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An alternative procedure is developed to the smoothed linear fitting method of McDonald 
and Owen. The procedure is based on the detection of discontinuities by comparing, at any 
given position, three smooth fits. Diagnostics are used to detect discontinuities in the regres- 
sion function itself (edge detection) or in its first derivative (peak detection). An application 
in electron microscopy is discussed. 

KEY WORDS: Changepoint; Edge detection; Image processing; Nonparametric regression; 
Peak detection. 

The objective of this article is to contribute to the 
methodology available for dealing with a very com- 
mon statistical problem, the detection of, or accom- 
modation of, discontinuities in regression functions 
when noisy observations thereof are available. 

The methodology finds a niche in two existing, 
voluminous literatures, the statistical literature on 
changepoint problems and the engineering literature 
on edge detection. For recent discussion of these two 
branches of research, see Carlstein (1988) and Lee 
(1990). Our objective is largely to produce nonpara- 
metric estimates of discontinous regression func- 
tions, although we shall comment on the algorithm's 
ability to detect the points of discontinuity them- 
selves; for another approach to the latter goal, see 
Wu and Chu (1990). 

The scope for application of any methodology in 
this area is wide indeed. Lee (1990) listed, from the 
"engineering" point of view, the areas of "computer 
vision, computer graphics, signal processing, image 
processing, pattern recognition, geology, tomog- 
raphy, remote sensing, etc." (p. 321). Statistical 
changepoint analysis is a natural tool for quality con- 
trol (Anonymous 1982). Edge detection is important 
in a wide variety of scientific contexts, such as the 
monitoring of sudden changes in texture, as well as 
object detection (Lee 1990). In Section 4, we shall 
illustrate our methodology with an example in elec- 
tron microscopy. 

As just remarked, we will be attempting to "re- 
cover" piecewise smooth regression functions from 
noisy data. The noise will be combated by smooth- 

ing, but an edge-accommodation stage will be devel- 
oped to prevent discontinuities from being degraded, 
as would be the case with unmodified smoothing 
procedures. 

Our aim is, therefore, the same as that of Mc- 
Donald and Owen (1986), and we readily acknowl- 
edge the seminal influence of their article on our 
research. The fundamental key to their approach is 
to create, corresponding to any given point, three 
smoothed estimates of the function, based on data 
to the right, to the left, and on both sides of the point 
in question. These are called the right, left, and cen- 
tral fits and were taken by them to be linear fits. The 
quantity of data that contributes to a particular fit 
depends on the size of the so-called data window; 
the larger the window, the more data are included, 
but the less plausible might be the assumption of 
linearity of the function in general. 

If local linearity obtains in the absence of discon- 
tinuities, then the three fits will be very similar in 
value except in the neighborhoods of breaks, and the 
disagreements among them will usually reach an ex- 
tremum at a point of discontinuity. This basic feature 
was embedded by McDonald and Owen (1986) in a 
somewhat complicated algorithm for constructing a 
split-linear fit from an arbitrary set of data. 

The objective of the present article is to derive an 
alternative, edge-preserving, smoothing algorithm with 
specific analytical properties that is less complicated 
to implement than is the method of McDonald and 
Owen (1986). Our algorithm is based loosely on kernel- 
type smoothing, whereas they used ordinary least 
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squares fitting; spline smoothing was used by Lee 
(1990, 1991) and others; for instance, see Laurent 
and Utreras (1986), Shiau, Wahba, and Johnson 
(1986), Shiau (1987), and Vercken and Potier (1990). 

Section 1 includes the derivation of our algorithm 
for edge-preserving smoothing. Somewhat artificial 
illustrative examples are presented in Section 2. 
Modifications appropriate for preserving sharp peaks 
or troughs are discussed and illustrated in Section 3. 
Section 4 presents a real, illustrative example from 
electron microscopy, and a brief discussion concludes 
the article in Section 5. 

1. AN ALGORITHM FOR EDGE-PRESERVING 
SMOOTHING 

1.1 Introduction 

The basic features of our algorithm are as follows: 

1. At all design points, compute left, right, and 
central smooths according to the procedure to be 
described in Section 1.2. 

2. Combine the three smooths into a diagnostic 
that identifies points of discontinuity; see Section 1.3 
for details. 

3. On the basis of feature 2, produce a single es- 
timate of the regression function at each design point, 
as described in Section 1.4. 

It will be assumed that the design points are equally 
spaced and that the observations {Yi} satisfy the model 

Yi = f(iln) + e, (1.1) 

(i = 1,..., n), where f(.) is a piecewise smooth 
function and the errors are assumed to be iid, each 
with variance Or2. Note that from the point of view 
of the methodological development we are assuming 
that the design points all belong to the interval [0, 1]. 
This is not necessary in practice and is not the case 
in the illustrative examples used later, in which the 
design points are still equally spaced but over a dif- 
ferent interval. 

In Section 1.5, we discuss the possibility of ex- 
tending the method to the case of unequally spaced 
design points. 

1.2 The Left, Right, and Central Smooths 

We shall use smooths that are linear in the data. 
They are local smooths in the sense that they involve 
only 2m + 1 consecutive observations, for some win- 
dow size m E {0, 1, 2 . ..}. 

At a given design point, the central smooth is a 
linear combination of the observations at that point 
and those at the m nearest design points on either 
side; the left (right) smooth is a linear combination 
of the observation at that point and those at the 2m 
nearest design points to the left (right). To be spe- 

cific, the central, right, and left smooths at design 
point i are defined respectively by 

m 

fc(i n) = cYi, + j, 
j= -m 

2m 

fr(iln) = E rjYi+j, 
j=o 

and 

0 

f(iln) = E ljYi+j, 
j= -2m 

where the cj, rj and lj are constants, to be determined. 
In view of the equal spacing of the design points, it 
is appropriate to take ij = r_i for all j. 

In the work of McDonald and Owen (1986), the 
cj, rj, and lj corresponded to ordinary least squares 
fitting. Our approach to defining the cj and rj is to 
provide equality in the leading terms of the Taylor 
expansions of E{fc(i/n)} and E{fr(i/n)}. We shall see 
that this requirement leads to indeterminacy, which 
creates opportunities for considerable flexibility. In 
particular, one can propose any desired set of cj and 
then construct a set of rj that conform to the require- 
ment, or vice versa. 

First we develop the Taylor expansion of E{fc(i/n)} 
up to the qth order term (q > 1). Provided that there 
is sufficient regularity, 

m 

Efc(iln) = cf{(i + j)ln} 
j= -m 

E cj E kf !)- Ln-kfk)(in) 
j= m k=O 

+ O(n -(q+ 1)j(q1+ 1) 

= E (k!)-n - k 

k=O 0 

x (E jkj (k) (iln) 
j= - nl 

+ 0n-(q+ t) 
jq+ lcj ) 

j= -m 
(1.2) 

The expansion for E{fr(iln)} is quite analogous, 
so the Cj and rj should be chosen to satisfy 

2m m 

o 
Jr = E i 

j=O j= -m 
k = ,...,q. (1.3) 

To resolve the remaining indeterminacy, our ap- 
proach is, for prescribed q, to propose a set of cj and 
then determine the ri from (1.3). This may be done 
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as follows. Define 
2m 

Sk 
= 

jk 
j=O 

Construct the (q + 1) 
by 

- so 

S= q 

_ Sq 

S1 
Si 

Sq 

Sq+ I 

k = 0,... ,2q. 

x (q + 1) matrix S defined 

. . . . . . q 
- 

S - 

...... 1 Sq+l 

...... ..S2q _ 

that is, (S)kw = Sk+w, for k, w = 0,... , q. 
Next, compute the (q + 1)-dimensional vectors 

u = (u., uq )T and v = (vo,. ., q)T, where 

m 

Vk = jkCr k = 0, .. ., q, 
j = -- nl 

and 
u = S- v. (1.4) 

Finally, obtain 
q 

r,= uw j, j = 0, ...,2m, 
w=O 

= 0 otherwise. 

In our numerical work, we used q = 1, so that 
v = (1, 0)T, and it turned out that m = 20 gave 
satisfactory performance. For this combination, 
uo = .0941, u1 = -.0035, and the resulting rj are 
linear: rj = (27 - j)/287 (j = 0, . . ., 40). 

Note that approximately one-third of the rj are 
negative and that this will show up in the edge- 
detection strategy that we discuss in Section 1.3. 

For central smooths other than the moving aver- 
age, one simply uses the corresponding cj in (1.7) 
and proceeds as previously. 

1.3 Identification of Points of Discontinuity 

Breakpoints are sought by studying diagnostics 
based on comparisons among the left, right, and cen- 
tral smoothers. If there is no discontinuity and the 
regression function is locally linear, then the three 
smooths should be very similar. 

There are various possibilities so far as diagnostics 
are concerned, as can be seen by considering Figure 
1. Figure l(a) depicts a discontinuous regression 
function, along with schematic versions of the three 
smooths, drawn in the form of their continuous ver- 
sions. The smooths are drawn as if from noise-free 
data. Note that to the left of the breakpoint f and ft 
coincide, whereas to the right f and r, are identical. 

To verify that (1.3) holds, as required, write (1.4) 
as Su = v. Identification of the kth elements of either 
side gives 

q m 

Sk +wUw 
= 

Vk =/ 
E j Cj 

w =0 j= - m 
(1.6) 

(k = 0,. . ., q). The left side of (1.6) is 

q 2m 2m q 2m 

S jk+w w = Ej E jW U E j r 
w=O j=O j=o w=O j=o 

We illustrate the method for the case in which the 
central smooth is the simple (2m + 1)-point moving 
average and q < 3. Thus 

cj = (2m + 1)-1 

=0 

A 

fi 

I I I I I 
-2m -m 0 m 2m 

(a) 

if lil - m 

otherwise, 

A - 
^ f^ 

and 
m 

E jkcj = 1 
= -m 

= 0 
= m(m + 1)/3 
=0 

Expansion (1.2) then takes the form 
m 1 

cjf{(i + j)/n} = f(iln) + 2f"(i/n) 
j= -n m 

1 x - m(m + 1)n-2 + O{(m/n)4}. 3 

-m m 

(b) 

Figure 1. (a) Discontinuous Regression Function ( ) 
with f,, (-- - .), c (....), and f, (----); (b) If, - fr From (a). 
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The ways in which f, Jr, and I, differ are dictated 
by the form of the rj (and therefore of the lj) de- 
scribed at the end of Section 1.2. Various other qual- 
itative statements can be made that motivate possible 
diagnostics: 

1. At the breakpoint, fc lies between Jt and J. 
2. At the breakpoint, If i - fl is locally maximal, 

and generally Ji - fJl takes the form shown in 
Figure l(b). 

3. Between m and 2m units of distance to the left 
of the breakpoint, If[ - fcl is 0, but fr is different 
from them both. 

4. An obvious, corresponding version of state- 
ment 3 holds to the right of the breakpoint. 

In the examples discussed in Section 2 we experi- 
mented with various diagnostics based on 1-4 and 
eventually settled on the following procedure for 
preliminary identification of a breakpoint: Flag po- 
sition is i if, at i, (a) (Jr - fc)(fc - f) > 0 and 
(b) I(fr - /)(i)j > I(Jr - f,)(i + j)1 for all J = 
+m, (m + 1), ..., 2m, where, for instance, fr(i) 
denotes the right smooth at point i. 

In view of Figure 1, this procedure is not enough, 
because clearly if i is flagged then so are numerous 
neighboring points. There may also be many other 
spurious flags. Two further steps are taken: First, 
only "significant" values of a diagnostic are flagged, 
and second, only one flag is retained in any given 
data window. We therefore supplement the preced- 
ing (a) and (b) with (c) and (d), as follows: (c) Retain 
i as a flagged position only if U(i) > u, where U = 
1(J/ -r( - r))((c - r)(c - ) and u is a critical 
value, determined in the Appendix and (d) if as the 
data are scanned from left to right i is flagged, then 
look ahead locally and identify the position at which 
the corresponding U is maximum. Regard that point 
as identifying a breakpoint, and disregard any other 
flagged point in the data window. 

Clearly, variations on (c) exist. For instance, one 
could consider (c*), based on U*(i) = I(fJ - fr)(i) 
with a corresponding critical value *. 

1.4 Production of the Final Estimate of the 
Regression Function 

Having identified breakpoints, we estimate the 
regression function by J as follows: 

1. For i within 2m units to the left of a breakpoint, 
take f(i) = fi(i). 

2. For i within 2m units to the right of a break- 
point, take J(i) = r(i). 

3. For all other i, take f(i) = f(i). 

This too could be varied. In particular, for i between 
2m and m units to the left (right) of a breakpoint, 

one could take J(i) = {f(i) + fc(i)}[{fr(i) + c(i)}] 
and, instead of 3, one could suggest: 

3'. For all other i, take f(i) = 3{f(i) + fc(i) + 
fr(i)}. 

In our numerical work, we used 1-3. 
McDonald and Owen (1986) created a final smooth 

in the form of a weighted average of the left, right, 
and central smooths corresponding to one or more 
window sizes. The weights were somewhat arbitrar- 
ily, if sensibly, defined, and the window sizes were 
chosen with a view to the scale of structure they 
wished to detect in the data. We effectively use a 
degenerate form of their technique when combining 
the smooths, and we only use a single window size 
"somewhat arbitrarily, if sensibly, defined"! One could 
clearly experiment with their type of approach al- 
though our somewhat simpler procedure seems to 
work quite well. 

Formally, the technique provides estimates of the 
regression function only at the design points. Any 
preferred interpolation method can be applied to 
"join up" the points to create a continuous curve. 
This appears to have been done in the figures of 
McDonald and Owen (1986), whose technique also, 
formally, only deals with the design points. 

The procedure does not allow for breaks that are 
less than 2m units apart. In some examples this may 
lead to degradation of edges if m is too large, and 
experimentation with a variety of values for m may 
then be advisable. In the examples, we also decline 
to estimate the regression function at the boundaries 
of the design space and thereby may miss edges there. 
In principle, one could modify the procedure to deal 
with the boundaries along the lines of McDonald and 
Owen (1986). 

1.5 The Case of Unequally Spaced 
Design Points 

The crucial calculations in Section 1.2 were carried 
out only for the case in which the design points are 
equally spaced. There is no difficulty in principle, 
however, in extending the argument to the case of 
less regularly spaced design points. In that case, of 
course, one would require different sets of weights 
cj, rj, and ij at each design point, and it would no 
longer be so sensible to take ii = r_i. For instance, 
at design point xi, one would wish to specify 

In 

C(xi) = CijYi+j = -m 

The core of the argument in Section 1.2 was to 
create, via Taylor expansions of two smooths, a set 
of matching conditions (1.3). Having prescribed one 
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set of weights, we used (1.4) and (1.5) to determine 
values for the other set of weights so as to satisfy the 
matching conditions. To show how the same tech- 
nique can be applied in a general context, consider 
the following two smooths at design point xi: 

m2 

Jg(Xi)= SE gjYi+ 
j=mi 

and 
m4 

h(Xi) = hji+j, 
j=m3 

omitting the i subscript on gj and hi for clarity. 
The matching conditions created by the Taylor ex- 

pansion argument are 

m2 m4 

S S^gj = E 5hj, 
j=ml j=m3 

k = , . . ., q, (1.8) 

where bij = (xi - xi) for all relevant i andj. Equation 
(1.8) corresponds to (1.3). 

Suppose that we prescribe the hj and try to com- 
pute gj to satisfy (1.8). We define 

m2 

j=mi 

4.0 - 

3.5 - 

3.0 

2.5 - 

+ + .+ 

1.5 - + 

0.0 - 
+ -t+ 

0.5 - ++ 

-1. - 

0.5 - l 

-1.5 . I 0.0 0.2 0.4 0.6 0.1 0.0 0.2 0.4 0.6 O.! 

define S as before by (S)kw = Sk+w for k(w = 0, 
. .. , q), and define 

m4 

Vk = 8hj, 
j=m3 

k = ,. . . ,q. 

We construct u = S- v as before and calculate 

q 

gj = w 6, j= ml, .. , m2. 
w=O 

The short argument following (1.5) verifies that 
(1.8) holds for this set of gj. 

2. EXAMPLES OF EDGE DETECTION 

In our simulation study of the procedure described 
in Section 1, we consider two examples. The second 
is the sawtooth function used by McDonald and Owen 
(1986). First, however, we consider a less regular, 
but still piecewise linear, function designed to exhibit 
more than one type of break. 

Example 2.1. The solid line in Figure 2 depicts 
the true regression function, f, used in this example. 
Three breakpoints are present, each corresponding 
to a different type of change in f. All are zeroth- 
order discontinuities, but there are qualitative dif- 
ferences in the way the slope changes through the 

Figure 2. A Single Realization and Piecewise-Smooth Fit for Example 2.1: The True Regression Function Is Denoted by 
,the Data Are Denoted by (+), and the Fitted Values Are Denoted by (*). 
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3.0 X 

2.5 - 

2.0 - 

1.5 - 

1.0 - 

0.5 - 

0.0 - 

-0.5 
0.( 

' I I I I I I I I I 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0 

Figure 3. 5% and 95% Envelopes of f From 1,000 Realizations of Example 2. 1: Lower Envelope Is (*); Upper Envelope is (-). 

point of discontinuity. The number of data points 
was n = 512. Experiments were carried out using 
the methodology described previously for various 
choices of m and for several values of c, the standard 
deviation of the observation noise. The results quoted 
here are for a = .25, which corresponds to a rea- 
sonably demanding signal-to-noise ratio, similar to 
that used by McDonald and Owen (1986) in the con- 
text of their sawtooth function. 

Also shown in Figure 2 are the data corresponding 
to a single realization and the piecewise smooth fit, 
as determined by the algorithm defined by (a)-(d) 
in Section 1.2 along with 1-3 in Section 1.3. 

In Figure 3, the results of 1,000 replications of the 
fitting procedure are summarized in the form of the 
5% and 95% envelopes of the values off. The values 
of ao and m are the same as in Figure 2. 

The slight widening of the bands near the break- 
points is the penalty for having to use fr and f, there 
rather than fc. It is not caused by any meaningful 
inadequacy in the breakfinding part of the algorithm. 
This is made clear by Table 1, which indicates the 
frequencies with which discontinuities are identified 
by the 1,000 replications. Recall that the true break- 
points are at points 128, 256, and 384. 

Example 2.2. The methodology of Section 1 was 
also applied to the sawtooth function of McDonald 
and Owen (1986). Figure 4, by analogy with Figure 

2, shows the true function, along with the data and 
the fitted function corresponding to one realization, 
and Figure 5 provides the 5% and 95% envelopes of 

Table 1. Breakpoint Identification Frequencies 

i Frequencies 

125 1 
126 2 
127 37 

*128 922 
129 33 
130 4 
131 0 
132 1 

1,000 

255 11 
*256 908 
257 64 
258 16 
259 1 

1,000 

382 1 
383 8 

*384 927 
385 55 
386 6 
387 3 

1,000 

*Location of true breakpoint. 
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+ 

+ 

+ 

+++ 

++ + 

++ 

+ + 

* +$,j 

+/1+ + ++ 

+ + 
+ + 

+ 

+ 

++ 

~r f-t 
#4* + 
4-0 

+ + 

+ 

+ 

+ 

+ 

+ 

+ + 
+ 

0.0 0.2 0.4 0.6 0.8 

Figure 4. A Single Realization and Piecewise-Smooth Fit for Example 2.2: The True Regression Function Is Denoted by 
, the Data Are Denoted by (+), and the Fitted Values by (*). 

1.2 

1.0 r 

0.8 - 

0.6 - 

0.4 - 

0.2 - 

0.0 

/ 

/ 
/ 

i- 

/ / 

/ '/ // 

-0.2 - 

-0.4 ' ' ' ' 
0.0 0.2 0.4 0.6 0.8 

Figure 5. 5% and 95% Envelopes of f From 1,000 Realizations of Example 2.2: Lower Envelope Is (*); Upper Envelope is (-). 
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the fitted function from 1,000 realizations; compare 
with Figure 3. 

3. PEAK IDENTIFICATION 

3.1 Methodology 

So far, we have discussed the development of 
smoothing procedures that cope with discontinuity 
in functions, called zeroth-order discontinuities by 
Lee (1990). It is natural, therefore, to seek adapta- 
tions to identify higher-order discontinuities. We shall 
restrict attention to the first-order case, in which we 
envisage abrupt changes in the first derivative of the 
regression function. In less technical terms, we are 
attempting to identify and adapt to peaks (or troughs) 
in f. Once again, we base our methodology on dif- 
ferences among c, f1, fr, and the true f. 

As before, it is helpful to consider the noise-free 
version, depicted in Figure 6, for a peak. Figure 6(a) 

// 

I I I m I 
-2m -m 0 m 2m 

(a) 

fr + fl - 2fcI 

2m 

(b) 

(c) 

Figure 6. (a) Sharply Peaked Function ( ) with 
f,(---), c (..... ), and fr (----), (b) f r + f, - 2f,c From (a); 
(c) (f, - ?,) From (a). 

shows the three smooths and the true f, whereas 
Figure 6, (b) and (c), shows the two diagnostic func- 
tions Ir + f, - 2fc and If, - fI. 

The only change in the algorithm defined by (a)- 
(d) of Section 1.2 and 1-3 of Section 1.3 pertains to 
(c). Various diagnostics are available as replace- 
ments for U. Two possibilities are U1(i) = I(fr + 
f - 2Jc)(i)| and U2(i) = I(fr + - 2fc)(i)(r - 
c)(i(7) - (fc)(i) l. 

The numerical work summarized next was based 
on use of U1. Critical values for both U1 and U2 are 
discussed in the Appendix. 

3.2 Example 3.1 

The underlying regression function selected was 
the simple function f(x) = -clxi. As in Section 2, 
we took m = 20 (after some experimentation) and 
ao = .25. The design space was [-2, 2], and 256 
equally spaced observations were taken. The value 
of c dictates the strength of the discontinuity in the 
first derivative, which should be more accurately de- 
tected for larger values of c. Table 2 illustrates this 
by listing the frequencies of discontinuity identifi- 
cation from 1,000 realizations and for various values 
of c. Even for c = 4, the ability to identify the correct 
point (i = 128) is not overwhelmingly impressive. 
This is symptomatic of the general fact that peaks 

Table 2. Peak Identification Frequencies From 
1,000 Realizations 

Frequencies 

i c=2 c=3 c=4 

116 1 
117 1 
118 2 
119 9 2 
120 11 3 
121 23 5 
122 22 13 4 
123 39 28 16 
124 72 68 54 
125 95 87 82 
126 104 121 125 
127 134 184 233 

*128 135 174 213 
129 94 113 126 
130 78 81 80 
131 60 54 40 
132 48 38 19 
133 29 14 6 
134 20 11 2 
135 7 3 
136 9 1 
137 4 
138 2 
139 1 

*Location of true peak. 
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are harder to identify than are breaks-the difficulty 
of identifying an rth order discontinuity increases 
with increasing r. 

Figure 7 shows, for one realization with c = 2, 
the true function, the data, and the fitted function. 
Figure 8 depicts the now-familar 5% and 95% en- 
velopes from 1,000 realizations, also corresponding 
to c = 2. The fit is good everywhere, even at the 
peak, although there is slight flattening, associated 
with the imprecision identified in Table 2. 

4. AN EXAMPLE INVOLVING 
TRANSMISSION-ELECTRON MICROSCOPY 

In this section, we apply our methodology to data 
from the field of transmission-electron microscopy. 
In truth, our one-dimensional techniques will pro- 
vide only a partial treatment of what is essentially a 
two-dimensional problem. Figure 9 displays data cor- 
responding to a single line of 512 pixels extracted 
from a rectangular, pixellated image of a continuous 
thin film of permalloy. The measured quantity is the 
strength of vertical induction, measured in micro- 
radians, assessed in the so-called differential phase 
contrast imaging mode; for instance, see Chapman, 
McVitie, and Hefferman (1991). 

The sample contains two domains, and it is of in- 
terest to locate the domain wall, which in one di- 

0.5 - 

0.0 - 

-1.0 - + 

-2.5- + -3..0 + + 

t + 

~-'~.5- ~ - 

-2.5- 
+ + 

-3.0 +: + 
+ 

-4.0 

- .5 -.0 -0. -i .5 -_.0 -0.5 

mension amounts to finding an edge. Within each 
domain, there is considerable variability, caused by 
random noise and, in addition, by elastic scattering 
from the individual crystallites within the material. 
This latter is apparent in Figure 9 in the form of the 
isolated peaks and troughs on either side of the do- 
main wall, and it is important for the eventual 
smoothed fit not to be dominated by the effects of 
the crystallites. One could, of course, try to model 
this effect, but it turns out that a reasonable analysis 
can be achieved without this extra complication. 

Along with the data, Figure 9 also displays the 
result of applying our methodology. Figure 10 shows 
the corresponding left, right, and central fits. From 
this it is clear that, apart from near the domain wall, 
the central fit is retained. 

To achieve the smoothed fit in Figure 9, it was 
necessary to modify the procedure slightly by rec- 
ognizing the different levels of variability within the 
two domains. Examination of residuals about the 
central fit within the body of the two domains led to 
the realization that the standard deviation of the data 
in the left domain was approximately 41/3 times that 
in the right half. As a result, the critical u used in 
the left half was taken to be four times that in the 
right half. Experimentation showed that some rec- 
ognition had to be made of heteroscedasticity. If a 

Figure 7. A Single Realization and Piecewise-Smooth Fit for Example 3.1: The True Regression 
, the Data are Denoted by (+), and the Fitted Values Are Denoted by (*). 

Function Is Denoted by 
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Figure 8. 5%a and 95% Envelopes of from 1,000 Realizations of Example 3.1: Lower Envelope Is (*); Upper Envelope is (-). 
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Figure 10. Left (+), Right (-), and Central (*) Smooths for Electron-Microscopy Data. 

constant value of u was employed, then either strange 
effects occurred in the left half, resulting from the 
crystallites, or the central smooth was adopted across 
the domain wall, thereby failing to pick up the edge. 

5. DISCUSSION 

We have developed and illustrated simple-minded 
approaches to edge-preserving and peak-preserving 
smoothing. The former aim, in particular, appears 
to have been satisfactorily achieved. Directions for 
further research include the combination of the two 
types of diagnostic into a coordinated program and 
the more detailed investigation of similar methods 
in the case of nonequally spaced data and in surface- 
fitting problems, in which the design points are two- 
dimensional. This will afford more satisfactory pro- 
cessing of images such as the electron-microscopy 
example described in Section 4. 

There is clearly a degree of arbitrariness in the 
procedure as reported here in terms of the choice of 
window size, the choice of the Cj, the choice of thresh- 
old for identifying points of discontinuity, and so on. 
No doubt, theorems could be proved related to some 
of these aspects in particular contexts, but we per- 
ceive the technique as a flexible data-analytic tool, 
within which the scope for adjustment of certain fea- 

tures allows for informative exploration of a data set, 
as in the case with many alternative approaches such 
as that of McDonald and Owen (1986). 

ACKNOWLEDGMENTS 

This research was made possible by a Visiting Fel- 
lowship Research Grant for Peter Hall awarded by 
the U.K. Science and Engineering Research Council. 
We are most grateful to J. N. Chapman, Department 
of Physics and Astronomy, University of Glasgow, 
for providing the data analyzed in Section 4 and to 
W. Qian for preparing some of the figures. We are 
also appreciative of the very helpful comments of the 
associate editor and the referees. 

APPENDIX: CRITICAL VALUES FOR 
U, U,, AND U2 

1. The case of U = I(f; - fr)(fc - f)(fc - 1/)1. 
Under the assumption that the true regression mean 
f is linear and the errors ri are normal N(0, T-2), 
fc - f, and fc - f{ are both normal N(0, r2) where 

2 2f 

=o0 
2(2m+ 1)- rj+ (2m + 1)- . 

j=O 
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Given O < p < 1, let z = Zp > 0 be the solution of 
4((z){1 - ((z)} = p, where ?( is the standard nor- 
mal distribution function. (Thus, z = c-1[1/2{1 + 
(1 - p)12}].) Put u = 2(rz)3. We claim that 
Pr(U - u) - p. Thus u forms a convenient critical 
value for assessment of U. In practice, the value of 
-cr can be estimated from parts of the data where 
the regression mean is smooth. 

To prove that Pr(U > u) < p, first define Xl = 
(f - f,.)/r and X2 = (f, - fl)/r. Since U - 2 max 
(I0f - frl' If - f/I3) then Pr(U > u) c Pr{max(|Xl, 
IxA|) > z} - 1 - Pr(|X| < z, IX2 < z). The last- 
written probability is maximized (over all possible 
correlations of X1, X2) when X, and X, are indepen- 
dent, as may be shown by writing the probability in 
terms of an integral with respect to a bivariate normal 
measure and looking for a turning point with respect 
to the correlation. Therefore, 

Pr(U > u) - 1 - {2((z) - 1}2 
= 4((z){1 - ()(z)} = p. (A.1) 

Since we are using U as a diagnostic simultaneously 
over the design space, it is appropriate to use, as u, 
a value somewhat larger than the value defined by 
(A.1) for a prescribed p. For p = .05, (A.1) gives 
z = 2.24, and we found that taking u = 6(rz)3 pro- 
duced good performance in our simulations. 

2. The case of U, = I(f + fi - 2f1)|. Let z be 
as in 1, and put ul = 2rz. We claim that Pr(U, 1 
u1) - p, which follows from the argument in 1 on 
noting that U1/-r 2 max(IX11, IXA). 

3. The case of U2 = (f, + f - 2fc)(f - fc) 

(f, - fc)l. Let u = 2(rz)3 be as in 1. Then it follows 
as in 1 that Pr(U - u) ' p. 

[Received September 1990. Revised February 1992.] 
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