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This chapter reviews and discusses various aspects of texture analysis. The concentration is on
the various methods of extracting textural features from images. The geometric, random field, fractal,
and signal processing models of texture are presented. The major classes of texture processing prob-
lems such as segmentation, classification, and shape from texture are discussed. The possible applica-
tion areas of texture such as automated inspection, document processing, and remote sensing are
summarized. A bibliography is provided at the end for further reading.
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1. Introduction

In many machine vision and image processing algorithms, simplifying assumptions are
made about the uniformity of intensities in local image regions. However, images of real
objects often do not exhibit regions of uniform intensities. For example, the image of a
wooden surface is not uniform but contains variations of intensities which form certain
repeated patterns calledsual texture The patterns can be the result of physical surface
properties such as roughness or oriented strands which often have a tactile quality, or they
could be the result of reflectance differences such as the color on a surface.

We recognize texture when we see it but it is very difficult to define. This difficulty is dem-
onstrated by the number of different texture definitions attempted by vision researchers.
Coggins [1] has compiled a catalogue of texture definitions in the computer vision litera-
ture and we give some examples here.

. “We may regard texture as what constitutes a macroscopic region. Its structure is
simply attributed to the repetitive patterns in which elements or primitives are ar-
ranged according to a placement rule.” [2]

. “Aregion in an image has a constant texture if a set of local statistics or other local



properties of the picture function are constant, slowly varying, or approximately
periodic.” [3]

“The image texture we consider is nonfigurative and cellular... An image texture
is described by the number and types of its (tonal) primitives and the spatial orga-
nization or layout of its (tonal) primitives... A fundamental characteristic of tex-
ture: it cannot be analyzed without a frame of reference of tonal primitive being
stated or implied. For any smooth gray-tone surface, there exists a scale such that
when the surface is examined, it has no texture. Then as resolution increases, it
takes on a fine texture and then a coarse texture.” [4]

“Texture is defined for our purposes as an attribute of a field having no compo-
nents that appear enumerable. The phase relations between the components are
thus not apparent. Nor should the field contain an obvious gradient. The intent of
this definition is to direct attention of the observer to the global properties of the
display — i.e., its overall “coarseness,” “bumpiness,” or “fineness.” Physically,
nonenumerable (aperiodic) patterns are generated by stochastic as opposed to de-
terministic processes. Perceptually, however, the set of all patterns without obvi-
ous enumerable components will include many deterministic (and even periodic)
textures.” [5]

“Texture is an apparently paradoxical notion. On the one hand, it is commonly
used in the early processing of visual information, especially for practical classi-
fication purposes. On the other hand, no one has succeeded in producing a com-
monly accepted definition of texture. The resolution of this paradox, we feel, will
depend on a richer, more developed model for early visual information process-
ing, a central aspect of which will be representational systems at many different
levels of abstraction. These levels will most probably include actual intensities at
the bottom and will progress through edge and orientation descriptors to surface,
and perhaps volumetric descriptors. Given these multi-level structures, it seems
clear that they should be included in the definition of, and in the computation of,
texture descriptors.” [6]

“The notion of texture appears to depend upon three ingredients: (i) some local
‘order’ is repeated over a region which is large in comparison to the order’s size,
(ii) the order consists in the nonrandom arrangement of elementary parts, and (iii)
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FIGURE 1. (a) An image consisting of five different textured regions: cotton canvas (D77), straw
matting (D55), raffia (D84), herringbone weave (D17), and pressed calf leather. [8]. (b) The goal of
texture classification is to label each textured region with the proper category label: the identities of the
five texture regions present in (a). (¢) The goal of texture segmentation is to separate the regions in the
image which have different textures and identify the boundaries between them. The texture categories
themselves need not be recognized. In this example, the five texture categories in (a) are identified as
separate textures by the use of generic category labels (represented by the different fill patterns).
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FIGURE 2. A set of example textures generated synthetically using only a small number of parameters.
(a) Textures generated by discrete Markov random field models. (b) Four textures (in each of the four
guadrants) generated by Gaussian Markov random field models. (c) Texture generated by fractal model.

the parts are roughly uniform entities having approximately the same dimensions
everywhere within the textured region.” [7]

This collection of definitions demonstrates that the “definition” of texture is formulated by
different people depending upon the particular application and that there is no generally
agreed upon definition. Some are perceptually motivated, and others are driven completely
by the application in which the definition will be used.

Image texture, defined as a function of the spatial variation in pixel intensities (gray val-
ues), is useful in a variety of applications and has been a subject of intense study by many
researchers. One immediate application of image texture is the recognition of image
regions using texture properties. For example, in Figure 1(a), we can identify the five dif-
ferent textures and their identities as cotton canvas, straw matting, raffia, herringbone
weave, and pressed calf leather. Texture is the most important visual cue in identifying
these types of homogeneous regions. This is ca#ietlire classificationThe goal of tex-

ture classification then is to produce a classification map of the input image where each
uniform textured region is identified with the texture class it belongs to as shown in
Figure 1(b). We could also find the texture boundaries even if we could not classify these
textured surfaces. This is then the second type of problem that texture analysis research
attempts to solve —texture segmentatiomhe goal of texture segmentation is to obtain

the boundary map shown in Figure 1(Gexture synthesis often used for image com-
pression applications. It is also important in computer graphics where the goal is to render
object surfaces which are as realistic looking as possible. Figure 2 shows a set of syntheti-
cally generated texture images using Markov random field and fractal models [9]. The
shape from texturproblem is one instance of a general class of vision problems known as
“shape from X". This was first formally pointed out in the perception literature by Gibson
[10]. The goal is to extract three-dimensional shape information from various cues such as
shading, stereo, and texture. The texture features (texture elements) are distorted due to



FIGURE 3. We can extract the orientation of the surface from the variations of texture (defined by the
bricks) in this image.

the imaging process and the perspective projection which provide information about sur-
face orientation and shape. An example of shape from texture is given in Figure 3.

2. Motivation

Texture analysis is an important and useful area of study in machine vision. Most natural
surfaces exhibit texture and a successful vision system must be able to deal with the tex-
tured world surrounding it. This section will review the importance of texture perception
from two viewpoints — from the viewpoint of human vision or psychophysics and from
the viewpoint of practical machine vision applications.

2.1. Psychophysics

The detection of a tiger among the foliage is a perceptual task that carries life and death
consequences for someone trying to survive in the forest. The success of the tiger in cam-
ouflaging itself is a failure of the visual system observing it. The failure is in not being
able to separatéigure from ground Figure-ground separation is an issue which is of
intense interest to psychophysicists. The figure-ground separation can be based on various
cues such as brightness, form, color, texture, etc. In the example of the tiger in the forest,
texture plays a major role. The camouflage is successful because the visual system of the
observer is unable to discriminate (or segment) the two textures of the foliage and the tiger
skin. What are the visual processes that allow one to separate figure from ground using the
texture cue? This question is the basic motivation among psychologists for studying tex-
ture perception.

Another reason why it is important to study the psychophysics of texture perception is that
the performance of various texture algorithms is evaluated against the performance of the
human visual system doing the same task. For example, consider the texture pair in
Figure 4(a), first described by Julesz [11]. The image consists of two regions each of
which is made up of different texture tokens. Close scrutiny of the texture image will indi-

cate this fact to the human observer. The immediate perception of the image, however,
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does not result in the perception of two different textured regions; instead only one uni-
formly textured region is perceived. Julesz says that such a texture pair is not “effortlessly
discriminable” or “preattentively discriminable.” Such synthetic textures help us form
hypotheses about what image properties are important in human texture perception. In
addition, this example raises the question of how to evaluate the performance of computer
algorithms that analyze textured images. For example, suppose we have an algorithm that
can discriminate the texture pair in Figure 4(a). Is this algorithm “correct?” The answer, of
course, depends on the goal of the algorithm. If it is a very special purpose algorithm that
should detect such scrutably different regions, then it is performing correctly. On the other
hand, if it is to be a computational model of how the human visual system processes tex-
ture, then it is performing incorrectly.

Julesz has studied texture perception extensively in the context of texture discrimination
[11,12,13]. The question he posed was “When is a texture pair discriminable, given that
they had the same brightness, contrast, and color?” Julesz concentrated on the spatial sta-
tistics of the image gray levels that are inherent in the definition of texture by keeping
other illumination-related properties the same.

To discuss Julesz’s pioneering work, we need to define the concepts of first- and second-
order spatial statistics.

® First-order statisticsmeasure the likelihood of observing a gray value at a ran-
domly-chosen location in the image. First-order statistics can be computed from
the histogram of pixel intensities in the image. These depend only on individual
pixel values and not on the interaction or co-occurrence of neighboring pixel val-
ues. The average intensity in an image is an example of the first-order statistic.

(i)  Second-order statisticare defined as the likelihood of observing a pair of gray
values occurring at the endpoints of a dipole (or needle) of random length placed
in the image at a random location and orientation. These are properties of pairs of
pixel values.

Julesz conjectured that two textures are not preattentively discriminable if their second-
order statistics are identical. This is demonstrated by the example in Figure 4(a). This
image consists of a pair of textured regions whose second-order statistics are identical.
The two textured regions are not preattentively discriminable. His later counter-examples
to this conjecture were the result of a careful construction of texture pairs that have identi-
cal second-order statistics (see Figure 4(b)) [14,15,16].

Julesz proposed the “theory of textons” to explain the preattentive discrimination of tex-
ture pairs. Textons are visual events (such as collinearity, terminations, closure, etc.)
whose presence is detected and used in texture discrimination. Terminations are endpoints
of line segments or corners. Using his theory of textons, Julesz explained the examples in
Figure 4 as follows. Recall that both texture images in Figure 4 have two regions that have
identical second-order statistics. In Figure 4(a), the number of terminations in both the
upper and lower regions is the same (i.e., the texton information in the two regions is not
different), therefore the visual system is unable to preattentively discriminate the two tex-
tures. In Figure 4(b), on the other hand, the number of terminations in the upper half is
three, whereas the number of terminations in the lower half is four. The difference in this
texton makes the two textured regions discriminable. Caelli has also proposed the exist-
ence of perceptual analyzers by the visual system for detecting textons [17]eBatk

[18] have conducted experiments and argue that the perception of texture segmentation in



certain types of patterns is primarily a function of spatial frequency analysis and not the
result of higher level symbolic grouping processes.

Studies in psychophysiology have suggested that a multi-channel, frequency and orienta-
tion analysis of the visual image formed on the retina is performed by the brain. Campbell
and Robson [19] performed psychophysical experiments using various grating patterns.
They suggested that the visual system decomposes the image into filtered images of vari-
ous frequencies and orientations. De Valeisal. [20] have studied the brain of the
macaque monkey which is assumed to be close to the human brain in its visual processing.
They recorded the response of the simple cells in the visual cortex of the monkey to sinu-
soidal gratings of various frequencies and orientations and concluded that these cells are
tuned to narrow ranges of frequency and orientation. These studies have motivated vision
researchers to apply multi-channel filtering approaches to texture analysis.

2.2. Applications

Texture analysis methods have been utilized in a variety of application domains. In some
of the mature domains (such as remote sensing) texture already has played a major role,
while in other disciplines (such as surface inspection) new applications of texture are
being found. We will briefly review the role of texture in automated inspection, medical
image processing, document processing, and remote sensing. Images from two application
domains are shown in Figure 5. The role that texture plays in these examples varies
depending upon the application. For example, in the SAR images of Figures 5(b) and (c)
texture is defined to be the local scene heterogeneity and this property is used for classifi-
cation of land use categories such as water, agricultural areas, etc. In the ultrasound image
of the heart in Figure 5(a), texture is defined as the amount of randomness which has a
lower value in the vicinity of the border between the heart cavity and the inner wall than in
the blood filled cavity. This fact can be used to perform segmentation and boundary detec-
tion using texture analysis methods.

2.2.1. Inspection

There has been a limited number of applications of texture processing to automated
inspection problems. These applications include defect detection in images of textiles and
automated inspection of carpet wear and automobile paints.
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FIGURE 4. Texture pairs with identical second-order statistics. The bottom halves of the images consist
of texture tokens that are different from the ones in the top half. (a) Humans cannot perceive the two
regions without careful scrutiny. (b) The two different regions are immediately discriminable by humans.



In the detection of defects in texture images, most applications have been in the domain of
textile inspection. Dewaelet al. [21] used signal processing methods to detect point
defects and line defects in texture images. They have sparse convolution masks in which
the bank of filters are adaptively selected depending upon the image to be analyzed. Tex-
ture features are computed from the filtered images. A Mahalanobis distance classifier is
used to classify the defective areas. Chetverikov [22] defined a simple window differenc-
ing operator to the texture features obtained from simple filtering operations. This allows
one to detect the boundaries of defects in the texture. Chen and Jain [23] used a structural
approach to defect detection in textured images. They extract a skeletal structure from
images, and by detecting anomalies in certain statistical features in these skeletons,
defects in the texture are identified. Connetral. [24] utilized texture analysis methods to
detect defects in lumber wood automatically. The defect detection is performed by divid-
ing the image into subwindows and classifying each subwindow into one of the defect cat-
egories such as knot, decay, mineral streak, etc. The features they use to perform this
classification is based on tonal features such as mean, variance, skewness, and kurtosis of
gray levels along with texture features computed from gray level co-occurrence matrices
in analyzing pictures of wood. The combination of using tonal features along with textural
features improves the correct classification rates over using either type of feature alone.

In the area of quality control of textured images, Sietnal. [25] proposed a method for

the assessment of carpet wear. They used simple texture features that are computed from
second-order gray level dependency statistics and from first-order gray level difference
statistics. They showed that the numerical texture features obtained from these techniques
can characterize the carpet wear successfully. dai. [26] used the texture features
computed from a bank of Gabor filters to automatically classify the quality of painted
metallic surfaces. A pair of automotive paint finish images is shown in Figure 6 where the
image in (a) has uniform coating of paint, but the image in (b) has “mottle” or “blotchy”
appearance.

FIGURE 5. Examples of images from various application domains in which texture analysis is important.
(a) The ultrasound images of a heart. (b), (c) example aerial images using SAR sensors .
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FIGURE 6. Example images used in paint inspection. (a) A non-defective paint which has a smooth
texture. (b) A defective paint which has a mottled look.

2.2.2. Medical Image Analysis

Image analysis techniques have played an important role in several medical applications.
In general, the applications involve the automatic extraction of features from the image

which are then used for a variety of classification tasks, such as distinguishing normal tis-
sue from abnormal tissue. Depending upon the particular classification task, the extracted
features capture morphological properties, color properties, or certain textural properties
of the image.

The textural properties computed are closely related to the application domain to be used.
For example, Sutton and Hall [27] discuss the classification of pulmonary disease using
texture features. Some diseases, such as interstitial fibrosis, affect the lungs in such a man-
ner that the resulting changes in the X-ray images are texture changes as opposed to
clearly delineated lesions. In such applications, texture analysis methods are ideally suited
for these images. Sutton and Hall propose the use of three types of texture features to dis-
tinguish normal lungs from diseased lungs. These features are computed based on an iso-
tropic contrast measure, a directional contrast measure, and a Fourier domain energy
sampling. In their classification experiments, the best classification results were obtained
using the directional contrast measure.

Harmset al.[28] used image texture in combination with color features to diagnose leuke-
mic malignancy in samples of stained blood cells. They extracted texture micro-edges and
“textons” between these micro-edges. The textons were regions with almost uniform
color. They extracted a number of texture features from the textons including the total
number of pixels in the textons which have a specific color, the mean texton radius and
texton size for each color and various texton shape features. In combination with color, the
texture features significantly improved the correct classification rate of blood cell types
compared to using only color features.

Landeweerd and Gelsema [29] extracted various first-order statistics (such as mean gray
level in a region) as well as second-order statistics (such as gray level co-occurrence matri-
ces) to differentiate different types of white blood cells. Insahal. [30] used textural
features in ultrasound images to estimate tissue scattering parameters. They made signifi-
cant use of the knowledge about the physics of the ultrasound imaging process and tissue
characteristics to design the texture model. Céeal. [31] used fractal texture features to



classify ultrasound images of livers, and used the fractal texture features to do edge
enhancement in chest X-rays.

Lundervold [32] used fractal texture features in combination with other features (such as
response to edge detector operators) to analyze ultrasound images of the heart (see
Figure 7). The ultrasound images in this study are time sequence images of the left ventri-
cle of the heart. Figure 7 shows one frame in such a sequence. Texture is represented as an
index at each pixel, being the local fractal dimension withirLarx 11 window estimated
according to the fractal Brownian motion model proposed by Gieh.[31]. The texture

feature is used in addition to a number of other traditional features, including the response
to a Kirsch edge operator, the gray level, and the result of temporal operations. The fractal
dimension is expected to be higher on an average in blood than in tissue due to the noise
and backscatter characteristics of the blood which is more disordered than that of solid tis-
sue. In addition, the fractal dimension is low at non-random blood/tissue interfaces repre-
senting edge information.

2.2.3. Document Processing

One of the useful applications of machine vision and image analysis has been in the area
of document image analysis and character recognition. Document processing has applica-
tions ranging from postal address recognition to analysis and interpretation of maps. In
many postal document processing applications (such as the recognition of destination
address and zip code information on envelopes), the first step is the ability to separate the
regions in the image which contain useful information from the background.

Most image analysis methods proposed to date for document processing are based upon
the characteristics of printed documents and try to take advantage of these properties. For
example, generally newspaper print is organized in rectangular blocks and this fact is used

FIGURE 7. The processing of the ultrasound images of the heart using textural features. (a) A
128x 432ultrasound image from the left ventricle of the heart. (b) The fractal dimension used as the
texture feature. The fractal dimension is lower at the walls of the ventricle. (c) Image segmentation from a
k-means clustering algorithm. The white region is cluster 2 which corresponds to the blood. The
clustering uses four features, one of which is the fractal texture feature.



() (b)

FIGURE 8. Locating bar code in a newspaper image. (a) A scanned image of a newspaper that contains a
bar code. (b) The two-class segmentation using Gabor filter features in [40]. The bar code region in the
image has a distinct texture.

in a segmentation algorithm proposed in [33]. Many methods work on images based on
precise algorithms which one might consider as having morphological characteristics. For
example, Wang and Srihari [33] used projection profiles of the pixel values to identify
large “text” blocks by detecting valleys in these profiles. Wettdl. [34] used constrained

run lengths and connected component analysis to detect blocks of text. Fletcher and Kas-
turi [35] used the fact that most text blocks lie in a straight line, and utilized Hough trans-
form techniques to detect collinear elements. Tetxal. [36] view the identification of

print in document images as a two-category classification problem, where the categories
are print and background. They use various classification methods to compute the segmen-
tation including contextual classification and relaxation algorithms.

One can also use texture segmentation methods for preprocessing document images to
identify regions of interest [37,38,39]. An example of this can be seen in Figure 8. The
texture segmentation algorithm described in [40] was used to segment a newspaper image.
In the resulting segmentation, one of the regions identified as having a uniform texture,
which is different from its surrounding texture, is the bar code block. A similar method is
used for locating text blocks in newspapers. A segmentation of the document image is
obtained using three classes of textures: one class for the text regions, a second class for
the uniform regions that form the background or images where intensities vary slowly, and

a third class for the transition areas between the two types of regions (see Figure 9). The
text regions are characterized by their high frequency content.
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FIGURE 9. Text/graphics separation using texture information. (a) An image of a newspaper captured by
a flatbed scanner. (b) The three-class segmentation obtained by the Gabor filter based texture
segmentation algorithm. (c) The regions identified as text.
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2.2.4. Remote Sensing

Texture analysis has been extensively used to classify remotely sensed images. Land use
classification where homogeneous regions with diffetgpesof terrains (such as wheat,
bodies of water, urban regions, etc.) need to be identified is an important application.
Haralick et al. [41] used gray level co-occurrence features to analyze remotely sensed
images. They computed gray level co-occurrence matrices for a distance of one with four
directions Q° ,45° ,90° , and135° ). For a seven-class classification problem, they
obtained approximately 80% classification accuracy using texture features.

Rignot and Kwok [42] have analyzed SAR images using texture features computed from
gray level co-occurrence matrices. However, they supplement these features with knowl-
edge about the properties of SAR images. For example, image restoration algorithms were
used to eliminate the specular noise present in SAR images in order to improve classifica-
tion results. The use of various texture features was studied for analyzing SAR images by
Schistad and Jain [43]. SAR images shown in Figures 5(b) and (c) were used to identify
land use categories of water, agricultural areas, urban areas, and other areas. Fractal
dimension, autoregressive Markov random field model, and gray level co-occurrence tex-
ture features were used in the classification. The classification errors ranged from 25% for
the fractal based models to as low as 6% for the MRF features. Du [44] used texture fea-
tures derived from Gabor filters to segment SAR images. He successfully segmented the
SAR images into categories of water, new forming ice, older ice, and multi-year ice. Lee
and Philpot [45] also used spectral texture features to segment SAR images.

3. A Taxonomy of Texture Models

Identifying the perceived qualities of texture in an image is an important first step towards
building mathematical models for texture. The intensity variations in an image which
characterize texture are generally due to some underlying physical variation in the scene
(such as pebbles on a beach or waves in water). Modelling this physical variation is very
difficult, so texture is usually characterized by the two-dimensional variations in the inten-
sities present in the image. This explains the fact that no precise, general definition of tex-
ture exists in the computer vision literature. In spite of this, there are a number of intuitive
properties of texture which are generally assumed to be true.

. Texture is a property of areas; the texture of a point is undefined. So, texture is a
contextual property and its definition must involve gray values in a spatial neigh-
borhood. The size of this neighborhood depends upon the texture type, or the size
of the primitives defining the texture.

. Texture involves the spatial distribution of gray levels. Thus, two-dimensional
histograms or co-occurrence matrices are reasonable texture analysis tools.

. Texture in an image can be perceived at different scales or levels of resolution
[10]. For example, consider the texture represented in a brick wall. At a coarse res-
olution, the texture is perceived as formed by the individual bricks in the wall; the
interior details in the brick are lost. At a higher resolution, when only a few bricks
are in the field of view, the perceived texture shows the details in the brick.

. A region is perceived to have texture when the number of primitive objects in the

region is large. If only a few primitive objects are present, then a group of count-
able objects is perceived instead of a textured image. In other words, a texture is
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perceived when significant individual “forms” are not present.

Image texture has a number of perceived qualities which play an important role in describ-
ing texture. Laws [47] identified the following properties as playing an important role in
describing texture: uniformity, density, coarseness, roughness, regularity, linearity, direc-
tionality, direction, frequency, and phase. Some of these perceived qualities are not inde-
pendent. For example, frequency is not independent of density and the property of
direction only applies to directional textures. The fact that the perception of texture has so
many different dimensions is an important reason why there is no single method of texture
representation which is adequate for a variety of textures.

3.1. Statistical Methods

One of the defining qualities of texture is the spatial distribution of gray values. The use of
statistical features is therefore one of the early methods proposed in the machine vision lit-
erature. In the following, we willus¢ 1(x,y), 0 x<N-1,0<y<N-1} todenote an

N x N image withG gray levels. A large number of texture features have been proposed.
But, these features are not independent as pointed out by Tomita and Tsuji [46]. The rela-
tionship between the various statistical texture measures and the input image is summa-
rized in Figure 10 [46]. Picard [48] has also related the gray level co-occurrence matrices
to the Markov random field models.

3.1.1. Co-occurrence Matrices

Spatial gray level co-occurrence estimates image properties related to second-order statis-
tics. Haralick [10] suggested the use of gray level co-occurrence matrices (GLCM) which
have become one of the most well-known and widely used texture feature<s ¥H@

gray level co-occurrence matriX,  for a displacement vector (dx, dy) is defined as
follows. The entry(i, j) ofP, is the number of occurrences of the pair of gray leévels

andj which are a distanck apart. Formally, it is given as

Pa(i. 1) = {((r,9), (L, V):1(r.s) =11 (t.v) =} (11.1)
Original Image Fourier Transform
g
ion —
Co_ocqurrence . Autocorr'elauon Power Spectrum
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Y e
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Model

Difference Statistics

FIGURE 10. The interrelation between the various second-order statistics and the input image [46]. ©
Reprinted by permission of Kluwer Academic Publishers.
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where (r,s), (t, VVONXxN , (t,v) = (r +dx,s+dy) , and|.| is the cardinality of a
set.

As an example, consider the followidg« 4  image containing 3 different gray values:

1100
1100
0022
0022

The 3x 3 gray level co-occurrence matrix for this image for a displacement vector of
d = (1, 0) is given as follows:

402
Pa =122
002
Here the entry(0, 0) oP, is 4 because there are four pixel pair§ipD) that are off-

setby (1, 0) amount. Examples Bf,  for other displacement vectors is given below.

42
d=(0,l) Pd: 02
002

311
d:(l,l) Pd: 11

101

Notice that the co-occurrence matrix so defined is not symmetric. But a symmetric co-
occurrence matrix can be computed by the formBla Py +P_, . The co-occurrence
matrix reveals certain properties about the spatial distribution of the gray levels in the tex-
ture image. For example, if most of the entries in the co-occurrence matrix are concen-
trated along the diagonals, then the texture is coarse with respect to the displacement
vectord. Haralick has proposed a number of useful texture features that can be computed
from the co-occurrence matrix. Table 1 lists some of these features.

Here p, anduy are the means aaq argg are the standard deviatiGh$xpf and

P4(), respectively, wherB,(x) = ZPd(x, i) arRl(y) = ZPd(i,y)
T T

The co-occurrence matrix features suffer from a number of difficulties. There is no well
established method of selecting the displacement vettor and computing co-occurrence
matrices for different values af  is not feasible. For a giden , a large number of features
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can be computed from the co-occurrence matrix. This means that some sort of feature

selection method must be used to select the most relevant features. The co-occurrence
matrix-based texture features have also been primarily used in texture classification tasks
and not in segmentation tasks.

3.1.2. Autocorrelation Features

An important property of many textures is the repetitive nature of the placement of texture
elements in the image. The autocorrelation function of an image can be used to assess the
amount of regularity as well as the fineness/coarseness of the texture present in the image.

Formally, the autocorrelation function of an image y) is defined as follows:
N N
I(u,V)I(u+x v+y
—u=0v=0
2 1%(u, )
u=0v=0

The image boundaries must be handled with special care but we omit the details here. This
function is related to the size of the texture primitive (i.e., the fineness of the texture). If
the texture is coarse, then the autocorrelation function will drop off slowly; otherwise, it
will drop off very rapidly. For regular textures, the autocorrelation function will exhibit
peaks and valleys.

The autocorrelation function is also related to the power spectrum of the Fourier transform
(see Figure 10). Consider the image function in the spatial dor(iny) and its Fourier

transformF (u, v) . The quantityF (u, v)|2 is defined as the power spectrum where  is
the modulus of a complex number. The example in Figure 11 illustrates the effect of the
directionality of a texture on the distribution of energy in the power spectrum. Early

TABLE 1. Some texture features extracted from gray level co-occurrence matrices.

Texture Feature Formula

Energy z Z Pg(i, i)
T ]

Entro .. .
i -3 Pu(i. DlogPyi. )
]
Contrast .. .
Y > (=0)2Pyl. D)
T ]
Homogeneity z z P4G. i)
— &1+l
Correlation

S S (-1 -y)Pu(i. )
1

0,0,
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FIGURE 11. Texture features from the power spectrum. (a) A texture image, and (b) its power spectrum.
The directional nature of this texture is reflected in the directional distribution of energy in the power
spectrum.

Vv
u
2mly 8500
Fror, = II\F(u, v)|2drd@ fo,0, = [[IF( v)|2drd
Or, 6,0
r= u2+v2 6 = atan(v/u) r = u2+v2 0 = atan(v/u)
(a) (b)

FIGURE 12. Texture features computed from the power spectrum of the image. (a) The energy computed
in each shaded band is a texture feature indicating coarseness/fineness, and (b) the energy computed in
each wedge is a texture feature indicating directionality.

approaches using such spectral features would divide the frequency domain into rings (for
frequency content) and wedges (for orientation content) as shown in Figure 12. The fre-
guency domain is thus divided into regions and the total energy in each of these regions is
computed as texture features.
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3.2. Geometrical Methods

The class of texture analysis methods that falls under the heading of geometrical methods
is characterized by their definition of texture as being composed of “texture elements” or
primitives. The method of analysis usually depends upon the geometric properties of these
texture elements. Once the texture elements are identified in the image, there are two
major approaches to analyzing the texture. One computes statistical properties from the
extracted texture elements and utilizes these as texture features. The other tries to extract
the placement rule that describes the texture. The latter approach may involve geometric
or syntactic methods of analyzing texture.

3.2.1. Voronoi tessellation Features

Tuceryan and Jain [49] proposed the extraction of texture tokens by using the properties of
the Voronoi tessellation of the given image. Voronoi tessellation has been proposed
because of its desirable properties in defining local spatial neighborhoods and because the
local spatial distributions of tokens are reflected in the shapes of the Voronoi polygons.
First, texture tokens are extracted and then the tessellation is constructed. Tokens can be as
simple as points of high gradient in the image or complex structures such as line segments
or closed boundaries.

In computer vision, the Voronoi tessellation was first proposed by Ahuja as a model for
defining “neighborhoods” [50]. Suppose that we are given &set  of three or more tokens
(for simplicity, we will assume that a token is a point) in the Euclidean plane. Assume that
these points are not all collinear, and that no four points are cocircular. Consider an arbi-
trary pair of pointsP and) . The bisector of the line joiniy a@d is the locus of
points equidistant from bot®? an@® and divides the plane into two halves. The half

pIaneHS Hg ) is the locus of points closer® Q( )than@ P ( ). For any given point
P, a set of such half planes is obtained for various choicefof . The intersection

N HS defines a polygonal region consisting of points closéPto  than any other
QUISQ#P
point. Such a region is called the Voronoi polygon [51] associated with the point. The set
of complete polygons is called th¢oronoi diagramof S [52]. The Voronoi diagram
together with the incomplete polygons in the convex hull defiv@ranoi tessellatiorof
the entire plane. Two points are said to Yeronoi neighbordf the Voronoi polygons
enclosing them share a common edge. The dual representation of the Voronoi tessellation
is the Delaunay graphwhich is obtained by connecting all the pairs of points which are
Voronoi neighbors as defined above. An optimal algorithm to compute the Voronoi tessel-
lation for a point pattern is described by Preparata and Shamos [53]. A simple 2D dot pat-
tern and its Voronoi tessellation are shown in Figure 13.

The neighborhood of a tokdn  is defined by the Voronoi polygon contaiRing . Many of
the perceptually significant characteristics of a token’s environment are manifest in the
geometric properties of the Voronoi neighborhoods (see Figure 13). The geometric prop-
erties of the Voronoi polygons are used as texture features.

In order to apply geometrical methods to gray level images, we need to first extract tokens

from images. We use the following simple algorithm to extract tokens from input gray
level textural images.
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1. Apply a Laplacian-of-Gaussian (LoG dfi2G ) filter to the image. For computa-

tional efficiency, the[J2G filter can be approximated with a difference of Gaus-
sians (DoG) filter. The size of the DoG filter is determined by the sizes of the two
Gaussian filters. Tuceryan and Jain used = 1 for the first Gaussian and

0, = 1.60, for the second. According to Marr, this is the ratio at which a DoG
filter best approximates the correspondingG filter [54].

2. Select those pixels that lie on a local intensity maximum in the filtered image. A
pixel in the filtered image is said to be on a local maximum if its magnitude is larg-
er than six or more of its eight nearest neighbors. This results in a binary image.
For example, applying steps 1 and 2 to the image in Figure 14(a) yields the binary
image in Figure 14(b).

3. Perform a connected component analysis on the binary image using eight nearest
neighbors. Each connected component defines a texture primitive (token).

The Voronoi tessellation of the resulting tokens is constructed. Features of each Voronoi
cell are extracted and tokens with similar features are grouped to construct uniform texture
regions. Moments of area of the Voronoi polygons serve as a useful set of features that
reflect both the spatial distribution and shapes of the tokens in the textured image. The

(p+ g)th order moments of area of a closed region  with respect to a token with coordi-
nates(xy, Yo) are defined as [55]:

Mpq = Ll’(x—xo)p(y—yo)qudy (11.3)

wherep+q =0,1 2 ... . A description of the five features used is given in Table 2
where (X, y) are the coordinates of the Voronoi polygon’s centroid.

The texture features based on Voronoi polygons have been used for segmentation of tex-
tured images. The segmentation algorithm is edge based, using a statistical comparison of
the neighboring collections of tokens. A large dissimilarity among the texture features is
evidence for a texture edge. This algorithm has successfully segmented gray level texture
images as well as a number of synthetic textures with identical second-order statistics.
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FIGURE 13. Voronoi tessellation: (a) An example dot pattern, and (b) its Voronoi tessellation.
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TABLE 2. Voronoi polygon features used by the texture segmentation algorithm [49]. f—@re,
magnitude of the vector from the token to the polygon centrf:%d,

elongation of the polygorf(, = O for a circle), afig

gives the
gives its diredtjon,  gives the overall
gives the orientation of its major {Xsy)

are the coordinates of the Voronoi polygon’s centroid.

Texture Feature Computation
fa Moo
f

2

5+ y2
fa atan(y/ x)
f, .
J (mpg—Mgp) ™ +4miy
J 7+ amf
Moo+ Moy + 4/ (Myg—Mpp) ™ + 4mfy

f 2m

5 atarf L[

20~ Moz

Figure 14(a) shows an example texture pair and Figure 14(c) shows the resulting segmen-
tation.

3.2.2. Structural Methods

The structural models of texture assume that textures are composed of texture primitives.
The texture is produced by the placement of these primitives according to certain place-
ment rules. This class of algorithms, in general, is limited in power unless one is dealing

with very regular textures. Structural texture analysis consists of two major steps: (a)

extraction of the texture elements, and (b) inference of the placement rule.

There are a number of ways to extract texture elements in images. It is useful to define
what is meant by texture elements in this context. Usually texture elements consist of
regions in the image with uniform gray levels. Voorhees and Poggio [56] argued that blobs
are important in texture perception. They have proposed a method based on filtering the
image with Laplacian of Gaussian (LoG) masks at different scales and combining this
information to extract the blobs in the image. Blostein and Ahuja [57] perform similar pro-
cessing in order to extract texture tokens in images by examining the response of the LoG
filter at multiple scales. They integrate their multi-scale blob detection with surface shape
computation in order to improve the results of both processes. Tomita and Tsuiji [46] also
suggest a method of computing texture tokens by doing a medial axis transform on the
connected components of a segmented image. They then compute a number of properties
such as intensity and shapes of these detected tokens.
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FIGURE 14. Texture segmentation using the Voronoi tessellation. (a) An example texture pair from
Brodatz’s album [92], (b) the peaks detected in the filtered image, and (c) the segmentation using the
texture features obtained from Voronoi polygons [49]. The arrows indicate the border direction. The
interior is on the right when looking in the direction of the arrow.

Zucker [58] has proposed a method in which he regards the observable textures (real tex-
tures) as distorted versions of ideal textures. The placement rule is defined for the ideal
texture by a graph that is isomorphic to a regular or semiregular tessellation. These graphs
are then transformed to generate the observable texture. Which of the regular tessellations
is used as the placement rule is inferred from the observable texture. This is done by com-
puting a two-dimensional histogram of the relative positions of the detected texture
tokens.

Another approach to modeling texture by structural means is described by Fu [59]. In this
approach the texture image is regarded as texture primitives arranged according to a place-
ment rule. The primitive can be as simple as a single pixel that can take a gray value, but it
is usually a collection of pixels. The placement rule is defined by a tree grammar. A tex-
ture is then viewed as a string in the language defined by the grammar whose terminal
symbols are the texture primitives. An advantage of this method is that it can be used for
texture generation as well as texture analysis. The patterns generated by the tree grammars
could also be regarded as ideal textures in Zucker’'s model.

3.3. Model Based Methods

Model based texture analysis methods are based on the construction of an image model
that can be used not only to describe texture, but also to synthesize it. The model parame-
ters capture the essential perceived qualities of texture.
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3.3.1. Random Field Models

Markov random fields (MRFs) have been popular for modeling images. They are able to
capture the local (spatial) contextual information in an image. These models assume that
the intensity at each pixel in the image depends on the intensities of only the neighboring
pixels. MRF models have been applied to various image processing applications such as
texture synthesis [60], texture classification [61,62], image segmentation [63,64], image
restoration [65], and image compression.

The 1image is wusually represented by amNxN lattice denoted by
L={(@,j))1<si<sM,1<j<N}. I(i,j) is a random variable which represents the
gray level at pixel(i, j) on lattic&. The indexing of the lattice is simplified for mathe-
matical convenience tb, with = (i—1)N+j . L&t be the range set common to all

random variabled, and leQ = {(x;, X,, ..., xMN)‘xt O A, Ot} denote the set of all

labellings ofL. Note thatA is specified according to the application. For instance, for an
image with 256 different gray levelsmay be the sef 0, 1, ..., 255} . The random vector
I = (41, ...,1yN) denotes a coloring of the lattice. A discrete Markov random field

is a random field whose probability mass function has the properties of positivity, Mark-
ovianity, and homogeneity.

The neighbor set of a sitecan be defined in different ways. The first-order neighbots of

are its four-connected neighbors and the second-order neighbors are its eight-connected
neighbors. Within these neighborhoods, sets of neighbors which form cliques (single site,
pairs, triples, and quadruples) are usually used in the definition of the conditional proba-
bilities.

A discrete Gibbs random field (GRF) assigns a probability mass function to the entire lat-
tice:

P(X =x) = %e—U(X) Ox 0 Q (11.4)

where U(x) is an energy function arti  is a normalizing constant called the partition
function. The energy function is usually specified in terms of cliques formed over neigh-
boring pixels. For the second-order neighbors the possible cliques are given in Figure 15.
The energy function then is expressed in terms of potential functiGrs) over the

cliguesQ :

Ux) = S Ve (11.5)
2,

We have the property that with respect to a neighborhood system, there exists a unique
Gibbs random field for every Markov random field and there exists a unique Markov ran-
dom field for every Gibbs random field [66]. The consequence of this theorem is that one
can model the texture either globally by specifying the total energy of the lattice or model
it locally by specifying the local interactions of the neighboring pixels in terms of the con-
ditional probabilities.
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FIGURE 15. The clique types for the second-order neighborhood.

There are a number of ways in which textures are modeled using Gibbs random fields.
Among these are the Derin-Elliot model [67] and the auto-binomial model [66, 60] which
are defined by considering only the single pixel and pairwise pixel cliques in the second-
order neighbors of a site. In both models the conditional probabilities are given by expres-
sions of the following form:

__J._e—w(xt‘ R)TO

P(x|R) = 7 (11.6)

whereZ, = Z e (@R ig the normalization constant. The energy of the Gibbs ran-
gl A

dom field is given by:

MN
_1
U(x) =3 z w(x, R)TO (11.7)
t=1
T T

where w(x,, R,) = [wl(xt) Wo(X;) Wg(X) W4(xt)] ando = [el 0, 05 64] . The two
models define the components of the  veotpfx,) , differently as follows:
Derin-Elliott model:w,(x;) = I(Xy, X _ ;) + 1 (X X 4 ) 1<r<4.
Auto-binomial modelw, (x,) = X, (X _, + X; +,) l<r<4 .

Herer is the index that defines the set of neighboring pixels of atsgad| (a, b) is an
indicator function as follows:

H_l if a=b
I(a,b) = O (11.8)
otherwise

The vector® is the set of parameters that define and model the textural properties of the
image. In texture synthesis problems, the values are set to control the type of texture to be
generated. In the classification and segmentation problems, the parameters need to be esti-
mated in order to process the textures images. Textures were synthesized using this
method by Cross and Jain [60]. Model parameters were also estimated for a set of natural
textures. The estimated parameters were used to generate synthetic textures and the results
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were compared to the original images. The models captured microtextures well, but they
failed with regular and inhomogeneous textures.

3.3.2. Fractals

Many natural surfaces have a statistical quality of roughness and self-similarity at different
scales. Fractals are very useful and have become popular in modeling these properties in
image processing. Mandelbrot [68] proposed fractal geometry and is the first one to notice
its existence in the natural world.

We first define a deterministic fractal in order to introduce some of the fundamental con-
cepts. Self-similarity across scales in fractal geometry is a crucial concept. A deterministic
fractal is defined using this concept of self-similarity as follows. Given a boundetliset

a Euclidean n-space, the geis said to be self-similar wheA is the union ofN distinct
(non-overlapping) copies of itself, each of which has been scaled down by a ratibhef
fractal dimensiom is related to the numbéfand the ratio as follows:

_ logN
D = og(L/) (11.9)
The fractal dimension gives a measure of the roughness of a surface. Intuitively, the larger
the fractal dimension, the rougher the texture is. Pentland [69] has argued and given evi-
dence that images of most natural surfaces can be modeled as spatially isotropic fractals.
Most natural surfaces and in particular textured surfaces are not deterministic as described
above but have a statistical variation. This makes the computation of fractal dimension
more difficult.

There are a number of methods proposed for estimating the fractal dimdbsiOme
method is the estimation of the box dimension as follows [70]. Given a boundddiset
Euclidean n-space, consider boxes of dize on a side which cover the/Asstaled

down version of the seA by ratig will result in N = 1/r° similar sets. This new set
can be covered by boxes of sice= rL, .., . The number of such boxes then is related to

the fractal dimension by

N(L) = rlD = [LT""XJD (11.10)

The fractal dimension is then estimated from Equation (11.10) by the following proce-
dure. For a giverh, divide the n-space into a grid of boxes of sizand count the number

of boxes covering\. Repeat this procedure for different valuesLofThen estimate the
value of the fractal dimensidd from the slope of the line

IN(N(L)) = —DIn(L) +DIn(L,) (11.11)

This can be accomplished by computing the least squares linear fit to the data, namely, a
plot of In(L) vs.—In(N(L)) .

An improved method of estimating the fractal dimension was proposed by Voss [71].
Assume we are estimating the fractal dimension of an image sukfdost P(m, L) be the
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probability that there aren points within a box of side length centered at an arbitrary
point on the surfacé. Let M be the total number of points in the image. When one over-
lays the image with boxes of side lendththen the(M/m)P(m, L) is the expected num-
ber of boxes withm points inside. The expected total number of boxes needed to cover the
whole image is

N
E[N(L)] = M z (1/m)P(m L) (11.12)
m=1

The expected value oRl(L) is proportionalto®  and thus can be used to estimate the
fractal dimensiorD. Other methods have also been proposed for estimating the fractal
dimension. For example, Super and Bovik [72] have proposed using Gabor filters and sig-
nal processing methods to estimate the fractal dimension in textured images.

The fractal dimension is not sufficient to capture all textural properties. It has been shown
[70] that there may be perceptually very different textures that have very similar fractal
dimensions. Therefore, another measure, cddlednarity[68,71,70], has been suggested

in order to capture the textural property that will let one distinguish between such textures.
Lacunarity is defined as

M__F

A=g/DM J 11.1
[EE(M) 0 (11.13)

whereM is the mass of the fractal set arit{ M) is the expected value of the mass. This

measures the discrepancy between the actual mass and the expected value of the mass.

Lacunarity is small when texture is fine and it is large when the texture is coarse. The mass
of the fractal set is related to the lengjthy the power law:

M(L) = KLP (11.14)

Voss [71] suggested computing lacunarity from the probability distribufgm, L) as
N N

follows. Let M(L) = Z mP(m ) andM?2(L) = Z m2P(m, L) . Then lacunarity
m=1 m=1
A is defined as:

M2(L) — (M(L))°

AL) =
© (M(L))?

(11.15)

where E[ M(L)] is the expected value (L) . This measure of the image is then used as
a texture feature in order to perform texture segmentation or classification.

Ohanian and Dubes [73] have studied the performance of various texture features. They
studied the texture features with the performance criteria “which features optimized the
classification rate?” They compared four fractal features, sixteen co-occurrence features,
four Markov random field features, and Gabor features. They used Whitney’s forward
selection method for feature selection. The evaluation was done on four classes of images:
Gauss Markov random field images, fractal images, leather images, and painted surfaces.
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The co-occurrence features generally outperformed other features (88% correct classifica-
tion) followed by fractal features (84% classification). Using both fractal and co-occur-
rence features improved the classification rate to 91%. Their study did not compare the
texture features in segmentation tasks. It also used the energy from the raw Gabor filtered
images instead of using the empirical nonlinear transformation needed to obtain the tex-
ture features as suggested in [40] (see also Section 3.4.3).

3.4. Signal Processing Methods

Psychophysical research has given evidence that the human brain does a frequency analy-
sis of the image [19,74]. Texture is especially suited for this type of analysis because of its
properties. This section will review the various techniques of texture analysis that rely on
signal processing techniques. Most techniques try to compute certain features from filtered
images which are then used in either classification or segmentation tasks.

3.4.1. Spatial Domain Filters

Spatial domain filters are the most direct way to capture image texture properties. Earlier
attempts at defining such methods concentrated on measuring the edge density per unit
area. Fine textures tend to have a higher density of edges per unit area than coarser tex-
tures. The measurement of edgeness is usually computed by simple edge masks such as
the Robert’s operator or the Laplacian operator [10,47]. The two orthogonal masks for the
Robert’'s operator and one digital realization of the Laplacian are given below.

Roberts Operators Laplacian Operator
-1-1-1
_110 _101 _
-1-1-1

The edgeness measure can be computed over an image area by computing a magnitude
from the responses of Roberts masks or from the response of the Laplacian mask.

Malik and Perona [75] proposed spatial filtering to model the preattentive texture percep-
tion in human visual system. Their proposed model consists of three stages: (i) convolu-
tion of the image with a bank of even-symmetric filters followed by half-wave
rectification, (ii) inhibition of spurious responses in a localized area, and (iii) detection of
the boundaries between the different textures. The even-symmetric filters they used con-
sist of differences of offset Gaussian (DOOG) functions. The half-wave rectification and
inhibition (implemented as leaders-take-all strategy) are methods of introducing a nonlin-
earity into the computation of texture features. A nonlinearity is needed in order to dis-
criminate texture pairs with identical mean brightness and identical second-order
statistics. The texture boundary detection is done by a straightforward edge detection
method applied to the feature images obtained from stage (ii). This method works on a
variety of texture examples and is able to discriminate natural as well as synthetic textures
with carefully controlled properties. Unser and Eden [76] have also looked at texture fea-
tures that are obtained from spatial filters and a nonlinear operator. Reed and Wechsler
[77] review a number of spatial/spatial frequency domain filter techniques for segmenting
textured images.
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Another set of spatial filters are based on spatial moments [47].("phieq)m moments
over an image regioR are given by the formula
(11.16)

(< TUR

If the regionRis a local rectangular area and the moments are computed around each pixel
in the image, then this is equivalent to filtering the image by a set of spatial masks. The
resulting filtered images that correspond to the moments are then used as texture features.
The masks are obtained by defining a window of $izex W and a local coordinate sys-
tem centered within the window. Lei, j) be the image coordinates at which the

moments are computed. For pixel coordinates n) which fall withinkhe W win-

dow centered afi, j) , the normalized coordinates, y,,) are given by:
- (m—1) - (h=1))
X W/2) T Wr2) (11.17)

Then the moments within a window centered at pigelj)
Equation (11.16) that uses the normalized coordinates.

are computed by the sum in

W/ 2 W/ 2
m,. = z I (m, n)xPyd
pPq ! mYn
n=-W/2 m=-W/2

(11.18)

The coefficients for each pixel within the window to evaluate the sum is what defines the
mask coefficients. IR is a 3x3 region, then the resulting masks are given below:

-1-1-1

_ Mip=]10 0 0 _

11 11 1 -101
Mpo = 11 Mp1 = |-1 01

111 -1 01

11 10- 10
Moo 00 My, 00O Mg, 10

111 101 110

The moment-based features have been used successfully in texture segmentation [78]. An
example texture pair and the segmentation are shown in Figure 16.

3.4.2. Fourier domain filtering

The frequency analysis of the textured image is best done in the Fourier domain. As the
psychophysical results indicated, the human visual system analyzes the textured images
by decomposing the image into its frequency and orientation components [19]. The multi-
ple channels tuned to different frequencies are also referred as multi-resolution processing
in the literature. The concept of multi-resolution processing is further refined and devel-
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oped in the wavelet model described below. Along the lines of these psychophysical
results, texture analysis systems have been developed that perform filtering in the Fourier
domain to obtain feature images. The idea is similar to the features computed from the
rings and wedges as described in Section 3.1.2, except that the phase information is kept.
Coggins and Jain [79] used a set of frequency and orientation selective filters in multi-
channel filtering approach. Each filter is either frequency selectiegientation selective.

There are four orientation filters centered at 0, 45, 90, and 135. The number of frequency
selective filters depends on the image size. For an image ol2&g 128 six filters with
center frequencies at 1, 2, 4, 8, 16, 32, and 64 cycles/image were used. They were able to
successfully segment and classify a variety of natural images as well as synthetic texture
pairs described by Julesz with identical second-order statistics (see Figure 4).

3.4.3. Gabor and Wavelet models

The Fourier transform is an analysis of the global frequency content in the signal. Many
applications require the analysis to be localized in the spatial domain. This is usually han-
dled by introducing spatial dependency into the Fourier analysis. The classical way of
doing this is through what is called the window Fourier transform. The window Fourier
transform (or short-time Fourier Transform) of a one-dimensional sif(a) is defined
as:

[29)

F (U &) = I f(X)W(x— &) ei2muxdx (11.19)

When the window functionw(x) is Gaussian, the transform becomes a Gabor transform.
The limits on the resolution in the time and frequency domain of the window Fourier
transform are determined by thiene-bandwidth productr the Heisenberg uncertainty
inequalitygiven by:

1
>
AtAu = (11.20)

Once a window is chosen for the window Fourier transform, the time-frequency resolution
is fixed over the entire time-frequency plane. To overcome the resolution limitation of the
window Fourier transform, one lets thlg  aAd vary in the time-frequency domain.
Intuitively, the time resolution must increase as the central frequency of the analyzing fil-
ter is increased. That is, the relative bandwidth is kept constant in a logarithmic scale. This
is accomplished by using a window whose width changes as the frequency changes.
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FIGURE 16. The segmentation results using moment based texture features. (a) A texture pair cofisisting o
reptile skin and herringbone pattern from the Brodatz album [92]. (b) The resulting segmentation.
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Recall that when a functiofi(t) is scaled in timedy which is expressed ag , the

function is contracted ifi>1 anditis expanded wher 1 . Using this fact, the wavelet
transform can be written as:

W (0, 8) = % [ f(t)hE(t%E)dt (11.21)

Here, the impulse response of the filter bank is defined to be scaled versions of the same
prototype functiorh(t) . Now, setting in Equation (11.21)

h(t) = w(t)e-j2mut (11.22)

we obtain the wavelet model for texture analysis. Usually the scaling factor  will be
based on the frequency of the filter.

Daugman [80] proposed the use of Gabor filters in the modeling of the receptive fields of
simple cells in the visual cortex of some mammals. The proposal to use the Gabor filters in
texture analysis was made by Turner [81] and Bafikl.[82]. Later Farrokhnia and Jain
used it successfully in segmentation and classification of textured images [40,83]. Gabor
filters have some desirable optimality properties. Daugman [84] showed that for two-
dimensional Gabor functions, the uncertainty relatidng\u = 1/4 aydv=1v/4

attain the minimum value. Hemex adyy  are effective widths in the spatial domain and

Au andAv are effective bandwidths in the frequency domain.

A two-dimensional Gabor function consists of a sinusoidal plane wave of a cémain
guencyandorientationmodulated by a Gaussian envelope. It is given by:

2 2
f(xy) = exp(—%L’;—z + z—z})cos(mmox + ) (11.23)
x Yy

whereu, andp are the frequency and phase of the sinusoidal wave. The gglues  and
o, are the sizes of the Gaussian envelope inxtandy directions, respectively. The
Gabor function at an arbitrary orientati®  can be obtained from Equation (11.23) by a

rigid rotation of thex-y plane by 6,

The Gabor filter is a frequency and orientation selective filter. This can be seen from the
Fourier domain analysis of the function. When the phase is 0, the Fourier transform of
the resulting even-symmetric Gabor functi@r, y) is given by

| u-uy? 2 u+uy? 210
Fuy) = Alexprd U0 Pl Y W7 VN oy
o 2 o2 o2 2l o2 020
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whereg, = 1/(2no,) ,0, = 1/(2T[0y) ,andA = 2T[0X0y . This function is real-val-

ued and has two lobes in the spatial frequency domain, one centered argund and
another centered aroundl, . For a Gabor filter of a particular orientation, the lobes in the
frequency domain are also appropriately rotated.

Jain and Farrokhnia [40] used a version of the Gabor transform in which window sizes for
computing the Gabor filters are selected according to the central frequencies of the filters.
The texture features were obtained as follows:

(@) Use a bank of Gabor filters at multiple scales and orientations to obtain filtered
images. Let the filtered image for tH8 filter hex, y)

(b) Pass each filtered image through a sigmoidal nonlinearity. This nonling#tjty
has the form oftanh(at) . The choice of the valuewf is determined empirical-
ly.

(c) The texture feature for each pixel is computed as the absolute average deviation
of the transformed values of the filtered images from the mean within a window

W of sizeM x M . The filtered images have zero mean, thereforeitfhe  texture
feature image;(x, y) is given by the equation:

1
&%y = = gﬂ W(ri(a, b)| (11.25)
M
(a, W

The window sizeM is also determined automatically based on the central frequency of the

filter. An example texture image and some intermediate results are shown in Figure 17.

Texture features using Gabor filters were used in texture segmentation and texture classifi-
cation tasks successfully. An example of the resulting segmentation is shown in Figure 18.

Further details of the segmentation algorithm are explained in Section 4.1.

4. Texture Analysis Problems

The various methods for modeling textures and extracting texture features can be applied
in four broad categories of problems: texture segmentation, texture classification, texture
synthesis, and shape from texture. We now review these four areas.

4.1. Texture Segmentation

Texture segmentation is a difficult problem because one usually does not&kpowari

what types of textures exist in an image, how many different textures there are, and what
regions in the image have which textures. In fact, one does not need to know which spe-
cific textures exist in the image in order to do texture segmentation. All that is needed is a
way to tell that two textures (usually in adjacent regions of the images) are different.

The two general approaches to performing texture segmentation are analogous to methods
for image segmentation: region-based approaches or boundary-based approaches. In a
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FIGURE 17. Filtering results on an example texture image. (a) Input image of five textures. (b), (c) A subset
of the filtered images each filtered with a Gabor filter with the following parameters. The filter in (b) has a
central frequency at 16 cycles/image-width and 135° orientation. The filter in (c) has a central frequency o
32 cycles/image-width and 0° orientation. (d), (e) The feature i images obtained corresponding to the filtered
images in (b) and (c). The filtered image in (b) shows a lot of activity in the textured region of the top right
guadrant and the image in (c) shows activity in the textured region of the top left quadrant. These are
reflected in the feature images in (d) and (e).

region-based approach, one tries to identify regions of the image which have a uniform
texture. Pixels or small local regions are merged based on the similarity of some texture
property. The regions having different textures are then considered to be segmented
regions. This method has the advantage that the boundaries of regions are always closed
and therefore, the regions with different textures are always well separated. It has the dis-
advantage, however, that in many region-based segmentation methods, one has to specify
the number of distinct textures present in the image in advance. In addition, thresholds on
similarity values are needed.

The boundary-based approaches are based upon the detection of differences in texture in
adjacent regions. Thus boundaries are detected where there are differences in texture. In
this method, one does not need to know the number of textured regions in the image in
advance. However, the boundaries may have gaps and two regions with different textures
are not identified as separate closed regions. Strictly speaking, the boundary based meth-
ods result in segmentation only if all the boundaries detected form closed curves.
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Boundary based segmentation of textured images have been used by Tuceryan and Jain
[49], Voorhees and Poggio [56], and Eom and Kashyap [85]. In all cases, the edges (or tex-
ture boundaries) are detected by taking two adjacent windows and deciding whether the
textures in the two windows belong to the same texture or to different textures. If it is
decided that the two textures are different, the point is marked as a boundary pixel. Du Buf
and Kardan [86] studied and compared the performance of various texture segmentation
techniques and their ability to localize the boundaries.

Tuceryan and Jain [49] use the texture features computed from the Voronoi polygons in
order to compare the textures in the two windows. The comparison is done using a Kol-
mogorov-Smirnoff test. A probabilistic relaxation labeling, which enforces border
smoothness, is used to remove isolated edge pixels and fill boundary gaps. Voorhees and
Poggio extract blobs and elongated structures from images (they suggest that these corre-
spond to Julesz’s textons). The texture properties are based on blob characteristics such as
their sizes, orientations, etc. They then decide whether the two sides of a pixel have the
same texture using a statistical test called maximum frequency difference (MFD). The pix-
els where this statistic is sufficiently large are considered to be boundaries between differ-
ent textures.

Jain and Farrokhnia [40] give an example of integrating a region-based and a boundary-
based method to obtain a cleaner and more robust texture segmentation method. They use
the texture features computed from the bank of Gabor filters to perform a region-based
segmentation. This is accomplished by the following steps:

(&) Gabor features are calculated from the input image, yielding several feature imag-
es.

(b)  Acluster analysis is performed in the Gabor feature space on a subset of randomly
selected pixels in the input image (this is done in order to increase computational
efficiency. About 6% of the total number of pixels in the image are selected). The
numberk of clusters is specified for doing the cluster analysis. This is set to a val-
ue larger than the true number of clusters and thus the image is oversegmented.

(c) Step (b) assigns a cluster label to the pixels (pattern) involved in cluster analysis.
These labelled patterns are used as the training set and all the pixels in the image
are classified into one of thie clusters. A minimum distance classifier is used.
This results in a complete segmentation of the image into uniform textured re-
gions.

(d) A connected component analysis is performed to identify each segmented region.

(e) A boundary-based segmentation is performed by applying the Canny edge detec-
tor on each feature image. The magnitude of the Canny edge detector for each fea-
ture image is summed up for each pixel to obtain a total edge response. The edges
are then detected based on this total magnitude.

()  The edges so detected are then combined with the region-based segmentation re-
sults to obtain the final texture segmentation.

The integration of the boundary-based and region-based segmentation results improve the
resulting segmentation in most cases. For an example of this improvement see Figure 18.
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4.2. Texture Classification

Texture classification involves deciding what texture category an observed image belongs
to. In order to accomplish this, one needs to have gniori knowledge of the classes to

be recognized. Once this knowledge is available and the texture features are extracted, one
then uses classical pattern classification techniques in order to do the classification.

Examples where texture classification was applied as the appropriate texture processing
method include the classification of regions in satellite images into categories of land use
[41]. Texture classification was also used in automated paint inspection by Farrokhnia
[83]. In the latter application, the categories were ratings of the quality of paints obtained
from human experts. These quality rating categories were then used as the training sam-
ples for supervised classification of paint images using texture features obtained from
multi-channel Gabor filters.

4.3. Texture Synthesis

Texture synthesis is a problem which is more popular in computer graphics. It is closely
tied to some of the methods discussed above, so we give only a brief summary here. Many
of the modeling methods are directly applicable to texture synthesis. Markov random field
models discussed in Section 3.3.1 can be directly used to generate textures by specifying
the parameter vectdd@ and sampling from the probability distribution function [62, 60].
The synthetic textures in Figure 2(b) are generated using a gaussian Markov random field
model and the algorithm in [87].

(c) (d)

FIGURE 18. The results of integrating region-based and boundary-based processing using the multi-scale
Gabor filtering method. (a) Original image consisting of five natural textures. (b) Seven category region-
based segmentation results. (c) Edge-based processing and texture edges detected. (d) New segmentation
after combining region-based and edge-based results.
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Fractals have become popular recently in computer graphics for generating realistic look-
ing textured images [88]. A number of different methods have been proposed for synthe-
sizing textures using fractal models. These methods include midpoint displacement
method and Fourier filtering method. The midpoint displacement method has become very
popular because it is a simple and fast algorithm yet it can be used to generate very realis-
tic looking textures. Here we only give the general outline of the algorithm. A much more
detailed discussion of the algorithm can be found in [88]. The algorithm starts with a
square grid representing the image with the four corners set to 0. It then displaces heights
at the midpoints of the four sides and the center point of the square region by random
amounts and repeats the process recursively. The itenmatich uses the grid consisting of
the midpoints of the squares in the grid for iteration . The height at the midpoint is first
interpolated between the endpoints and a random value is added to this value. The amount

added is chosen from a normal distribution with zero-mean and var'(zﬁ\ce at itaration

In order to keep the self-similar nature of the surface, the variance is changed as a function
of the iteration number. The variance at iteration is given by

o-=r wherer = 1/./2 (11.26)

This results in a fractal surface with fractal dimensi@+ H) . The heights of the fractal
surface can be mapped onto intensity values to generate the textured images. The example
image in Figure 2(c) was generated using this method.

Other methods include mosaic models [89,90]. This class of models can in turn be divided
into subclasses of cell structure models and coverage models. In cell structure models the
textures are generated by tessellating the plane into cells (bounded polygons) and assign-
ing each cell gray levels according to a set of probabilities. The type of tessellation deter-
mines what type of textures are generated. The possible tessellations include triangular
pattern, checkerboard patterns, Poisson line model, Delaunay model, and occupancy
model. In coverage models, the texture is obtained by a random arrangement of a set of
geometric figures in the plane. The coverage models are also referred to as bombing mod-
els.

4.4. Shape from Texture

There are many cues in images that allow the viewer to make inferences about the three-
dimensional shapes of objects and surfaces present in the image. Examples of such cues
include the variations of shading on the object surfaces or the relative configurations of
boundaries and the types of junctions that allow one to infer three-dimensional shape from
the line drawings of objects. The relation between the variations in texture properties and
surface shape was first pointed out by Gibson [41].

Stevens observed that certain properties of texture are perceptually significant in the
extraction of surface geometry [91]. There are three effects that surface geometry has on
the appearance of texture in images: foreshortening and scaling of texture elements, and a
change in their density. The foreshortening effect is due to the orientation of the surface on
which the texture element lies. The scaling and density changes are due to the distance of
the texture elements from the viewer. Stevens argued that texture density is not a useful
measure for computing distance or orientation information because the density varies both
with scaling and foreshortening. He concluded that the more perceptually stable property
that allows one to extract surface geometry information is the direction in the image which
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is not foreshortened, called tloharacteristic dimensiarStevens suggested that one can
compute relative depth information using the reciprocal of the scaling in the characteristic
dimension. Using the relative depths, surface orientation can be estimated.

Bajcsy and Lieberman [92] used the gradient in texture element sizes to derive surface
shape. They assumed a uniform texture element size on the three-dimensional surface in
the scene. The relative distances are computed based on a gradient function in the image
which was estimated from the texture element sizes. The estimation of the relative depth
was done without using knowledge about the camera parameters and the original texture
element sizes.

Witkin [93] used the distribution of edge orientations in the image to estimate the surface
orientation. The surface orientation is represented by the stant ( ) and tilt ( ) angles.
Slant is the angle between a normal to the surface and a normal to the image plane. Tilt is
the angle between the surface normal’s projection onto the image plane and a fixed coordi-
nate axis in the image plane. He assumed an isotropic texture (uniform distribution of edge
orientations) on the original surface. As a result of the projection process, the textures are
foreshortened in the direction of steepest inclination (slant angle). Note that this idea is
related to Stevens’ argument because the direction of steepest inclination is perpendicular
to the characteristic dimension. Witkin formulated the surface shape recovery by relating
the slant and tilt angles to the distribution of observed edge directions in the imadg. Let

be the original edge orientation (the angle between the tangent and a fixed coordinate axis
on the plane S containing the tangent). logt be the angle between the x-axis in the

image plane and the projected tangent. Thé is related to the slant and tilt angles by the
following expression:

0= %_anBD+ .
a ata ool T (12.27)
Here all is an observable quantity in the image i 1) are the quantities to be com-

puted. Witkin derived the expression for the conditional probabilities for the slant and tilt
angles given the measured edge directions in the image and then used a maximum likeli-

hood estimation method to compute te, 1) . L&t = {a,l ..., a,l} be a set of
observed edge directions in the image. Then the conditional probabilities are given as:

P(o, T)P(Ad o, 1)

P(o,T|AD) = (11.28)
IIP(G, T)P(Ad o, T)dodt
where P(o, 1) = _S__I_%q . The maximum likelihood estimate (o, T|AD gives the
I

desired surface orientation.

Blostein and Ahuja [57] used the scaling effect to extract surface information. They inte-
grated the process of texture element extraction with the surface geometry computation.
Texture element extraction is performed at multiple scales and the subset that yields a
good surface fit is selected. The surfaces are assumed planar for simplicity. Texture ele-
ments are defined to be circular regions of uniform intensity which are extracted by filter-
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image of texture element
of lengthF;

-

The slant of the plane textured plane

Texture element of length
Fp on the surface.

FIGURE 19. The projective distortion of a texture element in the image.

0 = 62.5,1 = 65° o= 70°1 = 95°
(@) (b)

FIGURE 20. Examples of shape from texture computation using Blostein and Ahuja’s algorithm [57]. (a)
An image of a field of rocks and the computed slant and tilt of the plane. (b) An image of a sunflower field
and the extracted slant and tilt values.

ing the image with(02G andaa—o(DZG) operators and comparing the filter responses to

those of an ideal disk (her® is the size of the Gausstan, ). At the extremum points of
the image filtered by(12G , the diametdd () and contr&st () of the best fitting disks are
computed. The convolution is done at multiple scales. Only those disks whose computed

diameters are close to the size of the Gaussian are retained. As a result, blob-like texture
elements of different sizes are detected.
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The geometry of the projection is shown in Figure 19. tet and be the slant and tilt of
the surface. The image of a texture element has the foreshortened dimension  and the

characteristic dimensiod; .The aréa  of the image texel is proportional to the product
F,U; for compact shapes. The expression for the afga, , of the image of a texture ele-
ment is given by:

;= —tanBtano .
A = A1 ftanc)3 (11.29)

whereA. is the area that would be measured for the texel at the center of the image. The
angleB is given by the expression

0 = atan((xcost + ysint)(r/ f)) (11.30)

Here,r is the physical width of the image,f  is a measure of field of view of the camera,
and (x, y) denotes pixel coordinates in the image.  can be measured in the image. To

find the surface orientation, an accumulator array consisting of the paranjétsrs, 1)

is constructed. For each combination of parameter values, a possible planar fit is com-

puted. The plane with the highest fit rating is selected as the surface orientation and texture
elements that support this fit are selected as the true texture elements. Some example
images and the computed slant and tilt values are shown in Figure 20.

5. Summary

This chapter has reviewed the basic concepts and various methods and techniques for pro-
cessing textured images. Texture is a prevalent property of most physical surfaces in the
natural world. It also arises in many applications such as satellite imagery and printed doc-
uments. Many common low level vision algorithms such as edge detection break down
when applied to images that contain textured surfaces. It is therefore crucial that we have
robust and efficient methods for processing textured images. Texture processing has been
successfully applied to practical application domains such as automated inspection and
satellite imagery. It is also going to play an important role in the future as we can see from
the promising application of texture to a variety of different application domains.
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