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This chapter reviews and discusses various aspects of texture analysis. The concentration is o
the various methods of extracting textural features from images. The geometric, random field, fractal,
and signal processing models of texture are presented. The major classes of texture processing pro
lems such as segmentation, classification, and shape from texture are discussed. The possible applic
tion areas of texture such as automated inspection, document processing, and remote sensing a
summarized. A bibliography is provided at the end for further reading.
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1.  Introduction

In many machine vision and image processing algorithms, simplifying assumptions
made about the uniformity of intensities in local image regions. However, images of
objects often do not exhibit regions of uniform intensities. For example, the image
wooden surface is not uniform but contains variations of intensities which form cer
repeated patterns calledvisual texture. The patterns can be the result of physical surfa
properties such as roughness or oriented strands which often have a tactile quality, o
could be the result of reflectance differences such as the color on a surface.

We recognize texture when we see it but it is very difficult to define. This difficulty is de
onstrated by the number of different texture definitions attempted by vision researc
Coggins [1] has compiled a catalogue of texture definitions in the computer vision lit
ture and we give some examples here.

• “We may regard texture as what constitutes a macroscopic region. Its structu
simply attributed to the repetitive patterns in which elements or primitives are
ranged according to a placement rule.” [2]

• “A region in an image has a constant texture if a set of local statistics or other l
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properties of the picture function are constant, slowly varying, or approxima
periodic.” [3]

• “The image texture we consider is nonfigurative and cellular... An image text
is described by the number and types of its (tonal) primitives and the spatial o
nization or layout of its (tonal) primitives... A fundamental characteristic of te
ture: it cannot be analyzed without a frame of reference of tonal primitive be
stated or implied. For any smooth gray-tone surface, there exists a scale suc
when the surface is examined, it has no texture. Then as resolution increas
takes on a fine texture and then a coarse texture.” [4]

• “Texture is defined for our purposes as an attribute of a field having no com
nents that appear enumerable. The phase relations between the componen
thus not apparent. Nor should the field contain an obvious gradient. The inten
this definition is to direct attention of the observer to the global properties of
display — i.e., its overall “coarseness,” “bumpiness,” or “fineness.” Physica
nonenumerable (aperiodic) patterns are generated by stochastic as opposed
terministic processes. Perceptually, however, the set of all patterns without o
ous enumerable components will include many deterministic (and even perio
textures.” [5]

• “Texture is an apparently paradoxical notion. On the one hand, it is commo
used in the early processing of visual information, especially for practical cla
fication purposes. On the other hand, no one has succeeded in producing a
monly accepted definition of texture. The resolution of this paradox, we feel, w
depend on a richer, more developed model for early visual information proc
ing, a central aspect of which will be representational systems at many diffe
levels of abstraction. These levels will most probably include actual intensitie
the bottom and will progress through edge and orientation descriptors to sur
and perhaps volumetric descriptors. Given these multi-level structures, it se
clear that they should be included in the definition of, and in the computation
texture descriptors.” [6]

• “The notion of texture appears to depend upon three ingredients: (i) some l
‘order’ is repeated over a region which is large in comparison to the order’s s
(ii) the order consists in the nonrandom arrangement of elementary parts, and

(b)

D77 D55

D84 D17

D24

FIGURE 1. (a) An image consisting of five different textured regions: cotton canvas (D77), straw
matting (D55), raffia (D84), herringbone weave (D17), and pressed calf leather. [8]. (b) The goal
texture classification is to label each textured region with the proper category label: the identities of t
five texture regions present in (a). (c) The goal of texture segmentation is to separate the regions in
image which have different textures and identify the boundaries between them. The texture catego
themselves need not be recognized. In this example, the five texture categories in (a) are identified
separate textures by the use of generic category labels (represented by the different fill patterns).

(a) (c)
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the parts are roughly uniform entities having approximately the same dimens
everywhere within the textured region.” [7]

This collection of definitions demonstrates that the “definition” of texture is formulated
different people depending upon the particular application and that there is no gene
agreed upon definition. Some are perceptually motivated, and others are driven comp
by the application in which the definition will be used.

Image texture, defined as a function of the spatial variation in pixel intensities (gray
ues), is useful in a variety of applications and has been a subject of intense study by
researchers. One immediate application of image texture is the recognition of im
regions using texture properties. For example, in Figure 1(a), we can identify the five
ferent textures and their identities as cotton canvas, straw matting, raffia, herring
weave, and pressed calf leather. Texture is the most important visual cue in identi
these types of homogeneous regions. This is calledtexture classification. The goal of tex-
ture classification then is to produce a classification map of the input image where
uniform textured region is identified with the texture class it belongs to as shown
Figure 1(b). We could also find the texture boundaries even if we could not classify t
textured surfaces. This is then the second type of problem that texture analysis res
attempts to solve —texture segmentation. The goal of texture segmentation is to obtai
the boundary map shown in Figure 1(c).Texture synthesisis often used for image com-
pression applications. It is also important in computer graphics where the goal is to re
object surfaces which are as realistic looking as possible. Figure 2 shows a set of syn
cally generated texture images using Markov random field and fractal models [9].
shape from textureproblem is one instance of a general class of vision problems known
“shape from X”. This was first formally pointed out in the perception literature by Gibs
[10]. The goal is to extract three-dimensional shape information from various cues su
shading, stereo, and texture. The texture features (texture elements) are distorted

FIGURE 2. A set of example textures generated synthetically using only a small number of paramete
(a) Textures generated by discrete Markov random field models. (b) Four textures (in each of the fo
quadrants) generated by Gaussian Markov random field models. (c) Texture generated by fractal mod

(a)

(b) (c)
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the imaging process and the perspective projection which provide information about
face orientation and shape. An example of shape from texture is given in Figure 3.

2.  Motivation

Texture analysis is an important and useful area of study in machine vision. Most na
surfaces exhibit texture and a successful vision system must be able to deal with th
tured world surrounding it. This section will review the importance of texture percept
from two viewpoints — from the viewpoint of human vision or psychophysics and fro
the viewpoint of practical machine vision applications.

2.1.  Psychophysics

The detection of a tiger among the foliage is a perceptual task that carries life and d
consequences for someone trying to survive in the forest. The success of the tiger in
ouflaging itself is a failure of the visual system observing it. The failure is in not be
able to separatefigure from ground. Figure-ground separation is an issue which is
intense interest to psychophysicists. The figure-ground separation can be based on v
cues such as brightness, form, color, texture, etc. In the example of the tiger in the fo
texture plays a major role. The camouflage is successful because the visual system
observer is unable to discriminate (or segment) the two textures of the foliage and the
skin. What are the visual processes that allow one to separate figure from ground usin
texture cue? This question is the basic motivation among psychologists for studying
ture perception.

Another reason why it is important to study the psychophysics of texture perception is
the performance of various texture algorithms is evaluated against the performance
human visual system doing the same task. For example, consider the texture p
Figure 4(a), first described by Julesz [11]. The image consists of two regions eac
which is made up of different texture tokens. Close scrutiny of the texture image will in
cate this fact to the human observer. The immediate perception of the image, how

FIGURE 3. We can extract the orientation of the surface from the variations of texture (defined by th
bricks) in this image.
4
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does not result in the perception of two different textured regions; instead only one
formly textured region is perceived. Julesz says that such a texture pair is not “effortle
discriminable” or “preattentively discriminable.” Such synthetic textures help us fo
hypotheses about what image properties are important in human texture perceptio
addition, this example raises the question of how to evaluate the performance of com
algorithms that analyze textured images. For example, suppose we have an algorith
can discriminate the texture pair in Figure 4(a). Is this algorithm “correct?” The answe
course, depends on the goal of the algorithm. If it is a very special purpose algorithm
should detect such scrutably different regions, then it is performing correctly. On the o
hand, if it is to be a computational model of how the human visual system processes
ture, then it is performing incorrectly.

Julesz has studied texture perception extensively in the context of texture discrimin
[11,12,13]. The question he posed was “When is a texture pair discriminable, given
they had the same brightness, contrast, and color?” Julesz concentrated on the spat
tistics of the image gray levels that are inherent in the definition of texture by keep
other illumination-related properties the same.

To discuss Julesz’s pioneering work, we need to define the concepts of first- and se
order spatial statistics.

(i) First-order statisticsmeasure the likelihood of observing a gray value at a ra
domly-chosen location in the image. First-order statistics can be computed f
the histogram of pixel intensities in the image. These depend only on individ
pixel values and not on the interaction or co-occurrence of neighboring pixel
ues. The average intensity in an image is an example of the first-order statis

(ii) Second-order statisticsare defined as the likelihood of observing a pair of gra
values occurring at the endpoints of a dipole (or needle) of random length pla
in the image at a random location and orientation. These are properties of pa
pixel values.

Julesz conjectured that two textures are not preattentively discriminable if their sec
order statistics are identical. This is demonstrated by the example in Figure 4(a).
image consists of a pair of textured regions whose second-order statistics are iden
The two textured regions are not preattentively discriminable. His later counter-exam
to this conjecture were the result of a careful construction of texture pairs that have id
cal second-order statistics (see Figure 4(b)) [14,15,16].

Julesz proposed the “theory of textons” to explain the preattentive discrimination of
ture pairs. Textons are visual events (such as collinearity, terminations, closure,
whose presence is detected and used in texture discrimination. Terminations are end
of line segments or corners. Using his theory of textons, Julesz explained the examp
Figure 4 as follows. Recall that both texture images in Figure 4 have two regions that
identical second-order statistics. In Figure 4(a), the number of terminations in both
upper and lower regions is the same (i.e., the texton information in the two regions is
different), therefore the visual system is unable to preattentively discriminate the two
tures. In Figure 4(b), on the other hand, the number of terminations in the upper ha
three, whereas the number of terminations in the lower half is four. The difference in
texton makes the two textured regions discriminable. Caelli has also proposed the
ence of perceptual analyzers by the visual system for detecting textons [17]. Becket al.
[18] have conducted experiments and argue that the perception of texture segmenta
5
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certain types of patterns is primarily a function of spatial frequency analysis and no
result of higher level symbolic grouping processes.

Studies in psychophysiology have suggested that a multi-channel, frequency and or
tion analysis of the visual image formed on the retina is performed by the brain. Camp
and Robson [19] performed psychophysical experiments using various grating patt
They suggested that the visual system decomposes the image into filtered images o
ous frequencies and orientations. De Valoiset al. [20] have studied the brain of the
macaque monkey which is assumed to be close to the human brain in its visual proce
They recorded the response of the simple cells in the visual cortex of the monkey to
soidal gratings of various frequencies and orientations and concluded that these ce
tuned to narrow ranges of frequency and orientation. These studies have motivated
researchers to apply multi-channel filtering approaches to texture analysis.

2.2.  Applications

Texture analysis methods have been utilized in a variety of application domains. In s
of the mature domains (such as remote sensing) texture already has played a majo
while in other disciplines (such as surface inspection) new applications of texture
being found. We will briefly review the role of texture in automated inspection, med
image processing, document processing, and remote sensing. Images from two appli
domains are shown in Figure 5. The role that texture plays in these examples v
depending upon the application. For example, in the SAR images of Figures 5(b) an
texture is defined to be the local scene heterogeneity and this property is used for cla
cation of land use categories such as water, agricultural areas, etc. In the ultrasound
of the heart in Figure 5(a), texture is defined as the amount of randomness which
lower value in the vicinity of the border between the heart cavity and the inner wall tha
the blood filled cavity. This fact can be used to perform segmentation and boundary d
tion using texture analysis methods.

2.2.1. Inspection

There has been a limited number of applications of texture processing to autom
inspection problems. These applications include defect detection in images of textile
automated inspection of carpet wear and automobile paints.

(a) (b)

FIGURE 4. Texture pairs with identical second-order statistics. The bottom halves of the images cons
of texture tokens that are different from the ones in the top half. (a) Humans cannot perceive the t
regions without careful scrutiny. (b) The two different regions are immediately discriminable by human
6
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In the detection of defects in texture images, most applications have been in the dom
textile inspection. Dewaeleet al. [21] used signal processing methods to detect po
defects and line defects in texture images. They have sparse convolution masks in
the bank of filters are adaptively selected depending upon the image to be analyzed
ture features are computed from the filtered images. A Mahalanobis distance classi
used to classify the defective areas. Chetverikov [22] defined a simple window differ
ing operator to the texture features obtained from simple filtering operations. This al
one to detect the boundaries of defects in the texture. Chen and Jain [23] used a stru
approach to defect detection in textured images. They extract a skeletal structure
images, and by detecting anomalies in certain statistical features in these skele
defects in the texture are identified. Connerset al. [24] utilized texture analysis methods to
detect defects in lumber wood automatically. The defect detection is performed by d
ing the image into subwindows and classifying each subwindow into one of the defec
egories such as knot, decay, mineral streak, etc. The features they use to perform
classification is based on tonal features such as mean, variance, skewness, and kur
gray levels along with texture features computed from gray level co-occurrence mat
in analyzing pictures of wood. The combination of using tonal features along with text
features improves the correct classification rates over using either type of feature alo

In the area of quality control of textured images, Siewet al. [25] proposed a method for
the assessment of carpet wear. They used simple texture features that are compute
second-order gray level dependency statistics and from first-order gray level differ
statistics. They showed that the numerical texture features obtained from these techn
can characterize the carpet wear successfully. Jainet al. [26] used the texture features
computed from a bank of Gabor filters to automatically classify the quality of pain
metallic surfaces. A pair of automotive paint finish images is shown in Figure 6 where
image in (a) has uniform coating of paint, but the image in (b) has “mottle” or “blotch
appearance.

(a)

(b) (c)

FIGURE 5. Examples of images from various application domains in which texture analysis is importan
(a) The ultrasound images of a heart. (b), (c) example aerial images using SAR sensors .
7
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2.2.2.  Medical Image Analysis

Image analysis techniques have played an important role in several medical applica
In general, the applications involve the automatic extraction of features from the im
which are then used for a variety of classification tasks, such as distinguishing norma
sue from abnormal tissue. Depending upon the particular classification task, the extr
features capture morphological properties, color properties, or certain textural prope
of the image.

The textural properties computed are closely related to the application domain to be
For example, Sutton and Hall [27] discuss the classification of pulmonary disease u
texture features. Some diseases, such as interstitial fibrosis, affect the lungs in such a
ner that the resulting changes in the X-ray images are texture changes as oppo
clearly delineated lesions. In such applications, texture analysis methods are ideally s
for these images. Sutton and Hall propose the use of three types of texture features
tinguish normal lungs from diseased lungs. These features are computed based on
tropic contrast measure, a directional contrast measure, and a Fourier domain e
sampling. In their classification experiments, the best classification results were obt
using the directional contrast measure.

Harmset al. [28] used image texture in combination with color features to diagnose leu
mic malignancy in samples of stained blood cells. They extracted texture micro-edge
“textons” between these micro-edges. The textons were regions with almost uni
color. They extracted a number of texture features from the textons including the
number of pixels in the textons which have a specific color, the mean texton radius
texton size for each color and various texton shape features. In combination with colo
texture features significantly improved the correct classification rate of blood cell ty
compared to using only color features.

Landeweerd and Gelsema [29] extracted various first-order statistics (such as mean
level in a region) as well as second-order statistics (such as gray level co-occurrence
ces) to differentiate different types of white blood cells. Insanaet al. [30] used textural
features in ultrasound images to estimate tissue scattering parameters. They made
cant use of the knowledge about the physics of the ultrasound imaging process and
characteristics to design the texture model. Chenet al. [31] used fractal texture features to

(a) (b)

FIGURE 6. Example images used in paint inspection. (a) A non-defective paint which has a smoo
texture. (b) A defective paint which has a mottled look.
8
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classify ultrasound images of livers, and used the fractal texture features to do
enhancement in chest X-rays.

Lundervold [32] used fractal texture features in combination with other features (suc
response to edge detector operators) to analyze ultrasound images of the hea
Figure 7). The ultrasound images in this study are time sequence images of the left v
cle of the heart. Figure 7 shows one frame in such a sequence. Texture is represente
index at each pixel, being the local fractal dimension within an window estima
according to the fractal Brownian motion model proposed by Chenet al. [31]. The texture
feature is used in addition to a number of other traditional features, including the resp
to a Kirsch edge operator, the gray level, and the result of temporal operations. The fr
dimension is expected to be higher on an average in blood than in tissue due to the
and backscatter characteristics of the blood which is more disordered than that of sol
sue. In addition, the fractal dimension is low at non-random blood/tissue interfaces re
senting edge information.

2.2.3.  Document Processing

One of the useful applications of machine vision and image analysis has been in the
of document image analysis and character recognition. Document processing has ap
tions ranging from postal address recognition to analysis and interpretation of map
many postal document processing applications (such as the recognition of destin
address and zip code information on envelopes), the first step is the ability to separa
regions in the image which contain useful information from the background.

Most image analysis methods proposed to date for document processing are based
the characteristics of printed documents and try to take advantage of these propertie
example, generally newspaper print is organized in rectangular blocks and this fact is

(a)

(b)

(c)

FIGURE 7. The processing of the ultrasound images of the heart using textural features. (a)
ultrasound image from the left ventricle of the heart. (b) The fractal dimension used as th

texture feature. The fractal dimension is lower at the walls of the ventricle. (c) Image segmentation from
k-means clustering algorithm. The white region is cluster 2 which corresponds to the blood. Th
clustering uses four features, one of which is the fractal texture feature.

128 432×

11 11×
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in a segmentation algorithm proposed in [33]. Many methods work on images base
precise algorithms which one might consider as having morphological characteristics
example, Wang and Srihari [33] used projection profiles of the pixel values to iden
large “text” blocks by detecting valleys in these profiles. Wahlet al. [34] used constrained
run lengths and connected component analysis to detect blocks of text. Fletcher and
turi [35] used the fact that most text blocks lie in a straight line, and utilized Hough tra
form techniques to detect collinear elements. Taxtet al. [36] view the identification of
print in document images as a two-category classification problem, where the categ
are print and background. They use various classification methods to compute the se
tation including contextual classification and relaxation algorithms.

One can also use texture segmentation methods for preprocessing document ima
identify regions of interest [37,38,39]. An example of this can be seen in Figure 8.
texture segmentation algorithm described in [40] was used to segment a newspaper i
In the resulting segmentation, one of the regions identified as having a uniform tex
which is different from its surrounding texture, is the bar code block. A similar metho
used for locating text blocks in newspapers. A segmentation of the document ima
obtained using three classes of textures: one class for the text regions, a second cl
the uniform regions that form the background or images where intensities vary slowly,
a third class for the transition areas between the two types of regions (see Figure 9)
text regions are characterized by their high frequency content.

(a) (b)

FIGURE 8. Locating bar code in a newspaper image. (a) A scanned image of a newspaper that contai
bar code. (b) The two-class segmentation using Gabor filter features in [40]. The bar code region in
image has a distinct texture.

(a) (b) (c)

FIGURE 9. Text/graphics separation using texture information. (a) An image of a newspaper captured
a flatbed scanner. (b) The three-class segmentation obtained by the Gabor filter based tex
segmentation algorithm. (c) The regions identified as text.
10
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2.2.4. Remote Sensing

Texture analysis has been extensively used to classify remotely sensed images. La
classification where homogeneous regions with differenttypesof terrains (such as wheat,
bodies of water, urban regions, etc.) need to be identified is an important applica
Haralick et al. [41] used gray level co-occurrence features to analyze remotely sen
images. They computed gray level co-occurrence matrices for a distance of one with
directions ( , , , and ). For a seven-class classification problem, t
obtained approximately 80% classification accuracy using texture features.

Rignot and Kwok [42] have analyzed SAR images using texture features computed
gray level co-occurrence matrices. However, they supplement these features with k
edge about the properties of SAR images. For example, image restoration algorithms
used to eliminate the specular noise present in SAR images in order to improve class
tion results. The use of various texture features was studied for analyzing SAR imag
Schistad and Jain [43]. SAR images shown in Figures 5(b) and (c) were used to ide
land use categories of water, agricultural areas, urban areas, and other areas.
dimension, autoregressive Markov random field model, and gray level co-occurrence
ture features were used in the classification. The classification errors ranged from 25
the fractal based models to as low as 6% for the MRF features. Du [44] used texture
tures derived from Gabor filters to segment SAR images. He successfully segmente
SAR images into categories of water, new forming ice, older ice, and multi-year ice.
and Philpot [45] also used spectral texture features to segment SAR images.

3. A Taxonomy of Texture Models

Identifying the perceived qualities of texture in an image is an important first step tow
building mathematical models for texture. The intensity variations in an image wh
characterize texture are generally due to some underlying physical variation in the s
(such as pebbles on a beach or waves in water). Modelling this physical variation is
difficult, so texture is usually characterized by the two-dimensional variations in the in
sities present in the image. This explains the fact that no precise, general definition o
ture exists in the computer vision literature. In spite of this, there are a number of intu
properties of texture which are generally assumed to be true.

• Texture is a property of areas; the texture of a point is undefined. So, texture
contextual property and its definition must involve gray values in a spatial nei
borhood. The size of this neighborhood depends upon the texture type, or the
of the primitives defining the texture.

• Texture involves the spatial distribution of gray levels. Thus, two-dimensio
histograms or co-occurrence matrices are reasonable texture analysis tools.

• Texture in an image can be perceived at different scales or levels of resolu
[10]. For example, consider the texture represented in a brick wall. At a coarse
olution, the texture is perceived as formed by the individual bricks in the wall;
interior details in the brick are lost. At a higher resolution, when only a few bric
are in the field of view, the perceived texture shows the details in the brick.

• A region is perceived to have texture when the number of primitive objects in
region is large. If only a few primitive objects are present, then a group of cou
able objects is perceived instead of a textured image. In other words, a textu

0° 45° 90° 135°
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perceived when significant individual “forms” are not present.

Image texture has a number of perceived qualities which play an important role in des
ing texture. Laws [47] identified the following properties as playing an important role
describing texture: uniformity, density, coarseness, roughness, regularity, linearity, d
tionality, direction, frequency, and phase. Some of these perceived qualities are not
pendent. For example, frequency is not independent of density and the proper
direction only applies to directional textures. The fact that the perception of texture ha
many different dimensions is an important reason why there is no single method of te
representation which is adequate for a variety of textures.

3.1. Statistical Methods

One of the defining qualities of texture is the spatial distribution of gray values. The us
statistical features is therefore one of the early methods proposed in the machine visi
erature. In the following, we will use to denote a

image with gray levels. A large number of texture features have been propo
But, these features are not independent as pointed out by Tomita and Tsuji [46]. The
tionship between the various statistical texture measures and the input image is su
rized in Figure 10 [46]. Picard [48] has also related the gray level co-occurrence mat
to the Markov random field models.

3.1.1.  Co-occurrence Matrices

Spatial gray level co-occurrence estimates image properties related to second-order
tics. Haralick [10] suggested the use of gray level co-occurrence matrices (GLCM) w
have become one of the most well-known and widely used texture features. The
gray level co-occurrence matrix for a displacement vector is defined

follows. The entry of is the number of occurrences of the pair of gray level

and  which are a distance  apart. Formally, it is given as

(11.1)

I x y,( ) 0 x N 1–≤ ≤ 0 y N 1–≤ ≤, ,{ }
N N× G

G G×
Pd d dx dy,( )=

i j,( ) Pd i

j d

Original Image Fourier Transform

Co-occurrence
Matrix

Autocorrelation
Function

Power Spectrum

Difference Statistics Autoregression
Model

FIGURE 10. The interrelation between the various second-order statistics and the input image [46].
Reprinted by permission of Kluwer Academic Publishers.

Pd i j,( ) r s,( ) t v,( ),( ):I r s,( ) i I t v,( ), j= ={ }=
12
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where , , and is the cardinality of a
set.

As an example, consider the following  image containing 3 different gray values

The gray level co-occurrence matrix for this image for a displacement vecto
 is given as follows:

Here the entry of is 4 because there are four pixel pairs of that are

set by  amount. Examples of  for other displacement vectors is given below

Notice that the co-occurrence matrix so defined is not symmetric. But a symmetric
occurrence matrix can be computed by the formula . The co-occurre

matrix reveals certain properties about the spatial distribution of the gray levels in the
ture image. For example, if most of the entries in the co-occurrence matrix are con
trated along the diagonals, then the texture is coarse with respect to the displace
vectord. Haralick has proposed a number of useful texture features that can be comp
from the co-occurrence matrix. Table 1 lists some of these features.

Here and are the means and and are the standard deviations of

, respectively, where  and .

The co-occurrence matrix features suffer from a number of difficulties. There is no
established method of selecting the displacement vector and computing co-occur
matrices for different values of is not feasible. For a given , a large number of feat

r s,( ) t v,( ), N N×∈ t v,( ) r dx+ s dy+,( )= .

4 4×

1 1 0 0

1 1 0 0

0 0 2 2

0 0 2 2

3 3×
d 1 0,( )=

Pd

4 0 2

2 2 0

0 0 2

=

0 0,( ) Pd 0 0,( )
1 0,( ) Pd

d 0 1,( )= Pd

4 2 0

0 2 0

0 0 2

=

d 1 1,( )= Pd

3 1 1

1 1 0

1 0 1

=

P Pd P d–+=

µx µy σx σy Pd x( )

Pd y( ) Pd x( ) Pd x j,( )
j

∑= Pd y( ) Pd i y,( )
i

∑=

d
d d
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can be computed from the co-occurrence matrix. This means that some sort of fe
selection method must be used to select the most relevant features. The co-occu
matrix-based texture features have also been primarily used in texture classification
and not in segmentation tasks.

3.1.2. Autocorrelation Features

An important property of many textures is the repetitive nature of the placement of tex
elements in the image. The autocorrelation function of an image can be used to asse
amount of regularity as well as the fineness/coarseness of the texture present in the i
Formally, the autocorrelation function of an image  is defined as follows:

(11.2)

The image boundaries must be handled with special care but we omit the details here
function is related to the size of the texture primitive (i.e., the fineness of the texture
the texture is coarse, then the autocorrelation function will drop off slowly; otherwise
will drop off very rapidly. For regular textures, the autocorrelation function will exhib
peaks and valleys.

The autocorrelation function is also related to the power spectrum of the Fourier trans
(see Figure 10). Consider the image function in the spatial domain and its Fo

transform . The quantity is defined as the power spectrum where
the modulus of a complex number. The example in Figure 11 illustrates the effect o
directionality of a texture on the distribution of energy in the power spectrum. Ea

Texture Feature Formula

Energy

Entropy

Contrast

Homogeneity

Correlation

Pd
2

i j,( )
j

∑
i

∑

Pd i j,( ) Pd i j,( )log
j

∑
i

∑–

i j–( )2Pd i j,( )
j

∑
i

∑
Pd i j,( )

1 i j–+
----------------------

j
∑

i
∑

i µx–( ) j µy–( )Pd i j,( )
j

∑
i

∑
σxσy

------------------------------------------------------------------------

TABLE 1. Some texture features extracted from gray level co-occurrence matrices.

I x y,( )

ρ x y,( )

I u v,( )I u x v y+,+( )
v 0=

N

∑
u 0=

N

∑

I 2 u v,( )

v 0=

N

∑
u 0=

N

∑
-------------------------------------------------------------------------=

I x y,( )

F u v,( ) F u v,( ) 2 .
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approaches using such spectral features would divide the frequency domain into ring
frequency content) and wedges (for orientation content) as shown in Figure 12. The
quency domain is thus divided into regions and the total energy in each of these regio
computed as texture features.

(a) (b)

FIGURE 11. Texture features from the power spectrum. (a) A texture image, and (b) its power spectru
The directional nature of this texture is reflected in the directional distribution of energy in the powe
spectrum.

FIGURE 12. Texture features computed from the power spectrum of the image. (a) The energy compu
in each shaded band is a texture feature indicating coarseness/fineness, and (b) the energy comput
each wedge is a texture feature indicating directionality.

u

v v

u

f r1 r2, F u v,( ) 2drdθ
r2

r1

∫
0

2π

∫=

r u
2

v
2

+= θ v u⁄( )atan=

f θ1 θ2, F u v,( ) 2drdθ
0

∞

∫
θ1

θ2

∫=

r u
2

v
2

+= θ v u⁄( )atan=

(a) (b)
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3.2. Geometrical Methods

The class of texture analysis methods that falls under the heading of geometrical me
is characterized by their definition of texture as being composed of “texture element
primitives. The method of analysis usually depends upon the geometric properties of
texture elements. Once the texture elements are identified in the image, there ar
major approaches to analyzing the texture. One computes statistical properties fro
extracted texture elements and utilizes these as texture features. The other tries to
the placement rule that describes the texture. The latter approach may involve geom
or syntactic methods of analyzing texture.

3.2.1.  Voronoi tessellation Features

Tuceryan and Jain [49] proposed the extraction of texture tokens by using the propert
the Voronoi tessellation of the given image. Voronoi tessellation has been prop
because of its desirable properties in defining local spatial neighborhoods and becau
local spatial distributions of tokens are reflected in the shapes of the Voronoi polyg
First, texture tokens are extracted and then the tessellation is constructed. Tokens ca
simple as points of high gradient in the image or complex structures such as line segm
or closed boundaries.

In computer vision, the Voronoi tessellation was first proposed by Ahuja as a mode
defining “neighborhoods” [50]. Suppose that we are given a set of three or more to
(for simplicity, we will assume that a token is a point) in the Euclidean plane. Assume
these points are not all collinear, and that no four points are cocircular. Consider an
trary pair of points and . The bisector of the line joining and is the locus
points equidistant from both and and divides the plane into two halves. The

plane ( ) is the locus of points closer to ( ) than to ( ). For any given po

, a set of such half planes is obtained for various choices of . The intersec

defines a polygonal region consisting of points closer to than any ot

point. Such a region is called the Voronoi polygon [51] associated with the point. The
of complete polygons is called theVoronoi diagramof [52]. The Voronoi diagram
together with the incomplete polygons in the convex hull define aVoronoi tessellationof
the entire plane. Two points are said to beVoronoi neighborsif the Voronoi polygons
enclosing them share a common edge. The dual representation of the Voronoi tesse
is theDelaunay graphwhich is obtained by connecting all the pairs of points which a
Voronoi neighbors as defined above. An optimal algorithm to compute the Voronoi tes
lation for a point pattern is described by Preparata and Shamos [53]. A simple 2D do
tern and its Voronoi tessellation are shown in Figure 13.

The neighborhood of a token is defined by the Voronoi polygon containing . Man
the perceptually significant characteristics of a token’s environment are manifest in
geometric properties of the Voronoi neighborhoods (see Figure 13). The geometric p
erties of the Voronoi polygons are used as texture features.

In order to apply geometrical methods to gray level images, we need to first extract to
from images. We use the following simple algorithm to extract tokens from input g
level textural images.

S

P Q P Q
P Q

HP
Q

HQ
P

P Q Q P

P Q

HP
Q

Q S∈ Q P≠,
∩ P

S

P P
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1. Apply a Laplacian-of-Gaussian (LoG or ) filter to the image. For compu

tional efficiency, the filter can be approximated with a difference of Gau
sians (DoG) filter. The size of the DoG filter is determined by the sizes of the t
Gaussian filters. Tuceryan and Jain used for the first Gaussian

for the second. According to Marr, this is the ratio at which a Do

filter best approximates the corresponding  filter [54].

2. Select those pixels that lie on a local intensity maximum in the filtered image
pixel in the filtered image is said to be on a local maximum if its magnitude is la
er than six or more of its eight nearest neighbors. This results in a binary im
For example, applying steps 1 and 2 to the image in Figure 14(a) yields the bi
image in Figure 14(b).

3. Perform a connected component analysis on the binary image using eight ne
neighbors. Each connected component defines a texture primitive (token).

The Voronoi tessellation of the resulting tokens is constructed. Features of each Vo
cell are extracted and tokens with similar features are grouped to construct uniform te
regions. Moments of area of the Voronoi polygons serve as a useful set of features
reflect both the spatial distribution and shapes of the tokens in the textured image

order moments of area of a closed region with respect to a token with coo

nates  are defined as [55]:

(11.3)

where . A description of the five features used is given in Table

where  are the coordinates of the Voronoi polygon’s centroid.

The texture features based on Voronoi polygons have been used for segmentation o
tured images. The segmentation algorithm is edge based, using a statistical compari
the neighboring collections of tokens. A large dissimilarity among the texture feature
evidence for a texture edge. This algorithm has successfully segmented gray level te
images as well as a number of synthetic textures with identical second-order stati

FIGURE 13. Voronoi tessellation: (a) An example dot pattern, and (b) its Voronoi tessellation.

(a) (b)
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Figure 14(a) shows an example texture pair and Figure 14(c) shows the resulting seg
tation.

3.2.2.  Structural Methods

The structural models of texture assume that textures are composed of texture prim
The texture is produced by the placement of these primitives according to certain p
ment rules. This class of algorithms, in general, is limited in power unless one is dea
with very regular textures. Structural texture analysis consists of two major steps
extraction of the texture elements, and (b) inference of the placement rule.

There are a number of ways to extract texture elements in images. It is useful to d
what is meant by texture elements in this context. Usually texture elements consi
regions in the image with uniform gray levels. Voorhees and Poggio [56] argued that b
are important in texture perception. They have proposed a method based on filterin
image with Laplacian of Gaussian (LoG) masks at different scales and combining
information to extract the blobs in the image. Blostein and Ahuja [57] perform similar p
cessing in order to extract texture tokens in images by examining the response of the
filter at multiple scales. They integrate their multi-scale blob detection with surface sh
computation in order to improve the results of both processes. Tomita and Tsuji [46]
suggest a method of computing texture tokens by doing a medial axis transform o
connected components of a segmented image. They then compute a number of pro
such as intensity and shapes of these detected tokens.

Texture Feature Computation

f 1 m00

f 2
x

2
y2+

f 3 y x⁄( )atan

f 4

m20 m02–( )2
4m11

2+

m20 m02 m20 m02–( )2
4m11

2++ +
---------------------------------------------------------------------------------------

f 5 2m11

m20 m02–
------------------------ 

 atan

TABLE 2. Voronoi polygon features used by the texture segmentation algorithm [49]. Here, gives th
magnitude of the vector from the token to the polygon centroid, gives its direction, gives the overa
elongation of the polygon ( for a circle), and gives the orientation of its major axis.
are the coordinates of the Voronoi polygon’s centroid.

f 2
f 3 f 4

f 4 0= f 5 x y,( )
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Zucker [58] has proposed a method in which he regards the observable textures (rea
tures) as distorted versions of ideal textures. The placement rule is defined for the
texture by a graph that is isomorphic to a regular or semiregular tessellation. These g
are then transformed to generate the observable texture. Which of the regular tessell
is used as the placement rule is inferred from the observable texture. This is done by
puting a two-dimensional histogram of the relative positions of the detected tex
tokens.

Another approach to modeling texture by structural means is described by Fu [59]. In
approach the texture image is regarded as texture primitives arranged according to a
ment rule. The primitive can be as simple as a single pixel that can take a gray value,
is usually a collection of pixels. The placement rule is defined by a tree grammar. A
ture is then viewed as a string in the language defined by the grammar whose ter
symbols are the texture primitives. An advantage of this method is that it can be use
texture generation as well as texture analysis. The patterns generated by the tree gra
could also be regarded as ideal textures in Zucker’s model.

3.3.  Model Based Methods

Model based texture analysis methods are based on the construction of an image
that can be used not only to describe texture, but also to synthesize it. The model pa
ters capture the essential perceived qualities of texture.

(a) (b)

FIGURE 14. Texture segmentation using the Voronoi tessellation. (a) An example texture pair fro
Brodatz’s album [92], (b) the peaks detected in the filtered image, and (c) the segmentation using
texture features obtained from Voronoi polygons [49]. The arrows indicate the border direction. Th
interior is on the right when looking in the direction of the arrow.

(c)
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3.3.1. Random Field Models

Markov random fields (MRFs) have been popular for modeling images. They are ab
capture the local (spatial) contextual information in an image. These models assum
the intensity at each pixel in the image depends on the intensities of only the neighb
pixels. MRF models have been applied to various image processing applications su
texture synthesis [60], texture classification [61,62], image segmentation [63,64], im
restoration [65], and image compression.

The image is usually represented by an lattice denoted
. is a random variable which represents th

gray level at pixel on latticeL. The indexing of the lattice is simplified for mathe

matical convenience to with . LetA be the range set common to al

random variables and let denote the set of a

labellings ofL. Note thatA is specified according to the application. For instance, for
image with 256 different gray levelsA may be the set . The random vecto

denotes a coloring of the lattice. A discrete Markov random fie

is a random field whose probability mass function has the properties of positivity, M
ovianity, and homogeneity.

The neighbor set of a sitet can be defined in different ways. The first-order neighbors ot
are its four-connected neighbors and the second-order neighbors are its eight-conn
neighbors. Within these neighborhoods, sets of neighbors which form cliques (single
pairs, triples, and quadruples) are usually used in the definition of the conditional pr
bilities.

A discrete Gibbs random field (GRF) assigns a probability mass function to the entire
tice:

(11.4)

where is an energy function and is a normalizing constant called the parti
function. The energy function is usually specified in terms of cliques formed over ne
boring pixels. For the second-order neighbors the possible cliques are given in Figur
The energy function then is expressed in terms of potential functions over

cliques :

(11.5)

We have the property that with respect to a neighborhood system, there exists a u
Gibbs random field for every Markov random field and there exists a unique Markov
dom field for every Gibbs random field [66]. The consequence of this theorem is that
can model the texture either globally by specifying the total energy of the lattice or m
it locally by specifying the local interactions of the neighboring pixels in terms of the c
ditional probabilities.

N N×
L i j,( ) 1 i M 1 j N≤ ≤,≤ ≤{ }= I i j,( )

i j,( )
I t t i 1–( )N j+=

I t Ω x1 x2 … xMN, , ,( ) xt A t∀,∈{ }=

0 1 … 255, , ,{ }
I I 1 I 2 … I MN, , ,( )=

P X x=( ) 1
Z
---e U x( )–= x Ω∈∀

U x( ) Z

VC .( )

Q

U x( ) VC x( )
c Q∈
∑=
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There are a number of ways in which textures are modeled using Gibbs random fi
Among these are the Derin-Elliot model [67] and the auto-binomial model [66, 60] wh
are defined by considering only the single pixel and pairwise pixel cliques in the sec
order neighbors of a site. In both models the conditional probabilities are given by exp
sions of the following form:

(11.6)

where is the normalization constant. The energy of the Gibbs r

dom field is given by:

(11.7)

where and . The two

models define the components of the  vector, , differently as follows:

Derin-Elliott model: .

Auto-binomial model: .

Herer is the index that defines the set of neighboring pixels of a sitet, and is an
indicator function as follows:

(11.8)

The vector is the set of parameters that define and model the textural properties o
image. In texture synthesis problems, the values are set to control the type of texture
generated. In the classification and segmentation problems, the parameters need to b
mated in order to process the textures images. Textures were synthesized usin
method by Cross and Jain [60]. Model parameters were also estimated for a set of n
textures. The estimated parameters were used to generate synthetic textures and the

FIGURE 15. The clique types for the second-order neighborhood.

P xt Rt( )
1
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-----e
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--- w xt Rt,( )Tθ

t 1=

MN

∑=

w xt Rt,( ) w1 xt( ) w2 xt( ) w3 xt( ) w4 xt( )
T
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

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were compared to the original images. The models captured microtextures well, but
failed with regular and inhomogeneous textures.

3.3.2. Fractals

Many natural surfaces have a statistical quality of roughness and self-similarity at diffe
scales. Fractals are very useful and have become popular in modeling these proper
image processing. Mandelbrot [68] proposed fractal geometry and is the first one to n
its existence in the natural world.

We first define a deterministic fractal in order to introduce some of the fundamental
cepts. Self-similarity across scales in fractal geometry is a crucial concept. A determin
fractal is defined using this concept of self-similarity as follows. Given a bounded setA in
a Euclidean n-space, the setA is said to be self-similar whenA is the union ofN distinct
(non-overlapping) copies of itself, each of which has been scaled down by a ratio ofr. The
fractal dimensionD is related to the numberN and the ratior as follows:

(11.9)

The fractal dimension gives a measure of the roughness of a surface. Intuitively, the l
the fractal dimension, the rougher the texture is. Pentland [69] has argued and give
dence that images of most natural surfaces can be modeled as spatially isotropic fra
Most natural surfaces and in particular textured surfaces are not deterministic as des
above but have a statistical variation. This makes the computation of fractal dimen
more difficult.

There are a number of methods proposed for estimating the fractal dimensionD. One
method is the estimation of the box dimension as follows [70]. Given a bounded setA in
Euclidean n-space, consider boxes of size on a side which cover the setA. A scaled

down version of the set by ratior, will result in similar sets. This new set
can be covered by boxes of size . The number of such boxes then is relat

the fractal dimension by

(11.10)

The fractal dimension is then estimated from Equation (11.10) by the following pro
dure. For a givenL, divide the n-space into a grid of boxes of sizeL and count the number
of boxes coveringA. Repeat this procedure for different values ofL. Then estimate the
value of the fractal dimensionD from the slope of the line

(11.11)

This can be accomplished by computing the least squares linear fit to the data, nam
plot of  vs. .

An improved method of estimating the fractal dimension was proposed by Voss [
Assume we are estimating the fractal dimension of an image surfaceA. Let be the

D
Nlog

1 r⁄( )log
----------------------=

Lmax

A N 1 r
D⁄=

L rLmax=

N L( ) 1
r D
------

Lmax

L
------------

D
= =

ln N L( )( ) Dln L( )– Dln Lmax( )+=

ln L( ) ln N L( )( )–

P m L,( )
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probability that there arem points within a box of side lengthL centered at an arbitrary
point on the surfaceA. Let M be the total number of points in the image. When one ove
lays the image with boxes of side lengthL, then the is the expected num
ber of boxes withmpoints inside. The expected total number of boxes needed to cove
whole image is

(11.12)

The expected value of is proportional to and thus can be used to estimat
fractal dimensionD. Other methods have also been proposed for estimating the fra
dimension. For example, Super and Bovik [72] have proposed using Gabor filters and
nal processing methods to estimate the fractal dimension in textured images.

The fractal dimension is not sufficient to capture all textural properties. It has been sh
[70] that there may be perceptually very different textures that have very similar fra
dimensions. Therefore, another measure, calledlacunarity [68,71,70], has been suggeste
in order to capture the textural property that will let one distinguish between such textu
Lacunarity is defined as

(11.13)

whereM is the mass of the fractal set and is the expected value of the mass.
measures the discrepancy between the actual mass and the expected value of the
Lacunarity is small when texture is fine and it is large when the texture is coarse. The
of the fractal set is related to the lengthL by the power law:

(11.14)

Voss [71] suggested computing lacunarity from the probability distribution

follows. Let and . Then lacunarity

 is defined as:

(11.15)

where is the expected value of . This measure of the image is then use
a texture feature in order to perform texture segmentation or classification.

Ohanian and Dubes [73] have studied the performance of various texture features.
studied the texture features with the performance criteria “which features optimized
classification rate?” They compared four fractal features, sixteen co-occurrence fea
four Markov random field features, and Gabor features. They used Whitney’s forw
selection method for feature selection. The evaluation was done on four classes of im
Gauss Markov random field images, fractal images, leather images, and painted sur

M m⁄( )P m L,( )

E N L( )[ ] M 1 m⁄( )P m L,( )

m 1=

N

∑=

N L( ) L D–

Λ E
M

E M( )
-------------- 1– 

  2
=

E M( )

M L( ) KLD=

P m L,( )

M L( ) mP m L,( )
m 1=

N

∑= M2 L( ) m2P m L,( )
m 1=

N
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The co-occurrence features generally outperformed other features (88% correct clas
tion) followed by fractal features (84% classification). Using both fractal and co-occ
rence features improved the classification rate to 91%. Their study did not compar
texture features in segmentation tasks. It also used the energy from the raw Gabor fi
images instead of using the empirical nonlinear transformation needed to obtain the
ture features as suggested in [40] (see also Section 3.4.3).

3.4.  Signal Processing Methods

Psychophysical research has given evidence that the human brain does a frequency
sis of the image [19,74]. Texture is especially suited for this type of analysis because
properties. This section will review the various techniques of texture analysis that rel
signal processing techniques. Most techniques try to compute certain features from fi
images which are then used in either classification or segmentation tasks.

3.4.1.  Spatial Domain Filters

Spatial domain filters are the most direct way to capture image texture properties. E
attempts at defining such methods concentrated on measuring the edge density p
area. Fine textures tend to have a higher density of edges per unit area than coars
tures. The measurement of edgeness is usually computed by simple edge masks s
the Robert’s operator or the Laplacian operator [10,47]. The two orthogonal masks fo
Robert’s operator and one digital realization of the Laplacian are given below.

The edgeness measure can be computed over an image area by computing a ma
from the responses of Roberts masks or from the response of the Laplacian mask.

Malik and Perona [75] proposed spatial filtering to model the preattentive texture per
tion in human visual system. Their proposed model consists of three stages: (i) con
tion of the image with a bank of even-symmetric filters followed by half-wa
rectification, (ii) inhibition of spurious responses in a localized area, and (iii) detectio
the boundaries between the different textures. The even-symmetric filters they used
sist of differences of offset Gaussian (DOOG) functions. The half-wave rectification
inhibition (implemented as leaders-take-all strategy) are methods of introducing a no
earity into the computation of texture features. A nonlinearity is needed in order to
criminate texture pairs with identical mean brightness and identical second-o
statistics. The texture boundary detection is done by a straightforward edge dete
method applied to the feature images obtained from stage (ii). This method works
variety of texture examples and is able to discriminate natural as well as synthetic tex
with carefully controlled properties. Unser and Eden [76] have also looked at texture
tures that are obtained from spatial filters and a nonlinear operator. Reed and Wec
[77] review a number of spatial/spatial frequency domain filter techniques for segmen
textured images.

Roberts Operators Laplacian Operator

M1
1 0

0 1–
= M2

0 1

1– 0
= L

1– 1– 1–

1– 8 1–

1– 1– 1–

=
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Another set of spatial filters are based on spatial moments [47]. The mom
over an image regionR are given by the formula

(11.16)

If the regionR is a local rectangular area and the moments are computed around each
in the image, then this is equivalent to filtering the image by a set of spatial masks.
resulting filtered images that correspond to the moments are then used as texture fe
The masks are obtained by defining a window of size and a local coordinate
tem centered within the window. Let be the image coordinates at which

moments are computed. For pixel coordinates which fall within the w

dow centered at , the normalized coordinates  are given by:

(11.17)

Then the moments within a window centered at pixel are computed by the su
Equation (11.16) that uses the normalized coordinates.

(11.18)

The coefficients for each pixel within the window to evaluate the sum is what defines
mask coefficients. IfR is a 3x3 region, then the resulting masks are given below:

The moment-based features have been used successfully in texture segmentation [7
example texture pair and the segmentation are shown in Figure 16.

3.4.2. Fourier domain filtering

The frequency analysis of the textured image is best done in the Fourier domain. A
psychophysical results indicated, the human visual system analyzes the textured im
by decomposing the image into its frequency and orientation components [19]. The m
ple channels tuned to different frequencies are also referred as multi-resolution proce
in the literature. The concept of multi-resolution processing is further refined and de
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oped in the wavelet model described below. Along the lines of these psychophy
results, texture analysis systems have been developed that perform filtering in the F
domain to obtain feature images. The idea is similar to the features computed from
rings and wedges as described in Section 3.1.2, except that the phase information is
Coggins and Jain [79] used a set of frequency and orientation selective filters in m
channel filtering approach. Each filter is either frequency selectiveor orientation selective.

There are four orientation filters centered at 0, 45, 90, and 135. The number of frequ
selective filters depends on the image size. For an image of size six filters
center frequencies at 1, 2, 4, 8, 16, 32, and 64 cycles/image were used. They were a
successfully segment and classify a variety of natural images as well as synthetic te
pairs described by Julesz with identical second-order statistics (see Figure 4).

3.4.3.  Gabor and Wavelet models

The Fourier transform is an analysis of the global frequency content in the signal. M
applications require the analysis to be localized in the spatial domain. This is usually
dled by introducing spatial dependency into the Fourier analysis. The classical wa
doing this is through what is called the window Fourier transform. The window Fou
transform (or short-time Fourier Transform) of a one-dimensional signal is defi
as:

(11.19)

When the window function is Gaussian, the transform becomes a Gabor transf
The limits on the resolution in the time and frequency domain of the window Fou
transform are determined by thetime-bandwidth productor the Heisenberg uncertainty
inequality given by:

(11.20)

Once a window is chosen for the window Fourier transform, the time-frequency resolu
is fixed over the entire time-frequency plane. To overcome the resolution limitation of
window Fourier transform, one lets the and vary in the time-frequency dom
Intuitively, the time resolution must increase as the central frequency of the analyzin
ter is increased. That is, the relative bandwidth is kept constant in a logarithmic scale.
is accomplished by using a window whose width changes as the frequency cha

(a) (b)

FIGURE 16. The segmentation results using moment based texture features. (a) A texture pair consisf
reptile skin and herringbone pattern from the Brodatz album [92]. (b) The resulting segmentation.
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Recall that when a function is scaled in time by which is expressed as ,

function is contracted if and it is expanded when . Using this fact, the wav
transform can be written as:

(11.21)

Here, the impulse response of the filter bank is defined to be scaled versions of the
prototype function . Now, setting in Equation (11.21)

(11.22)

we obtain the wavelet model for texture analysis. Usually the scaling factor will
based on the frequency of the filter.

Daugman [80] proposed the use of Gabor filters in the modeling of the receptive field
simple cells in the visual cortex of some mammals. The proposal to use the Gabor filte
texture analysis was made by Turner [81] and Boviket al. [82]. Later Farrokhnia and Jain
used it successfully in segmentation and classification of textured images [40,83]. G
filters have some desirable optimality properties. Daugman [84] showed that for
dimensional Gabor functions, the uncertainty relations and

attain the minimum value. Here and are effective widths in the spatial domain

 and  are effective bandwidths in the frequency domain.

A two-dimensional Gabor function consists of a sinusoidal plane wave of a certainfre-
quency andorientation modulated by a Gaussian envelope. It is given by:

(11.23)

where and are the frequency and phase of the sinusoidal wave. The values

are the sizes of the Gaussian envelope in thex and y directions, respectively. The

Gabor function at an arbitrary orientation can be obtained from Equation (11.23)

rigid rotation of thex-y plane by .

The Gabor filter is a frequency and orientation selective filter. This can be seen from
Fourier domain analysis of the function. When the phase is 0, the Fourier transfor

the resulting even-symmetric Gabor function  is given by

(11.24)
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where , , and . This function is real-val-

ued and has two lobes in the spatial frequency domain, one centered around

another centered around . For a Gabor filter of a particular orientation, the lobes i

frequency domain are also appropriately rotated.

Jain and Farrokhnia [40] used a version of the Gabor transform in which window size
computing the Gabor filters are selected according to the central frequencies of the fi
The texture features were obtained as follows:

(a) Use a bank of Gabor filters at multiple scales and orientations to obtain filte

images. Let the filtered image for the  filter be .

(b) Pass each filtered image through a sigmoidal nonlinearity. This nonlinearity
has the form of . The choice of the value of is determined empiric
ly.

(c) The texture feature for each pixel is computed as the absolute average dev
of the transformed values of the filtered images from the mean within a wind

of size . The filtered images have zero mean, therefore, the tex
feature image  is given by the equation:

(11.25)

The window size is also determined automatically based on the central frequency o
filter. An example texture image and some intermediate results are shown in Figur
Texture features using Gabor filters were used in texture segmentation and texture cl
cation tasks successfully. An example of the resulting segmentation is shown in Figur
Further details of the segmentation algorithm are explained in Section 4.1.

4.  Texture Analysis Problems

The various methods for modeling textures and extracting texture features can be ap
in four broad categories of problems: texture segmentation, texture classification, te
synthesis, and shape from texture. We now review these four areas.

4.1.  Texture Segmentation

Texture segmentation is a difficult problem because one usually does not knowa priori
what types of textures exist in an image, how many different textures there are, and
regions in the image have which textures. In fact, one does not need to know which
cific textures exist in the image in order to do texture segmentation. All that is needed
way to tell that two textures (usually in adjacent regions of the images) are different.

The two general approaches to performing texture segmentation are analogous to m
for image segmentation: region-based approaches or boundary-based approache

σu 1 2πσx( )⁄= σv 1 2πσy( )⁄= A 2πσxσy=

u0

u0–

i th r i x y,( )
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αt( )tanh α

W M M× i th

ei x y,( )

ei x y,( )
1

M2
-------- ψ r i a b,( )( )

a b,( ) W∈
∑=

M

28



form
xture
ented
closed
e dis-
pecify

ds on

ture in
ure. In
ge in
tures
meth-

bset
as a
cy o
ltered
ight
e are
region-based approach, one tries to identify regions of the image which have a uni
texture. Pixels or small local regions are merged based on the similarity of some te
property. The regions having different textures are then considered to be segm
regions. This method has the advantage that the boundaries of regions are always
and therefore, the regions with different textures are always well separated. It has th
advantage, however, that in many region-based segmentation methods, one has to s
the number of distinct textures present in the image in advance. In addition, threshol
similarity values are needed.

The boundary-based approaches are based upon the detection of differences in tex
adjacent regions. Thus boundaries are detected where there are differences in text
this method, one does not need to know the number of textured regions in the ima
advance. However, the boundaries may have gaps and two regions with different tex
are not identified as separate closed regions. Strictly speaking, the boundary based
ods result in segmentation only if all the boundaries detected form closed curves.

FIGURE 17. Filtering results on an example texture image. (a) Input image of five textures. (b), (c) A su
of the filtered images each filtered with a Gabor filter with the following parameters. The filter in (b) h
central frequency at 16 cycles/image-width and 135˚ orientation. The filter in (c) has a central frequenf
32 cycles/image-width and 0˚ orientation. (d), (e) The feature images obtained corresponding to the fi
images in (b) and (c). The filtered image in (b) shows a lot of activity in the textured region of the top r
quadrant and the image in (c) shows activity in the textured region of the top left quadrant. Thes
reflected in the feature images in (d) and (e).

(a)

(b)

(d)

(c)

(e)
29
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Boundary based segmentation of textured images have been used by Tuceryan an
[49], Voorhees and Poggio [56], and Eom and Kashyap [85]. In all cases, the edges (o
ture boundaries) are detected by taking two adjacent windows and deciding whethe
textures in the two windows belong to the same texture or to different textures. If
decided that the two textures are different, the point is marked as a boundary pixel. Du
and Kardan [86] studied and compared the performance of various texture segmen
techniques and their ability to localize the boundaries.

Tuceryan and Jain [49] use the texture features computed from the Voronoi polygo
order to compare the textures in the two windows. The comparison is done using a
mogorov-Smirnoff test. A probabilistic relaxation labeling, which enforces bord
smoothness, is used to remove isolated edge pixels and fill boundary gaps. Voorhee
Poggio extract blobs and elongated structures from images (they suggest that these
spond to Julesz’s textons). The texture properties are based on blob characteristics s
their sizes, orientations, etc. They then decide whether the two sides of a pixel hav
same texture using a statistical test called maximum frequency difference (MFD). The
els where this statistic is sufficiently large are considered to be boundaries between d
ent textures.

Jain and Farrokhnia [40] give an example of integrating a region-based and a boun
based method to obtain a cleaner and more robust texture segmentation method. Th
the texture features computed from the bank of Gabor filters to perform a region-b
segmentation. This is accomplished by the following steps:

(a) Gabor features are calculated from the input image, yielding several feature im
es.

(b) A cluster analysis is performed in the Gabor feature space on a subset of rand
selected pixels in the input image (this is done in order to increase computati
efficiency. About 6% of the total number of pixels in the image are selected). T
numberk of clusters is specified for doing the cluster analysis. This is set to a v
ue larger than the true number of clusters and thus the image is oversegme

(c) Step (b) assigns a cluster label to the pixels (pattern) involved in cluster anal
These labelled patterns are used as the training set and all the pixels in the i
are classified into one of thek clusters. A minimum distance classifier is used
This results in a complete segmentation of the image into uniform textured
gions.

(d) A connected component analysis is performed to identify each segmented re

(e) A boundary-based segmentation is performed by applying the Canny edge d
tor on each feature image. The magnitude of the Canny edge detector for eac
ture image is summed up for each pixel to obtain a total edge response. The e
are then detected based on this total magnitude.

(f) The edges so detected are then combined with the region-based segmentati
sults to obtain the final texture segmentation.

The integration of the boundary-based and region-based segmentation results impro
resulting segmentation in most cases. For an example of this improvement see Figu
30
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4.2.  Texture Classification

Texture classification involves deciding what texture category an observed image be
to. In order to accomplish this, one needs to have ana priori knowledge of the classes to
be recognized. Once this knowledge is available and the texture features are extracte
then uses classical pattern classification techniques in order to do the classification.

Examples where texture classification was applied as the appropriate texture proce
method include the classification of regions in satellite images into categories of land
[41]. Texture classification was also used in automated paint inspection by Farrok
[83]. In the latter application, the categories were ratings of the quality of paints obta
from human experts. These quality rating categories were then used as the training
ples for supervised classification of paint images using texture features obtained
multi-channel Gabor filters.

4.3. Texture Synthesis

Texture synthesis is a problem which is more popular in computer graphics. It is clo
tied to some of the methods discussed above, so we give only a brief summary here.
of the modeling methods are directly applicable to texture synthesis. Markov random
models discussed in Section 3.3.1 can be directly used to generate textures by spec
the parameter vector and sampling from the probability distribution function [62, 6
The synthetic textures in Figure 2(b) are generated using a gaussian Markov random
model and the algorithm in [87].

(a) (b)

(c) (d)

FIGURE 18. The results of integrating region-based and boundary-based processing using the multi-s
Gabor filtering method. (a) Original image consisting of five natural textures. (b) Seven category regio
based segmentation results. (c) Edge-based processing and texture edges detected. (d) New segmen
after combining region-based and edge-based results.
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Fractals have become popular recently in computer graphics for generating realistic
ing textured images [88]. A number of different methods have been proposed for syn
sizing textures using fractal models. These methods include midpoint displace
method and Fourier filtering method. The midpoint displacement method has become
popular because it is a simple and fast algorithm yet it can be used to generate very r
tic looking textures. Here we only give the general outline of the algorithm. A much m
detailed discussion of the algorithm can be found in [88]. The algorithm starts wit
square grid representing the image with the four corners set to 0. It then displaces he
at the midpoints of the four sides and the center point of the square region by ran
amounts and repeats the process recursively. The iteration uses the grid consis
the midpoints of the squares in the grid for iteration . The height at the midpoint is
interpolated between the endpoints and a random value is added to this value. The a

added is chosen from a normal distribution with zero-mean and variance at iteratio

In order to keep the self-similar nature of the surface, the variance is changed as a fun
of the iteration number. The variance at iteration  is given by

(11.26)

This results in a fractal surface with fractal dimension . The heights of the fra
surface can be mapped onto intensity values to generate the textured images. The ex
image in Figure 2(c) was generated using this method.

Other methods include mosaic models [89,90]. This class of models can in turn be div
into subclasses of cell structure models and coverage models. In cell structure mode
textures are generated by tessellating the plane into cells (bounded polygons) and a
ing each cell gray levels according to a set of probabilities. The type of tessellation d
mines what type of textures are generated. The possible tessellations include trian
pattern, checkerboard patterns, Poisson line model, Delaunay model, and occu
model. In coverage models, the texture is obtained by a random arrangement of a
geometric figures in the plane. The coverage models are also referred to as bombing
els.

4.4. Shape from Texture

There are many cues in images that allow the viewer to make inferences about the
dimensional shapes of objects and surfaces present in the image. Examples of suc
include the variations of shading on the object surfaces or the relative configuration
boundaries and the types of junctions that allow one to infer three-dimensional shape
the line drawings of objects. The relation between the variations in texture properties
surface shape was first pointed out by Gibson [41].

Stevens observed that certain properties of texture are perceptually significant in
extraction of surface geometry [91]. There are three effects that surface geometry h
the appearance of texture in images: foreshortening and scaling of texture elements,
change in their density. The foreshortening effect is due to the orientation of the surfac
which the texture element lies. The scaling and density changes are due to the dista
the texture elements from the viewer. Stevens argued that texture density is not a u
measure for computing distance or orientation information because the density varies
with scaling and foreshortening. He concluded that the more perceptually stable pro
that allows one to extract surface geometry information is the direction in the image w
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is not foreshortened, called thecharacteristic dimension. Stevens suggested that one ca
compute relative depth information using the reciprocal of the scaling in the characte
dimension. Using the relative depths, surface orientation can be estimated.

Bajcsy and Lieberman [92] used the gradient in texture element sizes to derive su
shape. They assumed a uniform texture element size on the three-dimensional surf
the scene. The relative distances are computed based on a gradient function in the
which was estimated from the texture element sizes. The estimation of the relative d
was done without using knowledge about the camera parameters and the original te
element sizes.

Witkin [93] used the distribution of edge orientations in the image to estimate the sur
orientation. The surface orientation is represented by the slant ( ) and tilt ( ) an
Slant is the angle between a normal to the surface and a normal to the image plane.
the angle between the surface normal’s projection onto the image plane and a fixed c
nate axis in the image plane. He assumed an isotropic texture (uniform distribution of
orientations) on the original surface. As a result of the projection process, the texture
foreshortened in the direction of steepest inclination (slant angle). Note that this id
related to Stevens’ argument because the direction of steepest inclination is perpend
to the characteristic dimension. Witkin formulated the surface shape recovery by rel
the slant and tilt angles to the distribution of observed edge directions in the image. L
be the original edge orientation (the angle between the tangent and a fixed coordinat

on the plane S containing the tangent). Let be the angle between the x-axis i

image plane and the projected tangent. The is related to the slant and tilt angles b
following expression:

(11.27)

Here is an observable quantity in the image and are the quantities to be c
puted. Witkin derived the expression for the conditional probabilities for the slant and
angles given the measured edge directions in the image and then used a maximum

hood estimation method to compute the . Let be a set

observed edge directions in the image. Then the conditional probabilities are given a

(11.28)

where . The maximum likelihood estimate of gives th

desired surface orientation.

Blostein and Ahuja [57] used the scaling effect to extract surface information. They i
grated the process of texture element extraction with the surface geometry comput
Texture element extraction is performed at multiple scales and the subset that yie
good surface fit is selected. The surfaces are assumed planar for simplicity. Textur
ments are defined to be circular regions of uniform intensity which are extracted by fi
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those of an ideal disk (here is the size of the Gaussian, ). At the extremum poin

the image filtered by , the diameter ( ) and contrast ( ) of the best fitting disks
computed. The convolution is done at multiple scales. Only those disks whose comp
diameters are close to the size of the Gaussian are retained. As a result, blob-like te
elements of different sizes are detected.

f

textured plane

g

FIGURE 19. The projective distortion of a texture element in the image.

image of texture element
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Texture element of length
 on the surface.F p

The slant of the planeσ

FIGURE 20. Examples of shape from texture computation using Blostein and Ahuja’s algorithm [57]. (
An image of a field of rocks and the computed slant and tilt of the plane. (b) An image of a sunflower fie
and the extracted slant and tilt values.
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The geometry of the projection is shown in Figure 19. Let and be the slant and ti

the surface. The image of a texture element has the foreshortened dimension a

characteristic dimension . The area of the image texel is proportional to the pro

for compact shapes. The expression for the area, , of the image of a texture

ment is given by:

(11.29)

where is the area that would be measured for the texel at the center of the image

angle  is given by the expression

(11.30)

Here, is the physical width of the image, is a measure of field of view of the cam
and denotes pixel coordinates in the image. can be measured in the imag

find the surface orientation, an accumulator array consisting of the parameters

is constructed. For each combination of parameter values, a possible planar fit is
puted. The plane with the highest fit rating is selected as the surface orientation and te
elements that support this fit are selected as the true texture elements. Some ex
images and the computed slant and tilt values are shown in Figure 20.

5.  Summary

This chapter has reviewed the basic concepts and various methods and techniques 
cessing textured images. Texture is a prevalent property of most physical surfaces
natural world. It also arises in many applications such as satellite imagery and printed
uments. Many common low level vision algorithms such as edge detection break d
when applied to images that contain textured surfaces. It is therefore crucial that we
robust and efficient methods for processing textured images. Texture processing has
successfully applied to practical application domains such as automated inspectio
satellite imagery. It is also going to play an important role in the future as we can see
the promising application of texture to a variety of different application domains.
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