bn and the functions
x(s) they are used to construct are bi-infinite, extending to s → ±∞. For practical
applications finite bases are needed.

3.2 Finite bases

A finite spline basis can be either periodic (figure 3.4) or aperiodic (figures 3.5 and 3.6)
over a closed interval 0 ≤ s ≤ L. The periodic basis is simply the bi-infinite basis
suitably wrapped around. For example, the basis functions for regular, quadratic
splines are B0, . . . , BL−1 (NB = L), defined as above, but treated as periodic over
the interval 0 ≤ s ≤ L. The four periodic basis functions for the case that L = 4
are illustrated in figure 3.4. A non-periodic basis on a finite interval is more complex
to construct, requiring so-called “multiple knots” (see later) at its endpoints. This
allows full control over boundary conditions — the value of the function x(s) and its
derivatives at the ends s = 0, L of the interval. Details of the construction of the Bn

for this case can be found in appendix A. It is no longer the case that the number of

46 Chapter 3

B3(s) B0(s) B1(s) B2(s)

B2(s) B3(s)

0 2 4

1.0

s

Figure 3.4: Periodic B-spline basis, as figure 3.2 but for construction of functions that
are periodic over the range 0 ≤ s ≤ 4. Again each B-spline basis function is a translated copy
of the previous one, but also wrapped around where the periodicity demands it.

basis functions NB is equal to the interval length L. Additional basis functions are
needed to control boundary conditions (values of the spline function and its derivatives
at s = 0, L). In the regular case, d − 1 extra functions are needed (d is the order of
the polynomial) so that NB = L+ d− 1. In figure 3.5, for example, L = 5 and d = 3
(quadratic) so there must be NB = 7 basis functions.

There is an efficient algorithm for generating spline functions from the weights
xn in which the basis functions are represented in terms of a matrix of polynomial
coefficients. The standard method is given in appendix A.

3.3 Multiple knots

Sometimes it is desirable to allow a reduced degree of continuity at some point within
the domain of a function x(s). This can be achieved by forming a multiple knot,
in which two knots in the B-spline basis approach one another and coincide. The
spline then consists of a sequence of polynomial spans joined at breakpoints, some of
which are single knots while others are multiple knots. At a regular breakpoint (single
knot), the degree of smoothness is at its maximal value, that is Cd−2 — continuity of

Spline curves 47

B1(s)
B2(s) B3(s) B4(s)

B5(s)

B0(s) B6(s)

0 1 2 3 4 5

1.0

s

Figure 3.5: Spline basis over an interval. Basis functions are not entirely composed
of translated copies of one another, as they were in the bi-infinite case, but include special
functions at the extremes of the interval for control of boundary conditions.

all derivatives up to the (d − 2)th. At a double knot, however, continuity is reduced
to Cd−3 and generally, continuity at a knot of multiplicity m is Cd−m−1. Forming a
multiple knot is a limiting process in which m consecutive regular knots approach one
another, as illustrated in figure 3.7 for the quadratic case. Once a double knot has been
introduced into the basis, any constructed spline function generally loses one order of
continuity at that breakpoint. In the quadratic case for instance, a spline function
is C0 at the knot: it remains continuous but its gradient becomes discontinuous —
see figure 3.8 for an illustration. If a triple knot is introduced, the function becomes
discontinuous, broken into two continuous pieces, one on each side of the knot. Hence
triple knots are used to terminate a quadratic B-spline basis over a finite interval as
in figure 3.5.

3.4 Norm and inner product for spline functions

It is very useful to be able to calculate the so-called “L2-norm” ‖x‖ of a function x(s):

‖x‖2 =
1
L

∫ L

0
x(s)2 ds. (3.7)

48 Chapter 3

x1B1(s) x2B2(s)

x3B3(s)

x4B4(s)

x5B5(s)

x0B0(s)

x6B6(s)

0 1 2 3 4 5

1.0

1.5

2.0

s

x(s)

0 1 2 3 4 5

0.5

1.0

1.5

2.0

s

Figure 3.6: Splines over an interval. Basis functions in figure 3.5 are blended to form a
spline function x(s). The choice of basis functions allows the boundary values x(0), x(5) to be
controlled directly by the weights x0, x6. Then weights x1, x5 control the values of derivatives
at the extremes of the interval.

Spline curves 49

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

s 0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

s

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

s 0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

s

Figure 3.7: Forming multiple knots. A double knot is introduced into a quadratic B-spline
basis at s = 2. The resulting basis functions are the limit reached as the knot initially at s = 3
approaches s = 2.

which is precisely the “root-mean-square” value2 of x(s) over the range 0 ≤ s ≤ L.
The functional norm is especially useful for measuring the difference between two
functions x1(s), x2(s) as ‖x1 − x2‖, for instance when it is necessary to measure how
closely a function x1 is approximated by another function x2.

The norm has a corresponding “inner product,” denoted < · , · >, which is bilinear
and is applied to a pair of functions x, y as < x, y >. The relationship between an
inner product and a norm is that < x, x >= ‖x‖2, so in the L2 case the inner product
between two functions works out to be:

< x, y >=
1
L

∫ L

0
x(s)y(s) ds. (3.8)

2Conventionally the 1
L

scaling factor in the definition of the norm would be omitted; we include it
so that ‖x‖ is truly a root-mean-square measure.

50 Chapter 3

0 1 2 3 4

0.5

1.0

1.5

2.0

s

multiple knot

Figure 3.8: Reduced continuity. Using a basis with a double knot as in figure 3.7, in which
a double knot has been introduced at s = 2, constructed functions show a gradient discontinuity
at s = 2 — compare with figure 3.6.

The inner product will be used later to express function approximations concisely.
Since we are representing functions compactly as vectors Qx of spline weights, it

is natural to express norms and inner products in terms of these vectors, that is, to
define ‖ · ‖ for weight vectors such that

‖Qx‖ = ‖x‖.
Now from (3.2)

‖x‖2 = (Qx)T 1
L

(∫ L

0
B(s)B(s)T ds

)
Qx

so the norm must be defined as:

‖Qx‖ =
√

(Qx)TBQx (3.9)

where

B =
1
L

∫ L

0
B(s)B(s)T ds (3.10)

defines the metric matrix for a given class of B-spline function, and the inner product
is

< Qx
1 ,Q

x
2 >≡ (Qx

1)TBQx
2 . (3.11)

Spline curves 51

The B-matrices are sparse. This reflects the fact that each weight Qx
n affects the

function x(s) only over a short sub-interval — the “support” of the corresponding basis
function Bn — and this lends efficiency to least-squares approximation algorithms. In
the periodic, quadratic case the B-matrices are sparse circulants of order 5, and in
general they have order 2d− 1 (the number of non-zero elements in each row). For a
given polynomial order d, therefore, the sparsity is most significant when the number
NB of basis functions is large. For periodic quadratic splines with NB = 8 the B-
matrix is:

B =
1
8




0.55 0.217 0.008 0.0 0.0 0.0 0.008 0.217
0.217 0.55 0.217 0.008 0.0 0.0 0.0 0.008
0.008 0.217 0.55 0.217 0.008 0.0 0.0 0.0
0.0 0.008 0.217 0.55 0.217 0.008 0.0 0.0
0.0 0.0 0.008 0.217 0.55 0.217 0.008 0.0
0.0 0.0 0.0 0.008 0.217 0.55 0.217 0.008

0.008 0.0 0.0 0.0 0.008 0.217 0.55 0.217
0.217 0.008 0.0 0.0 0.0 0.008 0.217 0.55




(3.12)

— note the circulant structure (repeating rows), characteristic of the periodic case.
For a non-periodic quadratic function, B is still sparse, no longer a circulant, but now
pentadiagonal, as shown here for the case NB = 6 (L = 4):

B =
1
4




0.2 0.117 0.017 0.0 0.0 0.0
0.117 0.333 0.208 0.008 0.0 0.0
0.017 0.208 0.55 0.217 0.008 0.0
0.0 0.008 0.217 0.55 0.208 0.017
0.0 0.0 0.008 0.208 0.333 0.117
0.0 0.0 0.0 0.017 0.117 0.2




(3.13)

and would be heptadiagonal for cubic splines.
Armed with the inner product, some approximation problems become straightfor-

ward. The simplest tutorial example is the problem of approximating a spline function
represented as Qx in terms of two other spline functions Qx

1 ,Q
x
2 . The least-squares

approximation can be expressed, using inner products, as

Q̂x = (Qx
1 Qx

2)


 〈Qx

1 ,Q
x
1〉 〈Qx

1 ,Q
x
2〉

〈Qx
2 ,Q

x
1〉 〈Qx

2 ,Q
x
2〉




−1
 〈Qx

1 ,Q
x〉

〈Qx
2 ,Q

x〉


 (3.14)

52 Chapter 3

Qx
1 Qx

2

^

0.0

1.0

0 1 2 3 4
s

Qx

Qx

Figure 3.9: Spline approximation: Q̂x is the least-squares approximation of a spline Qx

in terms of two other splines Qx
1 ,Q

x
2 . The solution can be concisely expressed in terms of

inner products — see text.

— see figure 3.9. A development of this method appears later when, in the interests
of economy and of stability over time, it is required to express spline curves in terms
of a relatively small number of parameters. The reduction of the parameter set is
expressed as a projection operation rather like the approximation Qx → Q̂x above,
but for curves instead of functions.

Another important type of problem is to approximate some function f(s), not
necessarily a spline, as a spline function x(s), represented, as usual, by weights Qx.
Again, the solution can be derived neatly using inner products to give:

Qx = B−1 1
L

∫
B(s)f(s) ds (3.15)

and an example is shown in figure 3.10. Functional approximation of this kind can
be developed to construct approximations of curves in image data, and this is close
to what will be required for active contour algorithms. Of course it is not possible
to evaluate integrals over data exactly, so in practice data must be sampled. The
simplest approximation of a sampled function as a spline is:

Qx = B−1 1
N

N∑
n=1

B(sn)f(sn).

Spline curves 53

−1.0

−0.5

0.0

0.5

1.0

4
s

exp −x/4 sin πx

B−spline approximation

Figure 3.10: Spline approximation: least-squares spline approximation to a damped sine
wave (L = 4, NB = 6).

The application to image curves is discussed in chapter 6.

3.5 B-spline parametric curves

Spline functions were introduced to serve as a tool for constructing curves in the plane,
which they do in the following manner. Parametric spline curves

r(s) = (x(s), y(s))

have coordinates x(s), y(s) each of which is a spline function of the curve parameter s.
First it is necessary to choose an appropriate interval 0 ≤ s ≤ L covering L spans and
an appropriate basis B0, B1, . . . , BNB−1 of NB B-spline functions or basis functions.
If the interval [0, L] is taken to be periodic the resulting parametric curve will be
closed. Alternatively, an open curve requires a B-spline basis over a finite interval as
in figure 3.6. For each basis function Bn a control point qn = (qx

n, q
y
n)T must now be

defined and the curve is a weighted vector sum of control points

r(s) =
NB−1∑
n=0

Bn(s)qn for 0 ≤ s ≤ L, (3.16)

54 Chapter 3

a smooth curve that follows approximately the “control polygon” defined by linking
control points by lines (figure 3.11). The component functions of r(s) do, of course,
turn out to be spline functions, for instance:

x(s) =
NB−1∑
n=0

Bn(s)qx
n for 0 ≤ s ≤ L, (3.17)

— a weighted sum of basis functions with weights qx
n. The example curve in figure 3.11

uses the basis functions Bn for regular, periodic, quadratic splines that were defined
earlier in (3.6) on page 45 and, as before, NB = L so that the number of control points
of the curve is equal to the number of its spans.

3.6 Curves with vertices

It is often necessary to introduce a vertex or hinge at a certain point along a parametric
curve, to fit around sharp corners on an object outline. One straightforward way of
doing this is to allow two or more consecutive control points to coincide to form
a “multiple control point.” When n consecutive control points coincide, the order
of continuity of the curve is reduced by n − 1. A quadratic spline, for instance,
has continuous first derivative but discontinuous second derivative when all control
points are distinct. A hinge (discontinuous first derivative) is formed therefore when
2 consecutive control points coincide, as in figure 3.12. Unfortunately, introducing a
hinge in this way generates spurious linearity constraints (see figure). What is more,
the parameterisation of the curve behaves badly in the vicinity of the hinge in the
sense that r′(s) = 0 so that the parameter s is changing infinitely fast as the curve
passes through the hinge. This would have the effect in the curve-fitting algorithms to
be described in chapter 6 of giving undue weight to the region of the curve around the
hinge. A good alternative is to use multiple knots — not quite as simple but having
good geometric behaviour. The formation of multiple knots in a B-spline basis was
explained earlier, in section 3.3. Parametric curves defined with the new basis inherit
its reduced continuity. For example, a hinge can be formed in a quadratic, parametric
curve by introducing a double knot into the underlying quadratic B-spline basis, as
in figure 3.13. Alternatively a triple knot introduces a break in a quadratic B-spline
curve.

Spline curves 55

−1.0 0.0 1.0

−1.0

0.0

1.0

x

y

s=8 (s=0)

s=2

s=3
s=4

s=5

s=6

s=7

r (s)
s

s=1

−1.0 0.0 1.0

−1.0

0.0

1.0

x

y

q
6

q
7

q
0

q
1 q

2

q
3

q
4

q
5

Figure 3.11: A quadratic (d = 3), parametric spline curve r(s) is shown (top) that is regular,
and closed. It has 8 knots, so L = 8, and 0 ≤ s ≤ 8, and s is treated as periodic. The curve is
a smooth approximation to its “control polygon” (bottom) formed from a sequence of control
points q0,q1, . . . ,q7. Note that NB = L for regular closed spline curves — here NB = L = 8.

56 Chapter 3

linear segments

Figure 3.12: Multiple control points. On a quadratic, parametric spline curve, the curve
tangent becomes discontinuous when two control points coincide, forming a “hinge.” However,
forming a hinge in this fashion turns out to be unsatisfactory, partly because of the segments
on either side of the vertex which are constrained to be linear, and partly because of problems
with uneven parameterisation — see text.

Spline curves 57

01

2

3

4 5 6

7

8

9

10
s

01

2

3

4
5

6 7

8

9

10s

multiple knot

Figure 3.13: The outline of the pretzel at the top is heart-shaped with a vertex at its apex.
A regular, parametric spline curve (left) does not follow the outline as closely as one with a
multiple knot (right). In the case of a quadratic spline curve, a tangent discontinuity forms at
the control point corresponding to the double knot.

3.7 Control vector

Dealing with control points explicitly is cumbersome so, as a first step towards a more
compact notation, let us first define a space SQ of control vectors Q consisting of

58 Chapter 3

control point coordinates, first all the x-coordinates, then all the y-coordinates:

Q =
(

Qx

Qy

)
where Qx =




qx
0

. . .

. . .
qx
NB−1


 (3.18)

and similarly for Qy. Then the coordinate functions can be written as

x(s) = B(s)TQx,

where B(s) is a vector of B-spline basis functions as defined earlier, and similarly for
y(s), so that

r(s) = U(s)Q for 0 ≤ s ≤ L (3.19)

where

U(s) = I2 ⊗ B(s)T =
(

B(s)T 0
0 B(s)T

)
, (3.20)

a matrix of size 2 × 2NQ. (Note that ⊗ denotes the “Kronecker product” of two
matrices, a notation that will be used again. See appendix A for details. The matrix
Im denotes an m× m identity.)

3.8 Norm for curves

Now that we have set up a representation of curves as parametric splines, the next
step is therefore to extend the norm and inner product to curves, for use in curve
approximation. We can define a norm ‖ · ‖ for B-spline curves which is induced by the
Euclidean distance measure in the image plane:

‖Q‖2 =
1
L

∫ L

s=0
|r(s)|2 ds (3.21)

or equivalently, from (3.19) and (3.10),

‖Q‖2 = QTUQ, (3.22)

where the metric matrix for curves U is defined in terms of the metric matrix B for
B-spline functions:

U ≡ 1
L

∫ L

0
U(s)TU(s) ds (3.23)

Spline curves 59

or, equivalently,

U = I2 ⊗ B =
(B 0

0 B
)
.

Of course, the norm also implies an inner product for curves:

〈Q1,Q2〉 = QT
1 UQ2.

The curve norm is particularly meaningful when used as a means of comparison be-
tween two curves, using the distance ‖Q1 −Q2‖. This is the basis for approximation
of visual data by curves, and is illustrated in figure 3.14.

There are potentially simpler norms than the one above, the obvious candidate
being the Euclidean norm |Q|2 ≡ QTQ of the control vector. Compared with the
L2 norm ‖ · ‖ defined above, the Euclidean norm is simpler to compute because the
banded matrix U is replaced by the identity matrix. However, attractive as this short
cut may be, the simpler norm does not work satisfactorily. This is made clear by
the counter-example of figure 3.15 in which decreasing the displacement between two
curves produces an increase in the Euclidean norm. This example makes it clear that
the Euclidean norm is not suitable for ranking the closeness of curve approximations.

Invariance to re-parameterisation

It is important to note that the curve norm, as a measure of the difference between
a pair of curves, does not allow for possible re-parameterisation of one of the curves.
For example, a curve r(s), 0 ≤ s ≤ 1 could be reparameterised to give a new curve
r∗(s) = r(1−s), 0 ≤ s ≤ 1. Geometrically, the two curves are identical; the difference
between them is simply a reversal of parameterisation. We would like ideally to
measure shape differences in a way that is invariant to re-parameterisation, so that
the vector difference function r∗ − r would ideally have a norm of zero. However, the
L2 norm will not behave in this way:

‖r∗(s) − r(s)‖2 =
1
L

∫
|r(1 − s) − r(s)|2 ds 	= 0,

in general. As a result, any curve-fitting algorithm that uses the norm will be disrupted
if the parameterisation of the target curve fails to match that of the template, and
this is illustrated in figure 3.16.

60 Chapter 3

01

2

3

4
5

6 7

8

9

10

0 0.5 1

s

length scale

01

2

3

4
5

6 7

8

9

10 s

01

2

3

4

5

6
7

8

9

10

average displacement: norm= 0.22 average displacement: norm= 0.08

Figure 3.14: Measuring average displacement between curves. The pretzel curve
(top) is compared, using the norm as a measure, with two modified curves: a translation (left)
and a modest distortion (right). The values given for the norm in each case represent average
(root-mean-square) displacements for the curves, in length units as shown on the scale.

A general solution to the problem of parameterisation invariance would require
a search over possible parameterisations. The proximity of a curve r(s) to a second
curve r∗(s) could be evaluated as

min
g

‖r(s) − r∗(g(s))‖

Spline curves 61

r1 (s)

a)

r0 (s)

r2 (s)
r0 (s)

r2 (s)
r1 (s)

r0 (s)

b)

c)

Figure 3.15: Euclidean distance between control vectors is a poor measure of
curve displacement. In a) and b) two cubic spline curves r1, r2 are shown together with
their control points (crosses) and control polygons (dotted). Each is to be compared with a
standard curve r0. It is clear that, pointwise, r2 is closer to r0 than r1 is. Any reasonable
curve metric should reflect that and, sure enough, in the L2 norm, ‖r2 − r0‖ < ‖r1 − r0‖.
However it is clear from the shape of the control polygons that, in Euclidean distance, r2 is
actually further from r0 than r1 is. Euclidean distance between control vectors is therefore
ruled out as a curve metric.

62 Chapter 3

01

2

3

4
5

6 7

8

9

10

0 0.5 1

s

length scale

s

01

2

3

4

5

6
7

8

9

10
0

1

2

3
4

5

6 7 8

9

10

s

average displacement: norm= 0.08 average displacement: norm= 0.34

Figure 3.16: Norm-difference is sensitive to re-parameterisation. A substantial
change in parameterisation (right), though it gives rise to little change in shape, nonethe-
less registers a larger average displacement than the more distorted shape (left).

where the minimum is explored over some space of re-parameterisation functions g,
using an appropriate optimisation procedure. Suitably powerful optimisation proce-
dures have been developed (see the bibliographic notes at the end of this chapter) but
they are computationally costly. A more economical approach is to use a distance
measure d(r, r∗) that is invariant to minor re-parameterisation of the curve r. This is
developed later, in chapter 6. The distance measure is based on the normal displace-

Spline curves 63

ment of r relative to r∗, that is, omitting any tangential component of displacement —
the sliding of one curve along the other. It will be shown that such a distance measure
is approximately invariant and it remains to achieve a rough alignment of two curves
sufficient for the invariant distance approximation to be effective. One way of doing
this uses moments, as described below.

3.9 Areas and moments

Applications in computer vision often require the computation of gross properties
of a curve. Curve moments — area, centroid, and higher moments are useful for
computing approximate curve position and orientation, and to obtain gross shape
information sufficient for some coarse discrimination between objects.

Generally, moments have two roles in active contours. The first is initialisation, in
which a spline template is positioned sufficiently close to the tracked object to “lock”
onto it. At this stage moments may also be used for coarse shape discrimination to
confirm the identity of the object being tracked. The second role is in interpreting
the position and orientation of a tracked object, for example the 3D visual mouse in
figure 1.16 on page 20. For example, if hand motion is restricted to 3D translation and
rotation in the image plane, those four parameters can be recovered from the zeroth
moment (area) the first moment (centroid) and the second moment (inertia).

Centroid

A conventional definition for the centroid of a curve is

r =
1
L

∫ L

0
r(s) ds

which can be computed straightforwardly from the spline-vector Q using inner prod-
ucts:

r =


 〈1x,Q〉

〈1y,Q〉


 where 1x =


 1

0


 and 1y =


 0

1


 . (3.24)

This simple definition of centroid is computationally convenient but has the drawback
that it is not invariant to re-parameterisation of the curve, as figure 3.17 shows. This
is because s is not generally true arclength; it is simply a convenient spline parameter.

64 Chapter 3

01

2

3

4
5

6 7

8

9

10

centroid

0

1

2

3
4 5 6 7 8

9

10
centroid

Figure 3.17: Simple centroid is not invariant. The centroid of the pretzel curve (left),
calculated as in (3.24), shifts substantially when the curve is reparameterised (right), even
though there is almost no shape change.

Spline curves 65

The length of an infinitesimal segment of curve is not ds but |r′(s)|ds, so that an
invariant centroid of the curve would be

r =

∫ L
0 r(s)|r′(s)| ds∫ L

0 |r′(s)| ds
.

The square root implicit in |r′(s)| means that this invariant centroid cannot be com-
puted directly in terms of the spline-vector Q. An alternative invariant centroid for
closed curves is the centroid of area described below, which can be computed directly,
as a cubic function of Q. For many purposes, non-invariant moments are adequate.
For example, in a hand-tracking application the parameterisation of the tracked curve
is, typically, strongly stabilised by a template. The parameterisation of the tracked
curve does not, in practice, deviate much from the standard parameterisation inher-
ited from the template. In that case the 2D translational motion of the tracked object
can be recovered satisfactorily from the non-invariant centroid.

Invariant moments

Suppose an active contour is to be initialised from an area of pixels detected by
image processing based on brightness, colour or motion. The vector Q for the initial
configuration of the tracked curve is set by manipulating it to bring the moments of
the area enclosed by the curve into close agreement with the moments of the active
area.

The simplest available parameterisation-invariant measure for a closed curve is the
area ∫ ∣∣r(s), r′(s)∣∣ ds
where |x,y| denotes the determinant of the matrix whose columns are x,y. This is
neatly expressible as a quadratic form in Q:

A(Q) = QTAQ, (3.25)

reminiscent of the norm in (3.22) but in place of the symmetric matrix U we have:

A ≡
(B′ 0

0 −B′

)
where B′ =

∫ L

0
B(s)B′T (s) ds. (3.26)

66 Chapter 3

(Details of efficient computation of A are given in appendix A.2.) As with the matrix
U , A is 2NQ × 2NQ where

NQ = 2NB, (3.27)

the dimension of the spline space. The matrix A is sparse which makes the com-
putation of the area quadratic form relatively efficient. One direct application for
curve area computation is in visual navigation, and a picturesque example is given in
figure 3.18.

The centroid r of the area enclosed by a closed B-spline curve, which is invariant
to curve re-parameterisation, is given by

r =
1

A(Q)

∫ L

0

∣∣r(s), r′(s)∣∣ r(s) ds. (3.28)

In principle this is a useful measure for positioning, but is moderately costly — O(N3
Q)

— to compute exactly. This improves to O(N3
X) if curves are restricted to a “shape-

space” of reduced dimension NX , and this is discussed in the next chapter. Similarly,
the second moment

I =
1

A(Q)

∫ L

0

∣∣r(s), r′(s)∣∣ r(s)rT (s) ds (3.29)

is invariant and useful in principle for orienting a shape, but the computational cost
is O(N4

Q), again reduced if a shape-space is used.

Bibliographic notes

This chapter has outlined a framework for representing curves in the image plane. It
has been common both in robotics and in computer vision to represent curves alge-
braically as f(x, y) = 0 where f is a polynomial (Faverjon and Ponce, 1991; Petitjean
et al., 1992; Forsyth et al., 1990). Although such representations are often attractive
mathematically, for the purpose of constructing proofs, they are cumbersome from the
computational point of view. Practical systems using curve approximation are better
founded on B-splines. Tutorials on splines can be found in graphics books such as
(Foley et al., 1990) or in books on computer-aided design such as (Faux and Pratt,
1979). Some essential details and algorithms are given also in the appendix of this

Spline curves 67

Figure 3.18: While a travelling video camera approaches a car, a B-spline curve is locked
onto the outline of the windscreen in successive video frames. The computed windscreen area
a(t), increasing over time, can be used to estimate time-to-collision as a(t)/ȧ(t). (Figure
reproduced from (Cipolla and Blake, 1992a).)

68 Chapter 3

book. A more complete book on splines, oriented toward computer graphics is (Bar-
tels et al., 1987) and a mathematical source on spline functions (but not curves) is
(de Boor, 1978).

Splines, common in computer graphics, have also been used in computer vision for
some years, for shape-warping (Bookstein, 1989), representing corners and edges in
static scenes (Medioni and Yasumoto, 1986; Arbogast and Mohr, 1990) and for shape
approximation (Menet et al., 1990) and tracking (Cipolla and Blake, 1990).

Shape approximation using spline curves is an application of the “normal equa-
tions” for approximation problems (Press et al., 1988). Equivalently it uses a “pseudo-
inverse” (Barnett, 1990) of which the B-spline metric matrix B is a component. Func-
tion norms are a standard mathematical tool for functional approximation (Kreysig,
1988) and in signal processing (Papoulis, 1991) and image processing (Gonzales and
Wintz, 1987) for least-squares restoration problems.

Measures of curve difference that are more economical to compute than the L2

norm can be made by replacing the metric matrix with the identity to give the Eu-
clidean distance between control vectors, as done for polygons in (Cootes and Taylor,
1992). However, such measures do have some undesirable properties, as explained ear-
lier. Curve matching using norms is not invariant to re-parameterisation; matching
algorithms do exist that deal with re-parameterisation, for example ones developed
for stereoscopic image matching (Ohta and Kanade, 1985; Witkin et al., 1986) but
they are computationally expensive, too much so for use in real-time tracking systems.
This is discussed again in chapter 6.

Chapter 4

Shape-space models

In practice, it is very desirable to distinguish between the spline-vector Q ∈ SQ that
describes the basic shape of an object and the shape-vector which we denote X ∈ S,
where S is a shape-space. Whereas SQ is a vector space of B-splines and has dimension
NQ = 2NB, the shape-space SX is constructed from an underlying vector space of
dimension NX which is typically considerably smaller than NQ. The shape-space is
a linear parameterisation of the set of allowed deformations of a base curve. The
necessity for the distinction is made clear in figure 4.1. To obtain a spline that does
justice to the geometric complexity of the face shape, thirteen control points have
been used. However, if all of the resulting 26 degrees of freedom of the spline-vector
Q are manipulated arbitrarily, many uninteresting shapes are generated that are not
at all reminiscent of faces. Restricting the displacements of control points to a lower-
dimensional shape-space is more meaningful if it preserves the face-like quality of the
shape. Conversely, using the unconstrained control-vector Q leads to unstable active
contours and this was illustrated in figure 2.4 on page 31.

The requirement that a shape-space be a linear parameterisation is made for the
sake of computational simplicity. The curve-fitting and tracking procedures described
in the book are substantially simplified by linearity and in many cases exact algorithms
are available only for linear parameterisations. Linearly parameterised, image-based
models work well for rigid objects however, and for simpler non-rigid ones. Linearity
can certainly be a limitation when the allowed motions of an object become more
complex, for example a three-dimensional object with articulated parts. Articulation
can in fact be dealt with in linearly parameterised, image-based models but only at
the cost of relaxing certain geometric constraints. This is explored further in the

70 Chapter 4

modifying the configuration vector

arbitrary displacement
of control vectorQ

X
(translate-rotate-scale in this example)

control point

Figure 4.1: Configuration vector. Arbitrary manipulation of the spline-vector Q of a
spline curve is likely to be too general to be practically interesting. In this example a face curve
ceases to look face-like. What is far more interesting is a restricted class S of transformations,
parameterised by a relatively low-dimensional configuration vector X. In this case X is a
Euclidean similarity transformation which does retain the face-like character.

discussion of shape-spaces below. A more detailed discussion of the trade-off between
image-based models and three-dimensional models is given in appendix C.

4.1 Representing transformations in shape-space

Rigid motion

A simple example of a shape-space is the space of Euclidean similarities of a template
curve r0(s). This is a space of dimension 4 corresponding exactly to the variation of
an image curve as a camera with a zoom lens looks directly down on a planar object
that is free to move on a table top. The effect on the curve is that it moves rigidly in

Shape-space models 71

the image plane and may also magnify or diminish in size, but its shape is preserved,
as in figure 4.2. Alternatively it could be that the camera is able to translate in three

pretzel outline

translate horizontally translate vertically

rotate scale isotropically

Figure 4.2: Euclidean similarities. The shape-space of Euclidean similarities has 4 degrees
of freedom. They are depicted here as applied to the outline of a pretzel (the pretzel from
figure 3.13 on page 57 of the previous chapter).

72 Chapter 4

dimensions and to rotate about an axis perpendicular to the table top (something
that occurs, for example, when a camera is mounted on a “SCARA” arm, popular in
robot automation, which translates freely and rotates in the plane of the table). This
combination also sweeps out a shape-space of Euclidean similarities.

Another important shape-space is the one that arises when a planar object has
complete freedom to move in three dimensions. Its motion has 6 degrees of freedom,
three for translation and three for rotation. Provided perspective effects are not too
great, the image of a planar object contour is well described as a shape-space of planar
affine transformations, a space with dimension 6. It can be thought of as the space of
linear transformations of a template. Alternatively, it is the space of transformations
which preserves parallelism between lines. The planar affine group of transformations
is depicted in figure 4.3. Figure 4.4 illustrates how the planar affine shape-space can
enhance active contours when used appropriately. The figure shows tracking of an
outstretched hand which, being almost planar, is well modelled by a planar affine
space. The increased degree of constraint enhances immunity to distraction from
clutter in the background.

The planar affine and Euclidean similarity shape-spaces work efficiently in the
sense that the dimension of the shape-space is exactly equal to the number (six/four
respectively) of the degrees of freedom of camera movement. Unfortunately this happy
state of affairs does not persist in general because transformation groups do not neces-
sarily form vector spaces; it is not always possible to find a vector space which matches
exactly the degrees of freedom of camera/object motion. Consider the case of a cam-
era with fixed magnification, viewing a planar object moving rigidly on a table. The
image curve translates and rotates rigidly without any change of size. This is now
simply the planar Euclidean group which does not however form a vector space. To see
this, consider the template r0(s) and a copy of it rotated through 180o to give −r0(s);
when these two are added vectorially they give r0(s) + (−r0(s)) = 0 which is not a
rotated version of the template at all. The rotation operation is therefore not “closed”
under addition and therefore cannot form a vector space. Rotation and scaling taken
jointly do form a vector space, of dimension 2. Combining them with translation
gives the Euclidean similarities, of dimension 4. The smallest vector space that en-
compasses Euclidean transformations is therefore the space of Euclidean similarities.
The price of insisting on a linear representation of the Euclidean transformations is
that 4 dimensions are needed to represent 3 degrees of freedom; the resulting space is
underconstrained by one degree of freedom.

Shape-space models 73

translate horizontally translate vertically

rotate scale horizontally

scale vertically scale diagonally

Figure 4.3: Planar affine basis. The planar affine transformation group has 6 degrees of
freedom. A basis for them is depicted here, as applied to the pretzel outline from figure 4.2 on
page 71. The first three elements of the basis correspond to the first three for the Euclidean
similarities. The last three elements span a subspace that includes the fourth element —
scaling — for the Euclidean similarities and two further degrees of freedom for directional
scaling. Directional scaling occurs when a planar object, initially co-planar with the image, is
allowed to rotate about an axis that lies parallel to the image plane.

74 Chapter 4

Spline space Affine shape-space

Figure 4.4: Shape-space can impose constraints that allow background clutter to
be ignored. A test sequence of hand motion against background clutter consists of vertical
oscillation at around 0.5Hz. The tracking algorithm developed later in the book (chapter 10)
is applied over spline space and over an affine shape-space. The figure depicts snapshots after
9 seconds of tracking. It appears that the use of a planar affine shape-space confers enhanced
immunity to background clutter.

Definition of shape-space

At this stage, a more precise definition of shape-space is called for. A shape-space
S = L(W,Q0) is a linear mapping of a “shape-space vector” X ∈ R

NX to a spline-
vector Q ∈ R

NQ :
Q = WX + Q0, (4.1)

where W is a NQ ×NX “shape-matrix.” The constant offset Q0 is a template curve
against which shape variations are measured; for instance, a class of shapes consisting
of Q0 and curves close to Q0 could be expressed by restricting the shape-space S to
“small” X. The image of R

NX need not necessarily be a vector space itself but is a
“coset” — an underlying vector space {WX, X ∈ R

NX} plus an offset Q0. We talk of
the “basis” V of a shape-space meaning a basis for the underlying vector space. The
matrix W is comprised of columns which are the vectors of the basis V. In fact the two
spaces discussed in this chapter — Euclidean similarity and Affine, are vector spaces,

Shape-space models 75

because there exists an X for which Q = WX. In chapter 8 we encounter shape-spaces
whose images are not vector spaces because the offset Q0 is linearly independent of
the basis V. In fact the simplest shape-space that is not a pure vector space is the
space of translations of a template Q0.

4.2 The space of Euclidean similarities

The Euclidean similarities of a template curve r0(s) represented by Q0 form a 4-
dimensional shape-space S with shape-matrix

W =


 1

0

0

1

Qx
0

Qy
0

−Qy
0

Qx
0


 (4.2)

where the NB-vectors 0 and 1 are:

0 = (0, 0, . . . , 0)T , 1 = (1, 1, . . . , 1)T .

The first two columns of W govern horizontal and vertical translations respectively.
The third and fourth columns, made up from components of the spline-vector Q0

for the template, cover rotation and scaling. By convention, we choose Q0 to have
its centroid at the origin (< Qx

0 ,1 >=< Qy
0,1 >= 0) so that the third and fourth

columns are associated with pure rotation and scaling, free of translation. In practice
the template is obtained by fitting a spline interactively around a standard view of
the shape, and translating it so that its centroid lies over the origin.

Some examples of shape representations in the space of Euclidean similarities fol-
low.

1. X = (0, 0, 0, 0)T represents the original template shape Q0

2. X = (1, 0, 0, 0)T represents the template translated 1 unit to the right, so that,
from (4.1),

Q = Q0 +


 1

0




3. X = (0, 0, 1, 0)T represents the template doubled in size

Q = 2Q0

76 Chapter 4

4. X = (0, 0, cos θ − 1, sin θ)T represents the template rotated through angle θ:

Q =




cos θ Qx
0 − sin θ Qy

0

sin θ Qx
0 + cos θ Qy

0


 .

As an example, the lotion bottle in figure 4.5 moves rigidly from the template
configuration X = 0 in shape-space to the configuration

X = (0.465, 0.047,−0.282,−0.698)T

representing a translation through (0.465, 0.047)T , almost horizontal as the figure
shows, a magnification by a factor√

(1 − 0.282)2 + 0.6982 = 1.001

and a rotation through

arctan(1 − 0.282,−0.698) = −44.2o

— all consistent with the figure.

4.3 Planar affine shape-space

It was claimed that for a planar shape just six affine degrees of freedom are required
to describe, to a good approximation, the possible shapes of its bounding curve. The
planar affine group can be viewed as the class of all linear transformations that can
be applied to a template curve r0(s):

r(s) = u +Mr0(s), (4.3)

where u = (u1, u2)T is a two-dimensional translation vector and M is a 2× 2 matrix,
so that M,u between them represent the 6 degrees of freedom of the space. This class
can be represented as a shape-space with template Q0 and shape-matrix:

W =


 1 0 Qx

0 0 0 Qy
0

0 1 0 Qy
0 Qx

0 0


 . (4.4)

Shape-space models 77

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Figure 4.5: Euclidean similarities. The outline of a bottle in a standard position (left)
is taken as a template for a shape-space of Euclidean similarities in which any new outline
(right) can be described. In this case the new outline is displaced and rotated relative to
template (bottom) and this is apparent from the shape-space representation — see text.

(A derivation is given below.) The first two columns of W represent horizontal and
vertical translation. As before, by convention, the template r0(s) represented by Q0

is chosen with its centroid at the origin. Then the remaining four affine motions
(figure 4.3), which do not correspond one-for-one the last four columns of W , can
however be expressed as simple linear combinations of those columns. Recall that
the shape-space transformation is Q = WX + Q0 so that the elements of X act as
weights on the columns of W . The interpretation of those weights in terms of planar

78 Chapter 4

transformations (4.3) of the template is:

X = (u1, u2,M11 − 1,M22 − 1,M21,M12)T . (4.5)

Some examples of transformations are:

1. X = (0, 0, 0, 0, 0, 0)T represents the original template shape Q0

2. X = (1, 0, 0, 0, 0, 0)T represents the template translated 1 unit to the right,

3. X = (0, 0, 1, 1, 0, 0)T represents the template doubled in size

4. X = (0, 0, cos θ − 1, cos θ − 1,− sin θ, sin θ)T represents the template rotated
through angle θ

5. X = (0, 0, 1, 0, 0, 0)T represents the template doubled in width

In practice it is convenient to arrange for the elements of the affine basis to have similar
magnitudes to improve numerical stability. If the control-vector Q0 is expressed in
pixels, for computational simplicity, the magnitudes of the last four columns of the
shape-matrix may be several hundred times larger than those of the first two, and it
is then necessary to scale the translation columns to match.

Derivation of affine basis. Using (3.19), (4.3) can be rewritten:

r(s) − r0(s) = u + (M − I)U(s)Q0.

Now using the definition (3.20) of U(s) and noting that B(s)T 1 = 1 (3.5), this becomes:

r(s) − r0(s) =


 u1BT (s)1

u2BT (s)1


+


 (M11 − 1)BT (s)Qx

0 +M12BT (s)Qy
0

M21BT (s)Qx
0 + (M22 − 1)BT (s)Qy

0




= u1U(s)


 1

0


+ u2U(s)


 0

1


+ (M11 − 1)U(s)


 Qx

0

0




+ M12U(s)


 Qy

0

0


+M21U(s)


 0

Qx
0


+ (M22 − 1)U(s)


 0

Qy
0


 .

Shape-space models 79

From (3.19),
r(s) − r0(s) = U(s)(Q − Q0)

and comparing this with the expression for r(s)− r0(s) above shows that Q−Q0 belongs to a
vector space of dimension 6, for which the rows of W in (4.4) form a basis, and furthermore,
given that Q = WX + Q0, X is composed of elements of M and u as in (4.5).

4.4 Norms and moments in a shape-space

Given that it is generally preferred to work in a shape-space S, a formula for the
curve norm is needed that applies to the shape-space parameter X. We require a
consistent definition so that, for a given space, ‖Q1 − Q2‖ = ‖X1 − X2‖. The L2

norm in shape-space S is said to be “induced” from the norm over SQ, which was
in turn induced from the L2 norm over the space of curves r(s). From (4.1), this is
achieved by defining:

‖X‖ =
√

XTHX, (4.6)

where
H = W TUW. (4.7)

The norm over S has a geometric interpretation:

‖X‖ = ‖Q − Q0‖

is the average displacement of the curve parameterised by X from the template curve.
We can also now define a natural mapping from SQ onto the shape-space S. Of course
there is in general no inverse of the mapping W in (4.1) from SQ to X but, providing
W has full rank (its columns are linearly independent), a pseudo-inverse W+ can be
defined:

X = W+(Q − Q0) where W+ = H−1W TU . (4.8)

It turns out (see chapter 6) that W+ can be naturally interpreted as an error-
minimising projection onto shape-space.

In the case of spline space, it was argued in the previous chapter, the Euclidean
norm | · | defined by |Q|2 ≡ QTQ is not as natural as the L2-norm ‖Q‖, although
the two can have approximately similar values in practice, especially when curvature
is small. Their approximate similarity derives from the fact that the metric matrix
U is banded. However, the matrix H above is dense and so the Euclidean norm |X|

80 Chapter 4

in shape-space does not approximate the induced L2-norm, and in fact |X| has no
obvious geometric interpretation. Therefore, while one might get away with using
the Euclidean norm in spline space, it is of no use at all in shape-space — only the
L2-norm will do.

Computing Area

As with the norm, the area form A(X) can be expressed in a shape-space as a function

A(X) = (WX + Q0)TA(WX + Q0)

that is quadratic in X, and whose quadratic and linear terms involve just NX(NX +
3)/2 coefficients so that, in the case of Euclidean similarity, there are just 14 indepen-
dent coefficients.

Centroid and inertia

The centroid r of the area enclosed by a closed B-spline curve ((3.28) on page 66) is a
symmetric cubic function of the configuration X. Such a function has O((NX)3) terms
which is obviously large for larger shape-spaces, but works out to be just 20 terms in
the case of Euclidean similarities — quite practical to compute. (The exact formula
for the number of terms is NX(NX + 1)(NX + 2)/6.) The invariant second moment
or inertia matrix ((3.29) on page 66) could be expressed in terms of a symmetric
quartic form which, surprisingly, has only 23 terms in the case of Euclidean similarity
(NX = 4) but of course this number is O((NX)4) in general. In cases where the size
of the configuration space is too large for efficient computation of invariant moments,
the alternative is to compute them by numerical integration.

Finally, note that there is an important special case in which invariant moments
are easily computed. The special properties of the affine space mean that moments
can be computed efficiently under affine transformations. For instance, although the
invariant second moment for a 6-dimensional shape-space turns out generally to be a
quartic polynomial with 101 terms, in the affine space it can be computed simply as
a product of three 2 × 2 matrices:

I = MI0M
T

where I0 is the inertia matrix of the template, computed numerically from (3.28) on
page 66. Similarly, for area:

A = (detM)A0.

Shape-space models 81

Note that I represents only 3 constraints on M and one of those is duplicated by the
area A. So I, r and A between them give only 5 constraints on the 6 affine degrees of
freedom. It would be necessary to compute higher moments to fix all 6 constraints.
On the other hand, those moments up to second-order are sufficient to fix a vector in
the space of Euclidean similarities.

Using moments for initialisation

For the Euclidean similarities, a shape-vector X can be recovered from the moments
up to second order, as follows.

1. The displacement of the centroid r gives the translational component of X.

2. The scaling is given by
√
A/A0.

3. The rotation is the angle θ through which the largest eigenvector of I rotates.

This procedure is illustrated in figure 4.6 below. In the illustration given here, mo-
ments were computed over a foreground patch segmented from the background on the
basis of colour. An effective method for certain problems such as vehicle tracking, in
which the foreground moves over a stationary background, is to use image motion.
So-called “optical flow” is computed over the image, and a region of moving pixels is
delineated. Either a snake may be wrapped around this region directly or, in a shape-
space, moments can be computed for initialisation as above. Background subtraction
methods are also useful here — see chapter 5 for an explanation.

4.5 Perspective and weak perspective

The next task is to set up notation for perspective projection in order to show that,
under modest approximations, the set of possible shapes of image contours do indeed
form affine spaces. Standard camera geometry is shown in figure 4.7 and leads to
the following relationship between a three-dimensional object contour R(s) and its
two-dimensional image r(s):

r(s) =
f

Z(s)


 X(s)

Y (s)


 where R(s) =




X(s)

Y (s)

Z(s)


 . (4.9)

82 Chapter 4

Figure 4.6: A contour is initialised using moments. An image (left) (colour version
in figure 1.6 on page 10) is processed using straightforward colour segmentation to obtain an
interior region (right). Moments of the outline are calculated; the second moment is shown
as an ellipse (bottom) and used to initialise a curve in a shape-space of Euclidean similarities
(grey curve).

Shape-space models 83

Image curve r(s)

Object contour R(s)

f

z

y

x

Figure 4.7: It is a universally accepted fiction that, contrary to the layout of real cameras,
the centre of projection in a mathematical camera is taken to lie behind the image plane. The
focal length is f , measured in the same units as x, y and z, say mm for convenience.

The 1/Z term is intuitively reasonable as it represents the tendency of objects to
appear smaller as they recede from the camera. However, it makes the projection
function non-linear which is problematic given that shape-spaces, being vector spaces,
imply linearity. Fortunately there are well-established methods for making good linear
approximations to perspective. The most general of these is the weak perspective
projection.

Note that a good approximate value for f can be obtained simply by using the
nominal value usually printed on the side of a lens housing, which we denote f∞. To
a first approximation, f = f∞, but a better one, taking into account the working
distance Zc, is

f = f∞
(

1 − f∞
Zc

)−1

. (4.10)

Since image positions x, y available to a computer are measured in units of pixels
relative to one corner of the camera array, a scale factor is needed to convert pixel
units into length units (mm). This can be done quite effectively by taking a picture,

84 Chapter 4

as in figure 4.8, of a ruler lying in a plane parallel to the image plane. Moving a

200mm = 597 pixels

Figure 4.8: A simple camera calibration procedure. The ruler is set at a distance
1060mm from the camera iris.

cursor over the image shows that 597 pixels corresponds to 200 mm at a distance of
Zc = 1060 mm from the camera iris, and the nominal focal length is f∞ = 25 mm.
From (4.10) we have f = 25.6 mm, and the scaling factor for distance x on the image
plane is

200
597

f

Zc
mm/pixel =

200
597

25.6
1060

mm/pixel = 8.09 × 10−3 mm/pixel.

(This puts the width of the entire physical camera array of 768 pixels at 768× 8.09×
10−3 mm or 6.21 mm which is a very reasonable figure). Of course, for cameras whose
pixels are not square, this procedure must be repeated in the vertical direction to
calculate the vertical scaling factor.

Finally, note that more precise calculations, including allowances for minor me-
chanical defects such as asymmetry of lens placement with respect to the image array,
can be made precisely using automatic but somewhat involved “camera calibration”
procedures. However, the simple procedure above has proved sufficient for active
contour interpretation, in most cases.

Weak Perspective

The weak perspective approximation is valid provided that the three-dimensional ob-
ject is bounded so that its diameter is small compared with the distance from camera
to object. Taking Rc = (Xc, Yc, Zc)T to be a point close to the object — think of it
as the object’s centre, replace R(s) in the projection formula by Rc + R(s) and then
the assumption about object diameter can be written as

|R(s)| � Zc ∀ s. (4.11)

Shape-space models 85

A useful alternative form of the assumption is that the subtended angle of the image
contour is much less than 1 radian when viewed from any aspect.

That assumption can now be used in the perspective equation (4.9) to give the
weak perspective projection:

r(s) =
f

Zc




 Xc

Yc


+


 X(s)

Y (s)


− Z(s)

Zc


 Xc

Yc




 (4.12)

which is linear in R(s) and approximates perspective projection to first order in
|R(s)|/Zc. The tendency of image size to diminish as an object recedes is present
in the f/Zc term, now approximated to an “average” value for a given object. As
individual points of R(s) recede they tend to move towards the centre of the image
and the third term expresses this. In typical views, the approximation works well,
as figure 4.9 shows. If, in addition to the camera having a large field of view, the
object also fills that field of view, then errors in the weak perspective approximation
become significant. That is not a situation that commonly arises in object tracking
however. If the camera is mounted on a pan-tilt head, the camera’s field of view is
likely to be narrow in order to obtain the improved resolution that the movable head
allows. Alternatively, when the camera is fixed, the image diameter is likely to be
several times smaller than the field of view to allow for object movement. Since the
field of view of a wide-angle camera lens is of the order of 1 radian, it follows that
object diameter is likely to be considerably less than 1 radian, precisely the condition
for the weak perspective approximation to hold good.

Orthographic projection

For a camera with a narrow field of view (substantially less than one radian) it can
further be assumed, in addition to the assumption (4.11) about object diameter, that

|Xc| � Zc and |Yc| � Zc (4.13)

— simply the condition that the contour centre is close enough to the centre of the
image for the object actually to be visible. In that case, the third term in (4.12) is
negligible and image perspective is well approximated by the orthographic projection

r(s) =
f

Zc


 Xc +X(s)

Yc + Y (s)


 . (4.14)

86 Chapter 4

(a) (b)

mismatch

(c) (d)

Figure 4.9: The weak perspective approximation is normally accurate. (a–c) This
image of a hand being tracked in a camera with a wide field of view shows that the weak
perspective image of the hand outline closely approximates the true perspective image. (d)
Under extreme viewing conditions, when perspective effects are strong, approximation error
may be appreciable, visible here as the mismatch of the curve around the fingers.

Shape-space models 87

Suppose the object contour Rc + R(s) derives from a contour R0(s) in a base
coordinate frame which has then been rotated to give R(s) = RR0(s) and translated
through Rc, so that R,Rc are parameters for three-dimensional motion. Suppose
also that the object is planar so (without loss of generality) Z0(s) = 0. Then the
orthographic projection equation becomes

r(s) = u +
f

Zc
R2×2


 X0(s)

Y0(s)




where u is the orthographic projection of the three-dimensional displacement vector
Rc and R2×2 is the upper-left 2 × 2 block of the rotation matrix R. Finally, take
M = (f/Zc)R2×2 and adopt the convention that Zc = f in the standard view so that

r0(s) = (X0(s), Y0(s))T

is the image template. This gives a general planar affine transformation as in (4.3),
so the image of a planar object moving rigidly in three dimensions does indeed sweep
out a planar affine shape-space.

If the orthographic constraint (4.13) is relaxed again, to allow general weak per-
spective, it turns out that, when R(s) is planar, r(s) still inhabits the planar affine
shape-space. Later we return to weak perspective for a general analysis of planar affine
configurations, in particular to work out the three-dimensional pose of an object from
its affine coordinates. This is used, for example, to calculate the three-dimensional
position and attitude of the hand in the mouse application of figure 1.16 on page 20.
That general method of pose calculation will work even when the camera is positioned
obliquely relative to table-top coordinates and when the hand moves over the whole
of a wide field of view.

4.6 Three-dimensional affine shape-space

Shape-space for a non-planar object is derived as a modest extension of the planar
case. The object concerned should be visualised as a piece of bent wire, rather than a
smooth three-dimensional surface. Smooth surfaces are, of course, of great interest but
shape-space treatment is more difficult because of the complex geometrical behaviour
of silhouettes. The bent wire model also implies freedom from hidden lines; the
approach described here deals with parallax effects arising from three-dimensional

88 Chapter 4

shape but not with the problem of “occlusion” for which additional machinery is
needed.

Clearly the 6-dimensional planar affine shape-space cannot be expected to suffice
for non-planar surfaces and this is illustrated in figure 4.10. The new shape-space is

Figure 4.10: The views of a general three-dimensional contour cannot be en-
compassed by a planar affine shape-space. A planar affine space of contours has been
generated from the outline of the first view of the cube. The outlines of subsequent views do not
however lie in the space, as evidenced by the visible mismatch in the fitted contours. (Figure
reprinted from (Curwen, 1993).) A similar effect is observed with the leaves.

“three-dimensional affine” with 8 degrees of freedom, made up of the six-parameter
planar affine space and a two-parameter extension. Consider the object to be a three-

Shape-space models 89

dimensional curve
R0(s) = (X0(s), Y0(s), Z0(s))T

which is projected orthographically as in (4.14) to give an image curve

r(s) = u +
f

Zc
R2×3




X0(s)

Y0(s)

Z0(s)




and this can be expressed as the standard planar affine transformation (u,M) of (4.3)
with an additional depth-dependent term:

r(s) = u +Mr0(s) + vZ0(s) (4.15)

where
R2×3 =

Zc

f
(M | v) . (4.16)

The three-dimensional shape-space therefore consists of the two-dimensional one for
the planar affine space generated by template Q0, with two added components to
account for the depth variation that is not visible in the template view. The two
additional basis elements are:

V ′ =




 Qz

0

0


 ,

 0

Qz
0




 .

The extra two elements are tacked onto the planar affine W -matrix (4.4) to form the
W -matrix for the three-dimensional case:

W =


 1 0 Qx

0 0 0 Qy
0 Qz

0 0

0 1 0 Qy
0 Qx

0 0 0 Qz
0


 . (4.17)

Just as equation (4.5) provided a conversion from the planar affine shape-space to the
real-world transformation, the three-dimensional affine shape-space components have
the following interpretation:

X = (u1, u2,M11 − 1,M22 − 1,M21,M12, v1, v2). (4.18)

The expanded space now encompasses the outlines of all views of the three-dimensional
outline as figure 4.11 shows. Automatic methods for determining Qz

0 from example
views are discussed in chapter 7.

90 Chapter 4

Figure 4.11: Three-dimensional affine shape-space. The outlines of views of a cube
which could not be contained in a planar affine shape-space now fall within a suitably con-
structed 3D affine space. (Figure reprinted from (Curwen, 1993).) Similarly, the non-planar
arrangement of leaves is happily encompassed by a 3D affine space.

4.7 Key-frames

Affine spaces are appropriate shape-spaces for modelling the appearance of three-
dimensional rigid body motion. In many applications, for instance facial animation,
speech-reading and cardiac ultrasound, as described in chapter 1, motion is decidedly
non-rigid. In the absence of any prior analytical description of the motion, the most
effective strategy is to learn a shape-space from a training set of sample motion. A
general approach to this, based on statistical modelling, is described in chapter 8.

Shape-space models 91

In the meantime, a simpler methodology is presented here, based on “key-frames” or
representative image outlines of the moving shape. Often, an effective shape-space
can be built by linear combination of such key-frames.

As an example, in figure 4.12, a sequence of three frames is shown which can be
used to build a simple shape-space in which the first frame Q0 acts as the template
and the shape-matrix W is constructed from the two key-frames Q′

1,Q
′
2:

W =


 Qx

1 Qx
2

Qy
1 Qy

2


 . (4.19)

where Qi = Q′
i −Q0. This two-dimensional shape-space is sufficient to span all linear

Template Q0 Key-frame: opening Q1 Key-frame: protrusion Q2

Figure 4.12: Key-frames. Lips template followed by two key-frames, representing inter-
actively tracked lips in characteristic positions. The key-frames are combined linearly with
appropriate rigid degrees of freedom, to give a shape-space suitable for use in a tracker for
non-rigid motion.

combinations of the three frames. What is more, the shape-space coordinates have
clear interpretations, for example:

• X = (0, 0)T represents the closed mouth;

92 Chapter 4

• X = (1/2, 0)T represents the half-open mouth;

• X = (1/4, 1/2)T represents the mouth, half-protruding and slightly open.

A little more ambitiously, the same three frames can be used to build a more versatile
shape-space that allows for translation, zooming and rotation of any of the expres-
sions from the simple two-dimensional shape-space. Minimally, this should require
2 parameters for expression plus 4 for Euclidean similarity, a total of 6 parameters.
However, the linearity of shape-space leads to a wastage of 2 degrees of freedom and
the shape-space is 8-dimensional with template Q0 as before and shape-matrix

W =


 1

0

0

1

Qx
0

Qy
0

−Qy
0

Qx
0

Qx
1

Qy
1

−Qy
1

Qx
1

Qx
2

Qy
2

−Qy
2

Qx
2


 . (4.20)

This is based on the shape-matrix for Euclidean similarities (4.2) on page 75, extended
to all three frames. Again, expressions are naturally represented by the shape-vector,
for example:

• X = (u, 0, 0, 0, 1, 0, 0, 0)T represents the fully open mouth, shifted to the right
by u;

• X = (0, 0, cos θ− 1, sin θ, 0, 0, 1
2 cos θ, 1

2 sin θ)T represents the closed mouth, half-
protruding and rotated through an angle θ.

Of course this technique, illustrated here for 2 key-frames under Euclidean simi-
larity, does apply to an arbitrary number of key-frames, and a general space of rigid
transformations spanned by a set {T j , j = 1, . . . , Nr}. In that case any contour cor-
responding to the appearance of ith key-frame is composed of a linear combination of
contours

Q1
i ,Q

2
i , . . . ,Q

Nr
i ,

for an Nr-dimensional space of rigid transformations. Then the W -matrix is composed
of columns which are vectors Qj

i , i = 0, 1, . . . , j = 1, 2, . . . , Nr. To avoid introduc-
ing linear dependencies into the W -matrix, it is best to omit translation from the
space of rigid transformations and treat it separately, as in the two key-frame exam-
ple above. Then the W-matrix for the composite shape-space of rigid and non-rigid
transformations is

W =


 1

0

0

1
Q1

0 Q2
0 . . . Q1

1 Q2
1 . . .


 . (4.21)

Shape-space models 93

One final caveat is in order. With Nr degrees of transformational freedom (exclud-
ing translation) and Nk key-frames, there are a total of Nr + Nk degrees of freedom
in the system. However the linear representation as a shape-space with a W -matrix
as above has dimension Nr × (Nk + 1), a “wastage” of Nk(Nr − 1) degrees of free-
dom. The two key-frame example above has Nr = 2, Nk = 2 so the wastage is just
2 degrees of freedom, in a shape-space of total dimension 8 (including translation).
With more key-frames and larger transformational spaces such as three-dimensional
affine (Nr = 6), the wastage is more severe — 5 degrees of freedom per key-frame. In
such cases, the constructed shape-space is likely to be too big for efficient or robust
contour fitting. However, it is often possible to construct a smaller space by other
means such as “PCA” (chapter 8) and use the large shape-space constructed as above
for interpretation. In particular, shape displacements can be factored into components
due to rigid and non-rigid transformations respectively, and this is explained at the
end of chapter 7.

4.8 Articulated motion

When an object (e.g. a hand) is allowed, in addition to its freedom to move rigidly, to
support articulated bodies (fingers), more general shape-spaces are needed. Clearly,
one route is to take a kinematic model in the style used in robotics for multi-jointed
arms and hands and use it as the basis of a configuration space. The advantage
is that the resulting configuration space represents legal motions efficiently because
the configuration space has minimal dimension. The drawback is that the resulting
measurement models (see next chapter) are non-linear. This is due to trigonomet-
ric non-linearities as in the previous section on rigid motion but exacerbated by the
hinges added onto the base body. The result is that classical linear Kalman filtering
is no longer usable, though non-linear variants exist which are not however probabilis-
tically rigorous. Furthermore, linear state-spaces admit motion models which apply
globally throughout the space. In a non-linear space, motion models could perhaps be
represented as a set of local linear models in tangent spaces placed strategically over
a manifold. This is hard enough to represent and the task of learning such models
seems a little daunting.

As with rigid motion, there is a way to avoid the non-linearities by generating
appropriate shape-spaces. Again, there is some inefficiency in doing this and the
resulting space underconstrains the modelled motion. The degree of wastage depends

94 Chapter 4

on the precise nature of the hinging of appendages, and this is summarised in the
below. Proofs are not given here, but there is a more detailed discussion in appendix C.

Two-dimensional hinge

For a body in two dimensions, or equivalently a three-dimensional body con-
strained to lie on a plane, each additional hinged appendage increments the
dimension of shape-space by 2, despite adding only one degree of kinematic
freedom. Hence the wastage amounts to 1 degree of freedom per appendage.

Two-dimensional telescopic appendage

Still in two dimensions, each telescopic element added to the rigid body in-
crements the shape-space dimension by 2, causing a wastage of one degree of
freedom, as for the hinge.

Hinges on a planar body in three dimensions

The rigid planar body above, with its co-planar hinged appendages, is now
allowed to move out of the ground plane, so that it can adopt any three-
dimensional configuration. Each hinged appendage now adds 4 to the dimension
of shape-space, resulting in the wastage of 3 degrees of freedom.

Universal joints on a rigid three-dimensional body

Given a three-dimensional rigid body, whose shape-space is 3D affine, each ap-
pendage attached with full rotational freedom (via a ball joint, for instance)
increments the dimension of shape-space by 6. Such an appendage introduce 3
kinematic degrees of freedom, so the wastage is 3.

Hinges on a rigid three-dimensional body

For appendages attached to the three-dimensional body by planar hinges, with
just 1 kinematic degree of freedom, the dimension of shape-space increases by
4, so again the wastage is 3 degrees of freedom per appendage.

Note that the above results hold regardless of how the appendages are attached —
whether directly to the main body (parallel), or in a chain (serial) or a combination
of the two.

Shape-space models 95

Bibliographic notes

This chapter has explained how shape-spaces can be constructed for various classes of
motion. The value of shape-spaces of modest dimensionality was illustrated in (Blake
et al., 1993) as a cure to the instability that can arise in tracking with high-dimensional
representations of curves such as the original finite-element snake (Kass et al., 1987) or
unconstrained B-splines (Menet et al., 1990; Curwen and Blake, 1992). Shape-spaces
are linear, parametric models in image-space, but non-linear models or deformable
templates are also powerful tools (Fischler and Elschlager, 1973; Yuille, 1990; Yuille
and Hallinan, 1992). Linear shape-spaces have been used effectively in recognition
(Murase and Nayar, 1995). Shape-spaces discussed so far have been image-based but
a related topic is the use of three-dimensional parametric models for tracking, either
rigid (Harris, 1992b) or non-rigid (Terzopoulos and Waters, 1990; Terzopoulos and
Metaxas, 1991; Lowe, 1991; Rehg and Kanade, 1994).

Initialisation from moments is discussed in (Blake and Marinos, 1990; Wildenberg,
1997) and the use of 3rd moments to recover a full planar affine transformation is
described in (Cipolla and Blake, 1992a). In some circumstances, region-based optical
flow computation (Buxton and Buxton, 1983; Horn and Schunk, 1981; Nagel, 1983;
Horn, 1986; Nagel and Enkelmann, 1986; Enkelmann, 1986; Heeger, 1987; Bulthoff
et al., 1989) can be used to define the region for snake initialisation. This has been
shown to be particularly effective with traffic surveillance (Koller et al., 1994).

Shape-spaces are based on perspective projection and its linear approximations in
terms of vector spaces (Strang, 1986). Mathematically, projective geometry is a some-
what old-fashioned topic and so the standard textbook (Semple and Kneebone, 1952)
is rather old-fashioned too. More accessible, is a graphics book such as (Foley et al.,
1990) for the basics of camera geometry and perspective transformations. Computer
vision has been concerned with camera calibration (Tsai, 1987) in which test images
of grids are analysed to deduce the projective parameters for a particular camera, in-
cluding both extrinsic parameters (the camera-to-world transformation) and intrinsic
parameters such as focal length.

The most general linear approximation to perspective is known variously as para-
perspective (Aloimonos, 1990) or weak perspective (Mundy and Zisserman, 1992) and
can be particularly effective if separate approximations are constructed for differ-
ent neighbourhoods of an image (Lawn and Cipolla, 1994). The gamut of possible
appearances of three-dimensional contours under a particular weak perspective trans-
formation forms an affine space (Ullman and Basri, 1991; Koenderink and van Doorn,

96 Chapter 4

1991). This idea led to a series of studies on using affine models to analyse motion,
including (Harris, 1990; Demey et al., 1992; Bergen et al., 1992a; Reid and Murray,
1993; Bascle and Deriche, 1995; Black and Yacoob, 1995; Ivins and Porrill, 1995;
Shapiro et al., 1995).

The first three chapters of (Faugeras, 1993) are an excellent introduction to pro-
jective and affine geometry and to camera calibration.

Articulated structures are most naturally described in terms of non-linear kine-
matics (Craig, 1986) in which the non-linearities arise from the trigonometry of rotary
joints. Such a model has been incorporated into a hand tracker, for instance (Rehg and
Kanade, 1994), in which the articulation the fingers is full treated. Articulated struc-
tures can be embedded in linear shape-spaces but this can be very “inefficient,” in the
sense of section 4.1, that kinematic constraints have to be relaxed — see appendix C.

Finally, smooth silhouette curves and their shape-spaces are beyond the scope of
this book. However, it can be shown that a shape-space of dimension 11 is appropriate.
This shape-space representation of the curve is an approximation, valid for sufficiently
small changes of viewpoint. Its validity follows from results in the computer vision
literature about the projection of silhouettes into images (Giblin and Weiss, 1987;
Blake and Cipolla, 1990; Vaillant, 1990; Koenderink, 1990; Cipolla and Blake, 1992b).

Chapter 5

Image processing techniques for
feature location

The use of image-filtering operations to highlight image features was illustrated in
chapter 2. Figure 2.1 on page 27 illustrated operators for emphasising edges, valleys
and ridges, and it was shown how the emphasised image could be used as a landscape
for a snake. However, for efficiency, the deformable templates described in the next
two chapters are driven towards a distinguished feature curve rf (s) rather than over
the entire image landscape F that is used in the snake model. This is rather like
making a quadratic approximation to the external snake energy:

Eext ∝ −F (r) ∝
∫

(r(s) − rf (s))2 ds, (5.1)

where rf (s) lies along a ridge of the feature-map function F . The increase in efficiency
comes from being able to move directly to the curve rf , rather than having to iterate
towards it as in the original snake algorithm described in section 2.1.

It is therefore necessary to extract rf (s) from an image. One way of doing this
is to mark high strength values on the feature maps and group them to form point
sets to which spline curves could be fitted. An example of feature curves grouped in
this way was given, for edge-features, in figure 3.1 on page 42. However, the wholesale
application of filters across entire images is excessively computationally costly. At any
given instant, an estimate is available of the position of a tracked image-contour and
this can be used to define a “search-region,” in which the corresponding image feature
is likely to lie. Image processing can then effectively be restricted to this search region,

98 Chapter 5

Figure 5.1: Search region. It is computationally efficient to restrict image processing
operations to lie within a “region of interest” (dashed lines), one either side of the currently
estimated contour position (solid line). Image processing operations are then performed along
certain lines passing through the estimated contour. In this example, the lines are normals to
the estimated curve, three of which are shown as arrowed white lines.

as in figure 5.1. The search region displayed in the figure is formed there by sweeping
normal vectors of a chosen length along the entire contour. Features can then be
detected by performing image filtering along each of the sampled normals, and this
is very efficient. If normals are constructed at points s = si, i = 1, . . . , N , along the
curve r(s), this will give a sequence of sampled points rf (si), i = 1, . . . , N along the
feature curve rf (s). It is of course possible that more than one feature may be found
on each normal, but for now it is assumed that just one — the favourite feature — is
retained.

Image processing techniques for feature location 99

5.1 Linear scanning

In order to perform one-dimensional image processing, image intensity is sampled at
regularly spaced intervals along each image normal. An arbitrarily placed normal line
generally intersects image pixels in an irregular fashion, as in figure 5.2. This is well

Figure 5.2: Irregular image sampling. Listing the intensities of pixels crossed by a normal
line would result in a non-uniform sampling of intensity that would suffer abrupt variations
as the line moved over the image.

known to produce undesirable artifacts in Computer graphics — “jaggies” in static
images and twinkling effects in moving ones, for which the usual cure is “anti-aliasing.”
Unlike graphics, in which the task is to map from a mathematical line onto pixels, the
problem here is to generate the opposite mapping, from image to line. This calls for
a sampling scheme of its own.

An effective sampling scheme, spatially regular and temporally smooth (when the
line moves) involves interpolation as follows. A sequence of regularly spaced sample
points are chosen along the line. The intensity I at a particular sample point (x, y) is
computed as a weighted sum of the intensities at 4 neighbouring pixels, as in figure 5.3.
A pixel with centre sited at integer coordinates (i, j) has intensity Ii,j . The intensity

100 Chapter 5

i i+1

(x,y)
j

j+1

Figure 5.3: Interpolated image sampling. The intensity at a chosen sampling point
(x, y) is computed as a weighted sum of the intensities at the four immediately adjacent pixels.

I at (x, y) is then computed by bilinear interpolation:

I =
∑
i,j

wi,jIi,j (5.2)

with weights

wi,j =




(1 − |x− i|)(1 − |y − j|) if |x− i| < 1 and |y − j| < 1

0 otherwise
(5.3)

so that at most four pixels, the ones whose centres are closest to (x, y), have non-zero
weights, as the figure depicts.

5.2 Image filtering

Analysis of image intensities now concentrates on the one-dimensional signals along
normals. The intensity I(x) along a particular normal is sampled regularly at x = xi

Image processing techniques for feature location 101

and intensities are stored in an array Ii = I(xi), i = 1, . . . , N . A variety of feature
detection operators can be applied to the line, popular ones being edges, valleys and
ridges. Features are located by applying an appropriate operator or mask Cn, −NC ≤
n ≤ NC , by discrete convolution, to the sampled intensity signal In, 1 ≤ n ≤ NI , to
give a feature-strength signal

En =
NC∑

m=−NC

CmIn+m.

Maxima of that signal are then located, and marked wherever the value at that maxi-
mum exceeds a preset threshold (chosen to exclude spurious, noise-generated maxima).
This is illustrated for edges in figure 5.4 and for valleys in figure 5.5.

Corners

Effective operators for corners also exist and have been used for visual tracking. How-
ever, corners do not quite fit into the search paradigm described here. Being discrete
points, a corner is likely to be missed by search along normals unless it happens to
lie exactly on some normal; more generally it will be located in the gap between two
adjacent normals. This problem does not arise with edges because they are extended
and should generally intersect one or more of the normals. If corners are to be used
they must be located by an exhaustive search over the region of interest, which is
rather more expensive computationally than a search that is restricted to normals.

One operator, the “Harris” corner detector, works by computing a discrete ap-
proximation to the moment matrix

S(x, y) =
∫
G(x′, y′)[∇I(x+ x′, y + y′)][∇I(x+ x′, y + y′)]T dx′ dy′

at each image point (x, y), where ∇I = (∂I/∂x, ∂I/∂y)T , the image-gradient vector at
a point, and G is a two-dimensional Gaussian mask for smoothing, typically 2–4 pixels
in diameter. The trace tr(S) and the determinant det(S) are examined at each point
(x, y). Wherever tr(S) exceeds some threshold, signaling a significantly large image
gradient, and also the ratio tr(S)/2

√
det(S) is sufficiently close to its lower bound of

1, a corner feature is marked. The Harris detector responds reliably to objects that are
largely polyhedral, marking corners that are likely to be stable to changing viewpoint.
Natural shapes (figure 5.6) may however fire the corner detector in locations that are

102 Chapter 5

operator

-2 2

1

0

-1
0 97

x

intensity

edge
strength

0 97

threshold

Figure 5.4: Operator for edge detection The problem is to search along a line in an
image (top) to find edges — locations where contrast is high. An operator (left, shown on an
expanded length scale) is convolved with the image intensity function along the line (right).
One edge is found, corresponding to a maximum of the feature-strength function (bottom).

Image processing techniques for feature location 103

operator

-4 4

1

0

-1
0 66

x

intensity

feature
strength

0 66

threshold

Figure 5.5: Operator for valley detection The problem is to search along a line in
an image (top) to find valleys — locations of minimum intensity. The valley operator (left)
convolved with the intensity signal (right) produces a ridge (bottom) corresponding to the dark
line between adjacent fingers.

104 Chapter 5

Figure 5.6: Corner detection. The corner detector fires reliably at sharp, polyhedral
corners and junctions. It also fires on certain other features such as tighter curves, but with
less spatial accuracy and reliability. (Figures courtesy of Andrew Fitzgibbon).

hard to predict and may be unstable under changing viewpoint. Not surprisingly, it
works best where there are well-defined geometrical features, such as on buildings.
On a natural object such as a face, the response is a mixture of reasonably reliable
features at eye corners and other less reliable responses on curves.

5.3 Using colour

Colour in images is a valuable source of information especially where contrast is weak,
as in discriminating lips from facial skin. Colour information is commonly presented
as a vector I = (r, g, b) of red-green-blue values, at each pixel. The most economical
way to treat the colour vector is to reduce it to a single value by computing a suitable
scalar function of I. The scalar I can then be treated as a single intensity value

Image processing techniques for feature location 105

and subjected to the same image-feature operators as were used above, for processing
monochrome images. Two scalar functions are described here: one that is general,
the hue function and one that is customised — learned from training data, the Fisher
linear discriminant.

The hue function is used commonly to represent colour in graphics, vision and
colorimetry and corresponds roughly to the polar angle for polar coordinates in r, g, b-
space. It separates out what is roughly a correlate of spectral colour — i.e. colour
wavelength — from two other colour components: intensity (overall brightness) and
saturation (“colouredness” as opposed to whiteness). This explains why it is particu-
larly effective when contrast is low so that changes in intensity (r+ g+ b) are hard to
perceive. Hue is defined as follows

hue(r, g, b) = arctan
(
(2r − g − b),

√
3(g − b)

)
. (5.4)

Note that there is a linear “hexcone” approximation to the hue function for appli-
cations where it is important to compute it fast, for example to convert entire video
images.

The Fisher linear discriminant is an alternative scalar function that attempts to
represent as much of the relevant colour information as possible in a single scalar value.
Its efficiency is optimal in certain sense, but this comes at the cost of re-deriving the
function, in a learning step, for each new application. Learning is straightforward and
works as follows. First, a foreground area F and a background area B are delineated
in a training image. For instance, in figure 5.7, F would be the lip region and B would
be part of the immediate surround. The Fisher discriminant function is defined as a
simple scalar product:

fisher(I) = f · I where I = (r, g, b)T . (5.5)

The function is learned from the foreground and background areas F and B by the
algorithm of figure 5.8, which determines the coefficient vector f . The effect of the
algorithm is to choose the vector f in colour (r, g, b) space which best separates the
background and foreground populations of colours. When the Fisher function is used
in place of intensity, feature detection works effectively, as figure 5.7 shows.

5.4 Correlation matching

The oldest idea in visual matching and tracking, and one that is widely used in
practical tracking systems, is correlation. Given a template T in the form of a small

106 Chapter 5

Figure 5.7: Detecting colour boundaries. Contrast between lip and skin can be lost if
only intensity (top) is extracted from a colour image; this is especially so for the lower lip in
this example. The hue function (left) shows improved contrast, but is rather noisy, and this
tends to disturb the operation of an active contour by generating spurious clutter. A better
solution is the Fisher discriminant function (right). In this example, colour is to be used
to locate lip boundaries. A colour training image is used to learn the Fisher discriminant
function. (Figures courtesy of Robert Kaucic.)

array of image intensities, the aim is to find the likely locations of that template in
some larger test image I. In one dimension for example, with image I(x) and template
T (x), 0 ≤ x ≤ ∆, the problem is to find the offset x′ for which T (x) best matches
I(x + x′) over the range 0 ≤ x ≤ ∆ of the template. This is most naturally done by

Image processing techniques for feature location 107

1. Calculate the mean pixel values in each class

IF =
1
NF

∑
(x,y)∈F

I(x, y)

IB =
1
NB

∑
(x,y)∈B

I(x, y)

2. Determine the within class scatter matrices

SF =
∑

(x,y)∈F

(I(x, y) − IF)(I(x, y) − IF)T

SB =
∑

(x,y)∈B

(I(x, y) − IB)(I(x, y) − IB)T

3. Find the Fisher discriminant vector

f = S−1(IF − IB) where S = SF + SB.

Figure 5.8: Learning the Fisher discriminant function. A discriminant vector f is
computed from the foreground F and background B populations of pixels, aiming to separate
foreground optimally from background.

minimising a difference measure such as

M(x′) =
∫ ∆

x=0
(I(x+ x′) − T (x))2 dx (5.6)

with respect to x′. In practice this theoretical measure must be computed as a sum
over image pixels.

An illustration is given in figure 5.9 in which the problem is to locate the position
of the eyebrow along a particular line. A template T is available that represents an
ideal distribution of intensity along a cross-section located in a standard position. The
task is to find the position on the line which best corresponds to the given intensity

108 Chapter 5

0 160

x

template T(x)

0 160

x

intensity I(x)

0 160

x

difference M(x)

threshold

Figure 5.9: One-dimensional correlation matching. The problem is to search along a
line in an image (top) to find the position of an eye. A template (left) of the cross-section of
an eye is to be matched with the image intensity function along the line (right). The correct
position is marked by the minimum of the matching function (bottom). Figure courtesy of
Robert Kaucic.

Image processing techniques for feature location 109

template, and this is achieved by minimising M(x) as above. The nomenclature
“correlation” derives from the idea that in the case that T (x) and I(x) span the
same x-interval, and are periodic, minimising M(x) is equivalent to maximising the
“mathematical correlation” ∫ ∆

x=0
I(x+ x′)T (x) dx. (5.7)

Correlation matching can be used to considerable effect as a generalised substitute
for edge and valley location. Position of the located feature along each normal can
be reported in the same way as for edges and used for curve matching. This can be
particularly effective in problems where image contrast is poor. In the lip-tracking
application of figure 1.10 on page 14, tracking without lip make-up proved possible
only when edge detection was replaced by correlation.

There are numerous variations on the basic theme (see bibliographic notes, at the
end of the chapter). One variation is to pre-process I(x), for example to emphasise
its spatial derivative, which tends to generate a sharper valley in M(x′), which can
then be located more accurately. More modern approaches dispense with intensities
altogether, representing I and T simply as lists of the positions of prominent features.
The problem then is to match those lists, using discrete algorithms. This has the
advantage of efficiency because of the data-compression involved in reducing the in-
tensity arrays to lists. It is also more robust for two reasons. First, intensity profiles
vary as ambient illumination changes whereas the locations of features are approx-
imately invariant to illumination. Secondly, there is the additional flexibility that
different amounts of offset x′ can be associated with different features, for example
when performing stereo matching over a large image region, whereas in the correla-
tion framework x′ is fixed. For these reasons, feature-based matching is considered
superior to correlation for many problems.

Correlation matching is often used in two dimensions with a template T (x, y)
matched to an offset image I(x + x′, y + y′), as in figure 5.10. This is considerably
more computation-intensive than in one dimension as it involves a double integral
over x, y and also a two-dimensional search to minimise M with respect to x′, y′.
Various techniques such as Discrete Fourier Transforms and “pyramid” processing at
multiple spatial scales can be used to improve efficiency. In higher dimensions than
two, for example when rotation and scaling are to be allowed in addition to translation,
exhaustive correlation becomes prohibitively expensive and alternative algorithms are
needed. One approach is to generate the offsets in higher dimensions in a more sparing

110 Chapter 5

Figure 5.10: Matching eyes by image correlation. The template (top) is a reversed copy
of the right eye in the face image (bottom). When the template is correlated with the image, its
centre collocates accurately with the centre of the left eye. (Figures courtesy of Steve Smith.)

fashion, using gradient descent for instance. Numerous authors have shown that this
can be very successful.

5.5 Background subtraction

A widely used technique for separating moving objects from their backgrounds is based
on subtraction. It is used as a pre-process in advance of feature detection to suppress
background features to prevent them distracting fitting and tracking processes. It is
particularly suited for applications such as surveillance where the background is often
largely stationary.

An image of IB(x, y) of the background is stored before the introduction of a
foreground object. Then, given an image I(x, y) captured with the object present,
feature detection is restricted to areas of I(x, y) that are labelled as foreground because

Image processing techniques for feature location 111

they satisfy
|I(x, y) − IB(x, y)| > σ,

where σ is a suitable chosen noise threshold. As figure 5.11 shows, background features
tend to be successfully inhibited by this procedure. Cancellation can disrupt the

Background IB(x, y) Image I(x, y)

Background suppressed

Figure 5.11: Background subtraction. The difference between an image (right) and a
stored background (left) is computed to suppress background features (bottom), though some
background features do “print through” the foreground.

foreground, as the figure shows, where the background intensity happens to match

112 Chapter 5

the foreground too closely. This results in some loss of genuine foreground features, a
cost which is eminently justified by the effectiveness of background suppression.

Finally, it should be noted that the expense of computing the entire difference
image ∆I can be largely saved by computing differences “lazily” just of those pix-
els actually required for interpolation along normals in (5.2). This is an important
consideration for real-time tracking systems.

Bibliographic notes

The Bresenham algorithm (Foley et al., 1990) is routinely used in graphics to convert a
mathematical line to a sequence of pixels and “anti-aliasing” is employed to achieve an
interpolated pattern of pixel intensities which varies smoothly, without flicker, as the
line is moved. The interpolated sampling scheme described in this chapter is similar
in spirit, but uses a different sampling pattern which performs the inverse function of
mapping from an array of pixels to an arbitrary point on a mathematical line.

A general reference on feature detection and the use of convolution masks is (Bal-
lard and Brown, 1982). A much-consulted study of trade-offs in the design of op-
erators for edge detection is (Canny, 1986) and the design of operators for ridges
and valleys is described in (Haralick, 1980); the discussions relate to two-dimensional
image processing whereas in this chapter the simpler one-dimensional problem is ad-
dressed. Effective detectors for corners exist (Kitchen and Rosenfeld, 1982; Zuniga
and Haralick, 1983; Noble, 1988) and have been used to good effect in motion analysis,
e.g. (Harris, 1992a) and tracking (Reid and Murray, 1996). Operators that respond
to regions rather than curves are also important, for example texture masks (Jain
and Farrokhnia, 1991) which can be used effectively in snakes that settle on texture
boundaries (Ivins and Porrill, 1995).

Correlation matching is based on the idea of “mathematical correlation” which
is central to the processing of one-dimensional signals (Bracewell, 1978). It is also
used in two-dimensional processing of images to locate patterns (Ballard and Brown,
1982), track motion (Bergen et al., 1992b) and register images for stereo vision (Lucas
and Kanade, 1981). Two-dimensional correlation can be computed efficiently using
pyramid architectures (Burt, 1983). A notable variation on the correlation approach is
to allow the correlation offset to vary spatially, adding considerable flexibility at some
computational expense (Witkin et al., 1986). Successful applications of correlation
in higher dimensions have used gradient descent (Sullivan, 1992) which may also be

Image processing techniques for feature location 113

coupled with feature detection (Bascle and Deriche, 1995) for added robustness to
illumination variations and specularity. Very efficient algorithms can be constructed
in the case of affine shape-spaces, by pre-processing image deformation maps (Hager
and Belhumeur, 1996). One-dimensional correlation along normals has proved a useful
tool in matching contours (Cootes et al., 1993; Rowe and Blake, 1996a).

The hue model for colour is used in vision (Ballard and Brown, 1982) and in
graphics (Foley et al., 1990) in the form of a linear “hexcone” approximation which
can be computed efficiently. The Fisher discriminant function is a general technique in
pattern recognition (Bishop, 1995) that has also been used to good effect in vision to
discriminate faces from one another (Belhumeur et al., 1996). A Bayesian treatment of
colour segmentation for tracking is given in (Crisman, 1992). With careful modelling
of the physics of reflection, colour segmentation can be even made robust in an outdoor
environment with its varying illumination (Plá et al., 1993).

Background subtraction/cancellation assists greatly in the generation of benign
training sets, by suppressing clutter, and is a valuable technique in learning dynamics
(chapter 11). A variety of techniques exists based on linear and non-linear (morpho-
logical) filtering, and on statistical hypothesis testing (Baumberg and Hogg, 1994;
Murray and Basu, 1994; Koller et al., 1994; Rowe and Blake, 1996b).

Chapter 6

Fitting spline templates

Chapters 3 and 4 dealt with the geometry and representation of curves and classes
of curves — the shape-spaces. Now it is time to look at some image data to see
how shapes can be approximated by members of those classes. The norm and inner
product machinery developed earlier proves useful together with the image-processing
techniques of chapter 5. Curve approximation techniques are built up step by step
in this chapter until the necessary tools are assembled for basic B-spline snakes and
deformable templates.

6.1 Regularised matching

Generally, measurements made from images are “noisy” — prone to unpredictable
variations from a number of sources. At the finest grain there is the effect of electrical
noise on the video signal from the camera and optical noise such as the flickering of
fluorescent lights. Coarser effects are the interactions of lighting with object surfaces,
causing specularities or highlights and shadows which vary in a manner that is too
hard to model. Since we have to live with such disturbances it is imperative that
algorithms for analysing images are designed to be intrinsically robust to them. This
is standard practice in image processing, where “regularisation” is used to clean poor
quality images by imposing prior constraints on the likely appearance of valid images.
This section describes the application of regularisation to curves reconstructed from
image data. First basic curve-fitting machinery is developed.

116 Chapter 6

Projection

Shape-space was introduced as a means of reducing shape-variability and, in the con-
text of the problem of fitting an image-feature curve, acts as a way of encouraging
smoothness. Suppose the image feature were expressed in the form of a spline curve
rf where rf (s) = U(s)Qf . If the fitted spline Q is restricted to shape-space, and
using the energy landscape for a quadratically approximated feature map ((5.1) on
page 97), the fitting problem is

min
X

‖WX + Q0 − Qf‖2.

The solution X = X̂ is given (proof below) by the pseudo-inverse W+ = H−1W TU
that was defined in the previous chapter:

X̂ = W+(Qf − Q0). (6.1)

The fact that X̂ minimises the error in approximating the curve Q within shape-space
S motivates the interpretation of W+ as an operator for projection onto shape-space.
It also explains why, in the example of figure 6.1, this operator manages to smooth
noisy data while staying close to the gross shape of that data.

Figure 6.1: Curve approximation in shape-space. A distorted bottle shape (left, black
curve) does not fit the bottle outline at all well. Projecting the distorted curve onto the
lotion bottle shape-space of figure 4.5 on page 77, finds the closest “valid” curve shape (right).
Clearly this removes the distortion.

Fitting spline templates 117

Regularisation

Further tolerance to noise is procured by biasing the fitted curve towards a mean
shape r(s) to a degree determined by a regularisation constant α. In the simplest
form of the problem, the fitted curve is the solution of

min
r(s)

α‖r − r‖2 + ‖r − rf‖2 (6.2)

where rf is a member of a class SQ of B-spline curves, and the possible fitted curves
r are constrained to lie in some shape-space S ⊂ SQ. The problem can be expressed
conveniently as

min
X

α‖X − X‖2 + ‖Q − Qf‖2 with Q = WX + Q0.

The idea of the regularising term is that it tends to pull any fitted curve towards the
mean r but this is rarely satisfactory as it stands. For example, it may be desirable
in practice for r to influence the shape of the fitted curve but not its position or
orientation. A more general regulariser is needed therefore, using a weight matrix S
(which must be positive semi-definite), so that the fitting problem becomes:

min
X

(X − X)TS(X − X) + ‖Q − Qf‖2 with Q = WX + Q0. (6.3)

For instance, the regulariser α‖X − X‖2 would be obtained by setting S = αH. To
achieve the desired invariance of the regulariser over some subspace Ss ⊂ S of trans-
formations, for instance the Euclidean similarities, S must be restricted by means of a
projection operation Ed to operate over deformations outside the invariant subspace
Ss:

S = αEdTHEd. (6.4)

The projection operator can be expressed in terms of the shape-matrix Ws for the
subspace and its pseudo-inverse shape-matrix W+

s :

Ed = I − Es where Es = W+WsW
+
s W. (6.5)

The solution X = X̂ to the fitting problem (6.3) is obtained in two stages, a
projection onto shape-space

Xf = W+(Qf − Q0), (6.6)

118 Chapter 6

followed by weighted summation

X̂ =
(
S + H)−1 (

SX + HXf

)
. (6.7)

This is illustrated in the example of figure 6.2, in which the shape-space S is taken
to be the entire spline space (S = SQ) and the invariant subspace Ss is the space of
Euclidean similarities which allows the shape of X to influence the fit while its position
and orientation are ignored. As α → 0, the influence of the template diminishes and
the fitted curve moves closer to the data, as expected.

Proof that projection is realised by the pseudo-inverse. Writing Q′ = Qf − Q0, the
fitting problem above is to minimise

‖WX − Q′‖2 = (WX − Q′)TU(WX − Q′)

= XTWTUWX − XTWTUQ′ − Q′TUWX + const
= (X − X̂)TWTUW (X − X̂) + const,

(completing the square) in which

X̂ = (WTUW)−1WTUQ′ = H−1WTUQ′,

which gives the required result (6.1).

Derivation of the shape-space regularisation formula. First a “projection lemma”
is needed, essentially Pythagoras’ theorem applied to shape-space, that

‖Q − Qf‖2 = ‖X − Xf‖2 + ‖WXf + Q0 − Qf‖2, (6.8)

and this is illustrated in figure 6.3. (Note that ‖WX −WXf‖ = ‖X − Xf‖ by definition of
the norm over S). Now the problem of (6.3) becomes the minimisation of

(X − X)TS(X − X) + (X − Xf)TH(X − Xf)

and this is simplified by “completing the square” to give

(X − X̂)T (S + H)(X − X̂) + c

where X̂ is as defined above and c is a constant independent of X, so that the minimising
shape is X = X̂ as in 6.7.

Fitting spline templates 119

Noisy data Qf Mean shape X

Fitted curve: α = 0.5 Fitted curve: α = 3.0

Figure 6.2: Curve-fitting with regularisation. A regularisation parameter α controls the
trade-off from high noise resistance but biased towards a mean shape (α large) to more accurate
fitting but with greater sensitivity to noisy data (alpha small). The regulariser is constructed
to be invariant to Euclidean similarity transformations, so the position and orientation of the
mean shape have no influence on the fitted curve.

120 Chapter 6

W X + Q

Q=WX+Q shape−spacespline−space Q
f

f

f

f
||X − X||

||Q − Q||

||WX + Q − Q ||
ff 0

0

0

Figure 6.3: Projection lemma.

6.2 Normal displacement in curve fitting

In chapter 3 we saw that the measure of curve difference using the norm is sensitive
to parameterisation. Two curves with similar shapes will nonetheless register a sub-
stantial difference according to the norm unless the parameterisations of those curves
also match. One example, figure 3.16 on page 62, showed two similarly shaped curves
with a norm-difference that was substantial simply because the parameterisation of
one of the curves had been shifted.

Curve fitting based on the norm will therefore suffer from sensitivity to parameter-
isation. This is particularly a problem when the data-curve is derived from an image
because, as the previous section showed, the parameterisation of an image curve is
inherited from a spline curve r(s), either the template curve itself or some initial esti-
mate of the image curve. This anchors the parameterisation of the image curve rf (s)
close to that of r(s). The result is that the fitted curve exhibits “reluctance” to move
away from r(s), as figure 6.4 illustrates.

A solution to this problem, proposed in chapter 3, is to redefine the fitting prob-
lem to take re-parameterisation explicitly into account when measuring the difference

Fitting spline templates 121

(a) (b)

Figure 6.4: Inherited parameterisation leads to reluctance in curve fitting. Curve
fitting using norm-difference is applied repeatedly to a sequence of images starting with (a) and
ending with (b). In each case, the fitted curve obtained from the previous image is used as the
initial estimate for fitting in the current image. At each step, the inherited parameterisation
of the feature curve follows closely the parameterisation of the estimated curve. The result is
a reluctance to move, as illustrated.

between the fitted curve r and the data rf . A re-parameterisation function g(s) is
defined such that g(s) = s gives the original inherited parameterisation, mapping
points on curve r to points on data-curve rf . Then the image-data curve rf (s) is
to be compared with the re-parameterised version of the curve r(g(s)). In place of
‖r − rf‖ in (6.2), the alternative curve-displacement measure d(r, rf) is:

d2 = min
g

1
L

∫
D2 ds where D2(s) = (r(g(s)) − rf (s))2, (6.9)

defined as a minimum over all possible reparameterisations.

Local invariance

Computation of the curve-displacement measure d(r, rf) is feasible if we are content with
local, rather than global minimisation. According to the rules of the “calculus of variations”,
a local minimum of d is achieved when

∂D2

∂g
= 0 for all s,

122 Chapter 6

that is, when
[rf (s) − r(g(s))] · r′(g(s)) = 0.

This says that, for the optimal parameterisation, the vector rf (s)−r(g(s)) joining correspond-
ing points on the two curves is perpendicular to the tangent vector r′(g(s)); it is in the direction
of the normal vector n(g(s)) to the curve r, so that the distance between corresponding points
is

D(s) = |rf (s) − r(g(s))| = [rf (s) − r(g(s))] · n(g(s)).

Now, assuming that the curves are sufficiently similar that the extent of re-parameterisation
is small (g(s) ≈ s), it follows first that

n(g(s)) ≈ n(s)

since the implicit smoothness of the B-spline ensures the curvature is also small. In addition,
using a first-order Taylor expansion,

[r(s) − r(g(s))] · n(s) ≈ (g(s) − s)r′(s) · n(s) = 0,

giving finally
D(s) ≈ [rf (s) − r(s)] · n(s),

the “normal displacement” between corresponding points on the two curves (with the original
parameterisation).

The use of normal displacement, which is a standard technique from Computer
Vision, can be explained intuitively. The total displacement rf (s) − r(s) at a point
can be expressed as the vector sum of components along the curve tangent and nor-
mal respectively (figure 6.5). The tangential component corresponds approximately
to displacement along the curve r(s) without actually travelling any distance away
from the curve. It reflects the variation of parameterisation between curves. If the
tangential component is eliminated, what remains of the total displacement is the
normal component, representing purely the distance between curves.

In terms of the original problem of finding a measure of distance between the
fitting curve r(s) and a feature curve rf (s), we have shown that the distance

d(r, rf) ≈ 1
L

∫
[(r(s) − rf (s)) · n(s)]2 ds (6.10)

is a suitably invariant measure provided that the displacement between the two curves
is small. This is now used to define a new norm ‖ · ‖n with respect to an estimated or

Fitting spline templates 123

a)

n(s)

(s)r
fitting curve

 normal
displacement

(s)r

(s)r
f

b)

feature curve

(s)r
f

total

normal

tangential

Figure 6.5: Normal Displacement. a) Displacement along the normal from one curve to
another, as shown, forms the basis for a measure of difference between curves that is approxi-
mately invariant to re-parameterisation. b) Total displacement can be factored vectorially into
two components, tangential and normal.

template curve r(s), whose normals are n(s):

‖r‖n
2 ≡ 1

L

∫
[r(s) · n(s)]2 ds. (6.11)

It has the property that the norm-difference approximates the invariant distance mea-
sure, that is

‖r − rf‖n ≈ d(r, rf),

provided both curves r and rf are sufficiently close to the estimated curve r. Norms
‖Q‖n in spline space and ‖X‖n in shape-space can be defined by inducing them from
the curve norm ‖r‖n, just as ‖Q‖ and ‖X‖ were induced from ‖r‖ originally.

The next step is to take account of the practicalities of image measurement by
expressing the invariant difference discretely. Suppose normal vectors are sampled at
regularly spaced points s = si, i = 1, . . . , N , with inter-sample spacing h, along the
entire curve r(s), so that, in the case of an open curve,

s1 = 0, si+1 = si + h, and sN = L.

124 Chapter 6

Then the norm-difference (6.10) can be approximated as a sum:

‖r − rf‖n
2 ≈ 1

N

N∑
i=1

[(rf (si) − r(si)) · n(si)]
2 . (6.12)

Recall that, in shape-space, r(si) can be expressed explicitly in terms of the shape-
space vector X:

r(si) = U(si)(WX + Q0)

so the norm-difference can be expressed explicitly in terms of the shape-space vector
X as

‖r − rf‖n
2 ≈ 1

N

N∑
i=1

(
νi − h(si)T [X − X]

)2
(6.13)

where

νi = (rf (si) − r(si)) · n(si), (6.14)

is the “innovation” — the displacement measured relative to the mean shape and
resolved along the normal, and

h(s)T = n(si)TU(si)W. (6.15)

Details of an algorithm to solve the fitting problem, using the invariant norm, are
developed next. In the meantime, note (figure 6.6) that the new algorithm solves the
reluctance problem demonstrated earlier arising from the use of norm-difference with
the inherited parameterisation (figure 6.4).

Fitting spline templates 125

(a) (b)

Figure 6.6: Normal displacement solves the reluctance problem. Curve fitting using
normal displacement is applied repeatedly to a sequence of images starting with (a) and ending
with (b). The fitted curve follows the moving image feature, without the reluctance associated
with norm-difference and inherited parameterisation (figure 6.4).

Weighted norm

A more general sampled form for the norm, in place of (6.13), incorporates weights wi:

‖r − rf‖n2 =

(
N∑

i=1

wi

)−1 N∑
i=1

wiδ
2
i (6.16)

where
δi = νi − h(si)T [X − X].

For instance, setting

w1 = wN =
1
2

and wi = 1, 1 < i < N

implements the trapezium rule which correctly takes account of the ends of an open curve.
For closed curves, in which i = 0 and i = N represent the same physical point which must be
counted exactly once, appropriate weights are

wi = 1 for 1 ≤ i < N and wN = 0.

Weights can also be used to implement modified norms which accentuate areas of the image-
feature curve. One good reason for doing this is to allow increased influence around areas of
fine detail, such as the ends of the fingers in figure 5.1.

126 Chapter 6

A mechanism closely related to variable weighting is non-uniform sampling in which inter-
vals between successive si are allowed to vary. For instance, denser sampling may be desirable
in areas of fine detail. Alternatively, it may be desirable to sample the feature curve at equal
intervals of arclength, rather than of the spline parameter s which is not generally arclength.
Lastly, an effect similar to sampling uniformly in arclength can be achieved by appropriate
weighting that compensates for non-uniform sampling:

wi = |r′(si)| where r′(s) ≡ dr
ds
.

6.3 Recursive solution of curve-fitting problems

We already saw one solution to the regularised curve-fitting problem (6.3), using pro-
jection followed by weighted summation. The new fitting problem based on the normal
displacement measure is best solved in a rather different style. The new algorithm is
recursive, working by traversing the data-curve once, updating the estimated shape X̂
as it does so. (In fact the original problem (6.3) could also be solved concisely in the
recursive manner.) The complete fitting algorithm is given in figure 6.7. For the regu-
larised fitting problem above, we set the “measurement error” constant σi = σ =

√
N ,

but in subsequent chapters, other values of σi will be used. The first two steps of
the algorithm establish feature points rf (si) which serve as the data for curve fitting.
Step 3 initialises the “information matrix” Si which is a measure of the “strength” of
each intermediate estimate X̂i, taking account of the first i data points. Step 3 also
initialises the “information weighted sum” Zi which accumulates the influence of the
mean shape and the individual measurements, each with its proper weight. In step
4, the measurements rf (si) are assimilated in turn. Note that, as expected, it is only
the normal component νi of each measurement that is used. [Note the effect of the

weighted norm (6.16) is to choose a variable “measurement error” σi =
√
w−1

i

∑
j wj .]

In step 5, the “aggregated” observation vector Z is defined, together with S, its sta-
tistical information as an estimator of X. In fact Z is an unbiased estimate not of X
directly, but of SX. (This is much safer than trying to deal with an estimate of X
itself, given that the inverse of S need not exist.) In step 6, the aggregated measure-
ment Z that incorporates the influence of all data points, is finally combined in what
is, in fact, an information weighted sum (see derivation below) to give the estimated
shape-space vector X̂.

Fitting spline templates 127

Curve-fitting problem

Given an initial shape estimate r(s) (or X in shape-space) with normals n(s),
and a regularisation weight matrix S, solve:

min
X

T where T = (X − X)TS(X − X) +
N∑

i=1

1
σ2

i

(
νi − h(si)T [X − X]

)2
.

Algorithm

1. Choose samples si, i = 1, . . . , N , s.t. s1 = 0, si+1 = si + h, sN = L.

2. For each i, apply some image-processing filter along a suitable line (e.g.
curve normal) passing through r(si), to establish the position of rf (si).

3. Initialise
Z0 = 0, S0 = 0.

4. Iterate, for i = 1, . . . , N :
νi = (rf (si) − r(si)) · n(si);

h(si)T = n(si)TU(si)W ;

Si = Si−1 +
1
σ2

i

h(si)h(si)T ;

Zi = Zi−1 +
1
σ2

i

h(si)νi.

5. The aggregated observation vector is
Z = ZN with associated statistical information S = SN .

6. Finally, the best fitting curve is given in shape-space by:
X̂ = X + (S + S)−1Z.

Figure 6.7: Recursive algorithm for curve fitting.

128 Chapter 6

Example 1

A very simple fitting problem for tutorial purposes is illustrated in figure 6.8. It

x

y

0

1

1/2

X
_

mean shape

_
n1

(s)1fr

(s)fr 2

(s)fr 3

1 2 3

h

h

Figure 6.8: Example fitting problem for the recursive algorithm — see text.

involves a family of vertical line segments

r(s) = (x, s)T for 0 ≤ s ≤ L

(a single-span linear spline!) with length L = 1. Take the template Q0 to correspond
to a vertical line at the origin:

r0(s) = (0, s)T for 0 ≤ s ≤ L

Fitting spline templates 129

so that shape-space is then parameterised by the single-component shape-vector X =
x, and

U(s)W = (1, 0)T ,

so that X is transformed to spline space as

U(s)WX + r0 = (x, s)T ,

as required. The mean shape is also taken to be the line through the origin, so X = 0.
Measurements will be made at

s1 = 0, s2 =
1
2
, s3 = 1

so that h = 1/2, as illustrated in figure 6.8,

σ2 = N =
L

h
+ 1 = 3, and n(si) = (1, 0)T for i = 1, 2, 3.

Now we can also calculate

h(si)T = n(si)TU(si)W = 1 for i = 1, 2, 3.

The data points shown in the figure are

rf (s1) = (1, 0)T , rf (s2) = (2, 1/2)T , rf (s3) = (3, 1)T .

It is not difficult to show that the metric matrix for this shape-space is H = 1.
First, take the case of fitting without regularisation, so α = 0. Following the steps

of the algorithm gives

i νi Si Zi

0 0 0

1 1 1
3

1
3

2 2 2
3 1

3 3 1 2

The aggregated measurement is then Z = 2 with information S = 1, and since S = 0
(because α = 0), the estimate is X̂ = S−1Z = 2, simply the average value of the
x-coordinates of the three data points, as might be expected.

130 Chapter 6

Example 2

If regularisation is added with α = 1, the main part of the algorithm proceeds as
above, but since now S = 1, the final step is

X̂ = X +
(
S + S

)−1 Z = 0 +
1
2
· 2 = 1,

which has been pulled down towards X = 0 by regularisation, as expected.

Proof of correctness: the algorithm is of a standard type for recursive solution of least-
squares problems. Defining the partial sum

Ti =
1
σ2

i∑
j=1

(
νj − h(sj)T [X − X]

)2
.

it is straightforward to prove by induction on i that

Ti = (X − X)TSi(X − X) − (X − X)T Zi − ZT
i (X − X) + ci for i = 1, . . . , N,

where ci is a constant, independent of X. When i = N , this gives

TN = (X − X)TS(X − X) − (X − X)T Z − ZT (X − X) + cN ,

where S = SN and Z = ZN , as in the algorithm. Now

T = (X − X)TS(X − X) + TN

and completing the square gives

T = (X − X̂)T (S + S)(X − X̂) + c,

where c is independent of X, and X̂ is as defined in the algorithm, so X = X̂ optimises T , as
required.

Validation gate

The innovation νi in (6.14) represents the difference between the actual measurement
and the measurement that would be predicted at s = si based on the mean shape.
It is potentially useful for detecting and deleting rogue data or “outliers”. In the
context of tracking, outliers arise when the object being tracked is partially obscured,

Fitting spline templates 131

and the edge of some background object is then detected and masquerades as rf (si),
for some i. The resulting error in position may be considerable, well outside the
normal range attributable to random factors such as electrical and optical noise. Such
an “outlier” should be signaled by an unusually large magnitude |νi| of innovation.
If this occurs, the ith measurement can be discarded, and the ith iteration in the
algorithm altogether omitted. Otherwise, the ith data point is said to be validated
and the ith iteration proceeds as normal.

It remains to choose a threshold — at what level is it considered that |νi| is
sufficiently large to signal an outlier? A principled answer to this question emerges
from statistical models described in chapter 8, leading to the “validation-gate” for
outlier removal. The width of the validation gate effectively fixes the width of the
search region for image processing along normals (figure 5.1 on page 98). In fact the
threshold on |νi| determines the length of the search segment, the interval on the
normal that lies within the search region.

Fitting corners

In some applications it may be desired to fit to corner features rather than edge-
features, or to a mixture of corners and edges. The recursive fitting algorithm extends
in a straightforward manner. Suppose the measured feature rf (si) is a corner or other
distinguished point, so that its full displacement νr

i = rf (si) − r(si) must be taken
into account, rather than just the normal component. Then step 4 of the recursive
algorithm in figure 6.7 must be modified to take account of this, as in figure 6.9.

Alternative recursive solution to the fitting problem

For completeness, an alternative to the fitting algorithm described above in figure 6.7 is given
here. It solves exactly the same minimisation problem, but using an alternative set of variables.
Where the algorithm above was based on “information” S, the algorithm here is based on
covariance P . This algorithm will be readily recognised as a special case of a “Kalman filter”
by those who are already familiar with them. This alternative curve-fitting algorithm can also
be explained intuitively. In place of the information matrix Si, this algorithm is expressed in
terms of its inverse Pi = S−1

i (to be interpreted in later chapters as a statistical covariance).
The weighted sum variable Zi is no longer needed; instead successive estimates X̂i, based
on the first i data points, are generated directly. The variable ν′i is a “successive” form of
innovation, the difference between the actual value of the ith measurement and its expected
value based on extrapolation from the previous i−1 measurements, and it is only this difference

132 Chapter 6

Modified iterative step:

4 Iterate, for i = 1, . . . , N :
νr

i = rf (si) − r(si);
hr(si)T = U(si)W ;

Si = Si−1 +
1
σ2

i

hr(si)hr(si)T ;

Zi = Zi−1 +
1
σ2

i

hr(si)νr
i .

Figure 6.9: Recursive fitting algorithm: modification for corner features.

that generates any change in successive estimates X̂i. The proof of equivalence of the two
algorithms is omitted here, but could be found in a standard textbook on statistical filtering.

Computational cost

Both algorithms have computational complexity O(NN2
X), where NX is the dimension of

shape-space, as usual. This is based on the assumption that, for a given shape-space, H−1

and the products U(si)W can be calculated off-line and need not be counted towards the total
computational cost. It is further assumed that N ≥ NX which is normally the case as this
is the minimum value for which S can have full rank. The original algorithm has only one
O(NN2

X) operation, as opposed to two in the alternative algorithm. However, the original
algorithm involves additional matrix inversions which have complexity O(N3

X). This means
that for small NX � N the original algorithm is more efficient, but as NX → N the alternative
algorithm becomes the more efficient.

Example 3

Example 2 is repeated here using the alternative algorithm; of course it should achieve the
same result. The estimate is X̂ = X̂3 = 1, in agreement with the original algorithm.

Fitting spline templates 133

Algorithm:

1. Obtain measurements rf (si) as before.

2. Initialise
P0 = S

−1

X̂0 = X

3. Iterate, for i = 1, . . . , N :
νi = (rf (si) − r(si)) · n(si);

h(si)T = n(si)TU(si)W ;
ν ′i = νi − h(si)T (X̂i−1 − X);
Ki = Pi−1h(si)(h(si)TPi−1h(si) + σ2

i)
−1

X̂i = X̂i−1 +Kiν
′
i;

Pi = (I −Kih(si)T)Pi−1;

4. The best fitting curve is given in shape-space by:
X̂ = XN .

Note that intermediate estimates X̂i are automatically generated by this al-
gorithm.

Figure 6.10: Alternative recursive fitting algorithm.

i νi ν′i Ki X̂i Pi

0 0 1

1 1 1 1
4

1
4

3
4

2 2 7
4

1
5

3
5

3
5

3 3 12
5

1
6 1 1

2

Note also that, as expected, the final value of covariance P3, satisfies P3 = S−1
3 where S3 is

the final information from example 2.

134 Chapter 6

6.4 Examples

B-spline snake

An example of fitting a B-spline snake is given in figure 6.11. Working in a spline

Figure 6.11: Using a snake to capture an outline. For automated planning of robot
grasps (see chapter 1) it is necessary to capture the outline of the part to be grasped. This can
be done even without much prior knowledge of part shape, using a B-spline snake initialised
as an ellipse (left), achieving a good fit (right). (Figure courtesy of Colin Davidson.)

space is appropriate when no strong assumption can be made about the expected
shape. The snake is initialised using moments (as explained in figure 4.6 on page 82)
to obtain a coarse elliptical approximation to the outline. Weak regularisation is used,
just sufficient to stabilise the computation but without unduly biasing the fit. The
low level of regularisation suffices in this case because the background is clean and
featureless.

More stable behaviour may be needed when the background is more cluttered or
the foreground partly obscured or simply outside the search region. Stability can be
achieved by increasing the strength of regularisation as in figure 6.12. In that example,
missing measurements around the fingertips mean that the shape of the fitted curve
is underconstrained. (In fact a minimal regulariser with α = 0.001 is applied simply
to ensure numerical stability). When a significant degree of regularisation (α = 0.1)
is applied, the missing data is satisfactorily interpolated by defaulting to the template
(initial) shape. Regularisation is set to be invariant to Euclidean similarities, to allow
the snake to rotate and translate freely, while maintaining shape constraints. Even

Fitting spline templates 135

(a) (b)

(c) (d)

Figure 6.12: Regularisation stabilises snake fitting. Given an initial snake curve (a) in
which some features (fingertips) fall outside the search region, unregularised fitting gives poor
results (b). Introducing regularisation (with invariance to Euclidean similarities) produces a
good fit (c). This is refined further after iterating the fitting cycle (d).

136 Chapter 6

more accurate fitting is achieved by iterating the fitting process to convergence. At
each successive iteration the fitted shape from the previous iteration is used as an
estimate from which image measurements are made. However the stabilising template
remains constant throughout.

An alternative method of stabilisation is to restrict the displacement of points r(s)
to run along a family of straight lines such as normals, or parallel lines in a chosen
direction. It is simple and effective, but usable only for applications where motion
can be restricted to a fixed family of lines. Surveillance of railed vehicles or traffic
confined to lanes is one example.

Deformable template

At the expense of needing more specific prior knowledge about shape, deformable
templates running in a suitably constrained shape-space generally behave more stably
than snakes. An example of fitting a deformable template in affine shape-space is
shown in figure 6.13. The initial estimated contour was obtained using moments.
Then recursive fitting in affine spaces considerably refines contour shape, as shown.

Rudimentary tracking

Much of the second part of the book concerns tracking shapes in motion and it is
interesting to try applying the curve-fitting algorithm to that problem. Now a curve
must be fitted to each image in a sequence, and an estimated curve is therefore required
for each image. The obvious strategy is to use the fitted curve from one image as the
estimate for the next. This is quite effective, as figure 6.14 shows, provided the normal
search segments are sufficiently long to encompass the lag of the estimated curves.
The faster the motion, the longer search segments need to be. However, longer search
segments have the drawback that tracking becomes more prone to distraction by
background clutter, as the figure shows. There is therefore a trade-off between agility
of motion and density of clutter. The capacity to deal with this trade-off is greatly
expanded by dynamical modelling. If each estimated curve, rather than being a mere
copy of the previous fitted curve, is actually an extrapolation of the motion to date,
tracking performance can be greatly improved, and this is the subject of chapters 9
and 10.

Fitting spline templates 137

Figure 6.13: Deformable template in affine space. From an initial estimate (grey curve,
left) obtained using moments, a cabbage template is fitted to image data over an affine space
to obtain the fit shown (right).

Bibliographic notes

Regularisation, used in this chapter to bias fitted curves towards a default shape, is
a standard algorithmic device for stabilising otherwise unstable or underconstrained
systems of equations (Press et al., 1988). Regularisation has been used a good deal in
Computer Vision (Horn and Schunk, 1981; Grimson, 1981; Ikeuchi and Horn, 1981;
Poggio et al., 1985; Terzopoulos, 1986) and in image processing for “constrained
restoration” of degraded images (Gonzales and Wintz, 1987).

An important aspect of the curve fitter described in the chapter is that it avoids
the very considerable computational expense of applying filters to entire images. Fea-
ture detection is restricted to be one-dimensional, along normal curves (Harris and
Stennett, 1990; Lowe, 1991), and within a region of interest (Inoue and Mizoguchi,
1985) or search region.

The need to use normal displacement, factoring out the spurious tangential dis-
placement is known in vision as the “aperture problem,” is the basis of the visual

138 Chapter 6

Figure 6.14: From fitting to tracking. Recursive fitting is applied to successive images
in a sequence in which a hand moves from right to left. The fitted curve from one image is
used as the initial estimate in the next. With short search segments (left), even slow motion
causes estimated shape to lag sufficiently that the hand falls outside the search region. Longer
search segments (right) may cure this problem, but make tracking more prone to distraction
by clutter (bottom).

“barber’s pole” illusion and has received much attention in the design of algorithms
for analysing visual motion (Horn and Schunk, 1981; Hildreth, 1983; Horn, 1986;
Murray and Buxton, 1990). However, normal displacement alone underconstrains the
motion of a contour — the “aperture problem in the large” (Waxman and Wohn,
1985), though this defect is somewhat mitigated by regularisation.

Curve fitting is done efficiently here by a recursive algorithm, and this is based on

Fitting spline templates 139

recursive least-squares estimation (Bar-Shalom and Fortmann, 1988) which in turn is
an application of the “dynamic programming” principle (Bellman and Dreyfus, 1962)
for optimisation, applied to quadratic, multi-variate minimisation (Jacobs, 1993). Dy-
namic programming was first used with snakes by (Amini et al., 1988), in a discrete
form as opposed to the continuous form described in this chapter. The original snake
paper (Kass et al., 1987) used sparse matrix methods to solve least-squares curve fit-
ting and that is closely related to the recursive algorithm in the case that shape-space
is the spline space SQ. The validation of data by checking the absolute value of innova-
tions is used in a simple form of robust estimator known as an m-estimator (Hampel
et al., 1995). It is a special case from the family of “robust” estimators known as
M-estimators which allow some flexibility in the way outliers are treated. General
M-estimators can be expensive to compute, requiring repeatedly refined regressions
to form the final robust estimate. The simple validation mechanism described in the
chapter, the validation gate (Bar-Shalom and Fortmann, 1988), has the great virtue
of low computational cost and this will be essential for real-time processing of image
sequences in later chapters.

Chapter 7

Pose recovery

In certain three-dimensional applications (chapter 1), such as the 3D mouse in fig-
ure 1.16 on page 20, a shape-vector X is used to compute pose, in that case the
position and attitude of the hand. Similarly, in facial animation, it is desirable to
compute the attitude of the head, independently of expression if possible. The prob-
lem is to convert a shape-vector X, from a planar or three-dimensional shape-space
respectively, into three-dimensional translation Rc and rotation R.

7.1 Calculating the pose of a planar object

In the planar affine space, pose is recovered from a shape-vector X by first obtaining
affine parameters u,M via (4.5) on page 78. Then u,M are used to obtain pose pa-
rameters. This is fairly straightforward under orthographic projection. For large fields
of view however it is necessary to use weak perspective and then the pose-recovery
computation must be elaborated to compensate for the obliqueness of projection in
the periphery of the field of view.

Orthographic projection

First, a solution is presented for the pose of an object under orthographic projection,
suitable for use when the field of view is significantly smaller than 1 radian. Given
a planar affine vector X, the algorithm computes object pose as the position vector
Rc = (Xc, Yc, Zc)T of the object’s centre and the orientation as a rotation R relative
to the reference pose. First the algorithm is given, then a short proof (optional).

142 Chapter 7

1. Compute u and M from
X = (u1, u2,M11 − 1,M22 − 1,M21,M12)T .

2. Compute the eigenvectors v1,v2 and eigenvalues λ1, λ2 (both must be
positive and are ordered so that λ1 ≥ λ2) of the matrix MMT .

3.
Zc = f/

√
λ1

4.

cos θ =
(
Zc

f

)2

detM

5.
(cosφ, sinφ)T = v1

6.
R(ψ) = Sy(1/ cos θ)R(−φ) M

Zc

f

where R(ψ) ≡

 cosψ − sinψ

sinψ cosψ


 and Sy(µ) ≡


 1 0

0 µ


 .

7.
Combined rotation: R = Rz(φ)Rx(θ)Rz(ψ).

8.
Translation: Rc = (Xc, Yc, Zc)T where Xc = u1Zc/f, Yc = u2Zc/f.

Figure 7.1: Algorithm for recovery of the pose of a planar object.

The algorithm is summarised in figure 7.1 and a commentary follows. Given u,M
from step 1 of the algorithm, we first work on M to recover the object’s attitude as
represented by the rotation matrix R. It is well known that a three-dimensional rota-

Pose recovery 143

tion can be decomposed in terms of three Euler angles θ, φ, ψ appearing in a sequence
of three standard rotations. It is particularly convenient here to use a decomposition
that is aligned with the image plane:

R(φ, θ, ψ) = Rz(φ)Rx(θ)Rz(ψ). (7.1)

This should be read from right to left as a z-rotation through an angle ψ followed by
a rotation through angle θ about the x-axis and finally a z-rotation through angle φ,
as illustrated in figure 7.2. Our algorithm recovers θ, φ and ψ so that the rotation
matrix can be calculated as in (7.1). First Zc, φ, θ and ψ are computed in steps 3–6.
Note that a redundancy in φ arises from the indeterminacy of the sign of eigenvalue
v1: for a given rotation R, φ can equally well be replaced by φ+180o (the substitution
φ → 180o + φ, θ → −θ, ψ → 180o + φ leaves R unchanged). Finally, the focal length
f of the camera is known, so the image-plane components of translation Rc can be
recovered directly in step 8. The result of applying this algorithm to a sequence of
images of a moving hand are shown in figure 7.3.

Ambiguities

There are two kinds of ambiguity in the recovered parameter. The first is a straight-
forward indeterminacy in linear scale. If (Xc, Yc, Zc) was doubled and accompanied
by a doubling in size of the object, there would be no visible effect on the image
contour. The scale factor is fixed here by our convention in orthographic perspective
that Zc = f in the standard view.

The second and more complex ambiguity is apparent in step (4) above: since
cos θ = cos(−θ), there must be two possible solutions ±θ. Unlike the indeterminacy
of φ which represents simply an alternative representation of a given physical trans-
formation, this is a genuine ambiguity, a reversal as illustrated in figure 7.4. In the 3D
mouse application, for example, this could result in a “flip” of the object controlled
by the mouse. One practical solution is to arrange for the camera to be oblique to
the table so that the hand avoids the “singular” orientation θ = 0, when image and
object planes are parallel. Then at each time-step, the value ±θ is chosen which give
θ, φ and ψ closest to their values at the previous time-step.

Derivation of pose-recovery algorithm. The key point is that the effect of a rotation
Rx(θ), on the image of a planar object lying on an xy plane, is to compress the image along

144 Chapter 7

x
y

z

R z (30 o)

image plane

object

x
y

z

R x (40 o)x
y

z

x
y

z

R z (50 o)

Figure 7.2: Euler angles. The figure shows Euler angles to describe rotations in the camera
coordinate frame. A general rotation R is expressed as a sequence (7.1) and the case φ = 50o,
θ = 40o, ψ = 30o is illustrated.

Pose recovery 145

Figure 7.3: Computing pose. The outline of a hand is tracked in a planar affine
shape-space and the pose-recovery algorithm described above is applied. Computed pose is
displayed using the “target” icon in the corner of each image.

the y-axis, that is to apply a scaling transformation Sy(cos θ). In that case, the affine image
transformation due to the Euler angle transformations (7.1) and to distance scaling is:

M =
f

Zc
Rz(φ)Sy(cos θ)Rz(ψ).

The algorithm given above is simply a decomposition of this sequence, using the fact that

MMT =
(
f

Zc

)2

Rz(φ)Sy(cos2 θ)Rz(−φ)

which is in diagonal form.

146 Chapter 7

Figure 7.4: Ambiguity of pose recovery. A hand in two alternative positions with equal
and opposite slant (top row) gives rise to almost identical outline contours when viewed from
above (bottom row).

Pose recovery 147

Weak Perspective projection

The pose-recovery method for orthographic projection can be simply extended for the
case of weak perspective projection, when the field of view may be large but the object
is still small. The most straightforward approach is to introduce a virtual orthographic
image as in figure 7.5. The pose-recovery algorithm extended for weak perspective is

camera plane

object

real image

virtual orthographic image

z

x

y

α

Figure 7.5: Pose correction for weak perspective. Under weak perspective, pose recovery
proceeds as in the orthographic case, on a virtual orthographic image as shown.

148 Chapter 7

1. Compute u and M from
X = (u1, u2,M11 − 1,M22 − 1,M21,M12)T .

2. Compute polar angles α, β:
α = arctan(|u|/f), β = arctan(u).

3.

M ′ = Sx(secα)R(−β)M where Sx(µ) ≡

 µ 0

0 1




(R(−β) is represented here as a 2 × 2 matrix.)

4. Apply steps 2–7 of the orthographic algorithm of figure 7.1 to M ′ (in
place of M), giving R′, Z ′

c (in place of R,Zc).

5.
R = Rz(β)Ry(α) R′.

(These rotation matrices are now all 3 × 3)

6. Translation:
Rc = (Xc, Yc, Zc)T where Zc = Z ′

c cosα, Xc = u1Zc/f, Yc = u2Zc/f.

Figure 7.6: Recovery of pose of a plane under weak perspective.

outlined in figure 7.6. First, express the image-translation vector u in terms of polar
angles

α, − π

2
≤ α ≤ π

2
and β, − π ≤ β ≤ π,

that is, so that

u = f tanα


 cosβ

sinβ


 . (7.2)

Pose recovery 149

The next step 3 is to replace the affine matrix M by the affine matrix M ′ on the virtual
orthographic plane. Then the orthographic pose-recovery algorithm is applied to M ′

in place of M , to give a three-dimensional rotation matrix R′ (subject, of course, to
reversal ambiguity) and translation in depth Z ′

c, both in a virtual orthographic frame.
Finally, these parameters are transformed back into the camera coordinate frame in
steps 5 and 6.

7.2 Pose recovery for three-dimensional objects

The planar affine space survives intact as a subspace in the three-dimensional affine
case (see (4.17) on page 89), so the pose-recovery method for the planar case continues
to be usable, in principle, for the three-dimensional problem. Coefficients of the first
6 elements of the configuration vector X could be used to obtain u,M as before and
the planar pose-recovery algorithm would compute pose Rc, R correctly, subject to
the usual ambiguities. However, the planar algorithm does not make optimal use
of the information now available. The additional pair of shape parameters contain
valuable parallax information which is complementary to the information available in
the planar case. The planar algorithm is at its least accurate close to the standard
pose. The extreme case is the singularity at the standard pose itself, which gives rise
to the ambiguity in orientation discussed earlier. In contrast, the additional parallax
information is at its most useful precisely at the singularity, improving accuracy of
recovered pose, and removing ambiguity, as figure 7.7 shows.

Once Qz
0 has been estimated for a given object (see below), the recovery of pose

from some outline X in an image of the object is relatively straightforward — the
algorithm is given in figure 7.8. Step 1 computes planar affine parameters u,M and
parallax parameter v from the shape-vector. Recovery of R,Zc in steps 2 and 3 is
based on solving (4.16) on page 89, expressing R in terms of its rows R1, R2, R3, which
must be unit vectors, and mutually orthogonal. The matrix R̂ resulting from step 3
need not be precisely orthogonal so step 4 finds the closest orthogonal matrix by
“singular value decomposition” (appendix A.1) of R̂. Finally, translation is calculated
as in the planar affine case.

Figure 7.9 illustrates that the pose of a three-dimensional object can be recovered
effectively over a wide range of views, using parallax as in the algorithm above.

150 Chapter 7

Figure 7.7: Parallax in pose recovery. The poses of the top row of wheels, complete with
axles, are easily discriminable. When parallax information is omitted by removing the axles, as
on the bottom row, the orientations of the first two wheels are discriminable with difficulty and
the last two actually appear identical because of the planar orientation ambiguity phenomenon.

Estimating Qz
0

In principle, it would be possible to rotate the object, from its standard view, through
90o about the y-axis, and the new view would be


Qx

0

Qz
0




from which Qz
0 could be obtained. This would be possible with a bent wire object,

but with a solid object such as the leaves above only a modest angle of rotation is
possible without alterations in hidden line structure. Therefore, practically, a method

Pose recovery 151

1. Compute u, M and v from the shape-vector X, using:
X = (u1, u2,M11 − 1,M22 − 1,M21,M12, v1, v2).

2.
Zc = 2f [|(M11,M12, v1)| + |(M21,M22, v2)|]−1

3.

R̂3 = R̂1 × R̂2 where


 R̂1

R̂2


 =

Zc

f
(M | v) .

4. Enforce orthogonality:
R = UV where R̂ = UDV

(in which D should be approximately the identity I3).

5.
Translation: Rc = (Xc, Yc, Zc)T where Xc = u1Zc/f, Yc = u2Zc/f.

Figure 7.8: Recovery of pose using parallax.

is required for estimating Qz
0 from a rotation R through a modest angle θ about an

axis lying approximately parallel to the image plane. It is assumed that the object
does not translate significantly in depth (Z) during the rotation.

The rotated view r1(s) = U(s)Q1 is a transformed version of standard views:

r1(s) =
f

Zc


u1 +R2×3




X0(s)

Y0(s)

Z0(s)





 ,

in which Z0(s) is as yet unknown. The translation fu1/Zc can be calculated simply

152 Chapter 7

Figure 7.9: Pose recovery using the three-dimensional affine algorithm. The pose
can be accurately recovered over a wide range of transformations, including those near the
planar affine degeneracy at the standard pose.

as the centroid

f

Zc
u1 = r1 =


Qx

1 · 1

Qy
1 · 1


 .

Then Z0(s) can be estimated from

(aTa)Z0(s) = aT

[(
Zc

f
r1(s) − u1

)
−R2×2r0(s)

]

Pose recovery 153

in which a = (R13, R23)T . The resulting Z0(s) is a spline that can be expressed in
terms of its control points as

Qz
0 =

1
aTa

(aT ⊗ I)
[(

Zc

f
Q1 − u1 ⊗ 1

)
− (R2×2 ⊗ I)Q0

]
(7.3)

where I is the NB ×NB identity matrix and ⊗ is the “Kronecker product” operation
(see appendix A.1).

A more accurate method

If the rotation matrix R in (7.3) is not accurately known, Qz
0 will be imperfectly estimated.

The quality of the estimate can be improved by using more views and a more sophisticated
algorithm. Suppose the views are (Qx

n,Q
y
n), n = 1, . . . , N , then the following simultaneous

equations hold: 
 Qx

n

Qy
n


− f

zn





 xn1

yn1


+ Tn




Qx
0

Qy
0

Qz
0







= 0 (7.4)

where (xn, yn, zn, Tn), n = 1, . . . , N and Qz
0 are unknown. Here (xn, yn, zn) is the object

translation in view n and Tn is the 2 × 3 rotation matrix. If f is only known approximately,
it can also be treated as an unknown in the system. The unknowns can be estimated using
any non-linear minimisation method, for example conjugate gradient descent. Convergence is
quick, and likely to find the correct local minimum, if the unknowns are initialised approx-
imately. An alternative linear algorithm which does not rely on careful initialisation, is the
“image-stream factorisation” algorithm of Tomasi and Kanade. This works by approximating
the image stream, laid out as a matrix

(
Qx

1 Qy
1 Qx

2 Qy
2 . . .

)

to have its theoretical rank (4 in this case), using singular value decomposition. Once this
is done, Qz

0 could be calculated from the approximated image stream, subject to a certain
fundamental affine indeterminacy.

7.3 Separation of rigid and non-rigid motion

In chapter 4 shape-spaces for combined rigid and non-rigid motion were constructed
using key-frames. Such spaces are often too big for efficient or robust shape-fitting;

154 Chapter 7

they prove still to be useful for interpretation of shape, decomposing displacements
into rigid and non-rigid components. This is done by projecting a fitted shape Q onto
the shape-space and applying “Singular Value Decomposition” (SVD).

The decomposition algorithm is given in figure 7.10 (and justified below). The

Algorithm:

Given a fitted spline curve Q:

1. Express Q in the key-frame basis:(
u1, u2, {Ŷ j

i , i = 0, 1, . . . , j = 1, 2, . . .}
)

= W+Q,

where W is as defined in (4.21) on page 92.

2. Treating Ŷ j
i as components of a rectangular matrix Ŷ , apply SVD:

Ŷ = UDV.

3. Approximate Y as a rank 1 matrix
Y = UD∗V

where D∗ is D with all but the largest singular value set to 0.

4. Recovered pose is given by the shape-vector
X = (u1, u2, Y0

1, Y0
2, . . .)T .

5. Recovered non-rigid deformation is expressed as a contour in standard
pose:

Qd = Q0 +
∑

i

λiQi where λi =
Yi

1

Y0
1 , i = 1, 2, . . .

and Qi are key-frames as before.

Figure 7.10: Algorithm for decomposition of rigid and non-rigid displacement.

algorithm is illustrated in figure 7.11 for the problem of separating facial expression
from head pose. Rigid transformations are modelled here as 3D affine, including

Pose recovery 155

Figure 7.11: Pose-invariant transmission of facial expression. Separation of non-rigid
from rigid motion by SVD is used here to extract the facial expression of an actor. The
extracted expression is displayed on this cat caricature in a fixed pose, and can be seen to be
independent of the pose of the actor’s head. (Figure courtesy of Benedicte Bascle.)

parallax to accommodate the modest departure from co-planarity of tracked eyebrows,
mouth and facial creases. Expression is represented in three-dimensional coordinates
whose axes are defined by key-frames for smile, surprise and disgust, relative to a
neutral expression.

156 Chapter 7

Derivation of decomposition algorithm. Shape parameters Yi
j , i = 0, . . . , Nk, j =

1, . . . , Nr are highly interdependent, in principle, because, given the structure of shape-space
in (4.21) on page 92, Y is a product of two vectors:

Yi
j = λiXj+2,

where λ0 = 1 is the weight of the template Q0 and λi is the weight of key-frame Qi for
i = 1, . . . , Nk. (The index j+2 is an offset to allow for two image-translation parameters.)
Thus Y should have rank 1, and this is enforced by approximating Ŷ to rank 1 in the SVD
step. Note that one should expect D to contain one dominant singular value, indicating that
Y is a good approximation to Y ∗.

Bibliographic notes

Recovery of the pose of an object from its shape-space vector is based on an eigenvalue
method for recovery of the pose of a textured surface in (Blake and Marinos, 1990).
The “image-stream factorisation” algorithm (Tomasi and Kanade, 1991) uses singular
value decomposition (SVD) (Barnett, 1990) of the image stream for motion analysis.
Here, an adaptation of the algorithm was suggested for calibration of pose recovery
using parallax. The algorithm for decomposition of rigid and non-rigid displacement
is yet another application of SVD to bilinear decomposition problems in vision, oth-
ers being structure and motion (Tomasi and Kanade, 1991), and shape and shading
(Freeman and Tenenbaum, 1997).

Part II

Probabilistic Modelling

Chapter 8

Probabilistic models of shape

The purpose of this second part of the book is to put Active Contours into a prob-
abilistic setting. As chapter 2 claimed, the probabilistic framework is essential for
dealing with classes of shapes and motions. It is valuable even with deformable tem-
plates, in static problems, to describe classes of shapes. Then probabilistic modelling
is extended to dynamic problems, to mesh with the powerful Kalman filtering formal-
ism, in which cumulative temporal uncertainty about shape is counterbalanced by the
inflow of measurements from an image sequence.

This chapter concentrates on the application of probabilistic models to static prob-
lems. The ideas discussed so far about fitting curves by regularisation are to be
re-interpreted probabilistically. The deterministic approach of chapter 6 aimed to
generate a unique estimate X̂ of curve shape from data rf (s), moderated via regu-
larisation towards a template X. Now, in a more general probabilistic setting, X̂ is
merely one property, typically the mean or mode, of an entire probability distribu-
tion. The solution to the fitting problem is therefore no longer just a single value,
but a whole family of possible curves. In that case, the variance of the distribution
is a measure of how accurate the fitted curve is and can be used to generate a range
of plausible fitted curves. One application for this is to sweep out the search region
for image-processing operations. Another application, developed in later chapters on
tracking, is to achieve a fusion of shape information accumulated over time and the
latest visual measurements.

The distribution for curve shape X obtained from probabilistic fitting is expressed
as a posterior density p(X|rf). This is the conditional probability density for the curve

160 Chapter 8

shape X given the observed data rf (s). According to Bayes’ formula for densities (see
appendix A.3) the posterior density can be obtained as a product of a prior density
p0(X) and an observation density p(rf |X):

p(X|rf) ∝ p(rf |X)p0(X). (8.1)

Note that although p(rf |X) is a probability density over rf , in this formula rf is
considered fixed and it is the variation of p(rf |X) with X — the “likelihood” of X —
that is of interest. The prior density is the probabilistic mechanism for regularisation.
For example, the norm-squared regulariser α‖X − X‖2 used in chapter 6 becomes a
Gaussian density function p(X) whose mean is the curve X. The other term ‖r−rf‖2

in the regularisation problem, conveying the influence of the data, also becomes a
Gaussian density whose value is high when the hypothesised curve r fits the data
closely. Then Bayes’ rule simply combines the competing influences of the prior and
the observations into a single density, also Gaussian.

Note that Bayesian principles of image interpretation reach far beyond Gaussian
modelling. However, the Gaussian is the simplest case and has attractive properties
that facilitate efficient computation. Consideration of more general distributions is
left until much later in the book, in chapter 12.

8.1 Probability distributions over curves

The Gaussian prior probability density for curves in shape-space S consistent with
the general quadratic regulariser (X − X)TS(X − X) is:

p0(X) ∝ exp−1
2
(X − X)TS(X − X), (8.2)

where the matrix S is the “information” matrix introduced in chapter 6. Note that
probability density decreases as the curve X deviates further from the mean X of
the distribution, as expected. Probabilistically, S has a particular interpretation:
its inverse P0 = S

−1, if it exists, is a covariance matrix (appendix A.3), a multi-
dimensional measure of the variability of curve shape across a distribution. It can be
used to compute the positional variability of a given point r(s) on a curve as a 2 × 2
covariance matrix

Pr(s) = U(s)WP0W
TU(s)T , (8.3)

Probabilistic models of shape 161

in a two-dimensional Gaussian distribution N (r(s), Pr(s)). In general, this distribu-
tion can be depicted as an ellipse whose axes are eigenvectors of Pr(s) and whose
semi-axes, representing positional variances, are the eigenvalues. The spatial variance
Pr(s) is represented by an uncertainty ellipse giving a mean-square displacement

ρ2
0(s) = tr(Pr(s)) (8.4)

where tr(·) denotes the trace of a matrix. The mean-square displacement along the
entire curve can then be computed easily (the proof follows below) as

ρ2
0 = tr(P0H). (8.5)

An isotropic prior, uniform in s, with mean-square displacement along the curve
ρ2

0 is projected onto shape-space S as

p0(X) ∝ exp−NX

2ρ2
0

‖X − X‖2.

This can be seen by considering its information matrix in shape-space, which is

S =
NX

ρ2
0

H . (8.6)

From (8.5) it is apparent that the mean-square displacement along the curve is

tr
(
ρ2

0

NX
H−1H

)
=

ρ2
0

NX
tr(INX

) = ρ2
0,

as required.
Spline space is an interesting special case in which the covariance at a given point

r(s) is Pr(s) ∝ I2, a multiple of the identity matrix, so that positional error at each
point is isotropically distributed (see below for the derivation). The average displace-
ment of r(s) from its mean r(s), is ρ0(s) and in fact ρ0(s) ≈ ρ0 for all s. This suggests
circular confidence regions for r(s) (figure 8.1). (The average pointwise displacement
ρ0(s) varies a little with s, relative to ρ0 — by around ±10% , for instance, on a
regular, closed, quadratic B-spline.)

In chapter 6, there was some discussion of the way in which image-processing
operations are applied along curve normals. In the interests of efficiency, processing
is limited to a segment of each normal within a search region. The probabilistic

162 Chapter 8

0 0.5 1length scale

r (s)
_

Figure 8.1: Probability distribution for curves. An example of a Gaussian probability
distribution in spline space with mean shape r(s) and uniform, isotropic covariance P0. The
distribution of the position of a given point r(s) is Gaussian, with circular confidence intervals
of radius 1.73ρ0(s) (95% confidence). The normal displacement has a Gaussian distribution
with standard deviation ρn(s) and ρn(s) = ρ0(s)/

√
2 in the special case of this example.

The search segments shown (arrowed) are intervals of length ±2ρn(s) for approximately 95%
statistical confidence. (Average displacement ρ0 = 0.14 here.)

framework provides a rationale, using the prior distribution, for fixing the search
segment along the normal n(s) at r(s). The normal component of displacement of the
curve is Gaussian with mean 0 and standard deviation ρn(s) where

ρ2
n(s) = n(s)TPr(s)n(s).

or, directly in terms of shape-space covariance P0,

ρ2
n(s) = h(s)TP0h(s) (8.7)

where h(s) was defined in (6.15) on page 124 in chapter 6. In the special case of
the norm-squared prior (S ∝ H) in spline space, the isotropy of Pr(s) means that
ρn(s) = ρ0(s)/

√
2.

Probabilistic models of shape 163

A reasonable search segment is r(s) ± 2ρn(s)n(s), corresponding to a confidence
interval (for the one-dimensional Gaussian distribution) at a level of approximately
95%. Such search segments are illustrated in figure 8.1. This idea is elaborated later
for validation gates, taking account not only of the prior but also the observation
density.

Derivation of average radius and isotropy results

The formula (8.5) for the root-mean-square displacement for the covariance ellipse is derived
first. Pointwise, the mean-square displacement is ρ2

0(s) whose average value along the curve,
from (8.4), is

1
L

∫ L

0

tr (Pr(s)) ds

=
(8.3)

1
L

∫ L

0

tr
(
U(s)WP0W

TU(s)T
)
ds

= tr

(
P0W

T

[
1
L

∫ L

0

U(s)TU(s) ds

]
W

)

=
(3.23)

tr
(
P0W

TUW)
=

(4.7)
tr (P0H) ,

as required.
The special case of the norm-squared prior (8.6) in spline space S = SQ was considered in

which W = INQ
and the pointwise covariance is

Pr(s) = U(s)P0U(s)T .

Since P0 ∝ U−1,
Pr(s) ∝ (B(s)TB−1B(s))I2

— a multiple of the identity matrix as claimed.

Random sampling

A graphic illustration of a statistical family of curves can be made by sampling ran-
domly from its distribution. Random curve sampling is a practical technique in its
own right, partly as a debugging aid to check whether a particular probabilistic prior
model of shape is appropriate to a given application. More importantly it forms the

164 Chapter 8

basis of some powerful algorithms for recognising patterns, used when the posterior
density for shape given data is too complex to be represented exactly and is repre-
sented instead by a set of samples.

Given an NX -dimensional Gaussian distribution N (X, P) in shape-space with
mean X and covariance matrix P , a random variate X from the distribution can
be generated by taking a vector w of NX independent “standard” normal variables
each distributed as N (0, 1) and transforming w linearly:

X = Bw + X (8.8)

where
B =

√
P , (8.9)

a matrix square root with the property that BBT = P (Note that this does not
uniquely specify B, but any admissible B serves equally well, and generates the de-
sired distribution; see also appendix A.1). This technique is used to illustrate prior
distributions of curves in spline space SQ (figure 8.2) and in various shape-spaces
(figure 8.3). As before, the distributions are given by norm-squared densities over
shape-space.

0 0.5 1length scale

Figure 8.2: Sampling from curve families. Samples are drawn at random (left) from
a uniform, isotropic, Gaussian distribution in the spline space SQ such that ‖r(s) − r(s)‖
has a root-mean-square value of 0.2 length units. (Mean shape r is shown dashed). Parallel
curves depicting confidence intervals for normal displacement (spatially averaged), at 95%
significance, contain the random curves as expected (right).

Probabilistic models of shape 165

0 0.5 1length scale

Figure 8.3: Random sampling in shape-space The families of bottle-outlines shown
have mean shape (top) and a uniform, isotropic, Gaussian distribution in shape-space with
root-mean-square displacement of 0.3 length units. Euclidean similarities (left); affine space
(right).

166 Chapter 8

8.2 Posterior distribution

The aim of the chapter is to express curve fitting in terms of the posterior distri-
bution for shape X given observed data rf . Realistically, rf must be obtained by
processing image data, and that is addressed in the next section. For now, the pos-
terior is illustrated with artificial data, using the random sampling method. As at
the start of chapter 6, the artificial image feature is modelled as a spline curve with
control-vector Qf . What was characterised there, in (6.3) on page 117, as fitting by
regularisation, becomes the construction by Bayes’ formula (8.1) of the posterior dis-
tribution p(X|Qf), given a Gaussian prior p0(X) and an observation density p(Qf |X).
The measurement term ‖Q−Qf‖2 in the regularisation problem is interpreted as an
observation density

p(Qf |X) ∝ exp−NX

2ρ2
f

‖Q − Qf‖2 (8.10)

where a variance constant ρ2
f/NX has been included here to represent explicitly the

uncertainty of measurements. The distance constant ρf can be interpreted as the av-
erage displacement, at a given point on the fitted curve, due solely to observation error
and without any influence from the prior. Finally, multiplying prior and observation
densities, in accordance with Bayes’ formula, the posterior distribution proves to be
a Gaussian

X|Qf ∼ N (X̂, P). (8.11)

Its mean X̂ is precisely the solution (6.7) to the earlier regularisation problem, adjusted
now to allow for the observation variance constant:

X̂ = S−1

(
SX +

NX

ρ2
f

HXf

)
(8.12)

where
S = S +

NX

ρ2
f

H. (8.13)

The estimate X̂ is also known as a “Maximum A Posteriori” (MAP) estimate because
it is the value of X at which the posterior probability density p(X|Qf) achieves its
peak value. The covariance of the posterior distribution is P = S−1, and S, the total
information matrix for the posterior, is just the sum of information in the prior and
observation distributions. (The derivation of the posterior distribution is essentially
a replay of the derivation on page 118 of the solution to the regularisation problem.)

Probabilistic models of shape 167

The posterior distribution for the curve-fitting problem of figure 6.2 on page 119
can be illustrated by random sampling. Again, regularisation is made invariant to
transformations in a subspace Ss. As in chapter 6, this is represented probabilistically
by modifying the information matrix (8.6) for a uniform, isotropic, Gaussian prior
using a projection Ed outside the invariant subspace:

S =
NX

ρ2
0

EdTHEd. (8.14)

This has the effect of producing a prior distribution that is invariant to Euclidean
similarities so that

p0(X + Xs) = p0(X) for any Xs ∈ Ss.

The posterior distribution, illustrated by random sampling in figure 8.4, clearly shows
the likely range of variability of possible solutions, something that regularisation alone
could not convey. This is also reflected mathematically by the fact that there is an
extra constant in the system. As before there is a regularisation constant α which is
now a ratio of the coefficients of the information matrices for the observation and for
the prior:

α = ρ2
f/ρ

2
0

and which determines the mean X̂ of the posterior distribution. In addition there
is now also the spatial variance parameter ρ2

0 for the prior which also affects the
variability of fitted curves as modelled by the posterior distribution.

Finally, exploiting the additivity of information in (8.13), a mean spatial variance
ρ2 for the posterior can be computed from

1
ρ2 =

1
ρ2

0

+
1
ρ2

f

and is exact if there is no invariant subspace (Ss = 0), and otherwise is a lower bound
on mean variance. A confidence region based on ρ is shown in figure 8.4.

Note that the matrix S in (8.14) has become singular, so that the covariance matrix P0 does
not exist and the prior density p0 cannot formally be normalised. In fact p0 can still be
treated as a consistent Gaussian distribution. It consists of a valid Gaussian density restricted
to shape-space S � Ss excluding the invariant subspace Ss, together with a uniform density

168 Chapter 8

Figure 8.4: Sampling from the posterior Data (top) is given, together with a prior over
spline space with the Euclidean similarities as an invariant subspace (to allow free rotation and
translation). Curves sampled from the posterior distribution sweep out a distribution (left),
whose mean (dashed line) is simply the regularised estimate obtained in chapter 6 (figure 6.2 on
page 119), with α = 0.5. The sampled curves (right) lie comfortably inside a 95% confidence
interval.

Probabilistic models of shape 169

over Ss. It is the uniform density that cannot be normalised and gives rise to unbounded
covariance. We could treat it formally as a sequence of Gaussians of increasing variance,
understanding that any expression incorporating p0 will be evaluated in the limit, where one
exists. In fact this is achieved for our purposes simply by applying additivity of information
to S just in the same way as for a non-singular S. The result is a posterior Gaussian whose
covariance generally exists and which can be normalised.

8.3 Probabilistic modelling of image features

The example above of a posterior distribution is a contrived one, for tutorial purposes,
driven by ideal data in the form of a spline curve Qf . In chapter 6, methods were
developed for fitting to real data rf in the form of a curve sampled from an image. The
importance of using only the normal component of displacement was explained. Now
the probabilistic approach needs to be developed to encompass normal displacements
in real image data.

As in the previous section, the data-term in the regularisation problem can be
interpreted probabilistically, but now based on normal displacement to give an obser-
vation density:

p(rf |X) ∝ exp−NX

2ρ2
f

‖r − rf‖n
2 with r(s) = U(s)(WX + Q0). (8.15)

It can be shown (see below) that ρ2
f is the contribution to mean-square value of the

normal displacement (r − r) · n, in the fitted curve, due solely to measurement error.
Now the discrete form (6.13) from chapter 6 for ‖r − rf‖n

2 can be used, giving
approximately:

p(rf |X) ∝ exp− 1
2σ2

N∑
i=1

[(rf (si) − r(si)) · n(si)]
2 . (8.16)

where

σ = ρf

√
N

NX
. (8.17)

One interpretation of this observation density is in terms of the variability of
individual measurements. Suppose the marginal density of a single measurement

[rf (si) − r(si)] · n(si)

170 Chapter 8

were a Gaussian N (0, σ2) variable. Then the joint density (8.16) could be interpreted
as treating the data rf as a series of sampled image features

rf (si) ∼ N ((r(si), σ2) (8.18)

with mutually independent Gaussian distributions. To some extent such independence
is plausible but it depends rather on what is the chief source of the variability in image-
feature measurements. If the variability were thought to derive from noise, for example
electrical or optical noise at individual pixels, it is probably defensible to regard noise
sources at neighbouring pixels as independent; even then, noise due to lighting flicker
(especially fluorescent lighting) or power supply ripple would be highly correlated
across pixels. In practice, however, the variability in feature position due to such
noise is negligible. The dominant sources of variability reflect grosser discrepancies
than mere device noise from the camera.

• Imperfections in the shape-space model mean that the image outline rf will not
lie entirely in the shape-space S. The difference

e(s) = rf (s) − U(s)(WXf + Q0)

between the outline and its projection onto shape-space acts as spatially corre-
lated noise.

• Background texture and occasional obscuration by passing objects will cause
features to be picked up by image processing that do not belong to the modelled
object. Such errors may be gross and, again, spatially correlated.

The result is that statistical independence between neighbouring rf (si)|X is plausible
only if features are not sampled too densely, and this is a limitation of the observation
model (8.15). It is therefore important to note that the interpretation of (8.16) in terms
of statistically independent measurements rf (si) is by no means the only consistent
interpretation (see discussion at the end of this section).

Algorithm to construct the posterior

Construction of the posterior density p(X|rf) from image measurements rf (si), i =
1, . . . , N uses precisely the recursive fitting algorithm from chapter 6 (figure 6.7 on

Probabilistic models of shape 171

page 127), but now interpreted probabilistically. The algorithm computes an “aggre-
gated observation” Z and the associated statistical information for estimation of X is
S, also output by the algorithm. In fact

Z|X ∼ N (SX, S),

so that Z is an unbiased estimator for SX (rather than for X directly). Its covariance
is in fact S (sic), following from the fact that the statistical information in S−1Z is S.

The posterior distribution is a Gaussian

X|Z ∼ N (X̂, P) where P = (S + S)−1. (8.19)

An example of a posterior constructed in this way from an image is given in figure 8.5.

Figure 8.5: Constructing a posterior distribution from an image. The image data
(left) is shown overlaid with a broad search region determined by the chosen prior. When
combined with image observations, a relatively tight posterior distribution results, illustrated
here by randomly sampled curves and 95% confidence region (right).

172 Chapter 8

Independence of measurements

The functional form of the density p(rf |X) does not in fact uniquely determine the conditional
distribution for observations until a parameterisation is specified for rf (s), the image feature.
For example rf (s) could be modelled as a spline with parameters Qf of dimension Nf . Then
the conditional density can be used to compute probabilities via integrals of the form

∫
p(rf |X) dQf .

To examine the question of independence of the rf (si), the conditional density must be trans-
formed from the Qf parameterisation to a new parameter set (rf (s1), . . . , rf (sN)). This could
be done (without loss of generality) by expressing the new parameters in terms of the first N
components in the vector Qf , and integrating over the remaining Nf −N components. This
is possible only if N < Nf . Otherwise there exists no density in the new variables, let alone an
independent one. This is intuitively reasonable. When the underlying parameterisation Qf of
the image curve has relatively few degrees of freedom (Nf is small), this represents an image
curve with strong spatial correlation, such as a spline with few control points. In that case,
successive measurements made on the curve cannot be mutually independent. To summarise,
the form of (8.16) does not force the deduction that individual image measurements rf (si) are
independent. This conclusion is important to the operation of the validation gate, discussed
below.

Mean-square normal displacement

It was claimed above that ρ2
f is the mean-square value of the normal displacement (r− rf) ·n.

This could be proved directly by integration, as was done earlier for ρ0 in the norm-squared
prior. A concise alternative is to appeal to the well-known property of Boltzmann distributions
in statistical mechanics for random systems whose energy U(X) is a quadratic function of
parameters X and is distributed as p(X) ∝ exp−U . The mean energy of such a system is
simply U = NX/2, where NX is the number of degrees of freedom of the parameter set.

8.4 Validation gate

The validation gate was introduced in chapter 6 (section 6.3) as a mechanism for
detecting outliers, features that are misplaced or missing when, for instance, part of
an object is obscured. The idea was to test the innovation νi to ensure that it was not
too large; the difficulty was to decide how large is too large. Now in the probabilistic
framework, there is a basis for making this test as a statistical hypothesis test on

Probabilistic models of shape 173

the innovation, whose Gaussian distribution is known. The innovation (6.14) can be
expanded as

νi = [r(si) − r(si)] · n(si) + [rf (si) − r(si)] · n(si),

in which the first term has a N (0, ρ2
n(s)), distribution, from (8.7). The second term

is a little more difficult to deal with. In the case that the measurements rf (si) are
considered independent, it is Gaussian N (0, σ2) from (8.18). At the other extreme,
in the limit of high spatial interdependence of measurements, its variance should tend
towards 0. This means that

νi ∼ N (0, ρ2(s)) where ρ2
n(s) ≤ ρ2(s) ≤ ρ2

n(s) + σ2. (8.20)

A conservative assumption of high spatial dependence would suggest

ρ(s) = ρn(s). (8.21)

The distribution of the innovation suggests a test that if |νi| > κρ(s) then the
measurement rf (s) is invalidated. Taking the default value κ = 2, at approximately
95% statistical significance the measurement is regarded as an outlier. In practice
this is implemented by using a search segment (figure 8.1) of length ρ(s) so that when
|νi| > 2ρ(s), no feature will be found. The recursive fitting algorithm of chapter 6 can
be modified to take account of outliers. The iterative step in the original algorithm
(figure 6.7 on page 127) is rewritten to ignore outliers, as in figure 8.6.

Note that the modified algorithm requires that S have full rank and that excludes
the use of an invariant subspace in the prior which always makes S singular. This
is a real and reasonable limitation. The idea of the invariant subspace is that it
allows certain shape variables to be unconstrained. In that case, the absolute position
of a given point r(s) on the curve is also unconstrained by the prior (even though
constraints may apply to the relative positions of pairs of points). Validity checks
are only effective when the constraints imposed by the prior on individual points are
reasonably tight. This requires the prior on the shape X as a whole to be reasonably
tight — none of the eigenvalues of S should be too close to 0. The effect of outlier
rejection on fitting is illustrated in figure 8.7.

8.5 Learning the prior

The importance of a prior distribution is that it draws interpretations of data towards
the more plausible shapes in a class of curves. The value of such stabilising behaviour

174 Chapter 8

Iterative fitting step

Iterate, for i = 1, . . . , N :

νi = (rf (si) − r(si)) · n(si);

h(si)T = n(si)TU(si)W ;

ρi =
√

h(si)TPh(si);

If (|νi| < κρi) then

Si = Si−1 +
1
σ2

i

h(si)h(si)T ;

Yi = Yi−1 +
1
σ2

i

h(si)νi;

Else

Si = Si−1; Yi = Yi−1;

Figure 8.6: Curve fitting with outliers. The recursive curve-fitting algorithm in figure 6.7
on page 127 can be modified to ignore outliers. Its iterative step is replaced by the one shown
here. The search-line length factor is taken to be κ = 2 by default. (Note that P = S

−1
needs

to have been computed at the start of the algorithm, and that S must therefore be of full rank.)

is only as good as the prior model itself, embodied by the coefficients in the information
matrix S. So far, we have proposed priors based on uniform, isotropic error (S ∝ H)
and a modification that allows for an invariant subspace. These are reasonable choices
if little is known precisely about the class of curves. If, however, a more specific
prior could be obtained from actual snapshots of a curve in a series of representative
configurations, stabilisation should be very much more effective, and this does indeed
prove to be the case.

The first step towards learning is to acquire a training set, a set of curves {Xk, k =
1, . . . ,M}, where Xk are vectors in a shape-space S = L(W,Q0) which may either be
the spline space SQ or a subspace of SQ. The set is supposed to capture the outline

Probabilistic models of shape 175

Figure 8.7: Validation failure causes a bulge in the posterior confidence region.
Validation fails around the fingertips (left) resulting in a bulge in the 95% confidence region
(right) such that it still contains the true edge of the hand.

being modelled in many characteristic poses. For current purposes, the order in which
poses appear in the sequence is immaterial, though order will matter in later chapters
when object dynamics are being modelled. One could think of each Xk as a contour
drawn by hand on a given image but in practice the temporal tracking technology
developed later allows these outlines to be acquired automatically.

If the prior distribution is assumed to be Gaussian N (X, P), then “maximum
likelihood” estimators for the parameters of the distribution are given by the sample
mean

X =
1
M

M∑
k=1

Xk (8.22)

and sample covariance

P =
1
M

M∑
k=1

(Xk − X)(Xk − X)T . (8.23)

176 Chapter 8

Figure 8.8: Sampling from a prior for lip shape Lips are tracked during speech, as
in figure 1.10 on page 14, to capture a 60 second sequence comprising 3000 successive lip
shapes. The sequence is used to estimate a Gaussian prior distribution in shape-space for lip
shape; random sampling from the prior generates plausible lip configurations, as shown. (Data
courtesy of Robert Kaucic.)

For example, in figure 8.8 a Gaussian prior distribution has been learned from a long
sequence of lip motion during speech. The resulting prior is simulated by random
sampling and the sampled curves are plausible lip configurations.

The matrix P is aNX×NX matrix and should be invertible so that S = P
−1 can be

calculated as required for the recursive curve-fitting algorithm. However, from (8.23),

rank(P) ≤M − 1

so that P certainly cannot be inverted unless M > NX , and in practice one would
expect a data set several times that minimum size. Alternatively, if a sufficiently
large data set is not available and the estimated P is singular then one approach is
to restrict the shape-space sufficiently that the reduced covariance matrix is no longer
singular, and this is discussed next.

8.6 Principal Components Analysis (PCA)

Even if the estimated prior covariance matrix P is not technically singular, it is fre-
quently close to singularity even when the training sequence is long (M > NX). This
happens when the typical motions of the object under study are largely accounted for
by a few independent modes of motion. If P is found to have a large condition number,
larger say than 100, this suggests that, on the basis of the available data, the shape-
space S in which data was collected is unnecessarily large. Efficiency of the matching

Probabilistic models of shape 177

algorithms described earlier, and of later tracking algorithms, would be considerably
enhanced if it could be replaced by a smaller shape-space. The covariance matrix P
can be used to determine a smaller shape-space S ′ = L(W ′,Q′

0) ⊂ S, a subspace of S
with dimension N ′

X , that spans, at least approximately, all of the shapes in a training
sequence X1, . . . ,XM . This idea was first introduced by Cootes and Taylor, in the
special case of polygonal contour models, which they dubbed the “Point Distribution
Model” or PDM. The PCA method is explained starting with “classical PCA” which
is well-known and easily accessible in textbooks, via two refinements, to “L2-norm
PCA in shape-space,” the recommended method for dealing with curves. In the spe-
cial case that M ≤ NX and the covariance matrix P is actually singular, the simplest
way to build a reduced shape-space is to take appropriate linear combinations of the
frames in the training sequence — so-called key-frames, as described in chapter 4.

Classical PCA

The classical approach to PCA would allow the following version of the approximation
problem to be solved. Given a long (M > NX) training sequence, solve:

min
W ′,Q′

0,X′
1,...,X′

N′
X

(
M∑

k=1

|Qk − Q′
k|2
)

(8.24)

where
Q′

k = W ′X′
k + Q′

0 and Qk = WXk + Q0.

The distance measure | · | is the Euclidean norm, that is, |Q|2 ≡ QTQ. The well
known solution to this problem gives Q′

0 = Q, the mean of the training sequence, and
W ′ is a matrix whose columns are the first N ′

X of the orthonormal eigenvectors of the
covariance matrix

Σ =
1
M

M∑
k=1

(Qk − Q)(Qk − Q)T ,

ordering the eigenvectors in descending order of their (necessarily positive) eigenvalues.
The intuitive interpretation is that the eigenvalues represent variance in the training
set in the mutually orthogonal directions of the eigenvectors; the first N ′

X eigenvectors
form a basis for the subspace of dimension N ′

X that “explains” as much as possible
of the variance in the training set. Note that since the data Qk all live within a
shape-space of dimension NX there will be at most NX non-zero eigenvalues of Σ.

178 Chapter 8

L2-norm PCA

In previous chapters, it has been argued that the induced L2-norm is the natural norm
over spline space. In that case, the classical problem above is not entirely applicable.
Instead, the approximation problem should be posed as follows:

min
W ′,Q′

0,X′
1,...,X′

N′
X

(
M∑

k=1

‖Qk − Q′
k‖2

)
, (8.25)

in which the L2-norm ‖ · ‖ has been substituted where Euclidean norm | · | appeared
before. The solution to this problem, which can be derived from the solution to the
classical problem (see below), is that Q′

0 = Q as before and W ′ is a matrix whose
columns are the first N ′

X eigenvectors of the matrix ΣU .

L2-norm PCA over shape-space

Finally L2-norm PCA can be re-expressed in terms of training-set covariance P in
shape-space, without recourse to the (considerably larger) covariance matrix Σ in
spline space. This gives the recommended algorithm in figure 8.9. Results from the
application of the algorithm to the lip-motion sequence are shown in figure 8.10. PCA
analysis for full facial expression is illustrated in figure 8.11. In neither case are
individual PCA components recognisable as particular expressions; rather they are
mixtures of expressions. It is when they are taken as a set that they are meaningful,
as a basis for the repertoire of commonly occurring deformations.

Remember that Euclidean norm |X| in shape-space has no clear geometrical mean-
ing. As a result classical PCA applied to the shape-space training set X1, . . . ,XM

would certainly not be meaningful.

Residual PCA

A constructive description of shape-space, in which the shape-matrix is composed
from transformations of a template or from key-frames, is rather desirable because
each of the components of the shape-vector X has a clear interpretation. For exam-
ple, the shape-space (4.20) composed of key-frames under Euclidean similarity is a
constructive shape-space for which a given X represents an explicit combination of
rigid transformation and facial expression. In contrast, deriving a shape-matrix from
PCA loses the clear interpretation, but has the advantage that no prior insight into

Probabilistic models of shape 179

Problem: given training data X1, . . . ,XM over shape-space S, find a sub-
space S ′ = L(W ′,Q′

0) of dimension N ′
X to minimise

M∑
k=1

‖Qk − Q′
k‖2

where
Qk = WXk + Q0 and Q′

k = W ′X′
k + Q′

0.

Algorithm

1. Construct the training-set mean

X =
1
M

M∑
k=1

Xk.

2. Construct the training-set covariance

P =
1
M

M∑
k=1

(Xk − X)(Xk − X)T .

3. Find eigenvectors v1, . . . ,vNX
of PH, in descending order of eigenvalue.

4. Construct W ′′ =
(
v1, . . . ,vN ′

X

)
.

5. The parameters Q′
0 and W ′ of the shape-subspace are then:

Q′
0 = WX + Q0

W ′ = WW ′′.

Figure 8.9: Algorithm for L2 PCA in shape-space.

likely transformations or deformations is required. It is possible, to some extent, to
enjoy the best of both worlds. Residual PCA operates on a constructive shape-space
that does not totally cover a certain data set, and fills in missing components by
PCA. Then the constructive subspace retains its interpretation and only the residual

180 Chapter 8

Figure 8.10: The lip-motion sequence of figure 8.8 on page 176 is used here in PCA. The
first four eigenvectors, illustrated here, capture over 95% of the variance in the data set.
(Eigenvectors are displayed here as displacements either side of the mean, with magnitude
equal to their standard deviation over the sequence.) (Figures by courtesy of Robert Kaucic.)

components, covered by PCA, cannot be directly interpreted.
Given training data X1, . . . ,XM , collected from a shape-space S, and a construc-

tive subspace Sc = L(W c,Qc
0), it is desired to augment Sc, increasing its dimension

by N ′
X , to cover the training-data set more completely. Residual PCA achieves this

by computing, after steps 1,2 of the algorithm of figure 8.9, the mean and variance of
the residue of the training set:

Xr = (I − Ec)X (8.26)
P

r = (I − Ec)P (I − Ec)T (8.27)

where Ec = W (W c)+ is the matrix for projection onto the subspace Sc. Step 3 of the
algorithm computes the first N ′

X eigenvectors v1, . . . ,vN ′
X

now of P r, rather than P
as in the original algorithm. Steps 4 and 5 proceed as before, computing the template
Q′

0 and shape-matrix W ′ which now form a shape-space for the residual variation in

Probabilistic models of shape 181

Figure 8.11: Facial expression as in figure 1.2 on page 6 is analysed by PCA. The first two
eigenvectors are illustrated here. (Figures by courtesy of Benedicte Bascle.)

the training set that was not covered by Sc. The augmented shape-space is then

Sa = L(W a,Qa
0)

where
Qa

0 = EcQc
0 +W ′Xr

and the shape-matrix
W a = (W c|W r) ,

a concatenation of columns from the shape-matrices for the constructive and residual
spaces.

As an illustration, the Residual PCA algorithm is applied to the lip-motion se-
quence used earlier. Instead of applying PCA directly to the motion sequence as in
figure 8.13, a constructive shape-space Sc, a two-dimensional space of rigid transla-
tions, is used. Translation accounts for about 58% of the motion of the training set
(horizontal 24%, vertical 34%) and since head motion is likely to be somewhat inde-
pendent of speech, it is natural to try to discount it. The covariance P r of the residue
of the sequence with translation removed can be used in its own right to construct a
prior, as in figure 8.13. Then the first two components from residual PCA, illustrated

182 Chapter 8

Figure 8.12: Sampling from a prior for lip shape, excluding translation Random
sampling illustrates how a learned prior generates plausible lip configurations, as in figure 8.8,
but now with the rigid translation due to head motion excluded, leaving just the lip motions
associated with speech.

in the figure, can be expected to bear the bulk of the visual information that is related
to speech.

Figure 8.13: The lip-motion sequence is analysed by residual PCA. All rigid trans-
lation is first excluded from the motion sequence by projection. Translation and the further 2
eigenvectors shown here account for over 95% of the variance in the data set.

Probabilistic models of shape 183

Derivation of PCA algorithms

First L2-norm PCA is derived from classical PCA. Noting that ‖Q‖ = |U1/2Q|, the prob-
lem (8.25) can be recast as a minimisation, in the form of the classical problem (8.24), of

M∑
k=1

|U1/2Qk − U1/2Q′
k|2

with
U1/2Q′

k = U1/2W ′X′
k + U1/2Q′

0,

Its solution is therefore that
U1/2Q′

0 = U1/2Q

and that U1/2W ′ is made up of columns which are eigenvectors of the sample variance

Var(U1/2Qk) = U1/2ΣU1/2.

This means that Q′
0 = Q. Furthermore, a column U1/2w of U1/2W ′ satisfies

U1/2ΣU1/2
(
U1/2w

)
= λ

(
U1/2w

)

which simplifies to
ΣUw = λw,

each column ofW ′ is an eigenvector of ΣU , as claimed. Note that equivalently w is a generalised
eigenvector of the real, symmetric matrices UΣU and U (i.e. solutions of UΣUv = λUv) and
hence the eigenvalues are still positive, so that their descending order remains well-defined.

The shape-space version of the algorithm (figure 8.9) is obtained from the L2-norm algo-
rithm above by substituting

Qk = WXk + Q0 and Q′
k = W ′X′

k + Q′
0

so that
Q →WX + Q0,

as in the algorithm, and
ΣU →WPWTU

whose eigenvectors give W ′. Writing W ′ = WW ′′, W ′′ must therefore be composed of eigen-
vectors of PWTUW , but WTUW = H and this gives the required form for W ′.

184 Chapter 8

Bibliographic notes

The chapter is based on probabilistic analysis — for a review of basic probability,
there is an excellent introductory book (Papoulis, 1990).

The use of a statistically estimated P in a Gaussian prior is equivalent to replacing
the norm ‖ ·‖ in the regulariser of chapter 6 with a “Mahalanobis metric” (Rao, 1973)
that emphasises improbable distortions, so that they are penalised more than probable
ones.

Confidence regions for shapes were delimited by parallel curves. These are a well-
known geometrical construct; one pitfall is that a smooth base curve can have offset
curves that are not smooth but contain cusps (Bruce and Giblin, 1984). They are also
known in CAD as “offset” curves (Faux and Pratt, 1979).

Principal Components Analysis (PCA) is a standard statistical technique (Rao,
1973). The idea of constructing a Gaussian curve model of reduced dimension, using
PCA, was first developed for the case of polygonal outlines and termed the “Point
Distribution Model” or PDM (Cootes et al., 1993), and subsequently extended to
splines (Baumberg and Hogg, 1994). A related idea based on image intensities rather
than curves is the eigen-image (Turk and Pentland, 1991) which can be used directly
in tracking e.g. (Bregler and Omohundro, 1994; Black and Jepson, 1996). PCA is
sometimes applied jointly to outline shape and image intensity distributions (Lanitis
et al., 1995; Beymer and Poggio, 1995; Vetter and Poggio, 1996), to impressive effect.
In standard PCA, it is common to pre-process the data by applying a diagonal scaling
transformation (Ripley, 1996). This proved to be too restrictive for building curve
models, for which general linear transformations were needed. In particular the idea
of performing PCA in the L2 norm, using the metric matrix H was developed in
(Baumberg and Hogg, 1995a), and this is equivalent to scaling the data by H1/2.
Generalised eigenvalues (Golub and van Loan, 1989) are used to combine scaling and
PCA efficiently.

Shape priors discussed here have had a Gaussian form in shape-space. In the case
of a norm-squared density over spline space (S ∝ U), the prior is actually a Gaussian
Markov Random Field (MRF), of second-order in the case of quadratic splines. MRFs
have been used widely for modelling prior distributions for curves (Grenander et al.,
1991; Ripley and Sutherland, 1990; Storvik, 1994).

Chapter 9

Dynamical models

The remainder of the book aims to establish effective procedures for tracking curves in
sequences of images. As with single images, the importance of powerful prior models of
shape holds good, but now prior models can be extended to capitalise on the coherence
of typical motions through a sequence. Crudely this could mean a repeated application
of the regularised curve-fitting of chapter 6, in which the fitted curve in the k − 1th
frame of a sequence is used as an initial estimate of curve position and shape for
the kth frame. In the probabilistic context of chapter 8 this would involve applying,
to each frame, a Gaussian prior distribution with fixed covariance but whose mean
was simply the estimated shape from the previous frame. This immediately suggests
a more subtle approach. Rather than fixing the form of the prior via one constant
covariance for all frames, it seems more natural to take the posterior from frame k−1
as the prior for frame k. In that way, it would not be merely an estimated shape that
would pass from time-step to time-step but an entire probability distribution.

This idea is still too crude as it stands, for two reasons. First, it lacks a mechanism
for extrapolation of motion between successive time-steps, and this is reasonable only
for tracked objects which are moving slowly (figure 9.1). Secondly, as the posterior at
one time-step is handed on to be the prior at the next, statistical information from
measurements steadily accumulates. Accumulation proceeds without bound so that
the statistical information S(tk) in the posterior continues to increase in successive
frames and the corresponding covariance P (tk) decreases towards zero. This is coun-
terintuitive — if the prior at time tk has a vanishing covariance, its regularising effect
will become too strong and image measurements will have an ever decreasing influence
on estimated shape.

186 Chapter 9

Figure 9.1: The need to exploit coherence of motion. Example of hand tracking,
showing that using the fitted curve at time tk−1 as the initial frame at time tk is of limited use
— it tracks slow motions (top) but not faster ones (bottom).

An adequate statistical framework for motion tracking must therefore provide not
only a prior for the first frame, similar to the prior in the static contour fitting problem
but, far more importantly, a prior for possible motions, in the broad sense of rigid
motion plus deformation of shape. This dynamical prior distribution should apply
between all pairs k − 1, k of successive frames. It must have a deterministic part,
giving the expected displacement between successive frames, and this addresses the
first objection above about extrapolation of motion. Less obviously perhaps, it also
needs a stochastic component, an injection of randomness, causing a steady “leakage”
of information to counteract the otherwise unlimited accumulation of information that
led to the second objection above.

In the previous chapter, the probabilistic framework for the fitting of curves to
static images was expounded in three parts. First, the encoding of prior knowledge
of curve shape had the form of a Gaussian prior probability distribution in shape-
space. Secondly, the posterior probability distribution of curve shape given image
data was computed by the recursive algorithm. Thirdly, rather than conjuring up a
prior distribution which is merely plausible, a specific prior was actually learned from
a training-data set. Now it is time to extend these three ideas, in this and the next

Dynamical models 187

two chapters respectively, to deal with curves in moving images. First, this chapter
deals with prior models for curve shape and motion.

9.1 Some simple dynamical prior distributions

Consider the problem of building an appropriate dynamical model for the position of
a hand-mouse engaged in an interactive graphics task. This is the problem that was
illustrated in figure 1.16 on page 20 in which a hand whose motion is monitored visually
controls a simulated object rendered in three dimensions. A typical trace in the xy
plane of a finger drawing letters is shown in figure 9.2. If the entire trajectory were

0 100 200−100−200

100

0

−100

Figure 9.2: The moving finger writes. The finger trajectory (left) which has a duration
of about 10 seconds executes a broad sweep over the plane. If the trajectory is treated as
a training set, the learned Gaussian prior is broad, as the covariance ellipse (right) shows.
Clearly though, successive positions (individual dots represent samples captured every 20ms)
are much more tightly constrained.

treated as a training set, the methods of the previous chapter could be applied to learn
a Gaussian prior distribution for finger position. The learned prior is broad, spanning a
sizable portion of the image area, and places little constraint on the measured position
at any given instant. Nonetheless, it is quite clear from the figure that successive
positions are tightly constrained. Although the prior covariance ellipse spans about

188 Chapter 9

300 × 50 pixels, successive sampled positions are seldom more than 5 pixels apart!
For sequences of images, then, a global prior p0(X) is not enough. What is needed

is a conditional distribution p(X(tk)|X(tk−1)) giving the distributions of possibilities
for the kth shape X(tk) given the k−1th shape X(tk−1). This amounts to a “first-order
Markov chain” model in shape-space in which, although in principle X(tk) may be cor-
related with all of X(t1) . . .X(tk−1), only correlation with the immediate predecessor
is explicitly acknowledged — the “Markov” assumption is made that

p(X(tk)|X(t1) . . .X(tk−1)) = p(X(tk)|X(tk−1)).

This is an assumption that greatly simplifies the probabilistic model. (It will be argued
later that it is actually an oversimplification and that a second-order Markov model,
taking two predecessors into account, is needed.)

Continuing the Gaussian theme of earlier chapters, a simple, isotropic, first-order
Gaussian Markov process in shape-space is

p(X(tk)|X(tk−1)) ∝ exp− 1
2b2

‖X(tk) − X(tk−1)‖2. (9.1)

For example, in a shape-space S of translations in the plane, this process represents
simply a two-dimensional, random walk of the centroid of a rigid shape, in which the
average (root-mean-square) step length is b

√
2 and is isotropic — steps are equally

likely to occur in all directions (figure 9.3 (top)). This particular form of random
walk is known as “Brownian motion” and is well-known as a physical model of the
thermodynamics of microscopic particles. Such a distribution looks too random to
be generally useful for modelling the motion of real, massive objects. A predomi-
nantly deterministic motion with an added random component is more plausible (fig-
ure 9.3 (left)). A modest elaboration of the model above achieves this by including a
constant offset D:

p(X(tk)|X(tk−1)) ∝ exp− 1
2b2

‖X(tk) − X(tk−1) − D‖2. (9.2)

In the case of planar translation, D is a vector representing the mean displacement in
each time-step. The endpoints of random walks consisting of N steps, starting from a
fixed origin, are distributed isotropically as a Gaussian in the plane (figure 9.3 (right)).
Its distribution is the sum of N Gaussians, which is the single Gaussian whose covari-
ance ellipse (a circle), and any confidence interval derived from it, grows steadily, in

Dynamical models 189

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

0 5 10 15 20

0

5

10

15

20

Figure 9.3: Brownian motion in the plane. Plots show successive positions of the centroid
of some rigid shape undergoing Brownian motion. (Top) an isotropic random walk (100 steps,
b = 1). A random walk (left) with a superimposed drift velocity (100 steps, b = 0.1, drift
(0.15,0.15) per time-step). Several samples (right) of random walk with drift; the endpoints of
the random walks (marked with squares) have an isotropic Gaussian distribution in the plane
(95% confidence ellipse shown dotted).

190 Chapter 9

fact in proportion to
√
N . This is precisely the steady leakage of information which

was claimed earlier to be an essential component of a dynamical model.
Let us accept for the time being the random walk with drift as a plausible model

of the translational motion of an object (though later in the chapter it will be argued
that its trajectories are insufficiently smooth as a model of the motion of real physical
bodies). Now consider instead deformations of the object, governed by the compo-
nents of, say, a 4-dimensional subspace Sd containing all the affine components except
translation. The random walk with drift is certainly not an appropriate model for de-
formation because, as we saw in the examples above, its variance grows unboundedly
over time. In the case of the bottle example of the previous chapter this would imply
a bottle distorting progressively, without limit. Somehow the small deformations that
occur in a continuous fashion from frame to frame need to be forced to stay with an
overall envelope. What is needed is a Markov process that looks like a random walk on
a short time-scale but sweeps out some bounded distribution, presumably a Gaussian
one, over long times. It turns out that a minor modification of discrete Brownian
motion (9.1):

p(X(tk)|X(tk−1)) ∝ exp− 1
2b2

‖(X(tk) − X) − a(X(tk−1) − X)‖2 (9.3)

with 0 ≤ a ≤ 1 gives a constrained Brownian process that has exactly the desired
properties (figure 9.4). Initially it appears to behave like the unconstrained process
but as the long-time limit is approached it becomes more and more evident that it
lies within a limiting Gaussian envelope. Exactly what that distribution is and how
it depends on a and b is clarified later.

Now, such a distribution, visualised so far only in terms of points in the plane, can
be illustrated over a realistic shape-space. Take the bottle example of the last chapter,
over an affine space S, partitioned into 2-dimensional translational and 4-dimensional
deformation subspaces Ss and Sd respectively. A plausible dynamical model for a
translating bottle whose shape undergoes small distortions about a mean shape X
due to projective effects on the changing viewpoint might have two components. One
is a constrained Brownian process in the deformation space Sd. The other is an
unconstrained Brownian process in the translational space Ss. As figure 9.3 (left)
showed, adding drift to Brownian motion models directional motion, but unfortunately
only in a preassigned, fixed direction. If the direction of motion is not known a priori
then the only model we have so far for translation (see later for better models) is
pure Brownian motion. The combined model is expressed in terms of the following

Dynamical models 191

−5 0 5 10−10

−5

0

5

10

−5 0 5 10−10

−5

0

5

10

−5 0 5 10−10

−5

0

5

10

Figure 9.4: Constrained Brownian motion with b = 1 and a = 0.9. On a small scale, the
process appears like unconstrained Brownian motion with b = 1 so that (top) the first 12 steps
are similar to the first 12 steps of figure 9.3 (top) but after 100 steps (left) things look quite
different — the process is constrained by an overall Gaussian envelope whose 95% confidence
ellipse is marked. After 2000 steps (right) the steady-state Gaussian envelope is quite evident
(positions only shown, for clarity).

192 Chapter 9

first-order Markov conditional density:

p(X(tk)|X(tk−1)) ∝ exp−1
2

∥∥∥∥ 1
bs
Es (X(tk) − X(tk−1)) (9.4)

+
1
bd
Ed
(
(X(tk) − X) − ad(X(tk−1) − X)

)∥∥∥∥
2

.

(Subspace projection matrices Es and Ed were defined two chapters back, in (6.5) on
page 117.) A sample path from a simulation of such a dynamical model is illustrated in
figure 9.5. It is perhaps not altogether clear from the Markov density (9.4) exactly how
simulation can be done: in fact, expressing the density instead as an “Auto-regressive”
process amounts to an explicit prescription for simulation and this is explained next.

Figure 9.5: First-order stochastic motion. The figure shows a sample path from a
distribution (9.4) which translates as an unconstrained Brownian process (bs = 30 pixels) and
deforms as a constrained Brownian process (ad = 0.5, bd = 15 pixels). The sequence shown
displays every 10th frame.

Dynamical models 193

9.2 First-order Auto-regressive processes

We have seen some specific examples of useful Markov processes and generally they
can be expressed in the form

p(X(tk)|X(tk−1)) ∝ exp−1
2
‖B−1(X(tk) −AX(tk−1) − D)‖2. (9.5)

Just as Gaussian priors X ∼ N (X, P) in the previous chapter could be expressed as
X = X + Bw which was amenable to simulation, so also the Markov process can be
expressed in a generative form:

X(tk) = AX(tk−1) + D +Bwk, (9.6)

specifying a “sample path” for the process, in which each wk is a vector of NX inde-
pendent random N (0, 1) variables and wk, wk′ are independent for k �= k′. A form
which is not quite as general but will prove convenient is

X(tk) − X = A(X(tk−1) − X) +Bwk (9.7)

and this is the standard form for a first-order “Auto-regressive” (AR) process. The
constants in the two forms are related by

(I −A)X = D.

The AR standard form has the advantage that the parameter X has a clear inter-
pretation: it is the steady-state limit of the mean value of X(tk−1). As k → ∞,
and provided the process is stable (a condition for stability is ‖A‖2 < 1 — see ap-
pendix B.1), the distribution X(tk−1) approaches a steady state N (X, P∞) for some
limiting covariance P∞. The steady-state distribution is exactly the overall envelope
distribution for constrained Brownian motion.

In fact the AR form of the process can be used to derive the distribution X(tk) ∼
N (X̂(tk), P (tk)) at all times tk. Since, by definition, X̂(tk) = E [X(tk)] and P (tk) =
V[X(tk)], taking the expectation and variance of (9.7) gives, respectively, the “mean-
state” equation and

X̂(tk) − X = A(X̂(tk−1) − X) (9.8)

or, in the alternative form,

X̂(tk) = AX̂(tk−1) + D, (9.9)

194 Chapter 9

and the “covariance” or Riccati equation

P (tk) = AP (tk−1)AT +BBT . (9.10)

It is clear by inspection that X(tk) = X(tk−1) = X satisfies (9.8) so that the mean
of the steady-state distribution must be X. The steady-state covariance P∞ ≡
limk→∞ P (tk) must be a fixed point of (9.10):

P∞ = AP∞AT +BBT (9.11)

and although this equation can be solved exactly (by diagonalising A) the most
straightforward method, if not the most efficient, is simply to iterate (9.10) to conver-
gence.

Examples of AR processes

A variety of Markov processes can be succinctly expressed in the AR formalism.

1. Unconstrained Brownian motion

Setting A = I, the AR process (9.7) simplifies to

X(tk) = X(tk−1) +Bwk

which is independent of X. The fact that X, the steady-state mean, should not
need to be specified is reasonable given the process has no steady state. In fact
the mean value is constant throughout: X̂(tk) = X(t0), and, from (9.10), the
covariance evolves as

P (tk) = P (tk−1) +BBT

so that, given an exact initial value for X(t0), P (tk) = kBBT which is un-
bounded, with no limiting value as k → ∞. The covariance ellipse has a mean-
square radius of tr(P) and therefore grows in proportion to

√
k. There remains

the choice of B which is effectively a scaling transformation for the process. For
example, in the plane, B = I2 produces a statistically isotropic random walk,
whereas

B =
(

2 0
0 1

)

is a random walk which has been stretched out by a factor of 2 in the horizontal
direction. In any shape-space, a norm-squared Brownian process (9.1) has the

Dynamical models 195

special form B = b0H−1/2 so that P (tk) = k b20 H−1, and X(tk) is distributed as
a norm-squared Gaussian in which average curve displacement is proportional
to

√
k.

2. Unconstrained Brownian motion with drift

In fact the addition of drift is outside the scope of the standard form (9.7) but
can be expressed in the alternative form (9.6) with A = I and D being the drift
per unit time-step. Still there is no steady state but, from (9.9) and (9.10), the
distribution X(tk) ∼ N (X̂(tk), P (tk)) is given by

X̂(tk) = kD + X̂(t0) and P (tk) = kBBT ,

so that the covariance ellipse grows in proportion to
√
k as before but also drifts

at a constant rate.

3. Constrained Brownian motion

The constrained Brownian motion model of (9.3), with its norm-squared Gaus-
sian density, can be expressed in the standard form of the AR process with
coefficients A = aI, B = bH−1/2. If a2 = 1 − ε with 0 < ε � 1 then, on a
small time-scale, the process is almost indistinguishable from the case ε = 0 of
unconstrained Brownian motion, but in the longer term the distinction which
was clear graphically in figure 9.4 is apparent also from the covariance equation.
Since ‖A‖2 = a < 1, the covariance reaches a steady state, at a fixed point (9.11)

P∞ =
1
ε
BBT =

b2

ε
H−1

and the limiting Gaussian envelope for the process is then N (X, P∞). The results
of the previous chapter imply that the curve has an average displacement from
the template of ρ = b

√
NX/ε in the steady state.

In the simple example of figure 9.4, in which a = 0.9, b = 1 and the space
is translational, we get ρ =

√
2/(1 − 0.92) = 3.24 units. The 95% confidence

circle has a radius approximately 1.73 times as great, approximately 5.6 units,
as illustrated in the figure.

4. Motion in affine space

A Markov process suitable for an affine shape-space was set out above (9.4)
and simulated in figure 9.5. It can be expressed as an AR process in standard

196 Chapter 9

form (9.7) with X as the mean shape for the object and the other coefficients
can be shown to be

A = Es + adEd,

simply applying a different multiplier in each subspace, and similarly

B =
(
bsEs + bdEd

)
H− 1

2 ,

partitioned across the two subspaces.

This model does not reach a steady state because the Brownian motion in the
translational subspace causes unbounded variance P (tk). However, the defor-
mation component EdX(tk) is a constrained Brownian process which reaches a
steady state as above.

9.3 Limitations of first-order dynamical models

First-order AR processes seem to meet some of the requirements for dynamical mod-
elling. They are stochastic and can model entire families of motions. They deal with
changes of position and shape and so can impose strong incremental constraints when
global constraints are weak. They allow a global distribution to be chosen in addition
to and independently of the local process. They appear to be the simplest available
models that achieve these properties. Certainly, a first-order model is better than
no dynamical model at all, as far as effective tracking is concerned. They do have
limitations however.

First, unconstrained Brownian motion with drift, although it seems to model noisy
directional motion at a constant average velocity, has an average direction that is
fixed over time and must be known in advance. However, a good model for the
motion of the writing finger would be a prior distribution that favours smooth motion
of approximately constant velocity, but in an arbitrary direction, and allowing that
velocity to change slowly in magnitude and direction. Another example is tracked
vehicle motion (figure 9.6) in which slow, gradual changes of velocity are typical.
More rapid changes in a given component of velocity are likely to occur during vehicle
manoeuvres. Again, a model is called for that allows for substantial changes in velocity
components over time, albeit mostly slow changes, and this is beyond the scope of the
first-order model.

Dynamical models 197

translation (pixels)

seconds
0 1 2

0

100

Figure 9.6: Tracking moving vehicles. One translational component of tracked image
motion for cars on a highway (figure 1.3 on page 7) is plotted here. Velocity is approximately
constant over short time-scales. Here image velocity decreases gradually as the vehicle recedes.

A second requirement is to be able to model oscillations that occur in many dy-
namical systems of interest. For example the tracked motion of the beating heart
in the introductory chapter of the book is, not surprisingly, strongly oscillatory, as
figure 9.7 shows. Any first-order AR process X(tk) is a regularly sampled version of
an underlying continuous-time process X(t), sampled at regular intervals tk = kτ (see
appendix B.1). The underlying continuous process has a characteristic time-course or
“impulse response” that follows an exponential decay of the form exp−βt, without
any oscillatory component. Such a process would appear, therefore, to be unable to
model oscillatory signals adequately.

Clearer evidence of the inadequacy of first-order models comes from examining
the “spectral” characteristics of motion. In an AR process, the decaying or resonant
response is driven by Gaussian random noise. Thus a first-order AR process, despite
its decaying impulse response, does not actually decrease in magnitude because it is
continuously excited by noise. The result is a complex superposition of exponentials
which is succinctly characterised by its “power spectrum,” the distribution of signal
power as a function of frequency. For a first-order system, the power density is greatest
at low frequency, falling off steadily as frequency increases.

Consider the example of lip motion during speech. It does not approach perfect
periodicity as did the motion of the heart. Its motion does appear to have distinct

198 Chapter 9

2 4 60
seconds

Figure 9.7: Tracked motion of a beating heart. The first principal component of the
motion of a beating heart, tracked in an ultrasound image sequence (figure 1.12 on page 16)
is, of course, highly periodic. (Data courtesy of Gary Jacob and Alison Noble.)

periodic elements (figure 9.8) but over a spread of frequencies. A spectral analysis

−20

20

40

60

80

seconds

10 20 30 40 50

pixels

0

Figure 9.8: Lip motion during speech is oscillatory This plots the opening/shutting
motion of frontally viewed lips during a 60 second sequence of continuous speech. The density
of peaks and troughs suggests oscillation at frequencies around 0.5–1Hz.

of the signal (figure 9.9) shows the “power spectrum” of the speech signal — its
distribution of power as a function of frequency. This is done by computing the

Dynamical models 199

0.2

0.4

0.6

0.8

1

Signal Power

0.5 1.0 1.5 2.0 2.5

Frequency (Hz)

0.2

0.4

0.6

0.8

1

Signal Power

0.5 1.0 1.5 2.0 2.5

Frequency (Hz)

Figure 9.9: Spectral analysis of lip motion suggests second-order dynamics Signal
power in the lip-motion signal of figure 9.8 peaks (left) at frequency of about 0.8Hz, reflecting
the average spacing of peaks and troughs. A first-order AR process can be chosen with a
spectrum (right) that models the background power level effectively but does not capture the
peak.

Discrete Fourier Transform (DFT) of the signal and plotting the square of its complex
amplitude. The resulting power spectrum shows a background power distribution
across all frequencies, decreasing in magnitude as frequency increases. Superimposed
on this is a clear “resonant” peak at a frequency which appears to correspond well
with the spacing of peaks and troughs in the original signal. Now it is known that for
a first-order AR process in 1 dimension

x(tk) = ax(tk−1) + bwk

the corresponding power spectrum has the form (see appendix B.1):

Sxx(f) ∝ 1
1 + γf2

(9.12)

where γ is a constant that depends on the parameters a and b of the AR process.
This spectrum always has maximum power at zero frequency f = 0 and hence cannot
have a resonant peak at some frequency f > 0. Choosing a value of γ by hand to fit
the lip-motion spectrum, it is possible to explain the background power distribution
(figure 9.9) but the peak cannot be modelled. When the model is used to generate
a sample (figure 9.10), the simulated signal is a poor replica of the original data.

200 Chapter 9

seconds

10 20 30 40 50

pixels

0

−100

100

Figure 9.10: Simulated first-order lip motion Parameters for a first-order AR process
are chosen to correspond to the fitted power spectrum in figure 9.9 (left). A sample path for
the process is illustrated here and should be compared with the original signal in figure 9.8.
The simulated signal comprises far more rapid transitions than the original data it is supposed
to model.

Transitions in the simulated signal are too rapid, and this is consistent with the
excessive signal power at high frequencies in the first-order model. The simulated
signal does not appear to contain an underlying oscillation and this is consistent with
the absence of a resonant peak in the first-order fitted spectrum.

9.4 Second-order dynamical models

Randomly excited harmonic motion

The simplest auto-regressive processes that meet the additional requirements, both
for oscillatory and translational motion, are “second-order” processes (see below).
They are typically resonant with a characteristic time-course in the form of a damped
oscillation exp−βt cos 2πft. The power spectrum of a second-order AR process (see
appendix B.2) is:

Sxx(f) ∝ 1
π2(f2

0 − f2)2 + β2
0f

2
(9.13)

where β0 is a “damping” constant with the dimensions of inverse time. It is clear that
this spectral density reaches a maximum at approximately f = f0 (provided β0 � f0),
and is therefore capable of representing resonant or frequency-tuned behaviour. The

Dynamical models 201

width of the resonant peak, determined jointly by parameters f0 and β0, is ∆f0 ≈
f2
0 /β0. Choosing f0 and β0 by hand to match the centre and width of the resonant

peak in the lip-motion data of figure 9.8 gives a much improved fit, as figure 9.11 shows.
Now the peak in the spectral power distribution is represented, at least approximately,

0.2

0.4

0.6

0.8

1

Signal Power

0.5 1.0 1.5 2.0 2.5

Frequency (Hz)

Figure 9.11: Second-order power spectrum model A second-order model can represent
the spectral peak in the lip-motion data of figure 9.8.

although the background power density may have been approximated better by the
first-order model, especially at high frequency — power density in the second-order
model tails off rather too fast. As a final piece of empirical evidence in favour of
second-order models, the parameters f0 and β0 can be used to specify an AR process
representing a second-order Markov chain (see next section) which can be sampled by
driving it with randomly generated noise wk, as was done earlier with first-order AR
processes. The result (figure 9.12) appears quite plausibly to be a signal of a similar
type to the original, real lip-motion data.

Physical realisability

A further point of principle that favours second-order models over first-order ones comes
from considering a temporal process x(t) with power spectrum Sxx(f) as a component of the
physical motion X(t) of a body with mass. In that case, the corresponding velocity v(t) = ẋ(t)
has a power spectrum proportional to f2Sxx(f) and the mean kinetic energy associated with
that motion is proportional to

E [v(t)2] ∝
∫ ∞

−∞
f2Sxx(f) df

202 Chapter 9

seconds

10 20 30 40 50

pixels

0

−100

100

Figure 9.12: Simulated second-order lip motion Parameters for a second-order AR
process are chosen to correspond to the fitted power spectrum in figure 9.11. A sample path
for the process is illustrated here and should be compared with the original signal in figure 9.8
— the distribution of spacings between peaks appears to be similar.

and this integral must give a finite result for the model to be realisable as a physical process.
For the first-order power spectrum Sxx(f) in (9.12) the integral diverges, ruling out first-
order models as unrealisable (other than with ideal, massless bodies). For the second-order
spectrum (9.13) however, the integral converges and this is true of higher order AR models
also.

It was noted above that although the resonant peak in the lip-motion spectrum was cap-
tured by a second-order model, the tail of the spectrum was actually modelled better by the
first-order model. This might suggest that a weighted sum of the first- and second-order
processes would fit better than either first- or second-order alone. This may be so but the
mixed model would share the unrealisability of the pure first-order model; this is because the
first-order spectrum dominates at large f , causing divergence of the kinetic energy integral.
Mixtures of second- and higher-order models would satisfy realisability constraints. (In the
language of “poles” and “zeros”, popularly used to describe spectra, a pure nth order AR
model has n poles and no zeros — an “all-pole” spectrum. The mixed first- and second-order
model has 2 poles and 1 zero and is unrealisable. Generally physical realisability, in the me-
chanical sense, demands at least two more poles than zeros.) Furthermore, learning dynamics
(see chapter 11) is rather more difficult for the mixed model than for the pure second-order
model.

If physical realisability demands second-order or higher, conventional dynamical modelling
suggests that second-order may be sufficient. For a system with just one degree of freedom,
the situation is relatively straightforward. If it is assumed that potential energy and frictional
power dissipation are each quadratic functions 1

2kx
2 and 1

2νẋ
2 respectively then the equation

Dynamical models 203

of motion is not only second-order but also linear:

mẍ = −νẋ− kx+ f

where f is an externally applied force. Note that the quadratic assumptions cover the cases
of potential energy due to elasticity (Hooke’s law) or gravity and dissipation due to viscous
forces at relatively low speeds. If f comes from some class of possible temporal force functions
the result will be a class of motions x(t). The simplest random model for f is as a “white
noise” signal f(t) = bw(t), where w(t) is a Wiener process, the continuous counterpart to the
uncorrelated discrete noise signal wk in AR processes. In that case, the spectrum of x(t) is
second-order and all-pole.

Multidimensionally, in shape-space, motion X(t) is a little more difficult to describe. A
general formalism (“Lagrangian dynamics” — see bibliographic notes) is available to convert
a physical description of mass distribution, potential energy and dissipation into equations of
motion. As before, the equations are of second-order, and linear if potential energy and power
dissipation are quadratic:

Ẍ = F0X + F1Ẋ +G0w, (9.14)

where w(t) is a vector of NX independent Wiener processes and F0, F1 and G0 are NX ×NX

matrices. Physical realisability means that F0 and F1 must be negative definite, with real
eigenvalues and eigenvectors, but are not generally symmetric. These conditions guarantee
stability of X(t), as might be expected for a physical process.

Lastly, note that X(t), being a shape-space variable, refers to the image of a physical
object, rather than to the object itself. However, it was argued in chapter 4 that projection
from world to image is (approximately) a linear mapping. That ensures that the general form
of a linear model in world coordinates is preserved in the image plane, and also in shape-space
given that its parameter X is defined to be linear.

Signal phase

So far, the argument about model order has concentrated on the power spectrum of a signal.
This represents the amplitude of the signal spectrum but neglects its phase. Phase is also im-
portant but is less amenable to graphical arguments about goodness of fit. In fact, attempting
to fit also the phase distribution of the lip-motion signal inevitably causes the power spectrum
fit to deteriorate somewhat. This is evident later, in chapter 11, where an automatic fitting
algorithm is developed. It fits models directly to signals, rather than to their power spectra,
and therefore is bound to take both amplitude and phase into account.

204 Chapter 9

9.5 Second-order AR processes in shape-space

A second-order AR process in shape-space is a natural extension of the first-order
process (9.7). It has the form

X(tk) − X = A2(X(tk−2) − X) +A1(X(tk−1) − X) +B0wk (9.15)

in which A2, A1 and B0 are all NX × NX matrices. In a second-order process, the
shape-vector at a given time depends on two previous time-steps, rather than just
one as in the first-order process. It can be expressed more compactly by defining a
“state-vector”

X (tk) =


 X(tk−1)

X(tk)


 (9.16)

and then writing
X (tk) −X = A(X (tk−1) −X) +Bwk (9.17)

where

A =


 0 I

A2 A1


 , X =


 X

X


 and B =


 0

B0


 . (9.18)

It is straightforward to show that (9.17) is precisely equivalent to (9.15). Replacing
the shape-vector X by a state-vector X of double size allows the notation for a first-
order process to continue to be used, albeit with some restrictions (9.18) on the form
of the coefficient matrices A and B.

The second-order state X has mean and covariance

X̂ (tk) = E [X (tk)] and P(tk) = V[X (tk)] (9.19)

where P(tk) is a 2NX × 2NX matrix that is naturally decomposed into submatrices:

P(tk) =


 P ′′(tk) P ′(tk)T

P ′(tk) P (tk)


 (9.20)

in which

P ′′(tk) = E [(X(tk−1) − X̂(tk−1))(X(tk−1) − X̂(tk−1))T] (9.21)
P ′(tk) = E [(X(tk) − X̂(tk))(X(tk−1) − X̂(tk−1))T]
P (tk) = E [(X(tk) − X̂(tk))(X(tk) − X̂(tk))T].

Dynamical models 205

The most interesting of these is P (tk) which represents covariance in shape-space at
time tk. The other submatrices need to be “carried” by P simply in order to al-
low second-order propagation of P (tk). (Note that, as a consequence of second-order
propagation, P ′′(tk) = P (tk−1).) Propagation is governed by mean-state and covari-
ance equations for the second-order model, by analogy with the first-order case (9.8)
and (9.10):

X̂ (tk) −X = A(X̂ (tk−1) −X) (9.22)

and
P(tk) = AP(tk−1)AT +BBT . (9.23)

A steady-state P∞ can be computed as before, by iterating (9.23) to convergence. Its
lower-right submatrix P∞ then represents the covariance of the Gaussian envelope in
shape-space for the second-order Brownian process.

The AR process (9.16) is defined over discrete time, but can in fact be regarded
as a regular sampling of an underlying continuous-time process. In the next section
this discrete–continuous correspondence maps damped harmonic motion, described in
continuous time, into discrete time. It serves as a “synthetic” predictive dynamical
model, used in tracking in the next chapter. The correspondence is also useful in the
reverse direction, to decompose and interpret an AR process in physical terms. This
will be important in chapter 11 where models are learned from training sequences
and learned coefficients A and B are interpreted as collections of damped harmonic
oscillators, each associated with a vibrational mode — effectively a one-dimensional
shape-subspace. Relevant details of the discrete–continuous correspondence are set
out, for completeness, in appendix B.2.

9.6 Setting dynamical parameters

The best dynamical models for tracking, in the sense of being most appropriately
tuned to expected motions, are obtained by learning and this is discussed fully in
chapter 11. Until such learned models are available, we have to be content to use
default models, synthesised by hand to match general, intuitive expectations about
the motions to be observed. These expectations are addressed partly by the static
constraints embodied in the choice of shape-space, and this has been dealt with in
earlier chapters. Dynamical characteristics must also be specified in order to define
fully an operational tracker (see the next chapter) which could be regarded as an
end-product in its own right. Alternatively, the tracker may be applied just once, to

206 Chapter 9

capture a training sequence which is then used to learn a more refined shape-space
via PCA (chapter 8) and more refined dynamics (chapter 11).

This section offers a systematic approach to synthesising dynamical models. The
synthetic models are based on harmonic oscillators driven by spatially homogeneous
noise. Shape-space is decomposed into natural subspaces and a stochastic harmonic
oscillator is set up in each subspace.

Stochastic, harmonic motion in one dimension

First, to describe the harmonic oscillator which is the building block for synthesised
models, an oscillation with damping rate β and frequency of oscillation f is expressed
discretely by

A =


 0 1

a2 a1


 and B =


 0

b0


 (9.24)

where
a2 = − exp(−2βτ) and a1 = 2 exp(−βτ) cos(2πfτ). (9.25)

(The derivation of these relations is given below.) A practically important special
case, is critical damping in which f = 0, particularly suitable for motions which are
not expected to be oscillatory; that leaves just 1/β to be specified, as a characteristic
time-scale for the motion. Note that f = 0 implies the constraint on discrete param-
eters that −a2

1 = 4a2. Provided β > 0, the process is stable and has a steady-state
distribution with finite spatial variance. To obtain a desired steady-state variance ρ2,
choose

b0 = ρ

√
1 − a2

2 − a2
1 − 2

a2a2
1

1 − a2
. (9.26)

(This formula comes directly from the steady-state solution of the covariance equa-
tion (9.23).) A more intuitive relationship is obtained by taking the “continuous time”
limit that βτ � 1, (an assumption that holds in most cases of practical interest):

b0 = ρ
[
2(βτ)1/2 sin(2πfτ)

]
. (9.27)

Constant-velocity model

A further sub-case of harmonic motion, useful particularly for translational motion,
is the constant-velocity model in which β = f = 0, so that a2 = −1 and a1 = 2. As

Dynamical models 207

expected, for constant-velocity parameters the formulae (9.25) and (9.26) give b0 = 0
or, equivalently, for any b0 > 0 the variance ρ2 is unbounded. Given that there is
no steady state, ρ cannot be used to characterise the stochastic component of the
model. Instead, a rate of growth parameter γ0 is specified. It can be shown that,
asymptotically, the root-mean-square search-region diameter grows semicubically:

ρ(t) = γ0t
3/2 where b0 = γ0τ

3/2. (9.28)

Harmonic motion in shape-space

A straightforward way to construct a dynamic model for a shape-space SX is to extend
the one-dimensional harmonic motion just described, to the entire space. This is done
by choosing

A2 = a2INX
, A1 = a1INX

and B0 =
b0√
NX

H− 1
2

where a2, a1 and b0 are chosen as above. The resulting A-matrix then represents
“degenerate” modes, NX independent motions, with common frequency and damping
constants, that span the shape-space. The driving Brownian noise has the usual norm-
squared density, giving spatial uniformity and isotropy but subject to the constraints
of the shape-space. The steady-state covariance P∞ can be shown from (9.23) to be

P∞ =
ρ2

NX
H−1, (9.29)

where ρ and b0 are related as in (9.26). This represents a Gaussian envelope with
mean X and root-mean-square displacement ρ along the curve.

Partitioned harmonic motion across shape-subspaces

Finally, it is usually desirable to partition shape-space into several subspaces and
apply different harmonic models to each. Earlier, affine space was partitioned into
translation and deformation components using projection matrices Es and Ed, and
a first-order model (9.4) on page 192, defined across the partitioned space. This
was chosen to allow relatively free translation but tightly constrained deformation of
shape. A partitioned second-order model can similarly be specified by defining A and

208 Chapter 9

B matrices as follows:

A2 = as
0E

s + ad
0E

d, A1 = as
1E

s + ad
1E

d (9.30)

B0 =
(

bs0√
Ns

Es +
bd0√
Nd

Ed

)
H− 1

2 ,

where Ns and Nd are the dimensions of the shape-subspaces. Parameters ad
0, a

d
1 and

bd0 are set for appropriate frequency fd, damping rate βd and average displacement
ρd for deformation, using (9.26) above, and similarly for translation. Any desired
number of partitions of shape-space can be chosen, and partitioned dynamics defined
additively as above. Variances of the Gaussian envelopes are additive so that, in the
two-component case above,

ρ2 =
√

(ρs)2 + (ρd)2 (9.31)

is the root-mean-square displacement in model as a whole.

Examples

Examples of dynamical models set up by hand are given here. The first is for vehicles
on a motorway, as in the traffic-monitoring application described in chapter 1. Sample
trajectories are displayed in figure 9.13. Translational dynamics are constant-velocity,
with characteristic semicubical growth of the region of positional uncertainty, reaching
35 pixels (RMS) after one second. Affine deformation is set to vary slowly, over a 10-
second time-scale, to allow the shrinkage of the template under perspective scaling,
as vehicles recede into the distance. Ideally this shrinkage should be coupled with the
translational motion in the dynamical model itself, rather than simply in the initial
conditions, and limited to scaling rather than allowing all affine deformations. That
is rather more elaborate than can reasonably be programmed by hand. What can
be done is to use the model above as a predictor in a tracker that is just capable of
gathering a training set. The training set can then be used in the learning algorithm
to be described in chapter 11 to build automatically a model that incorporates the
appropriate couplings.

A second example of a hand-programmed dynamical model is designed to represent
the motion of a dancing girl, as in figure 9.14. This time the model is explicitly
oscillatory, with independent dynamics for horizontal and vertical motion. As with
the example of traffic above, a dynamical model such as this is sufficient for use as
a predictor in a tracker that can capture a training set, which is then used to learn

Dynamical models 209

Figure 9.13: Dynamical model for traffic. Three simulated trajectories for an ARP set
up to represent the traffic pattern, each initialised with a velocity in shape-space correspond-
ing to translation along the road, coupled with shrinkage consistent with perspective scaling.
Translational parameters are β = f = 0 (constant-velocity) with γ0 = 35pixel.s−3/2, allowing
the paths to veer over longer times. Affine deformations are critically damped (f = 0) with a
long time-constant (1/β = 10 s), and largely deterministic (ρ = 2 pixels), allowing the outline
to shrink steadily. Contours are plotted here at intervals of 200ms.

automatically an auto-regressive process model that is more specifically tuned to the
observed motions.

Derivation of simple harmonic oscillator coefficients a2, a1, in terms of f , β as in (9.25):
given that a2, a1 are to be chosen to correspond to the damped exponential exp−βt exp±2πft,
over a time-step τ , the eigenvalues of A in (9.24) must be exp−βτ exp±2πfτ , whose product

210 Chapter 9

Figure 9.14: Dynamical model for a dancer. Three simulated trajectories, each of
0.84 s duration, are shown of an ARP model in a shape-space of translations. Horizontal
oscillation is slow (β = 0.2 s−1, f = 0.2Hz) and broadly distributed (ρ = 300 pixels), repre-
senting the motion of the dancer to and fro, across the room. Vertical oscillation is faster
(β = 0.5 s−1, f = 1Hz) and more tightly distributed (ρ = 100 pixels), representing the bobbing
motion of the head.

and sum, respectively the determinant and trace of A, give

a2 = −detA = − exp(−2βτ) and a1 = trA = 2 exp(−βτ) cos(2πfτ),

as required.

Bibliographic notes

Dynamical models exploit “coherence of motion” — a term coined by Yuille and
Grzywacz (Yuille and Grzywacz, 1988) to refer to the spatial continuity of motion
across an image, and used here to refer both to spatial but especially also temporal
continuity. Dynamical models were based on the Markov process. This is a develop-
ment of the Markov Chain (see for instance (Rabiner and Bing-Hwang, 1993)) in a
continuous-valued form, and is a core tool in control theory (Astrom and Wittenmark,
1984). Markov processes can be expressed either in continuous or discrete time and

Dynamical models 211

the relation between the two is explained in (Gelb, 1974). Continuous-time stochastic
processes form the basis of the arguments about physical realisability of models in
the chapter, and a detailed treatment of continuous-time stochastic processes is given
in (Astrom, 1970). Furthermore continuous-time analysis establishes the semicubical
growth of the search region under constant-velocity dynamics (Blake et al., 1993).

Markov processes can also be viewed in spectral terms as the output of certain
linear systems driven by noise (Papoulis, 1991), and often displaying resonances in its
spectral power distribution. The use of resonant modes in visual motion modelling
was first developed by Pentland and Horowitz (1991) and applied to spline contour
models by Baumberg and Hogg (1994). In both cases the dynamical models are
purely deterministic, essentially the deterministic component of the stochastic models
described in the chapter. Such deterministic dynamical models describe distributed,
massive systems (Landau and Lifshitz, 1972), and can be derived using “Lagrangian
analysis.” Second order differential equations, expressed in terms of positions, veloc-
ities and accelerations, are obtained from the functions of position and velocity that
specify the potential energy and power dissipation of a system. A useful introduction
is given in (Terzopoulos and Szeliski, 1992).

Chapter 10

Dynamic contour tracking

In the previous chapter, dynamical models were characterised by a second-order state
density p(X (t)), evolving temporally, and representing the prior distribution for the
state X at each time t. In this chapter, both the prior dynamical model and visual
measurements are to be taken into account. The result is a fusion of information,
both prior and observational, as was set out in chapter 8 for single images, but done
now for image sequences, to track motion.

The natural mechanism for temporal fusion, when distributions are Gaussian, is
the Kalman filter. It computes the evolution of the Gaussian density for the state of
the tracked object, as figure 10.1 illustrates. A simple practical example consists of
a planar affine shape-space, based on a hand-shaped template, with constant-velocity
dynamics, which is capable of tracking motion of an outstretched hand (figure 10.2).
All results in this chapter show tracking tasks that can be performed in real time on
a desktop workstation.

10.1 Temporal fusion by Kalman filter

Observation history

The Kalman filter maintains a Gaussian distribution of the state

X (tk) ∼ N (X̂ (tk),P(tk))

given both the prior dynamical model for X (tk) and the measurement history Z(tk):

Z(tk) = (Z(t1), . . . ,Z(tk)) (10.1)

214 Chapter 10

p(x)

x

p(x)

x

p(x)

x

p(x)

x

deterministic drift

stochastic diffusion

reactive effect of measurement

z

Figure 10.1: Kalman filter as density propagation. In the case of Gaussian prior,
process and observation densities, and assuming linear dynamics, the state density propagates
as a Gaussian represented completely by its evolving (multi-variate) mean and variance.

where Z(tk) is the version at time t = tk of the aggregated observation Z that is
produced by the recursive image-curve fitting algorithm of chapter 6 (figure 6.7 on
page 127). As in that static algorithm, so also now in the dynamic case, the statistical
information associated with Z(tk) for estimating X is S(tk) (S in the fitting algorithm)
and Z(tk) is an unbiased estimate of S(tk)X(tk) (rather than of X(tk) itself).

In the previous chapter, X̂ (tk) and P(tk) were defined (in (9.19) on page 204) to
be the prior mean and covariance of the state. Now X̂ and P are redefined as the
posterior mean and variance

X̂ (tk) = E [X (tk)|Z(tk)] and P(tk) = V[X (tk)|Z(tk)], (10.2)

conditioned on the measurement history Z(tk). The principle behind the evolution of
X̂ (tk), together with P(tk), is straightforward. The estimate at time tk−1 is propagated

Dynamic contour tracking 215

Figure 10.2: Hand tracking in planar affine shape-space. A planar affine shape-space
with constant-velocity dynamics is sufficient to track movements of an outstretched hand at
modest speed.

to time tk in the two standard steps of the Kalman filter: prediction, and assimilation
of observations. This engages all of the probabilistic machinery developed so far
in the book: prediction is based on the dynamical models of the previous chapter;
assimilation of observations is based on information weighting as in chapters 6 and 8.

216 Chapter 10

Prediction

A single time-step of the dynamical model ((9.22) on page 205) is applied to X̂ (tk−1)
to obtain a predicted state X̃ (tk):

X̃ (tk) −X = A(X̂ (tk−1) −X) (10.3)
P̃(tk) = AP(tk−1)AT +BBT .

Assimilation by information weighting

In its most direct form, assimilation computes an information weighted mean between
the prediction and the latest measurement:

P(tk) =
(
P̃−1(tk) +HTS(tk)H

)−1
(10.4)

and
X̂ (tk) = X̃ (tk) + P(tk)HTZ(tk)

where the matrix
H =

(
0 I

)
(10.5)

maps X (tk) → X(tk) from state-space into shape-space.
It is clear that in the first of these equations, information is summed and that in

the second, information weighting is applied. However, this assimilation procedure
is somewhat inefficient because of the need to invert large (2NX × 2NX) matrices.
Fortunately the Kalman filtering canon offers a more efficient alternative in which
only a single NX ×NX matrix inversion is required at each time-step.

Assimilation by Kalman gain

An exactly equivalent algorithm for assimilation, free of inversions of the full state
covariance P, is based on a “Kalman gain” matrix K, as follows:

K(tk) = P̃(tk)HT
(
S(tk)HP̃(tk)HT + I

)−1
(10.6)

X̂ (tk) = X̃ (tk) + K(tk)Z(tk)
P(tk) = (I −K(tk)S(tk)H) P̃(tk).

Dynamic contour tracking 217

Note that the only matrix inversion occurs in the expression for the Kalman gain
and involves an NX × NX matrix, as promised. A particular form has been used
here for the Kalman gain such that if the aggregated measurement Z(tk) is deficient
so that S(tk) has less than full rank, the assimilation step is still well-defined and
free of singularities. In fact, even if measurement fails altogether so that S(tk) = 0
and Z(tk) = 0, the assimilation step simply becomes X̂ (tk) = X̃ (tk), accepting the
prediction without modification.

Block decomposition

Finally, the algorithm above can be expressed most efficiently, using submatrix de-
composition of the state-space covariance P into submatrices P , P ′ and P ′′, as earlier
in (9.20) on page 204. In addition, the Kalman gain is decomposed into two NX ×NX

submatrices:

K =


 K ′

K


 . (10.7)

This allows the special form of the dynamical matrix A and the symmetry of P to
be exploited. The full algorithm is given in figure 10.3. It consists of one predict–
observe–assimilate cycle for each time-step. The predicted shape X̃(tk) is used as the
basis for obtaining the aggregated measurement vector Z(tk). It replaces, in steps 2
and 4 of the fitting algorithm of figure 6.7 on page 127, the shape-vector X which
defined the estimated curve r(s) from which image features νi are measured. Finally,
the estimated curve shape X(tk) is computed, as required. Other variables P (tk),
P ′(tk), P ′′(tk) and X̂′(tk), computed in the assimilation step, are carried forward for
use in prediction at the following time-step.

Initial conditions

The algorithm of figure 10.3 sets out the formation of the estimate at time tk from
the one at time tk−1. All that remains to complete the algorithm is to specify initial
conditions at time t0. There are various natural ways to do this corresponding to
various possible assumptions about the initial state of the object to be tracked. In
general, values of X̂(t0) and P(t0) are set to reflect the prior distribution for object
state. The state distribution specifies the distributions of configurations at times
t0, t−1, that is X(t0) and X′(t0) (recall X′(t0) ≡ X(t−1)). Alternatively, it can be

218 Chapter 10

Algorithm for propagation over one time-step

Predict
P̃ ′′(tk) = P (tk−1)

P̃ ′(tk) = A2P
′T (tk−1) +A1P (tk−1)

P̃ (tk) = A2P
′′(tk−1)AT

2 +A1P
′(tk−1)AT

2

+A2P
′T (tk−1)AT

1 +A1P (tk−1)AT
1 +B0B

T
0

X̃′(tk) = X̂(tk−1)
X̃(tk) = A2X̂′(tk−1) +A1X̂(tk−1) + (I −A2 −A1)X.

Measure

Apply the algorithm of figure 6.7 on page 127, to the image at time
tk using X̃(tk) as estimated contour from which normals are cast. Use
P̃ (tk) as the value of P to compute validation-gate width (figure 8.6 on
page 174). Obtain the aggregated observation vector Z and information
matrix S, denoted here as Z(tk) and S(tk).

Assimilate

K ′(tk) = P̃ ′(tk)
[
S(tk)P̃ (tk) + I

]−1

K(tk) = P̃ (tk)
[
S(tk)P̃ (tk) + I

]−1

P ′′(tk) = P̃ ′′(tk) −K ′(tk)S(tk)P̃ ′(tk)
P ′(tk) = P̃ ′(tk) −K(tk)S(tk)P̃ ′(tk)
P (tk) = P̃ (tk) −K(tk)S(tk)P̃ (tk)

X̂′(tk) = X̃′(tk) +K ′(tk)Z(tk)
X̂(tk) = X̃(tk) +K(tk)Z(tk)

Figure 10.3: Second-order Kalman filter for image sequences.

Dynamic contour tracking 219

thought of as specifying a prior distribution for initial position X(t0) and velocity
V(t0) = Ẋ(t0).

Known, static, initial position. This is an appropriate assumption for interactive
applications such as the hand-mouse of figure 1.16 on page 20 in which the hand
might typically be inserted into a marked outline with shape X0, and held still
while tracking is switched on. In that case, suitable initial conditions are given
by the closed-loop steady state of the filter. This can be obtained most sim-
ply by running the tracking algorithm with constant “artificial” measurements
S(tk) = S, Z(tk) = SX0 in which S takes the value for a full set of successful
image measurements in the curve-fitting algorithm. Under these circumstances,
values of P (t∞), P ′(t∞), P ′′(t∞), and of X̂(t∞),X′(t∞) should settle to a steady
state. This serves as a suitable initial condition once tracking is switched on by
suspending the artificial measurements and allowing real image measurements
to flow in.

Unknown initial position. If initial position is unknown, then the only available
prior information is what is embodied in the dynamical model itself. Then
the assumption is that, at switch-on, the object may be anywhere within the
Gaussian envelope implied by the model. It amounts to setting initial conditions
to the open-loop steady state, determined by running the dynamical model in the
absence of measurement. This is obtained by running the tracker on artificial
measurements, this time with S(tk) = 0, Z(tk) = 0, until tracking is switched
on as before. Note that the method can be used only if the AR process has a
steady state and that excludes “constant velocity” models (see previous chapter,
page 206).

Known initial velocity. In many applications a prior estimate of the initial velocity
of the object is available, at least over a subspace of the shape-space. For
example, observing plants on the ground from a moving tractor (figure 1.6 on
page 10) or objects moving on a conveyor belt. In that case the estimated
velocity is incorporated in a velocity offset vector V0 in shape-space and the
initial state becomes:

X̂(t0) = X0, X̂′(t0) = X0 − V0τ.

with P initialised to the closed-loop steady-state value as before.

220 Chapter 10

Alternative Kalman Filter

An alternative version of the Kalman filter is possible with an assimilation step that is equiv-
alent to (10.6) but with a modified presentation. It is based on the alternative curve-fitting
algorithm of chapter 6 (figure 6.10 on page 133), rather than the original recursive algorithm.
The detailed implementation of the algorithm is omitted here. The comparison between the
two algorithms, here in the dynamic case, is similar to that for the static case: for small NX

the original algorithm is more efficient, but as NX increases the alternative algorithm becomes
relatively more efficient.

Computational cost

The computational cost of the tracking algorithm is in fact O(N3
X) so that increasing the

dimension NX of shape-space carries a heavy cost penalty. The cost is comprised of two
components. Prediction and assimilation (figure 10.3) incur a cost of O(N3

X) in the multi-
plication and inversion of the various NX × NX matrices. The generation of the aggregated
measurements Z(tk) also costs (argued in chapter 6) approximately O(N3

X).

10.2 Tracking performance

At last, all three components of a fully dynamic, active contour tracker are in place:
visual measurement, the dynamic model and temporal filtering. The validation-gate
mechanism of chapter 8, used in the recursive fitting algorithm (figure 8.6 on page 174)
to acquire the aggregated observations, is crucial here. It relates the width of the
search region to the position covariance P , now a time-varying quantity P̃ (tk). Com-
bining the three components in the algorithm of figure 10.3, and using a validation
gate, produces a tracker that is robust in a number of respects.

Initialisation

One sense in which tracking is robust is that it is capable, in the initialisation phase,
of “locking on” to an object: uncertainty in object position and shape is tolerated
initially but rapidly resolved as the continuity of tracked motion is recognised. This
is reflected in the collapsing search region in figure 10.4.

Dynamic contour tracking 221

Figure 10.4: Locking on from the open-loop steady state. The search region begins
at its largest, reflecting initial uncertainty of location. It rapidly collapses as observations
decrease the uncertainty.

Adaptive search

If image observations fail along the contour, the search region expands over the affected
segments until observations succeed again, as figure 10.5 shows. The extreme case is
when observations fail along the entire length of the contour, in which case the search
region regresses towards its open-loop steady state. Note the characteristically rapid
recovery of tracking, in the figure, between t = 0.16 s and t = 0.20 s. This is explained
by the increased positional variance at t = 0.16 s (P̃ (tk) in figure 10.3), leading to
a correspondingly increased Kalman gain (K(tk)). Once back in the steady state,
covariance decreases and Kalman gain also decreases so that the relative influence of
the predictive dynamical model becomes stronger again. To summarise, there is an
inverse relationship between spatial scale and temporal scale. In the special case of
constant-velocity dynamics, it is an inverse square law; the time-scale for smoothing
varies as the inverse square of the spatial extent of the search region. This inverse
relationship can be observed even within one contour, as figure 10.6 shows.

222 Chapter 10

t = 0.0 s t = 0.08 s

t = 0.16 s t = 0.20 s

Figure 10.5: Recovery of lock. As the hand begins to move, observations (white dots) suc-
ceed initially along all normals. As the accelerating hand leaves the dynamic contour lagging
behind, measurements are lost and the search region automatically expands, reflecting increas-
ing uncertainty. The expanded region now contains the edges of the hand and observations
recover.

Dynamic contour tracking 223

t = 0.0 s t = 0.04 s

t = 0.08 s t = 2.0 s

Figure 10.6: Temporal scale varies inversely with spatial scale The search region
(bounded by grey lines, arrowed in the first frame) is initialised with varying width. Where the
search region is wide, temporal scale is short, and the contour deflects more rapidly, as shown.
(Figure by courtesy of R. Curwen.)

224 Chapter 10

Resistance to clutter and obscuration

Background clutter can disrupt tracking by distracting the observation process. The
validation gate is helpful here, especially when the search region is narrow, because it
excludes as much of the clutter as possible, as in figure 10.7. Similarly, the validation
gate helps with loss of visibility, occurring either because the object passes partly out
of the image or from partial obscuration when, for instance, a tracked person passes

Figure 10.7: Resistance to clutter. A hand accelerates across a cluttered background.
Note that in the second frame the lower left corner of the contour is momentarily distracted
by the chair but the disturbance is successfully filtered out over time. (Figure by courtesy of
R. Curwen.)

Dynamic contour tracking 225

behind a lamp post. A good example is the tracking of fish viewed underwater, as in
figure 10.8. Of course if the obscuring object is known, it can actually be predicted that
measurements will fail over the corresponding image region. In that case attempts to
measure νi along normals, in the curve-fitting algorithm, are suspended over the region
that is predicted to be obscuring. Where the obscuring object has texture, which could
generate false measurements, predicting the obscuration allows those false features to
be suppressed.

Agile motion

Agility is a challenge because the continuity of motion is disrupted when sudden
changes of speed and direction occur. The validation gate helps here also by signaling
the loss of “lock” on the moving object and allowing the tracker to regress towards
the “open-loop initialisation” state in which greater positional error is tolerated, as
indicated by the widening of the search region. As recovery of lock proceeds, the
tracker progressively returns to the steady state associated with continuous motion
(figure 10.9). Figure 10.10 illustrates the robustness of agile tracking due the temporal
variations of Kalman gain and search-region width.

10.3 Choosing dynamical parameters

This section outlines some design principles for building trackers. How can the pa-
rameters of a synthesised AR process of the sort described in section 9.6, and the
observation parameters, be chosen to meet performance requirements? The AR pa-
rameters to specify are the frequency, damping rate and average displacement

fi s−1, βi s−1 and ρi pixels,

for each shape-subspace Si (of dimension Ni) used. For the observation process, the
parameter ρf must be specified, representing the average displacement error of image
measurements along a curve.

AR parameters

In many applications it is reasonable to maintain the critical damping condition fi = 0
so that there is a single, natural time-scale 1/βi to be chosen for each space Si. In other

226 Chapter 10

Figure 10.8: Expansion of the search region aids recovery from occlusion. A
tracked fish (top) passes behind another fish (left). The remaining successful observations,
together with the dynamical model in shape-space, compensate for lost measurements around
the head. Observations around the head resume as it re-emerges (right), one second later.

Dynamic contour tracking 227

Time t = 0.72 s Time t = 1.2 s Time t = 1.48 sTime t = 0.12 s

S
ca

le
 (

m
m

)

3.4

3

2.6

2.2

1.8
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Time (s)

Figure 10.9: Loss and recovery of lock. When an object falls outside its validation gate,
owing to a sudden discontinuity of motion for example, the validation gate widens rapidly.
Interestingly, in the case illustrated of a constant-velocity model, it can be shown that gate
width grows in proportion to t3/2. The expanding gate will therefore catch up with any object
fleeing at a constant velocity. Once lock is recovered, the gate collapses rapidly. (Figure
courtesy of Rupert Curwen.)

applications, such as lip motion with its characteristic oscillations during speech, it is
more appropriate to set fi > 0 over shape-subspaces associated with lip deformation.

Once dynamical constants fi and βi are fixed, it remains to choose the average dis-
placements ρi. That fixes the open-loop search-region width, which is proportional to
the average displacement ρo, over the whole shape-space, under open-loop conditions:

ρo =
√∑

i

ρ2
i .

228 Chapter 10

Snapshot at 10.0 seconds Snapshot at 17.6 seconds

Varying gain and search region

Fixed gain and search region

Figure 10.10: Validation gate strengthens tracking performance for agile motion.
The “chirp” test sequence used here, of 20 seconds duration, involves oscillatory motions of
steadily increasing frequency. At around 10 seconds, accelerations are such that the tracked
curve lags the hand appreciably. Variation of gain and search-region width allows lost lock to
be recovered (left). However, if variation is inhibited by fixing covariance at P∞ (right), lock
is lost irretrievably. The time-course of the translational component of motion is shown in
figure 10.11.

Dynamic contour tracking 229

0

d

20
secs

0.2

−0.2

radians

Varying gain and search region

0

d

20
secs

0.2

−0.2

radians

Fixed gain and search region

Figure 10.11: Time-course of the translational component of motion for the test of fig-
ure 10.10. In the fixed gain case, the loss of lock after 12 seconds or so is clearly visible.

For example, for the hand-mouse it is appropriate to use just two shape-subspaces Ss

and Sd for translation and deformation respectively. Time constants of the order of a
second are appropriate in both subspaces but ρs might be set an order of magnitude
greater than ρd to reflect relatively large translational excursions across the field of
view. The open-loop steady-state distribution will then have a correspondingly large
average displacement from the template shape ρo ≈ ρs, dominated by its translational
component.

230 Chapter 10

Observation error

Given complete image observations, the search region collapses to the size and shape
determined by the prediction covariance P̃ (t∞) in the closed-loop steady state. The
associated average displacement ρc relative to the predicted shape, given by

ρ2
c = tr(P̃ (t∞)H),

is determined by the setting of ρf , together with the AR parameters above, and this
gives a guide to the size of the search region during steady-state tracking. It is difficult
to predict exactly what value ρc takes but in the case that ρf is small, including the
case ρf = 0,

ρc ≈
√

tr(B0BT
0 H), (10.8)

approximately independent of the precise value of ρf . For the partitioned harmonic
model this gives

ρc ≈
√∑

i

(bi0)2Ni. (10.9)

For example, in the case of simple harmonic motion over an unpartitioned shape-space
this becomes

ρc ≈ b0
√
NX

which can be related to ρc under the continuous-time assumption (9.27) to give

ρc

ρo

= 2
(
β
(
β2 + 2π2f2

))1/2
τ3/2. (10.10)

This is a useful design rule, giving the factor by which the search region contracts
between the open and closed-loop conditions. Note that this case of exact measurement
is extreme; as measurements become less precise, the ratio between search-region
dimensions in the open condition versus the closed one decreases.

Setting ρf to a small value also ensures accurate position estimates — average
positional error is bounded by ρf in general — but only if observations are successful.
If the background is clutter-free, tracking may succeed with a small ρf , and estimated
positions will be accurate. If there is significant background clutter, this must be
reflected by assuming a larger value of ρf , the average observation error. The effect
is to widen the search region, tolerating greater levels of clutter-induced observation
error, at the expense of less accurate position estimates.

Dynamic contour tracking 231

10.4 Case study

To conclude the chapter, typical, practical settings of dynamical parameters are given
for an application — the digital desk. First the case of tracking hand motion over a
clean desk is given, and this applies also to a cluttered desk in which the background
has been modelled and can be discounted. The aim is to achieve tracking of the agile
motions that occur in drawing and pointing gestures. Then the more difficult problem
of tracking over unmodelled clutter is addressed.

Three different settings of dynamical parameters, in a shape-space of Euclidean
similarities, are illustrated in figures 10.12 and 10.13: “slow,” “fast” and “tight.”

“Slow” dynamics are:

translation:
f = 0, β = 2 s−1 and ρo = 2000 pixels,

which is critically damped, slow given its 1
2 second time-constant, and very

loosely constrained spatially, to allow free rein over the 500 pixel extent of
the image.

rotation/scaling:
f = 0, β = 10 s−1 and ρo = 50 pixels,

which is tightly constrained, reflecting relatively strong prior knowledge
about the shape of the outline.

Observed features are edges detected with a Gaussian operator of width 2 pixels,
and with a contrast threshold of 8 grey-levels. Typically several features are
detected along each search line; the one with strongest contrast is chosen but
with a modest bias for zero innovation. Observation uncertainty is set to

ρf = 5 pixels,

a reasonable value to allow for measurement error, unmodelled shape variations,
and the possibility of reporting clutter as an object feature.

“Fast” More agile performance is allowed by increasing the damping rate for trans-
lation to

β = 5 s−1.

232 Chapter 10

This has the side-effect of increasing the uncertainty in predicted position at each
time-step and increasing the width of the search region, increasing the tendency
for distraction by spurious features internal to the hand. To compensate, account
is taken of contrast polarity, accepting only light to dark transitions on the
hand outline. To help further, the contrast threshold is increased to 25 grey-
levels, capitalising on the darkness of the background. Now tracking is fast and
accurate.

“Tight” A cluttered background (figure 10.13) that is entirely static can be modelled
and suppressed, and the problem is essentially no harder than before. Otherwise,
clutter seriously distracts the “fast” tracker, so that dynamical parameters need
to be tightened up for tracking to work at all. The clutter problem is exacerbated
further by the fact that contrast with the desk is no longer so pronounced; the
contrast threshold has to be increased to 12 grey-levels, and this increases the
effective density of clutter. What is more, polarity of contrast can no longer
be relied upon, since some of the desktop is darker than the hand and some
lighter. An alternative that works well is to use colour (chapter 5), relying on
the distinctive pink hue of skin to discriminate from the background. Sensitivity
to clutter needs to be reduced further. This is done by reducing freedom to
rotate/scale, by setting

ρo = 25 pixels,

half its previous value. The search region along each line is artificially restricted
to 60% of its normal value by reducing the length factor κ in the validation test
of figure 8.6 from the usual κ = 2 to κ = 1.2. Now slower hand motions can be
tracked satisfactorily over clutter.

To summarise, good performance can be obtained with manually set dynamics, for
tracking with a clean background, or a background that is cluttered but static so that
it can be discounted. If clutter persists, performance is more limited. In that case,
the next chapter shows how to set more acutely tuned dynamical parameters, using
examples of motion tracked against a clean background for training. This helps some-
what to deal with the cluttered background by strengthening prior knowledge of shape
and motion. More radically, the methods of chapter 12 offer powerful, non-Gaussian
methods to handle clutter which are very effective but more costly computationally.

Dynamic contour tracking 233

Figure 10.12: Case study: setting up for the digital desk. “Slow” tuning (top) is
stable, works well for gentle motions, but is derailed by faster ones. “Fast” tuning (bottom)
is not quite so stable but is capable of following rapid motions — note the motion blur in the
still image.

Bibliographic notes

Established uses of Kalman filtering in machine vision include (Bolles et al., 1987;
Broida and Chellappa, 1986; Bolles et al., 1987; Dickmanns and Graefe, 1988b;
Matthies et al., 1989; Gennery, 1992). Terzopoulos and Szeliski (1992) recognised
the connection between snakes with dynamics and the formalism of the Kalman filter.
Low-dimensional curve parameterisations such as the B-spline make it practicable to
implement a snake as a Kalman filter (Blake et al., 1993). The idea of using a spatially
extended validation gate in a contour tracker was proposed and developed in (Curwen
and Blake, 1992; Blake et al., 1993).

234 Chapter 10

Figure 10.13: Case study: heavy background clutter. The “fast” tracker of figure 10.12
is too easily distracted by clutter (left) to be used successfully against an unmodelled background
of text and pictures. “Tight” parameter settings (right) secure adequate stability, but can only
track slower motions.

In its standard form, the Kalman filter is formulated in terms of Kalman gain
(Gelb, 1974), which is derived from the information weighted mean using the “matrix
inversion lemma” (Bar-Shalom and Fortmann, 1988). The form of Kalman filter used
in this chapter, that avoids singularity problems when measurements are degenerate or
fail altogether, was taken from (Harris, 1992b) in which Kalman filtering was applied
to the non-linear parameters for position/orientation of a single, polyhedral rigid body.
It achieved impressive results in terms of efficiency and agility of tracked motion. Lowe
(1992) addressed the related problem of tracking an articulated pair of rigid bodies,
in terms of its extended, non-linear parameterisation.

Chapter 11

Learning motion

In the previous chapter, dynamic contour tracking was based on prediction using
dynamical models of the kind set out in chapter 9. The parameters of the models
were fixed by hand to represent plausible motions such as constant velocity or critically
damped oscillation. Experimentation allows these parameters to be refined by hand for
improved tracking but this is a difficult and unsystematic business, especially in high-
dimensional shape-spaces which may have complex couplings between the dimensions.
What is far more attractive is to learn dynamical models on the basis of training sets.
Initially, a hand-built model is used in a tracker to follow a training sequence which
must be not too hard to track. This can be achieved by allowing only motions which
are not too fast, and limiting background clutter or eliminating it using background
subtraction (chapter 5). Once a new dynamical model has been learned, it can be
used to build a more competent tracker, one that is specifically tuned to the sort of
motions it is expected to encounter. That can be used either to track the original
training sequence more accurately, or to track a new and more demanding training
sequence, involving greater agility of motion. The cycle of learning and tracking is
described in figure 11.1. Typically two or three cycles suffice to learn an effective
dynamical model.

In mathematical terms, the problem is to estimate the coefficients A1, A2, X and
B0 which best model the motion in a training sequence of shapes X1, . . . ,XM , where
now Xk ≡ X(tk), gathered at the image sampling frequency. A general algorithm
to do this is described below. Note that the learning algorithm as presented treats
estimated shape-vectors Xk in a training sequence as if they were exact observations
of the physical process, rather than noisy estimates obtained from a visual tracker. In

236 Chapter 11

Shape-space

Hand-built
dynamics

Training sequence
slow, clutter-free

Fast test
sequences

Faster training
sequence

Infer dynamical
model

Iterate

Figure 11.1: Iterative learning of dynamics. The model acquired in one cycle of learning
is installed in a tracker to interpret the training sequence for the next cycle. The process is
initialised with a hand-built tracker of the sort described in chapter 9 and 10.

practice this often works quite well but can give surprising results with highly periodic
training motions, and this is discussed later.

11.1 Learning one-dimensional dynamics

First a learning algorithm is described for the simple case of a particle in one dimension
— no curve or splines are involved here for the sake of tutorial simplicity, just one
number describing the position of the particle along a rail. The problem is to estimate
a discrete-time, second order model for particle position xk so the state-space is defined
in terms of Xk ≡ xk. Then the dynamical coefficients A1, A2 and B0 become scalars
denoted a1, a2 and b0. For simplicity, assume that the mean x = 0 is known, so
that the quantity xk − a2xk−2 − a1xk−1 is an independent, zero-mean, scalar, normal
variable b0wk, for each k, with unknown variance b20. The algorithm is summarised in
figure 11.2.

The problem is expressed in terms of a “log-likelihood” function, defined up to an
additive constant by

L(x1, . . . , xk|a1, a2, b0) ≡ log p(x1, . . . , xk|a1, a2, b0) + const

Learning motion 237

where, since the wk are independent,

p(x1, . . . , xk|a1, a2, b0) ∝
∏
k

pb0wk
(xk − a2xk−2 − a1xk−1)

so, using the fact that the pb0wk
(·) are standard normal distributions,

L(x1, . . . , xk|a1, a2, b0) = − 1
2b20

M∑
k=3

(xk − a2xk−2 − a1xk−1)
2 − (M−2) log b0, (11.1)

up to an additive constant. Maximum Likelihood Estimates (MLE) for the coefficients
a1, a2 and b0 are obtained by maximising the function L, and this is straightforward
because L is quadratic. First, the maximisation over b0 factors out, leaving estimates
â1 and â2 to be determined by minimising

M∑
k=3

(xk − a2xk−2 − a1xk−1)
2

whose derivatives with respect to a1 and a2 are set to 0 to give â1, â2 as the solution
of the simultaneous equations in step 2 of the algorithm in figure 11.2. Now a1 and
a2 can be regarded as constants in L, fixed at their estimated values, and L can be
maximised with respect to b0 to give b̂0:

b̂0
2

=
1

M − 2

M∑
k=3

(xk − â2xk−2 − â1xk−1)
2 (11.2)

which, it can be shown, can be computed directly in terms of auto-correlation coeffi-
cients, as in step 3 of the algorithm.

Exercising the learning algorithm

Talking lips

Learned univariate motion is illustrated by the example used earlier, in chapter 9, of
the opening/shutting motion of a pair of talking lips. Once the learning is done, the
learned model (â2, â1, b̂0) can be displayed in spectral form, as was done in chapter 9
for models fit by hand. Figure 11.3 shows that the spectrum of the learned model

238 Chapter 11

Dynamical learning problem

Given a training set {x1, . . . , xM} of shapes from an image sequence, learn the
parameters a1, a2, and b0 for a second-order AR process that describes the
dynamics of the moving shape.

Algorithm

1. First, auto-correlation coefficients rij for i, j = 0, 1, 2 are computed:

rij =
M∑

k=3

xk−ixk−j for i, j = 0, 1, 2

2. Estimated parameters â1 and â2 are obtained by solving the simultane-
ous equations

r02 − â2r22 − â1r12 = 0
r01 − â2r21 − â1r11 = 0,

3. The covariance coefficient b0 is estimated as

b̂0
2

=
1

m− 2
(r00 − â2r20 − â1r10)

Figure 11.2: Algorithm for learning one-dimensional dynamics.

fits fairly well, having a resonant frequency of around 1 Hz, which is a little higher
than the peak of 0.8 Hz in the spectrum of the data. The hand-fitted spectrum in
figure 9.11 on page 201 was constrained to have its resonant peak coinciding with that
of the data. However, as a trade-off for the shift in its resonant peak, the learned
model fits the high frequency spectrum rather better. The learned model should also
capture some of the phase coherence of the data, something that was not taken into

Learning motion 239

0.2

0.4

0.6

0.8

1

Signal Power

0.5 1.0 1.5 2.0 2.5

Frequency (Hz)

Figure 11.3: Power spectrum of learned lip motion The power spectrum of the learned
model (solid) fits that of the lip-motion training data (dashed) quite well.

account in the hand-fitted model. In fact, the learned deterministic parameters are

f = 0.95 Hz, β = 2.9 s−1,

giving the coherence time-constant 1/β = 0.35 s for the process, short enough to
indicate that successive cycles in the signal are largely uncorrelated.

As in chapter 9, the learned model can be simulated and compared with the data.
The result (figure 11.4) appears, to the naked eye, to be as plausible a replica of the
data as the simulation of the hand-fitted model was (figure 9.12 on page 202).

Beating heart

It is instructive to see how the learning algorithm deals with training data that is
highly periodic and coherent. Of course, perfectly coherent, periodic data of frequency
f0 can be represented by a second-order ARP with f = f0, β = 0 and with b0 = 0
— zero driving noise, so that the process is entirely deterministic. The behaviour of
such a process is solely determined by initial conditions: once launched, the process
follows an entirely predictable trajectory. Such a model, if used as a predictor for
tracking, would have the strange effect that the gain of the Kalman filter would fall

240 Chapter 11

seconds

10 20 30 40 50

pixels

0

−100

100

Figure 11.4: Simulation of learned lip motion A sample path for the learned process is
shown here and appears plausibly comparable with the original signal in figure 9.8 on page 198.

to 0 in the steady state, because the strength of the predictions would overwhelm the
observations. Consequently observations would be ignored.

What is more realistic is almost periodic training data such as that from the
beating heart in figure 9.7 on page 198. It appears to be a regular, periodic process
with some additive noise, attributable perhaps to noise in observations. As noted
earlier, the learning algorithm neglects to allow for observation noise and it is with
highly periodic data that the discrepancy introduced by this erroneous assumption is
most evident. Figure 11.5 shows a simulation of a learned dynamical model, exhibiting
the right kind of motion over short time-scales (of the order of half a period), but over
longer time-scales the phase coherence of the original signal is lost. The deterministic
parameters of the learned model are

f = 1.12 Hz, β = 3.5 s−1,

representing an oscillation of period 1/f = 0.90 s which matches closely the average
period 0.87 s of the data (based on zero crossings). However, the damping represented
by the factor β is strong, representing a decay in amplitude by a factor of 5 over
one half period. This corresponds to the loss of coherence apparent in the simulation
over times greater than one half period or so. In fact the learned model, despite
its imperfection, is still useful for tracking because it works well as a predictor over
shorter time-scales, and visual observations carry the signal over longer time-scales.
Moreover, the imperfection can be remedied by recourse to a more elaborate learning

Learning motion 241

2 4 60
seconds

Figure 11.5: Simulating the learned motion of a beating heart. A dynamical model
learned from the training data of figure 9.7 on page 198 is simulated here. Limitations of the
learning algorithm (see text) means that although the periodic nature of the training data is
represented (each half-cycle is roughly the right size) its phase coherence is lost.

procedure using “Expectation–maximisation” or EM (see bibliographic notes) which
takes explicit account of observation noise.

Learning accuracy and training-sequence duration

Intuitively, a longer training sequence should give more reliable learned dynamical parameters.
This is indeed the case, and the nature of the influence of the number of frames M on the
accuracy of learned parameters a1, a2 and b0 can be made precise. In fact what is most
relevant is to quantify the effect of training-set duration T = (M − 2)τ on the parameters
β, f and ρ of the underlying continuous process. In this way, a characterisation of learning
performance is obtained that is independent of sampling rate τ . The characterisation is valid
under the assumptions that βτ � 1 and that the process is observed in its steady state. A
derivation is given in appendix B.

The principal result is that the proportional error in the parameters β and ρ is of order
1/
√
βT , and that the proportional error in f relative to β is also of order 1/

√
βT . As expected,

accuracy varies as the square root of training-set size, the usual statistical phenomenon of error
averaging. What may be more surprising at first sight is that the error depends not on M
directly, but on βT which can be thought of as the number of independent chunks in the
training signal. This is because 1/β is a “coherence time,” the duration over which parts
of the signal are correlated. In the lip-motion example above, for instance, the coherence
duration is 1/β = 0.35 s and the total duration of the training set (figure 9.8 on page 198) is

242 Chapter 11

60 seconds. In that case βT = 171 so that the proportional error in the continuous dynamical
parameters should be

100

√
60

0.35
% ≈ 7.6%.

For the beating heart the coherence duration is 0.29 s but the training sequence lasts only 8
seconds, giving a bound on error in dynamical parameters of

100

√
8.0
0.29

% ≈ 19%.

11.2 Learning AR process dynamics in shape-space

The general multi-variate learning algorithm follows broadly the line of the univariate
one, but the separability of the estimation of deterministic and stochastic parameters,
although it still holds, is no longer so obvious. Furthermore, it will no longer be
assumed that the mean X is known, so that it also must be learned. The log-likelihood
function for the multi-variate normal distribution is then, up to a constant:

L(X1, . . .XM |A1, A2, C,X) = (11.3)

−1
2

M∑
k=3

∣∣B−1
0

(
X′

k −A2X′
k−2 −A1X′

k−1

)∣∣2 − (M − 2) log detB0

where
X′

k = Xk − X, (11.4)

and
C = B0B

T
0 . (11.5)

The problem is to estimate A1, A2, X and C by maximising the log-likelihood L. This
is a non-linear problem because, unlike the simple case considered earlier in which the
mean was fixed at 0, the mean X now has to be estimated. This means that the
likelihood is quartic (rather than quadratic) in the unknowns, owing to the product
terms A2X and A1X that appear inside the | · |2 term in (11.3). The non-linearity
can be removed by using the alternative form for the AR process from chapter 9
(equation (9.6) on page 193) in which

D = (I −A2 −A1)X

Learning motion 243

so that the likelihood becomes

L(X1 . . .XM |A1, A2, C,D) = (11.6)

−1
2

M∑
k=3

∣∣B−1
0 (Xk −A2Xk−2 −A1Xk−1 − D)

∣∣2 − (M − 2) log detB0

which is then quadratic in A2, A1 and D.
Minimising the log-likelihood L leads to the learning algorithm of figure 11.6 which

estimates the dynamical parameters A2, A1, D and C. It is clearly a generalisation
of the univariate algorithm (figure 11.2). A derivation (optional) is given later.

Example: learning the dynamics of writing

As an illustration of multi-variable learning, the written name of figure 9.2 on page 187
is used as training data, to learn a dynamical model for finger-writing. A good test
for the plausibility of a learned model is to simulate it randomly, as was done in
chapter 9 for synthesised dynamical models. A random simulation of the model for
finger-writing is demonstrated in figure 11.7. The resulting scribble has characteristics
consistent with the training set in terms of direction and the size, shape and frequency
of excursions. Note that the dynamical model was actually learned in the affine space
for the finger outline and that the simulation therefore contains (minor) changes of
finger shape. The figure shows just the translational components, which account for
most of the motion in this case. (The learned model specifies dynamics in the steady
state, but not initial conditions; the speed at which the hand drifts across the page is
left indeterminate by the model. In this demonstration, the handwriting simulation
was initialised with zero velocity, and then superimposed on a constant velocity drift
roughly matching that in the training set.)

Modular learning: aggregation of training sets

It is often convenient to collect several training sets and to construct a dynamical
model which explains the motion in all of the training sets taken jointly. For example,
it might be desired to broaden the finger-writing model to cover writing in various
directions, not just the single direction in the training set illustrated. Alternatively,
when learning lip dynamics (see below) it might be convenient to construct separate
training sets for rigid motion of the head, and deformation during speech. In either

244 Chapter 11

Dynamical learning problem

Given a training set {X1, . . . ,XM} of shapes from an image sequence, learn
the parameters A1, A2, B0 and X for a second-order AR process that describes
the dynamics of the moving shape.

Algorithm

1. First, sums Ri, i = 0, 1, 2 and auto-correlation coefficients Rij and
R′

ij , i, j = 0, 1, 2 are computed:

Ri =
M∑

k=3

Xk−i, Rij =
M∑

k=3

Xk−iXT
k−j , R′

ij = Rij − 1
M − 2

RiR
T
j .

2. Estimated parameters Â1, Â2 and D̂ are given by

Â2 =
(
R′

02 −R′
01R

′−1
11 R

′
12

)(
R′

22 −R′
21R

′−1
11 R

′
12

)−1

Â1 =
(
R′

01 − Â2R
′
21

)
R′−1

11

D̂ =
1

M − 2

(
R0 − Â2R2 − Â1R1

)
.

3. If required for the standard form of the AR process, the mean X is
estimated from

X̂ = (I − Â2 − Â1)−1D̂.

4. The covariance coefficient B0 is estimated as a matrix square root B̂0 =√
Ĉ where

Ĉ =
1

M − 2

(
R00 − Â2R20 − Â1R10 − D̂RT

0

)
.

Figure 11.6: Algorithm for learning multi-variate dynamics.

Learning motion 245

0 100 200−100−200

100

0

−100

0 100 200−100−200

100

0

−100

Figure 11.7: Scribbling: simulating a learned model for finger-writing. A training
set (left) consisting of six handwritten letters is used to learn a dynamical model for finger
motion. A random simulation from the model (right) exhibits reasonable gross characteristics.

case it is incorrect simply to concatenate the training sets and treat them as one long
training set because the abrupt transition at the join of the sets would be treated
as genuine data, whereas in fact it is spurious. The solution is to compute autocor-
relations individually for the training sets and to combine them in a linear fashion.
Details of the combination method are omitted here, but see the bibliographic notes.

Derivation of the learning algorithm of figure 11.6.

Maximising likelihood L (11.6) first with respect to A1, A2 and D, it will be shown that
separability holds — the resulting estimates Â2, Â1 and D are independent of the value of C.
To show this, a lemma is needed.

Lemma: Given a scalar function f(Y) of a matrix Y of the form

f = tr(KZ) with Z(Y) = Y SY T − Y S′T − S′Y T ,

in which K, S and S′ are constant matrix coefficients and S and K are non-singular and
symmetric, the value Y = Ŷ at which ∂f/∂Y = 0 is independent of K.
Proof: Z(Y) can be rewritten

Z(Y) = (Y − Ŷ)S(Y − Ŷ)T + const where Ŷ = S′S−1

246 Chapter 11

and then
dZ = dY S(Y − Ŷ)T + (Y − Ŷ)S dY T

and, since K is symmetric,
df = 2 tr

(
K dY S(Y − Ŷ)T

)
so that df = 0 for all dY iff Y = Ŷ , independent of the value of K.
�

Now we can proceed with maximising L, which is equivalent to minimising

f(A1, A2,D) =
M∑

k=3

∣∣B−1
0 (Xk −A2Xk−2 −A1Xk−1 − D)

∣∣2 (11.7)

with respect to A1 and A2. This function can be expressed as

f(A1, A2,D) = tr(ZC−1)

where

Z =
M∑

k=3

(Xk −A2Xk−2 −A1Xk−1 − D) (Xk −A2Xk−2 −A1Xk−1 − D)T

and C = B0B
T
0 . Invoking the lemma three times, with Y as each of A0, A1 and D in turn

(and with the other two treated as constant), indicates that we can effectively set B0 = I, for
the purposes of determining Â1, Â2 and D by finding the minimum of

tr(Z) =
M∑

k=3

|Xk −A2Xk−2 −A1Xk−1 − D|2 .

Setting to 0 the derivatives of tr(Z) with respect to A0, A1 and D respectively shows that the
minimum must satisfy the simultaneous equations

R02 − Â2R22 − Â1R12 − D̂R2 = 0 (11.8)

R01 − Â2R21 − Â1R11 − D̂R1 = 0
R0 − Â2R2 − Â1R1 − D̂(M − 2) = 0,

where Ri and Rij are defined as in step 1 of the algorithm. Note that a minimum of f must
exist because it is quadratic and bounded below by 0.

Lastly, the simultaneous equations can be simplified by subtracting multiples of the third
from the first and second to give

R′
02 − Â2R

′
22 − Â1R

′
12 = 0

R′
01 − Â2R

′
21 − Â1R

′
11 = 0

R0 − Â2R2 − Â1R1 − D̂(M − 2) = 0

Learning motion 247

where R′
ij is defined as in step 1 of the algorithm. Now the first two equations can be solved

directly for Â1 and Â2 which can then be substituted into the last one to give D̂, all as in
step 2 of the algorithm.

It remains to estimate B0 which is obtained as the square root of C = B0B
T
0 . Rewrit-

ing (11.6) as

L = −1
2
tr(ZC−1) +

1
2
(m− 2) log detC−1,

fixing A2 = Â2, A1 = Â1 and D = D̂, and extremising with respect to C−1 (using the identity
∂(detM)/∂M ≡ (detM)M−T) gives

Ĉ =
1

M − 2
Z(Â2, Â1, D̂), (11.9)

which simplifies, using the equations of step 2 of the algorithm, to give the formula for Ĉ in
step 4.

11.3 Dynamical modes

One of the advantages of the “state-space” form for the second-order AR process is that
the characteristics of the underlying continuous process can readily be identified. The
continuous-time interpretation consists of a number of “modes.” Some are damped
oscillations with the impulse response exp−βt cos 2πft that is characteristic of second-
order motion. Others are simple decays, with impulse responses of the form exp−βt,
associated with first-order motion. Each mode exhibits a particular pattern of motion.
For example, for a finger tracing out letters (figure 9.2 on page 187) one would expect
a slow exponential associated with the gradual, lateral drift, a faster oscillatory mode
associated with letter strokes, and various other “minor” modes with relatively rapid
decay. Modes characterise the deterministic component of dynamics, indicative of the
behaviour of a tracker when the observation process suddenly fails and tracking is left
to rely on prediction. That leaves the stochastic component which is relevant under
normal tracking conditions, and in particular when observations suddenly resume. The
Gaussian envelope following an extended period of prediction is given by the steady-
state covariance P∞, which can be computed from A and B. In fact P∞ represents
the static prior for the dynamical model and as such is similar to the covariance P for
the training set treated as a static set of shapes, as analysed by PCA in chapter 8.

248 Chapter 11

Modal analysis

Modes of the underlying dynamical process are characterised as follows. First, eigen-
values λm and eigenvectors XA

m for m = 1, . . . , 2NX of the matrix A are computed.
Any real, positive eigenvalue with λm < 1 corresponds to a exponentially decaying
mode, as for first-order processes, of the form exp−βmt where

βm =
1
τ

log
1
λm

. (11.10)

Note that if λm > 1 the mode is unstable because βm < 0. The mode’s pattern of
motion in shape-space is given by XA

m which is the upper half of the eigenvector

XA
m =


 XA

m

YA
m


 . (11.11)

(Note that the upper and lower halves are related by YA
m = λmXA

m.) Suppose, for
an object in Euclidean similarity shape-space, and assuming a sampling interval τ =
1/50 s, that λ1 = 0.99 and XA

m = (1, 1, 0, 0, 0.99, 0.99, 0, 0)T . This implies a decaying
exponential impulse response with

β1 = 50 log(1/0.99) = 0.50 s−1

so that the characteristic decay time of the mode is 1/0.50 = 2.0 s. The pattern of
displacement for the mode is given by XA

1 = (1, 1, 0, 0)T representing translation up
and to the right.

Otherwise, eigenvalues can be negative or complex and represent harmonic motion
of the form exp−βmt cos 2πfmt where

βm =
1
τ

log
1

|λm| (11.12)

fm =
1

2πτ
arg λm (11.13)

(where arg denotes the canonical argument of a complex number). Again, the mode-
shape is conveyed by the upper half XA

m of the corresponding eigenvector. In general,
the elements of XA

m are complex, their moduli indicating the amplitude of oscillation
in each shape-space component while their complex arguments indicate their relative

Learning motion 249

phases of oscillation. Note that complex eigenvalues must come in conjugate pairs, so
each oscillatory mode is expressed in terms of two of the eigenvalues out of the 2NX

eigenvalues of the matrix A. This means that A can have 2NX exponential modes, or
just NX oscillatory ones, or some combination of the two kinds.

As an example of an oscillatory mode, considering again the object in Euclidean
similarity shape-space, λ2 = 0.95 + 0.24i and XA

2 = (−1, 1, 0, 0)T imply a damped
oscillatory impulse response for which

β2 = 50 log
1√

0.952 + 0.242
= 1.02 s−1

f2 =
50
2π

arctan(
0.24
0.95

) = 1.97 Hz

representing an oscillatory period of 1/1.97 = 0.51 s. The decay time-constant is
1/1.02 = 0.98 s, indicating that the oscillation is coherent over approximately two
periods; over intervals longer than this, the phase of oscillation would be expected to
drift. The corresponding pattern of motion given by XA is translational, up and to
the left. If instead XA

2 = (1, i, 0, 0), the horizontal and vertical components are 90o out
of phase, indicating circular motion. Note that there must be a conjugate eigenvalue,
say λ3 = λ∗2, representing the same frequency (up to a change of sign) and damping
constant, and with XA

3 = (XA
2)∗.

Example: analysis of finger-writing

Earlier, in figure 11.7, the learned dynamical model for finger-writing was displayed
by a simulation which depicted a plausible scribble. Modal analysis as above reveals
that all the modes are stable (βm < 0) and that the two slowest modes have time
constants

1
βm

= 75 s, 1.15 s

respectively. The first of these has frequency fm = 0 so that, given the long decay
time, this is effectively a constant-velocity mode. It has an (upper) eigenvector

XA = (1.0,−1.18,−0.10, 0.05,−0.05,−0.05)T

in affine space which represents predominantly translational motion along the upper-
left to lower-right diagonal, following the gross flow of finger-writing in the training set.
(Note that affine space has been set up as described in chapter 4 so that components

250 Chapter 11

have comparable units, and the neglect of the non-translational components for this
mode is therefore valid.) The next mode is oscillatory, with frequency 1.01 Hz. This
is consistent with the formation of letters, involving one or two strokes each, so that
with around 12 strokes in “andrew,” written over a duration of 10 seconds, 1 Hz is
a very plausible frequency. The decay time of 1.15 s is almost exactly one period of
oscillation, suggesting that the stroke sequence is not coherent — successive strokes
are sufficiently independent that their phases do not match. The eigenvector for the
mode is

XA = (1, 0.38 − 0.28i,−0.74 + 0.13i, 0.47 − 0.28i,−0.51 + 0.53i,−0.43 + 0.23i)T

which contains translation and also other affine components. The translational part,
being complex, represents an elliptical motion at the 1 Hz frequency.

11.4 Performance of trained trackers

Preceding sections have shown, using modal analysis, that trained models capture the
oscillatory behaviour of typical motions. This section demonstrates that, as expected,
tracking performance is enhanced by replacing default dynamics in the predictor with
specific dynamics learned from a training set.

Tuning for lip gestures

First an example is given of tracking the motion of talking lips. Lips may be tracked
either in a frontal or in a side-on view. The side-on view, whilst arguably less in-
formative in speech analysis applications, has the advantage that the mouth outline
is silhouetted and therefore offers high contrast. Deformations of the lips for two
sounds are shown in figure 11.8. Individual dynamical models are learned for each
of the sounds “Ooh” and “Pah.” For example the “Pah” model is learned from a
training sequence in which the “Pah” motion is repeated several times. The resulting
selectivity is shown in figure 11.9. It is clear from these results that the tuning effect
for individual sounds is strong. Actually to render assistance for speech analysis, it
is necessary to learn the repertoire of lip motions that occurs in typical connected
speech, and this is addressed next.

Learning motion 251

Figure 11.8: Single-syllable training. Deformations of the mouth are shown corresponding
to the sounds a) “Pah” and b) “Ooh.”

Connected speech

Two-stage training is used to learn a dynamical model for connected speech. In the
bootstrap stage, the default tracker follows a slow-speech training sequence which is
then used, via the learning algorithm, to generate a trained tracker. This “boot-
strapped” tracker is capable of following speech of medium speed and is used to follow
a medium-speed training sequence, from which dynamics for a full-speed tracker are
obtained. The trained tracker is then compared with the default tracker, using a test
sequence entirely different from the training sequences. Two deformation components
of lip motion are extracted, at 50 Hz, as “lip-reading” signals. The more significant
one, in the sense that it accounts for the greater part of the lip motion, corresponds
approximately to the degree to which the lips are parted. This component is plotted
for the default tracker and the partly and fully trained ones in figure 11.10. It is clear
from the figure that the trained filter is considerably more agile. In a demonstration
in which the signal was used to animate a head, the untrained filter was clearly able
to follow only very slow speech, whereas the trained filter successfully follows speech
delivered at normal speed.

252 Chapter 11

-50

0

50

100

4 8

seconds

Test sequence "Pah" - Filter "Pah"

-50

0

50

100

4 8

seconds

Test sequence "Pah" - Filter "Ooh"

Figure 11.9: Filter selectivity for lip gestures. The sound “pah” is repeated and tracked
by filters trained on the sounds “pah” (left) and “ooh” (right) respectively. Plotted signals re-
fer to the Principal Component of motion in the “Pah” training sequence, which corresponds
roughly to the degree to which the mouth is open. Corresponding tracked contours, approx-
imately 4.1 s after the start of the signal, are shown in the snapshots (top left and right).
Clearly the filter trained on “Pah” relays the test sequence faithfully, whereas the filter trained
on “Ooh” suppresses the test signal almost entirely.

Bibliographic notes

The dynamical learning algorithm presented here is based on the “Maximum Likeli-
hood” principle (Rao, 1973; Kendall and Stuart, 1979). Maximum likelihood algo-
rithms for estimating dynamics are based on the “Yule-Walker” equations for esti-
mation of the parameters of auto-regressive models (Gelb, 1974; Goodwin and Sin,
1984; Ljung, 1987). A multi-dimensional version of the algorithm which estimates

Learning motion 253

-100

0

100

seconds4 8

Un-trained lip tracker

-100

0

100

seconds4 8

Bootstrapped lip tracker

-100

0

100

seconds
4 8

Fully trained lip tracker

Figure 11.10: Trained lip tracker. Training a tracker for side-on viewing of speaking
lips greatly enhances tracking performance. The graphs show plots from the untrained, default
filter, the bootstrapped filter after one training cycle and lastly the filter after a second training
cycle. One component of deformation of the lips is shown, corresponding to the degree to which
the mouth is open — the space of deformations spanned by the first two templates in figure 4.12
on page 91. Note the considerable loss of detail in the default filter and the overshoots in both
default and bootstrapped filters, compared with the fully trained filter. (The sentence spoken
here was “In these cases one would like to reduce the dependence of a sensory information
processing algorithm on these constraints if possible.”)

254 Chapter 11

not only deterministic parameters A but also the stochastic parameters B is given
in (Blake and Isard, 1994; Blake et al., 1995). The particular compact form of the
estimator for C in the learning algorithm here is due to Wildenberg (Wildenberg,
1997). A related algorithm for learning deterministic parameters A only is described
by Baumberg and Hogg (Baumberg and Hogg, 1995b), who also address the issue
of orthogonality constraints on A. The extension of the algorithm to estimate the
shape-mean X originated from (Reynard et al., 1996).

An extension of the basic algorithm for classes of objects, dealing independently
with motion and with variability of mean shape/position over the class, is described
in (Reynard et al., 1996). The same algorithm is also used for modular learning — the
aggregation of training sets for which a joint dynamical model is to be constructed.

The result that the steady-state covariance P∞ in a learned dynamic model ap-
proximates to the sample covariance P for the training set treated as a static set of
shapes is described by (Wildenberg, 1997).

The learning algorithm treats the training set as exact whereas in fact it is inferred
from noisy observations. Dynamics can be learned directly from the observations using
Expectation–maximisation (EM) (Dempster et al., 1977). Learning dynamics by EM
is suggested by Ljung (Ljung, 1987) and the detailed algorithm is given in (North and
Blake, 1998). It is related to the Baum-Welch algorithm used to learn speech models
(Huang et al., 1990; Rabiner and Bing-Hwang, 1993) but with additional complexity
because the state-space is continuous rather than discrete.

A number of alternative approaches have been proposed for learning dynamics,
with a view to gesture recognition rather than tracking — see for instance (Mardia
et al., 1993; Campbell and Bobick, 1995; Bobick and Wilson, 1995).

Chapter 12

Non-Gaussian models and
random sampling algorithms

This chapter describes in detail a powerful algorithm for contour tracking that uses
random sampling — the Condensation algorithm. It applies to cases where there is
substantial clutter in the background. Clutter presents a particular challenge because
elements in the background may mimic parts of foreground features. In the most severe
case of camouflage, the background may consist of objects similar to the foreground
object, for instance when a person is moving past a crowd. The probability density
for X at time tk is multi-modal and therefore not even approximately Gaussian. The
Kalman filter is not suited to this task, being based on pure Gaussian distributions.

The Kalman filter as a recursive linear estimator is a special case, applying only
to Gaussian densities, of a more general probability density propagation process. In
continuous time the process would be described in terms of diffusion, governed by
a “Fokker-Planck” equation, in which the density for X (t) drifts and spreads under
the action of a stochastic model of its dynamics. In the simple Gaussian case, the
diffusion is purely linear and the density function evolves as a Gaussian pulse that
translates, spreads and is reinforced. It remains Gaussian throughout, as in figure 10.1
on page 214, and its evolution is described analytically and exactly by the Kalman
filter. The random component of the dynamical model leads to spreading — increasing
uncertainty — while the deterministic component causes the density function to drift
bodily. The effect of an external observation Z(t) is to superimpose a reactive effect
on the diffusion in which the density tends to peak in the vicinity of observations. In

256 Chapter 12

p(x)

x

p(x)

x

p(x)

x

p(x)

x

deterministic drift

stochastic diffusion

reactive effect of measurements

z2z1

Figure 12.1: Probability density propagation. In general, the state density describing an
object is multi-modal (compare with the Gaussian model used by the Kalman filter in figure 10.1
on page 214). Propagation occurs in three phases: drift due to the deterministic component
of object dynamics; diffusion due to the random component; reactive reinforcement due to
observations.

clutter, there are typically several competing observations and these tend to encourage
a non-Gaussian state density (figure 12.1).

The Condensation algorithm (Conditional density propagation) is designed
to address this more general situation. It has the striking property that, general-
ity notwithstanding, it is a considerably simpler algorithm than the Kalman filter.
Moreover, despite its use of random sampling which is often thought to be compu-
tationally inefficient, the Condensation algorithm runs in near real time. This is
because tracking over time maintains relatively tight distributions for shape at succes-
sive time-steps, and particularly so given the availability of accurate, learned models
of shape and motion.

Non-Gaussian models and random sampling algorithms 257

12.1 Factored sampling

This section describes the factored sampling algorithm, which can be used to search
single still images for an object when observations are non-Gaussian. Then, in the fol-
lowing section, the Condensation algorithm is presented as an extension of factored
sampling which handles temporal image sequences.

Chapter 8 introduced the notion of the posterior distribution for an object, and
the task of curve-fitting was cast as the problem of maximising p(X|Z) ((8.19) on
page 171), where Z denoted the “aggregated observation” from least-squares fitting
in chapter 6. By restricting the prior and observation densities to be Gaussian, the
posterior was also constrained to be Gaussian, described completely by its mean and
covariance matrix which were evaluated in closed form using the recursive fitting
algorithm on pages 127 and 174.

In clutter, Z has to incorporate all of the information in an image. It is no longer
valid to assume that the features consist of one measurement on each normal of a
single curve, and details of the form of Z to be used will be given in section 12.3. In
the general case the prior p(X) and the observation density p(Z|X) are non-Gaussian,
and there is no closed-form algorithm to evaluate the posterior. Factored sampling
provides a way of approximating the posterior, using a random number generator
to sample from a prior for curve-shape. Random sampling methods were used in
chapter 8 as a way of visualising distributions; here they form an integral part of the
algorithm.

The factored sampling algorithm generates a random variate X̃ from a distribution
p̃(X̃) that approximates the posterior p(X|Z). First a sample set {s(1), . . . , s(N)} is
generated1 from the prior density p(X) and then an index n ∈ {1, . . . , N} is chosen
with probability π(n), where

π(n) =
pz(s(n))∑N
j=1 pz(s(j))

and

pz(s) = p(Z|X = s),

1This can be done for example using (8.8) on page 164. Note that the presence of clutter causes
p(Z|X) to be non-Gaussian, but the prior p(X) may still happily be Gaussian, and that is what is
assumed in later examples.

258 Chapter 12

Probability

weighted
sample

posterior
density

State X

Figure 12.2: Factored sampling. A set of points s(n), the centres of the blobs in the
figure, is sampled randomly from a prior density p(X). Each sample is assigned a weight π(n)

(depicted by blob area) in proportion to the value of the observation density p(Z|X = s(n)).
The weighted point set then serves as a representation of the posterior density p(X|Z), suitable
for sampling. The one-dimensional case illustrated here extends naturally to the practical case
that the density is defined over several position and shape variables.

the conditional observation density. The value X̃ = s(n) chosen in this fashion has
a distribution which approximates the posterior p(X|Z) increasingly accurately as N
increases (figure 12.2).

Note that arbitrary posterior expectations E [g(X)|Z] can be generated directly
from the samples {s(n)} by weighting with pz(s) to give:

E [g(X)|Z] ≈
∑N

n=1 g(s
(n))pz(s(n))∑N

j=1 pz(s(j))
. (12.1)

For example, the mean can be estimated using g(X) = X (illustrated in figure 12.3)
and the second moment using g(X) = XXT . In the case that the density p(Z|X)
is normal, the mean obtained by factored sampling is consistent with an estimate
obtained more conventionally, and efficiently, from linear least-squares estimation.
An example of the application of the factored sampling algorithm to locate objects is
given in figure 12.4. A prior distribution is used which is quite diffuse, covering most of
the image area, and allowing a wide range of variation of orientation and shape. Given
a suitable observation density, the posterior distribution shown is strongly peaked at

Non-Gaussian models and random sampling algorithms 259

(a) (b)

Figure 12.3: Sample-set representation of shape distributions. The sample-set repre-
sentation of probability distributions, illustrated in one dimension in figure 12.2, is illustrated
here (a) as it applies to the distribution of a multi-dimensional curve parameter X. Each
sample s(n) is shown as a curve (of varying position and shape) with a thickness proportional
to the weight π(n). The weighted mean of the sample set (b) serves as an estimator of the
distribution mean.

the locations of several genuine objects and also a few fairly convincing frauds.

12.2 The Condensation algorithm

The Condensation algorithm is based on factored sampling but extended to apply
iteratively to images in a sequence, taken at successive times tk. In chapter 10 the
Kalman filter was used to incorporate prediction, using a dynamical model, into the
curve-fitting process. Condensation is the analogous extension to factored sampling,
and in the examples described later the dynamical model used is exactly that devel-
oped in chapters 9 and 11. In fact much more general classes of dynamical models
can be used within the algorithm and these are discussed in the bibliographic notes.

The state of the modelled object at time tk, denoted X (tk) earlier, will now be

260 Chapter 12

Figure 12.4: Sample-set representation of posterior shape distribution for a curve
with parameters X, modelling a head outline. Each sample s(n) is shown as a curve (of
varying position and shape) with a thickness and intensity proportional to the weight π(n).
The prior is uniform over translation, and a constrained Gaussian in the remainder of its
affine shape-space. (Figure taken from (MacCormick and Blake, 1998).)

denoted as Xk, for compactness. Its “history” is X k = {X1, . . . ,Xk}. Similarly the
image observation at time tk, previously denoted Z(tk), will be denoted Zk with history
Zk = {Z1, . . . ,Zk}.

The process at each time-step is a self-contained iteration of factored sampling,
so the output of an iteration will be a weighted, time-stamped sample set, denoted
{s(n)

k , n = 1, . . . , N} with weights π(n)
k , representing approximately the conditional

state density p(Xk|Zk) at time tk. How is this sample set obtained? The process
must begin with a prior density and the effective prior for time-step tk should be
p(Xk|Zk−1). This prior is multi-modal in general and no functional representation
of it is available. It is derived from the sample-set representation {(s(n)

k−1, π
(n)
k−1), n =

1, . . . , N} of p(Xk−1|Zk−1), the output from the previous time-step, to which prediction
must then be applied.

The iterative process as applied to sample sets, depicted in figure 12.5, mirrors
the continuous diffusion process in figure 12.1. At the top of the diagram, the output

Non-Gaussian models and random sampling algorithms 261

measure

(n) (n)π

(n)
s

πs ,
(n) (n)

k

s ,

observation
 density

k−1 k−1

k k

predict

Figure 12.5: One time-step in the Condensation algorithm. The drift and diffusion
steps of the probabilistic propagation process of figure 12.1 are combined into a single prediction
stage.

from time-step tk−1 is the weighted sample set {(s(n)
k−1, π

(n)
k−1), n = 1, . . . , N}. The

aim is to maintain, at successive time-steps, sample sets of fixed size N , so that the
algorithm can be guaranteed to run within a given computational resource. The first
operation therefore is to sample (with replacement) N times from the set {s(n)

k−1},
choosing a given element with probability π(n)

k−1. Some elements, especially those with
high weights, may be chosen several times, leading to identical copies of elements in
the new set. Others with relatively low weights may not be chosen at all.

Each element chosen from the new set is now subjected to a predictive step. This
corresponds to sampling from the distribution p(Xk|Xk−1), and for the second-order
AR models described in chapter 9 the sampling equation is given by (9.17) on page 204.
At this stage, the sample set {s(n)

k } for the new time-step has been generated but, as

262 Chapter 12

yet, without its weights; it is approximately a fair random sample from the effective
prior density p(Xk|Zk−1) for time-step tk. Finally, the observation step from factored
sampling is applied, generating weights from the observation density p(Zk|Xk) to
obtain the sample-set representation {(s(n)

k , π
(n)
k)} of state density for time tk.

Figure 12.6 gives a synopsis of the algorithm. Note the use of cumulative weights
c
(j)
k−1 (constructed in step 3) to achieve efficient sampling in step 1. After any time-

step, it is possible to “report” on the current state, for example by evaluating some
moment of the state density:

E [g(Xk)] =
N∑

n=1

π
(n)
k g

(
s(n)
k

)
.

In later examples the mean position is displayed using g(X) = X .
One of the striking properties of the Condensation algorithm is its simplicity,

compared with the Kalman filter, despite its generality. Largely this is because it is
not necessary in the Condensation framework to propagate covariance explicitly.

12.3 An observation model

The observation process defined by p(Zk|Xk) is assumed here to be stationary in time
(though the Condensation algorithm does not necessarily demand this) so a static
function p(Z|X) needs to be specified. It is also assumed here that observations depend
only on position and shape, not on velocities, so that

p(Z|X) = p(Z|X).

One-dimensional observations in clutter

The observation density p(Z|X) for curves in clutter is quite different to the Gaussian
approximation used in chapter 8, so for clarity a simplified one-dimensional form is
described first. In one dimension, observations reduce to a set of scalar positions
{z = (z1, z2, . . . , zM)} and the observation density has the form p(z|x) where x is
one-dimensional position. The multiplicity of measurements reflects the presence of
clutter so either one of the events

φm = {true measurement is zm}, m = 1, . . . ,M

Non-Gaussian models and random sampling algorithms 263

Iterate

From the “old” sample set {s(n)
k−1, π

(n)
k−1, c

(n)
k−1, n = 1, . . . , N} at time-step tk−1,

construct a “new” sample set {s(n)
k , π

(n)
k , c

(n)
k , n = 1, . . . , N} for time tk.

Construct the nth of N new samples as follows:

1. Select a sample s′k
(n) as follows:

(a) generate a random number r ∈ [0, 1], uniformly distributed.

(b) find, by binary subdivision, the smallest j for which c(j)k−1 ≥ r

(c) set s′k
(n) = s(j)

k−1

2. Predict by sampling from

p(Xk|Xk−1 = s′(n)
k)

to choose each s(n)
k . For instance, in the case that the dynamics are

governed by a linear AR process, the new sample value may be generated
as: s(n)

k = A s′(n)
k +(I−A)X +Bw(n)

k where w(n)
k is a vector of standard

normal random variates, and BBT is the process noise covariance.

3. Measure and weight the new position in terms of the measured features
Zk:

π
(n)
k = p(Zk|Xk = s(n)

k)

then normalise so that
∑

n π
(n)
k = 1 and store together with cumulative

probability as (s(n)
k , π

(n)
k , c

(n)
k) where

c
(0)
k = 0,

c
(n)
k = c

(n−1)
k + π

(n)
k for n = 1, . . . , N.

Figure 12.6: The Condensation algorithm.

264 Chapter 12

occurs, or else the target object is not visible with probability q = 1 −∑m P (φm).
Now the observation density can be expressed as

p(z|x) = q p(z|clutter) +
M∑

m=1

p(z|x, φm)P (φm).

A reasonable functional form for this can be obtained by making some specific as-
sumptions: that P (φm) = p for all m features2, that the clutter is a Poisson process
along the line with spatial density λ and that any true target measurement is unbiased
and normally distributed with standard deviation σ. This leads to

p(z|x) ∝ 1 +
1√

2πσα

∑
m

exp− ν2
m

2σ2
(12.2)

where α = qλ and νm = zm − x, and is illustrated in figure 12.7. Peaks in the
density function correspond to measured features and the state density will tend to
be reinforced in the Condensation algorithm at such points. The background level
reflects the possibility that the true target has not been detected at all, and allows
a good hypothesis to survive a transitory failure of observations due, for example, to
occlusion of the tracked object. The parameters σ (units of distance) and α (units
of inverse distance) must be chosen, though in principle they could be estimated
from data by observing measurement error σ and both the density of clutter λ and
probability of non-detection q.

Considerable economy can be applied, in practice, in the evaluation of the obser-
vation density. Given a hypothesised position x in the “observation” step (figure 12.6)
it is not necessary to attend to all features z1, . . . , zM . Any νm for which

1√
2πσα

exp− ν2
m

2σ2
� 1

can be neglected and this sets a search window around the position x outside which
measurements can be ignored. For practical values of the constants the search window
will have a width of a few σ.

Note that the density p(z|x) represents the information about x given a fixed num-
ber M of measurements. Potentially, the event ψM that there are M measurements,

2There could be some benefit in allowing the P (φm) to vary with m to reflect varying degrees of
feature affinity, based on contrast, colour or orientation.

Non-Gaussian models and random sampling algorithms 265

p(|x)

x

x

Measured
features z5z1 z2 z3 z4 z6

z

Figure 12.7: One-dimensional observation model. A probabilistic observation model
allowing for clutter and the possibility of missing the target altogether is specified here as a
conditional density p(z|x).

regardless of the actual values of those measurements, also constitutes information
about x. However, we can reasonably assume that

P (ψM |x) = P (ψM),

for instance because x is assumed to lie always within the image window. In that case,
by Bayes’ theorem,

p(x|ψM) = p(x)

— the event ψM provides no additional information about the position x. (If x is
allowed also to fall outside the image window then the event ψM is informative: a value
of M well above the mean value for the background clutter enhances the probability
that x lies within the window.)

Two-dimensional observations

In a two-dimensional image, the set of observations Z is, in principle, the entire set
of features visible in the image. However, an important aspect of achieving real-time

266 Chapter 12

Figure 12.8: Observation process. The thick line is a hypothesised shape, represented as
a parametric spline curve. The spines are curve normals along which high-contrast features
(dots) are sought.

performance has been the restriction of measurement to a sparse set of lines normal to
the tracked curve. These two apparently conflicting ideas are hard to resolve and some
discussion is given elsewhere (see bibliographic notes). One good choice is simply to
construct the two-dimensional observation density as the product of one-dimensional
densities (12.2), evaluated independently along M curve normals as in figure 12.8.
Note that locally p(Z|X) is approximately Gaussian, especially if constants are chosen
so that σ is small and only one feature typically falls within each search region. As X
varies across the entire image, however, the multi-modality of the observation density
is apparent.

Non-Gaussian models and random sampling algorithms 267

12.4 Applications of the Condensation algorithm

Four examples are shown here of the practical efficacy of the Condensation algo-
rithm. MPEG versions of some results are available on the web page for the book.

Tracking a multi-modal distribution

The ability of the Condensation algorithm to represent multi-modal distributions
is demonstrated in a sequence of a cluttered room containing three people each facing
the camera (figure 12.9). One of the people moves from right to left, in front of

Figure 12.9: Tracking three people in a cluttered room. The first frame of a sequence
in which one figure moves from right to left in front of two stationary figures.

the other two. The shape-space for tracking is built from a hand-drawn template of
head and shoulders (figure 12.8) which is then allowed to deform via planar affine
transformations. A Kalman filter contour-tracker with default motion parameters is
able to track a single moving person just well enough to obtain a sequence of outline
curves that is usable as training data. Given the high level of clutter, adequate
performance with the Kalman filter is obtained here by means of statistical background

268 Chapter 12

 Time

0 ms

400 ms

800 ms

1200 ms

1600 ms

2000 ms

2400 ms

2800 ms

Figure 12.10: Tracking with a multi-modal state density. An approximate depic-
tion of the state density is shown, computed by smoothing the distribution of point masses
s(1)
k , s(2)

k , . . . in the Condensation algorithm. The density is, of course, multi-dimensional;
its projection onto the horizontal translation axis is shown here. The initial distribution is
roughly Gaussian but this rapidly evolves to acquire peaks corresponding to each of the three
people in the scene. The rightmost peak drifts leftwards, following the moving person, coalesc-
ing with and separating from the other two peaks as it moves. Having specified a tracker for
one person we effectively have, for free, a multi-person tracker, owing to the innate ability of
the Condensation algorithm to maintain multiple hypotheses.

subtraction. It transpires, for this particular training set, that the learned motions
comprise primarily horizontal translation, with vertical translation and horizontal and
vertical shear present to a lesser degree.

The learned shape and motion model can be installed as p(Xk|Xk−1) in the Con-
densation algorithm which is now run on a test sequence but without the benefit of
background modelling, so that the background clutter is now visible to the tracker.
Figure 12.10 shows how the state density evolves as tracking progresses. Initialisation

Non-Gaussian models and random sampling algorithms 269

is performed simply by iterating the stochastic model, in the absence of measure-
ments, to its steady state and it can be seen that this corresponds, at time t0, to a
roughly Gaussian distribution, as expected. The distribution rapidly collapses down
to three peaks which are then maintained appropriately even during temporary occlu-
sion. Although the tracker was designed to track just one person, the Condensation
algorithm takes account of the motion of all three; the ability to represent multi-modal
distributions effectively provides multiple-hypothesis capability. Tracking is based on
frame rate (40 ms) sampling in this demonstration and distributions are plotted in the
figure for alternate frames. A distribution of N = 1000 samples per time-step is used.

Tracking rapid motions through clutter

The ability to track more agile motion, still against clutter, is demonstrated by a
sequence of a girl dancing vigorously to a Scottish reel. The shape-space for tracking is
planar affine, based on a hand-drawn template curve for the head outline. The training
sequence consists of dancing against a largely uncluttered background, tracked by a
Kalman filter contour-tracker with default dynamics to record 140 fields (2.8 seconds)
of tracked head positions, the most that can be tracked before losing lock. Those 140
fields are sufficient to learn a bootstrap motion model which then allows the Kalman
filter to track the training data for 800 fields (16 seconds) before loss of lock. The
motion model obtained from these 800 fields can now be applied to test data that
includes clutter.

Figure 12.11 shows some stills from the test sequence, with a trail of preceding
head positions to indicate motion. The motion is primarily translation, with some
horizontal shear apparent as the dancer turns her head. Representing the state density
with N = 100 samples at each time-step proves just sufficient for successful tracking.
As in the previous example, a prior density can be computed as the steady state of
the motion model and, in this case, that yields a prior for position that spreads across
most of the image area, as might be expected given the range of the dance. Such a
broad distribution cannot effectively be represented by just N = 100 samples. One
alternative is to increase N in the early stages of tracking, and this is demonstrated
later. Alternatively, the prior can be based on a narrower distribution whose centre is
positioned by hand over the object at time t0, and that is what has been done here.
(Observation parameters were α = 0.005, σ = 7 with 18 normals.)

Figure 12.12 shows the motion of the centroid of the estimates head position as
tracked both by the Condensation algorithm and by a Kalman filter using the

270 Chapter 12

field 91 (1820 ms) field 121 (2420 ms)

field 221 (4420 ms) field 265 (5300 ms)

Figure 12.11: Tracking agile motion in clutter. The test sequence consists of 500 fields
(10 seconds) of agile dance against a cluttered background. The dancer’s head is tracked through
the sequence. Several representative fields are shown here, each with a trail of successive mean
tracked head positions at intervals of 40ms. The Condensation algorithm used N = 100
samples per time-step to obtain these results.

Non-Gaussian models and random sampling algorithms 271

X

Y

Condensation tracker

X

Y

Kalman filter tracker

Time = 10 s Time = 10 s

Figure 12.12: The Condensation tracker succeeds where a Kalman filter fails.
The estimated centroid for the sequence shown in figure 12.11 is plotted against time for the
entire 500 field sequence, as tracked first by the Condensation tracker, then by a comparable
Kalman filter tracker. The Condensation algorithm correctly estimates the head position
throughout the sequence. The Kalman filter tracks briefly, but is soon distracted by clutter.

same motion model. The Condensation tracker correctly estimated head position
throughout the sequence, but after about 40 fields (0.80 s), the Kalman filter is dis-
tracted by clutter, never to recover.

Given that there is only one moving person now, unlike the previous example in
which there were three, it might seem that a uni-modal representation of the state
density would suffice. This is emphatically not the case. The facility to represent
multiple modes is crucial to robustness as figure 12.13 illustrates. The figure shows
how the distribution becomes misaligned (at 900 ms), reacting to the distracting form
of the computer screen. After 20 ms the distribution splits into two distinct peaks,
one corresponding to clutter (the screen), one to the dancer’s head. At this point the
clutter peak actually has the higher posterior probability — a uni-modal tracker, for
instance a Kalman filter, would almost certainly discard the lower peak, rendering it
unable to recover. The Condensation algorithm however, capable as it is of carrying
several hypotheses simultaneously, does recover rapidly as the clutter peak decays for
lack of confirmatory observation, leaving just one peak corresponding to the dancer
after 60 ms.

272 Chapter 12

field 45 (900 ms) field 46 (920 ms)

field 47 (940 ms) field 48 (960 ms)

Figure 12.13: Recovering from tracking failure. Detail from 4 consecutive fields of the
sequence illustrated in figure 12.11. Each sample from the distribution is plotted on the image,
with intensity scaled to indicate its posterior probability. (Most of the N = 100 samples have
too low a probability to be visible in this display.) At field 45 the distribution is misaligned,
and has begun to diverge. At fields 46 and 47 it has split into two distinct peaks, the larger
attracted to background clutter, but converges back onto the dancer at field 48.

Non-Gaussian models and random sampling algorithms 273

Tracking an articulated object

The preceding sequences show motion taking place in affine shape-spaces of just 6
dimensions. High dimensionality is one of the factors, in addition to agility and clutter,
that makes tracking hard. In order to demonstrate tracking performance in higher
dimensions, we use a test sequence of a hand translating, rotating, and flexing its
fingers independently, over a highly cluttered desk scene (figure 12.14). Figure 12.15

Figure 12.14: A hand moving over a cluttered desk. Field 0 of a 500 field (10 second)
sequence in which the hand translates, rotates, and the fingers and thumb flex independently.

shows just how severe the clutter problem is — the hand is immersed in a dense field
of edges.

A model of shape and motion has been learned from training sequences of hand
motion against a plain background, tracked by Kalman filter (using signed edges to
help to disambiguate finger boundaries). The procedure comprised several stages, a
creative assembly of methods from the available toolkit for generating a shape-space
and learning dynamics.

1. Shape-space is constructed from 6 templates drawn around the hand with
the palm in a fixed orientation and with the fingers and thumb in various con-
figurations. The 6 templates combine linearly to form a 5-dimensional space

274 Chapter 12

CondensationEdge detector

Figure 12.15: Severe clutter. Detail of one field from the test sequence shows the high
level of potential ambiguity. Output from a directional Gaussian edge detector shows that there
are many clutter edges present as potential distractors.

of deformations which are then added to the space of translations to form a
7-dimensional shape-space.

2. Default dynamics in the shape-space above are adequate to track a clutter-
free training sequence of 600 frames in which the palm of the hand maintains
an approximately fixed attitude.

3. Principal components analysis: the sequence of 600 hand outlines is repli-
cated with each hand contour rotated through 90 degrees, and the sequences
concatenated to give a sequence of 1200 deformations. Projecting out the trans-
lational component of motion, the application of Principal Component Analysis
(PCA) to the sequence of residual deformations of the 1200 contours establishes
a 10-dimensional space that accounted almost entirely for deformation. This is
then combined with the translational space to form a 12-dimensional shape-space
that accounts both for the flexing of fingers and thumb and also for rotations of
the palm.

4. Bootstrapping: a Kalman filter with default dynamics in the 12-dimensional
shape-space is sufficient to track a training sequence of 800 fields of the hand
translating, rotating, and flexing fingers and thumb slowly. This is used to learn
a model of motion.

5. Re-learning: that motion model is installed in a Kalman filter and used to track

Non-Gaussian models and random sampling algorithms 275

Figure 12.16: Tracking a flexing hand across a cluttered desk. Representative stills
from a 500 field (10 second) sequence show a hand moving over a highly cluttered desk scene.
The fingers and thumb flex independently, and the hand translates and rotates. Here the
Condensation algorithm uses N = 1500 samples per time-step initially, dropping over 4
fields to N = 500 for the tracking of the remainder of the sequence. The mean configuration
of the contour is displayed.

another, faster training sequence of 800 fields. This allows a model for more agile
motion to be learned, which is then used in a high-performance Condensation
tracker.

Figure 12.16 shows detail of a series of images from a tracked, 500 field test sequence.
The initial state density is simply the steady state of the motion model, obtained by
allowing the filter to iterate in the absence of observations. Tracker initialisation is
facilitated by using more samples per time-step (N = 1500) at time t0, falling to 500
over the first 4 fields. The rest of the sequence is tracked using N = 500. As with
the previous example of the dancer, clutter may distract the tracker but the ability
to represent multi-modal state density means that tracking can recover.

Tracking a camouflaged object

Finally, the ability of the algorithm to track rapid motion against background distrac-
tion is demonstrated in an extreme case: that background objects actually mimic the
tracked object. A 12 second (600 field) sequence shows a bush blowing in the wind,
the task being to track one particular leaf. A template is drawn by hand around a still
of one chosen leaf and allowed to undergo affine deformations during tracking. Given
that a clutter-free training sequence cannot be obtained in this case, the motion model
is again learned by means of a bootstrap procedure. A tracker with hand-specified

276 Chapter 12

1.46 s 2.66 s

5.54 s 7.30 s

Figure 12.17: Tracking with camouflage. The aim is to track a single camouflaged
moving leaf in this 12 second sequence of a bush blowing in the wind. Despite the heavy clutter
of distractors which actually mimic the foreground object, and occasional violent gusts of wind,
the chosen foreground leaf is successfully tracked throughout the sequence. Representative
stills depict mean contour configurations, with preceding tracked leaf positions plotted at 40ms
intervals to indicate motion.

Non-Gaussian models and random sampling algorithms 277

dynamics proves capable of tracking the first 150 fields of a training sequence before
losing the leaf, and those tracked positions allow a first approximation to the model
to be learned. Installing that in a Condensation tracker, the entire sequence can
be tracked, though with occasional misalignments. Finally, a second learned model
is capable of tracking accurately the entire 12 second training sequence. Despite
occasional violent gusts of wind and temporary obscuration by another leaf, the Con-
densation algorithm successfully follows the object, as figure 12.17 shows. In fact,
tracking is accurate enough using N = 1200 samples to separate the foreground leaf
from the background reliably, an effect which can otherwise only be achieved using
“blue-screening.” Having obtained the model iteratively as above, further sequences
can be tracked without further training. With N = 1200 samples per time-step the
tracker runs at 6.5 Hz on a SGI Indy SC4400 200 MHz workstation. Reducing this to
N = 100 increases processing speed to video field rate (50 Hz), at the cost of occasional
misalignments in the mean configuration of the contour. (Observation parameters are
α = 0.022, σ = 3 with 21 normals.)

Bibliographic notes

There has been much written about non-linear filtering algorithms, for handling non-
Gaussian probability densities. The Extended Kalman filter (Gelb, 1974; Bar-Shalom
and Fortmann, 1988; Jacobs, 1993), is a linearised approximation designed to deal
with non-linearities in dynamics and/or sensors. It effectively approximates the non-
Gaussian state density as a Gaussian. Bayesian multiple-hypothesis filters and approx-
imate variants include the PDAF and JPDAF (Bar-Shalom and Fortmann, 1988) and
can be applied to motion correspondence (Cox, 1993) and visual tracking of discrete
features (Rao et al., 1993). The RANSAC algorithm is an alternative mechanism for
dealing with ambiguous association (Fischler and Bolles, 1981), in which hypotheses
are generated bottom-up, from subsets of image features. Bucy’s numerical integration
of Bayes’ rule for one-dimensional state (Bucy, 1969) is very general but feasible only
in one or two dimensions, inapplicable to the state-spaces used in contour tracking
whose dimensionality is typically 8–30. Additive Gaussian mixtures as used for rep-
resentation of non-Gaussian densities in pattern recognition theory (Duda and Hart,
1973; Bishop, 1995) can be used in temporal filtering by dynamically re-weighting
the mixture (Sorenson and Alspach, 1971). For approximate methods using additive
Gaussian mixtures see also (Anderson and Moore, 1979).

278 Chapter 12

The Fokker-Planck equation (Astrom, 1970) governs the evolution of the probabil-
ity distribution for point particles following a random walk. The equation describes
a diffusing probability density and its coefficients depend on the deterministic and
stochastic components of the random walk, as described by the A and B coefficients
in the case of an AR process.

One of the best known uses of iterative sampling in image processing is in the
statistical restoration algorithms of Geman and Geman (Geman and Geman, 1984) in
which a “Gibbs sampler” is used to sample fairly from the posterior distribution for the
restored image. Their idea has been generalised and named “Markov Chain Monte-
Carlo” (MCMC) (Gelfand and Smith, 1990). Random sampling as a means of image
construction has also been applied to curves rather than image intensities (Ripley
and Sutherland, 1990; Grenander et al., 1991), to sweep out a posterior distribution
for an object outline, and also extended using simulated annealing (Storvik, 1994)
to converge to a particular curve estimate. The term “factored sampling” is due to
Grenander et al. (1991).

Importance sampling is a general technique (Ripley, 1987) for Monte-Carlo meth-
ods to bias generation of variates which would otherwise be generated from the stated
prior. The purpose of the bias is to increase efficiency by concentrating on areas in
which the observation density is likely to be non-negligible. The method includes a
correction factor for the bias so that generated samples continue to be drawn fairly
from the posterior density for the problem.

Fuller details of the Condensation algorithm are given in (Isard and Blake,
1998a), including a proof of the (asymptotic) correctness of the algorithm. A similar
extension of sampling methods to work over time has been reported also by (Gordon
et al., 1993) who refer to the “bootstrap” algorithm and derive it via MCMC, rather
than factored sampling. Another account (Kitagawa, 1996) elegantly extends the idea
to a “smoothing” algorithm which is applicable to off-line applications. It is a two-pass
method in which the estimate at each time-step is derived not only from preceding
observations but also takes into account all following observations. This is analogous
to the smoothing algorithm for Gaussians (Gelb, 1974) which is a two-pass extension
of the Kalman filter.

Reasoning about clutter and false alarms of the sort given in section 12.3 is com-
monly used in target tracking (Bar-Shalom and Fortmann, 1988). Some discussion of
the problem of extending the observation model from a single line to a curve of nor-
mals is given in (Isard and Blake, 1998a). An extension to account for object opacity
is given in (MacCormick and Blake, 1998).

Non-Gaussian models and random sampling algorithms 279

Some progress has been made recently in extending the scope of the motion mod-
els used in the Condensation algorithm to include mixed continuous/discrete states
(Isard and Blake, 1998b). This is related to Hidden Markov Modelling which is the
dominant paradigm for speech recognition algorithms, and a comprehensive introduc-
tion is given in (Rabiner and Bing-Hwang, 1993).

Appendix A

Mathematical background

A.1 Vectors and matrices

A brief summary of vector and matrix conventions and operations is given here. An
excellent handbook for vector and matrix computation is (Barnett, 1990) and readers
should refer to it for details. An alternative that may also be found helpful is (Golub
and van Loan, 1989). The vector and matrix operations described should be available
in appropriate programming languages such as matlab.

Vectors Throughout the book, vectors are denoted in bold, for example

r =


 x

y


 or a =




a1

a2

a3


 .

Scalar product and vector product take their usual meanings and are denoted

a · b and a × b

respectively. In three dimensions, for instance,

a · b = a1b1 + a2b2 + a3b3.

and
a × b = (a2b3 − a3b2, a3b1 − a1b3, a3b1 − a1b3)T .

282 Appendix A

The magnitude of a vector may be measured via its Euclidean norm:

|r| =
√

r · r
and a vector r for which |r| = 1 is said to be normalised, or a “unit” vector.

Matrices Matrices are generally non-bold capitals, for example A, with components
denoted Aij . The transpose AT is defined by

AT
ij = Aji.

The rank of a matrix A is the number of linearly independent vectors that comprise
its columns.

A matrix operation that is frequently useful is the Kronecker product

A⊗B =




A11B A12B . . .

A21B A22B . . .

.


 (A.1)

which combines two arrays of dimension M1 ×N1 and M2 ×N2 to make a larger one
of dimension M1M2 ×N1N2.

Linear equations The linear simultaneous equations

Ax = b

have a unique solution when A is square and is non-singular — that is, detA �= 0,
where detA is the determinant of A. Then a solution can be found using the
standard inverse

x = A−1b.

If there is no solution, as may happen when A is not square, there may nonetheless be
a unique, optimal, approximate solution which is expressed using a pseudo-inverse
A+:

x = A+b where A+ = (ATA)−1AT .

(More general definitions of pseudo-inverse can be made, but are not used in this
book.)

Mathematical background 283

Rotation matrices Matrices for rotation about x, y and z axes are respectively
denoted Rx, Ry and Rz where, for example,

Rz(θ) =


 cos θ − sin θ 0

sin θ cos θ 0
0 0 1


 (A.2)

so that a point in three dimensions given by a vector r = (x, y, z)T is transformed to
a rotated point

r′ = Rz(θ)r.

In two dimensions, a rotation is a 2 × 2 matrix

R(θ) =
(

cos θ − sin θ
sin θ cos θ

)
.

Rotation matrices have the property that they are orthogonal, satisfying RTR =
I. Generally, an orthogonal matrix U satisfies UTU = I and, in three dimensions,
can be interpreted as a rotation (when detU = 1) or a combination of rotation and
reflection (detU = −1).

Eigenvalues and eigenvectors The eigenvalues λn and eigenvectors un of a square
N ×N matrix A are defined as satisfying

Aun = λnun, n = 1, . . . , N.

Eigenvalues and eigenvectors may have complex values, unless A is symmetric (AT =
A) in which case they are guaranteed to be real.

The trace of the matrix is defined to be

tr(A) =
N∑

n=1

Ann

and has the property that

tr(A) =
N∑

n=1

λn.

284 Appendix A

Diagonalisation Eigenvalues and eigenvectors can be used to decompose a square
matrix A as

A = UDU−1

where D is the “diagonal” matrix

D = diag(λ1, . . . , λN)

with the eigenvalues along the diagonal and zeros elsewhere. The matrix U consists
of columns which are normalised eigenvectors of A. One important application of the
diagonal form is in computing powers of A:

Ap = UDpU−1 where Dp = diag(λp
1, . . . , λ

p
N).

Setting p = 1
2 allows a square root of A to be computed.

Singular value decomposition (SVD) An alternative form of decomposition of a
matrix A is the SVD, which applies not only to square matrices but also to rectangular
ones of size M ×N . It has the form

A = UDV

where U is an M×M matrix, D is a diagonal M×N matrix and V is an N×N matrix.
Both U and V are orthogonal matrices. The diagonal values of D are Dnn = σn where
λn = σ2

n are eigenvalues of the symmetric matrix ATA and are hence guaranteed to
be positive.

A measure of the “size” of A is its spectral radius ‖A‖2 =
√
λ1 where λ1 is the

largest eigenvalue of ATA. The condition for an iterative process involving A, in which
arbitrarily large powers An of A are applied to vectors, to be stable is that ‖A‖2 < 1.

A.2 B-spline basis functions

Useful introductory reference books on splines are (Faux and Pratt, 1979; Foley et al.,
1990). An excellent, comprehensive reference is (Bartels et al., 1987).

In chapter 3, spline functions are written as a linear combination of a number of
spline “basis functions.” Basis functions are constructed using the following general
rule which can be used to define any arbitrary set of polynomial splines. Let Bn,d be
the nth basis function for a spline of order d. Then for a spline with single knots of
unit spacing, the following recursive rule applies:

Mathematical background 285

Ground instance

Bn,1(s) =




1 if n ≤ s < n+ 1

0 otherwise

Inductive step

Bn,d(s) =
(s− n)Bn,d−1(s) + (n+ d− s)Bn+1,d−1(s)

d− 1

and some examples are shown in figure A.1. These functions satisfy the following
conditions:

Support Bn,d(s) = 0 for s /∈ [n, n+ d)

Positivity Bn,d(s) ≥ 0 for all s

Normalisation
∑∞

−∞Bn,d(s) = 1 for all s

Translational invariance Bn+1,d(s) = Bn,d(s− 1) for all s

and further, there is a smoothness constraint for d > 1, namely that Bn,d has contin-
uous (d− 2)th derivative for all s and all d > 1.

Non-uniform B-spline functions

The spline basis functions generated above, for which the knots are uniformly spaced
at unit intervals, can be generalised to produce spline functions with arbitrary knot
spacing. Consider a spline with NK knots at positions k0 ≤ k1 ≤ . . . ≤ kNK−1, then
the recursive rule becomes

Ground instance

Bn,1(s) =




1 if kn ≤ s < kn+1

0 otherwise

286 Appendix A

B1,1(s)

0 1 2 3

0.5

1.0

s

B0,2(s) B1,2(s)

0 1 2 3

0.5

1.0

s

B0,3(s)

0 1 2 3

0.5

1.0

s

Figure A.1: A spline basis function Bn,d of order d is built up recursively from basis functions
of lower order.

Mathematical background 287

Inductive step

Bn,d(s) =
(s− kn)Bn,d−1(s)
kn+d−1 − kn

+
(kn+d − s)Bn+1,d−1(s)

kn+d − kn+1

which reduces to the uniform case when kn = n. The rule can be used to generate
spline functions with knots of multiplicity m by setting m consecutive kn to be equal.
(Terms in the inductive step are zero when the denominator is zero. The validity of
this can be shown by taking a limit as the knots approach one another — it is easy to
see by induction that the basis function in the numerator is identically zero whenever
the denominator is zero). The conditions of positivity and normalisation still hold
in general, and now the support of the basis function Bn,d is [kn, kn+d). The basis
functions are clearly no longer necessarily translated copies of each other, however,
and the introduction of a multiple knot reduces the smoothness of a basis function;
the function is Cd−1−m at a knot of multiplicity m. This weakening of the smoothness
property is the motivation for using multiple knots; it permits B-spline functions, and
therefore curves, with sharp corners and discontinuities.

An implementation of B-spline functions

The recursive rule for generating Bn,d can be converted into an algorithm by express-
ing each basis function as a sequence of polynomials pn(s) defined over the intervals
[kn, kn+1). Since the support1 of Bn,d is [kn, kn+d), any spline basis function of order
d can be represented using just d polynomials Bσ

n,d, one for each of the d spans Sσ

in the support of Bn,d. Now the inductive step of the rule can be applied, over each
interval in turn, to obtain each of the Bσ

n,d.
Where a B-spline contains multiple knots, some of the inter-knot intervals have zero

length, so it is convenient to introduce the concept of “spans”. These correspond to
the non-empty inter-knot intervals above, and the span ends are called “breakpoints”.
A B-spline function, therefore, is a piecewise polynomial curve made up of a series
of L spans S0 . . . SL−1 connected at breakpoints s0 < s1 < . . . < sL. We adopt the
convention that all spans are unit length, (si = i), so the basis functions making up a
spline are uniquely determined by the knot multiplicitiesm0 . . .mL at the breakpoints.
A periodic B-spline function is constructed by considering the basis functions to be
periodic over the interval [0, L]. A periodic B-spline function must have m0 = mL and

1The support of a function is the interval over which it is non-zero.

288 Appendix A

it has “multiple knot count”

M =
L∑
1

(mi − 1)

while for an aperiodic spline m0 = mL = d to control the boundary conditions of the
spline, and

M =
L∑
0

(mi − 1).

An L span B-spline is a linear combination of NB basis functions, where

NB = L+M = NK −m0

for a periodic spline, and

NB = L+M + 1 − d = NK − d

for an aperiodic spline. Thus, for example, a simple L span aperiodic quadratic B-
spline is a linear combination of NB = L+2 basis functions (see figure 3.6 on page 48).
The relationship between spans, knots and basis functions is illustrated for two cases
in figures A.2 and A.3.

Building a spline function from basis functions

B-spline functions can be evaluated efficiently using “span matrices.” Over the span
Sσ, any spline function is a linear combination of the basis functions Bbσ ,d . . . Bbσ+d−1,d

where

bσ =

(
σ∑

i=0

mi

)
− d

so

x(s)[σ,σ+1) = x(s)σ =
bσ+d−1∑

bσ

xiBi,d(s)

Mathematical background 289

SpanS0 S1 S2 S3

B0,3(s) B1,3(s) B2,3(s)B3,3(s)

B2,3(s) B3,3(s)

Knotk0 k1 k2 k3 k4

0 1 2 3 4

0.5

1.0

s

Figure A.2: A simple periodic B-spline with no multiple knots has L = 4 spans,
NK = 5 knots, and is a combination of NB = 4 (periodic) basis functions.

SpanS0 S1 S2 S3

B0,3(s)
B1,3(s)

B2,3(s)
B3,3(s)

B4,3(s)

B5,3(s)

B6,3(s)

Knotk0, k1, k2 k3 k4 k5, k6 k7, k8, k9

0 1 2 3 4

0.5

1.0

s

Figure A.3: An aperiodic spline must have knots of multiplicity d at its endpoints.
Here there is also a double knot between the third and fourth spans, leading to a discontinuity
in the first derivative of the function. Here L = 4, NK = 10, NB = 7.

290 Appendix A

(with obvious variations for periodic splines). For each span, therefore, we can com-
pute a d× d span matrix BS

σ such that

x(s+ σ)σ = (1 s . . . sd−1)BS
σ




xbσ

xbσ+1

...

xbσ+d−1




where the ith column of the span matrix corresponds to the polynomial coefficients of
the basis function Bbσ+i−1,d over the interval of that span (in practice it is convenient
to define each span matrix over the interval [0, 1)). The span matrices for the spline
in figure A.3 are as follows:

BS
0 =




1.00 0.00 0.00

−2.00 2.00 0.00

1.00 −1.50 0.50




BS
1 =




0.50 0.50 0.00

−1.00 1.00 0.00

0.50 −1.00 0.50




BS
2 =




0.50 0.50 0.00

−1.00 1.00 0.00

0.50 −1.50 1.00




BS
3 =




1.00 0.00 0.00

−2.00 2.00 0.00

1.00 −2.00 1.00




and the algorithm used to calculate them is given in figure A.4. Once span matrices
have been computed off-line, the spline can be evaluated efficiently at any values of s

Mathematical background 291

To calculate span matrices for a non-periodic B-spline of order d with knot multiplicities
mi, 0 ≤ i ≤ L.

1. Calculate the knot values ki:

(a) Initialise: p = 0, q = 0

(b) For i = 0 . . . L

i. For j = 1 . . .mi

kp = q, p = p+ 1
ii. q = q + 1

2. For each span σ = 0 . . . L− 1:

(a) Find the index bσ of the first basis function whose support includes the span.

bσ =

(
σ∑
0

mi

)
− d

(b) For i = 1 . . . d recursively calculate the basis polynomial Bσ
bσ+i−1,d for span σ

using the following rule

i. Ground instance

Bσ
n,1(s) =




1 if kn ≤ σ < kn+1

0 otherwise

ii. Recursive rule

Bσ
n,d(s) =

(s+ σ − kn)Bσ
n,d−1(s)

kn+d−1 − kn
+

(kn+d − s− σ)Bσ
n+1,d−1(s)

kn+d − kn+1

where terms are zero when the denominator is zero.
iii. Store the coefficients of Bσ

bσ+i−1,d as the ith column of the d × d span
matrix BS

σ , where the top row corresponds to the constant polynomial
coefficient.

Figure A.4: Algorithm to calculate span matrices for aperiodic B-splines. Obvious
modifications must be made for the periodic case.

292 Appendix A

and x0 . . . xNB−1. For notational purposes it is convenient also to define the d × NB

“placement matrices” Gσ:

(Gσ)ij =




1 if i− bσ = j

0 otherwise
(A.3)

so that
x(s+ σ) = (1 s . . . sd−1)BS

σGσQ

where 0 ≤ s < 1. The derivative of the function can be calculated as

x′(s+ σ) = (0 1 . . . (d− 1)sd−2)BS
σGσQ

and so when considering a spline curve,

 x

y


 = (1 s . . . sd−1 1 s . . . sd−1)


 BS

σGσ 0

0 BS
σGσ




 Qx

Qy


 ,

the tangent to the curve is given by

 x′

y′


 = (0 1 . . . (d− 1)sd−2 0 1 . . . (d− 1)sd−2)


 BS

σGσ 0

0 BS
σGσ




 Qx

Qy


 ,

and the normal is given by

 nx

ny


 =


 −y′

x′


 .

Calculating the spline metric matrix

Using the span matrices it is straightforward to compute the spline metric matrix B,
where

B =
1
L

∫ L

0
B(s)B(s)T ds (A.4)

Mathematical background 293

as described on page 50.

B =
1
L

L−1∑
σ=0

(∫ 1

0
B(s+ σ)B(s+ σ)T ds

)

=
1
L

L−1∑
σ=0

GT
σ (BS

σ)TPBS
σGσ

where

P =
∫ 1

0




1
...

sd−1



(

1 . . . sd−1
)
ds,

the “Hilbert” matrix (Barnett, 1990) whose coefficients are

Pij =
1

i+ j − 1
.

Similarly, the matrix B′ used on page 65 to define the area coefficients A, was defined
as

B′ =
1
L

∫ L

0
B(s)B′T (s) ds

and may be calculated as follows:

B =
1
L

L−1∑
σ=0

GT
σ (BS

σ)TP ′BS
σGσ

where

P ′ =
∫ 1

0




1
...

sd−1



(

0 . . . (d− 1)sd−2
)
ds, so

P ′
ij =




0 if i = j = 1

j−1
i+j−2 otherwise

.

294 Appendix A

A.3 Probability

An excellent introductory text on probability is (Papoulis, 1990). It is impossible
to cover the necessary ground here, but since much of the argument in the book is
probabilistic, a few basic concepts are reviewed here.

Probability distributions A continuous random variable x taking real values x ∈
R has a probability distribution defined by its density function p(x) ≥ 0. Its
interpretation is that, for an interval I = [a, b]:

P (x ∈ I) =
∫ b

a
p(x) dx.

This definition extends to a multi-dimensional random variable X ∈ R
NX so that, for

a subset I ∈ R
NX :

P (X ∈ I) =
∫
I
p(X) dX.

Since X has to take some value, p must satisfy the normalisation property that∫
R

NX

p(X) dX = 1.

A conditional distribution for X specifies the probable values of X given that
the value of some related variable Y is known and is defined by the density p(X|Y).
This is interpreted, as before, via integration:

P (X ∈ I|Y) =
∫
I
p(X|Y) dX.

The associated normalisation property is∫
R

NX

p(X|Y) dX = 1.

Mean and variance The expectation or mean of the random variable X, denoted
E [X], is

E [X] =
∫

R
NX

p(X) dX

Mathematical background 295

which is a linear operation so that

E [AX + b] = AE [X] + b.

The variance of X, denoted V[X] is defined as an expectation:

V[X] = E [(X − X)(X − X)T]

where X = E [X]. It scales quadratically, as V[AX + b] = AV[X]AT , and is invariant
to the additive constant b, naturally enough since it is a measure of “spread” about
the mean. It is also known as the “covariance matrix” of X and must be symmetric
and “positive semi-definite” (all eigenvalues positive or zero).

Bayes’ rule Suppose a density p(X) is given, based on prior knowledge of the state
X of some system and its likely values. Then suppose that observations Z are made
from an imperfect sensing device which is characterised by its observation density
p(Z|X), specifying the likely range of observations given a particular system state X.
Then Bayes’ rule gives the posterior density p(X|Z):

p(X|Z) = kp(Z|X)p(X),

where k is a constant, not dependent on X, whose value can be determined if need
be by insisting that the posterior be normalised. Note that p(Z|X) is also known as
a likelihood function for X.

Estimation When both the prior and observation density are available, a common
way to estimate the value of X given observations Z is simply to find the X that
maximises the posterior:

X̂ = arg max
X

p(X|Z).

This is known as the MAP (Maximum A Posteriori) estimate. Alternatively, if no
prior is available, an estimator can be defined by

X̂ = arg max
X

p(Z|X),

the MLE (Maximum Likelihood Estimator).

296 Appendix A

Normal distribution Much use is made in the book of multi-variate normal or
Gaussian distributions. A vector variable X distributed as a Gaussian is denoted

X ∼ N (X, P) (A.5)

where X is the mean of the distribution and P is its covariance matrix, assumed
non-singular. The density function for X is

p(X) =
1√

2π
NX

1√
detP

exp−1
2
(X − X)TS(X − X)

where S = P−1, the information matrix.
Alternatively, given a vector w of NX independent standard normal distributions,

so that each wn ∼ N (0, 1) and w ∼ N (0, INX
), X can be described as a linear

transformation of w:
X = Bw + X

where B =
√
P . Circles |w| < c map to confidence ellipsoids in X space, regions

which contain the value of X with probability χ2
NX

(c), where χ2
ν is the “chi-squared

distribution function” for ν degrees of freedom, and can be found in statistical tables.
For example, for NX = 2,

P (|w| < 2) = 86% and P (|w| < 3) = 99%.

Appendix B

Stochastic dynamical systems

B.1 Continuous-time first-order dynamics

A first-order AR process (9.7) can be regarded as a first-order “stochastic differential
equation” (SDE) in continuous time that has been sampled at regular intervals. If the
sampling interval is τ so that tk = kτ , then the AR process is obtained by integrating
the SDE over successive sampling intervals. The SDE is expressed as

Ẋ = F (X − X) +Gẇ (B.1)

where X(t) is a vector in shape-space, F and G are NX ×NX matrices and w(t) is a
NX -dimensional vector of independent, univariate Brownian processes in continuous
time. A univariate Brownian process w has the property that the value w(t) has a
Gaussian distribution with E [w(t)] = 0 and V[w(t)] = t. The derivative ẇ(t) is a
“white noise” signal, that is one with equal power at all frequencies. The coefficients
F are the deterministic parameters of the process, in the sense that its eigenvalues λi

are the so-called “poles” of the AR process, constants with units of inverse time that
represent the rates of decay of the various characteristic motions of the system. (This
applies to the case that all poles are real-valued and negative. Any real positive pole
will cause the process to be unstable. There is also the possibility of complex poles,
representing oscillations or damped oscillations.) The matrix G represents a coupling
to the multi-dimensional white noise ẇ that is driving the dynamical system. As in
the discrete case, there is a mean-state and a Riccati equation for continuous time:

˙̂X = F(X̂ − X) and Ṗ = FP + PFT + Q (B.2)

298 Appendix B

where the “covariance coefficient” Q = GGT .

Conversion between continuous and discrete time

A continuous-time SDE can be converted to a discrete-time form (Gelb, 1974; Astrom
and Wittenmark, 1984) by computing A and C directly from F and Q:

A = expFτ and C =
∫ τ

0
(expFt)Q(expF T t) dt. (B.3)

It is possible to evaluate the integral for C exactly by diagonalising F but in practice
the following approximation, to lowest order in τ , is convenient (and particularly so
for the second-order process):

A = (I − Fτ)−1 and C = Qτ so that B = G
√
τ . (B.4)

The approximation for A is known as the “backward difference” approximation and
is preferable to the more obvious “forward difference” A = Fτ because it preserves
stability: that is, any SDE that is stable is approximated as a stable AR process, with
‖A‖2 < 1.

Power spectrum

In chapter 9, a form (9.12) on page 199 for the power spectrum of a first-order ARP
is used. That form is derived briefly here. Restricting X(t) in the continuous process
above to be one-dimensional X(t), so that F and G are scalar coefficients, suppose
that

X(t) ∝ exp 2πift,

and set its mean to zero for simplicity. Then (B.1) becomes

2πifX = FX +Gẇ

so that
X =

Gẇ

2πif − F

and the power spectrum

SXX(f) =
∣∣∣∣ G

2πif − F

∣∣∣∣
2

Sẇẇ(f),

Stochastic dynamical systems 299

where | · | denotes complex modulus. Now the power spectrum Sẇẇ(f) of white noise
is constant, so

SXX(f) ∝ G2

4π2f2 + F 2

which can be rewritten directly in the required form.

B.2 Second-order dynamics in continuous time

A second-order SDE can be written, as it was in the discrete case, as a first-order one
in a suitable state-space:

Ẋ = F (X − X) +Gẇ (B.5)

where now

F =


 0 I

F1 F2


 and G =


 0

G0


 . (B.6)

This normal form is consistent with a state-space representation in terms of position
and velocity:

X =


 X

Ẋ


 .

The white noise ẇ can be interpreted mechanically as a (generalised) force applied to
a particle whose configuration is X. Now, from (B.3),

X (tk) −X = A′(X (tk−1) −X) +B′wk

where A′ = expFτ,

which can be written in terms of its submatrices as

A′ =


 A′

11 A′
12

A′
21 A′

22


 .

The matrix A′ does not yet conform to the normal form (9.18) on page 204 for discrete
coefficients A, which would require A′

11 = 0 and A′
12 = I. To reach the normal form,

300 Appendix B

a coordinate transformation X →MX with

M =


 I 0

A′
11 A′

12




must be applied. The transformed process has A = M−1A′M which is in normal
form, and B = M−1B′ which is only approximately (for small τ) in the normal form
for B in (9.18) on page 204.

The inverse transformation, obtaining continuous parameters F and G from dis-
crete ones A and B requires a matrix logarithm

F ′ =
1
τ

logA

followed by a coordinate change, similar to the one above, to reach the normal form.

Power spectrum

The expression (9.13) on page 200 for a second-order power spectrum is obtained
from (B.5) using a frequency analysis similar to the one in the first-order case.

B.3 Accuracy of learning

The claims concerning accuracy of learning, stated in chapter 11 on page 241, are
justified here. First the proportional error in the discrete dynamical parameters a1,
a2 and b0 is obtained. Then this is used to derive the proportional error of the
underlying continuous parameters f , β and ρ.

Discrete analysis

The error of estimators â1, â2 and b̂0 is derived from the Fisher information measure
for a maximum likelihood estimator (Kendall and Stuart, 1979). Asymptotically, for
large M ,

V[b0|b̂0]−1 = −E [∂2L/∂b20
]
,

where L is the log-likelihood function (11.1) on page 237. Using (11.2) on page 237,
this gives

V[b0|b̂0] =
b̂20

2(M − 2)

Stochastic dynamical systems 301

so that the proportional error in b̂0, denoted ∆b̂0, is

∆b̂0 =

√
V[b0|b̂0]
b̂0

=
1√

2(M − 2)
. (B.7)

Applying a similar analysis to the vector a = (a1, a2)T obtains error variances and
covariances for a1 and a2. This gives

V[a|â]−1 = −E [∂2L/∂a2
]

= E

 1

b̂20


 r11 r12

r21 r22






= (M − 2)E [
1

b̂20
X (t)X (t)T]

= (M − 2)
1

b̂20
P∞

where rij are the auto-correlation coefficients from the learning algorithm of figure 11.2
on page 238. Covariance P∞ is obtained as the steady-state solution for P in the state
equation (9.19) on page 204 for the process. After some manipulation, this gives

V[a|â] =
1 + â2

M − 2


 1 − â2 −â1

−â1 1 − â2


 . (B.8)

For all 3 parameters a1, a2 and b0 it seems that estimator error ∝ 1/
√
M − 2 so

that a typical training sequence of 1000 video fields should lead to error of just a few
percent. This is a little misleading however because small changes in a1 and a2 can
have a substantial effect on the ARP model. Looking at continuous parameters β, f
and ρ gives a clearer picture.

Continuous analysis

Making the assumption that βτ � 1 then, from (9.25) on page 206,

βτ ≈ 1
2
(1 + a2)

302 Appendix B

so that, using (B.8),

V[βτ] ≈ 1
4
V[a2] ≈ 1

M − 2
β̂τ

and finally

∆β̂ =

√V[β]

β̂
=

1√
β̂τ

1√
M − 2

≈ 1√
β̂T

,

as claimed in chapter 11. A similar analysis for f̂ shows that

∆f̂ ≡
√V[f]

β̂
=

1
2π

1√
β̂T

Note that the error ∆f̂ in the estimated frequency is defined here relative to β̂. Finally,
it remains to establish an error bound for the estimated value of ρ. From (9.27) on
page 206, and given that ∆b̂0 (see above) can be neglected,

∆ρ̂ =
1
2
∆β̂

(
1 +

β̂

πf̂ sin 2πf̂τ

)
.

Appendix C

Further shape-space models

C.1 Recursive synthesis of shape-spaces

Chapter 4 ended with a discussion about shape-spaces for articulated motion and a
summary comparing, for various hinged objects, the number of degrees of freedom of
the object and the dimension of linear shape-space needed to represent its motion.
There is a powerful general rule, presented here, for building up the dimension of a
shape-space as articulated components are tacked onto a body. The dimension is built
up recursively, tacking one component on at a time. It will be convenient to write
the equation of the curve in homogeneous coordinates, a standard geometric tool in
graphics and computer vision (Faugeras, 1993; Foley et al., 1990), giving

rh(s) =




x(s)

y(s)

1




so that the curve ranges over the shape-space swept out by

rh(s) = Trh(s)

where the template rh(s) (also in homogeneous coordinates) may be either two-
dimensional or three-dimensional as appropriate and T is a linear transformation. For
example, the Euclidean similarities discussed earlier are represented by the following

304 Appendix C

transformation T :

Tr =


 X1

X2


+


 X3 −X4

X4 X3


 r

which can conveniently be written as a 3 × 3 matrix in homogeneous coordinates:

T =




X3 −X4 X1

X4 X3 X2

0 0 1


 . (C.1)

This is appropriate, of course, for a body moving rigidly in the plane. More generally,
it applies to the end link of a series of hinged links attached to a base that moves
rigidly in the plane.

The new component is attached so that it is free to be acted on by transformations
T ′ relative to the end body. For example, a simple planar hinge is represented in
homogeneous coordinates by

T ′(θ) =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1


 .

Incremental rule: now the general rule can be stated, that when the hinged com-
ponent is added, the dimension of the shape-space is increased by:

dim{T, TT ′}+ − dim{T}+, (C.2)

where {T}+ is the vector space of transformations T and {T1, T2}+ denotes the vector
space spanned by the two transformations taken jointly (simply concatenating the
elements of T1 and T2 into one vector). To make this clear, we will work through the
rule using the examples for T and T ′ given above of a planar base element moving
rigidly in the plane with a single hinged component.

Further shape-space models 305

Planar rigid body with hinged appendage

First of all, dim{T}+ = 4, clearly, since T has 4 independent linear parameters
X1, . . . , X4. Next we compute TT ′:

TT ′ =




γ −δ X1

δ γ X2

0 0 1


 (C.3)

where γ = X3 cos θ − x4 sin θ and δ = X4 cos θ +X3 sin θ so now

dim{T, TT ′}+ = dim{X1, X2, X3, X4, γ, δ}+ = 6

so that adding the hinge increases the dimension of shape-space by

dim{T, TT ′}+ − dim{T}+ = 6 − 4 = 2

and the dimension of the new space is increased from 4 to 6.

Further hinged appendages

Now suppose we want to add a further hinged appendage. If it is added to the main
body (figure C.1a), the argument above is unchanged (it is not in the least affected by
the existence of the previous appendage) and the increase in dimension is still 2. Now
the total dimension of the shape-space increases to 8. If instead the new appendage is
tacked onto the end of the previous appendage (figure C.1b) we can apply the general
method as follows. The matrix TT ′ in (C.3) above becomes the new T , and now

T ′ ≡ T ′(φ) =




cosφ − sinφ 0

− sinφ cosφ 0

0 0 1


 ,

where φ is the angle of the latest appendage. Now the argument proceeds exactly as
for the addition of the first appendage except that we have γ, δ and φ where before we
had X3, X4 and θ, so again the subspace dimension is increased by 2. Alternatively, a
quicker way to get to the same conclusion, is simply to note that the shape-space of the

306 Appendix C

a) b)

c) d)

Figure C.1: Hinged appendages Hinging an appendage onto: a) the main body; b) the end
of another appendage; c) the end of a chain of appendages. d) A general planar articulated
body consisting of a base in rigid motion with n hinged bodies.

first appendage, considered in isolation, is the space of Euclidean similarities. (It can
execute any rigid motion given that it is hinged to a base that can execute any rigid
motion.) Therefore we are simply solving again the problem of computing the increase
in shape-space dimension when an appendage is hinged to a base whose shape-space
is the Euclidean similarities. Clearly we could continue to add appendages to a chain
(figure C.1c), adding 2 to the shape-space dimension each time.

Now a simple inductive argument shows the following rule. A rigid planar body
with n hinged appendages (figure C.1d) has a shape-space with dimension 4 + 2n.

Further shape-space models 307

This is true regardless of how the hinges are arranged, provided there is no closed
kinematic chain (sequence of hinged bodies forming a loop).

Adding telescopic appendages

How is the dimension of shape-space affected if an appendage is added with a “pris-
matic” or telescopic joint? In that case

T ′ ≡ T ′(d) =




1 0 d

0 1 0

0 0 1


 ,

where d is the variable length by which the joint is extended and taking T for Euclidean
similarities of the base object as in (C.1), gives

TT ′ =




X3 −X4 X3d+X1

X4 X3 X4d+X2

0 0 1


 ,

so that
dim({T, TT ′}+) = dim({X1, X2, X3, X4, X3d,X4d}+) = 6

(since X3d,X4d extend the basis by two elements — even though there is only one
new degree of freedom d, it appears non-linearly and requires two degrees of freedom
to represent linearly). Just as in the hinged case therefore, each telescopic appendage
to a rigid body also raises the dimension of shape-space by two.

Planar body with co-planar appendage, in three dimensions

From earlier discussion in chapter 4, we know that images of a planar body in three
dimensions form an affine space, so that {T}+ is the usual 6-dimensional planar affine
space. Unfortunately, unlike rigid planar bodies in which hinged appendages cost only
2 degrees of freedom each, in the planar affine case they come relatively expensively.
Each requires 4 degrees of freedom so that insisting on linear parameterisation is
relatively costly.

308 Appendix C

The argument, applying the incremental rule (C.2) is as follows. Transformations
are

T =




X3 X6 X1

X5 X4 X2

0 0 1


 and T ′ =




cosφ − sinφ 0

− sinφ cosφ 0

0 0 1




and after a little calculation

dim({T, TT ′}+) = dim({X1, X2, ((Xn cosφ,Xn sinφ), n = 3, . . . , 6)}+) = 10,

an increase of 4 over the 6 affine degrees of freedom.

Proof of incremental rule

For completeness, a proof of the rule (C.2) for incrementing the dimension of shape-
space is included here. Consider a base shape γ which we would normally represent
by a template either as a parameterised curve r(s) in two dimensions or R(s) in three
dimensions, or as a control point vector Q in two or three dimensions. It is subject to
linear transformations T onto the image plane, parameterised (not necessarily linearly)
by a parameter set λ, giving a set of image shapes {T (λ)γ, λ ∈ Λ}. This set spans
a vector space denoted by the closure {T (λ)γ, λ ∈ Λ}+ which generally (for non-
degenerate γ) is isomorphic to the closure of the space of transformations {T (λ), λ ∈
Λ}+, regardless of the particular shape γ.

Next, it is assumed that the body to which an appendage is about to be added
is already articulated so that, already attached to the base, are a set of components
transformed relative to the base by a set of linear transformations Tn(λn), λn ∈
Λn for n = 1 . . . N . The nth component is thus transformed into the image plane
by the transformation TTn(λn). Finally, the appended component is attached via
T ′(λ′), λ′ ∈ Λ′. It is assumed that the parameters λ1, . . . , λN , λ

′ are all independent
— the hinging/telescopic actions of the individual components are not coupled and this
is where closed kinematic chains are excluded. We also assume that all components
are non-degenerate so that we can continue to consider the transformations only and
drop any reference to the component shapes themselves.

The independence of parameters for components means that

dim{T, TT ′}+ + dim{T, TT1, . . . , TTN}+ = dim{T, TT1, . . . , TTN , TT
′}+ + dim{T}+

Further shape-space models 309

(omitting for simplicity explicit reference to parameters λ, λ1 . . . λn and λ′) and this
is simply rearranged into a formula for the increase in shape-space dimension:

dim{T, TT1, . . . , TTN , TT
′}+ − dim{T, TT1, . . . , TTN}+ = dim{T, TT ′}+ − dim{T}+,

the right hand side of which is the required formula (C.2), simplified in that it involves
only the base and the new component.

Silhouettes

For smooth silhouette curves, it can be shown that a shape-space of dimension 11
is appropriate. This shape-space representation of the curve is an approximation,
valid for sufficiently small changes of viewpoint. The proof of this result follows from
results in the computer vision literature about the projection of silhouettes into images
(Giblin and Weiss, 1987; Blake and Cipolla, 1990; Vaillant, 1990; Koenderink, 1990;
Cipolla and Blake, 1992b).

