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Abstract

A well-known limitation to volume intersection is its inability to reconstruct shape
within 3D concavities. However, in this paper we show how volume intersection can
be used to compute 2D occupancy in a support plane (for example, a floor or a table
top) and in this case is not hindered by concavities. We prove that all visible points
on the boundary of an object touching that plane are exactly reconstructible. We then
describe an algorithm to compute the occupancy of space in that plane. The practical
importance of this work is that using volume intersection for computing occupancy
in a plane is extremely fast. We compare the speed of our methods to some other
published works, and discuss results in testing our methods in a number of different
environments and applications.
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1 Introduction

Volume intersection is a method for computing shape using multiple viewpoints. The shape
of the object is inferred from its silhouette. The intersection of silhouettes from multiple
viewpoints produces an approximation of the shape called the convex hull. Many works have
been published demonstrating volume intersection methods [2, 4, 9, 16, 21, 23, 24, 25, 27, 31,
32]. In some of the earliest works in volume intersection, the main problems of interest were
representation and algorithm, with the emphasis on computational resources. For example,
a brute-force tessellation of 3D space (commonly called a voxel grid) can require a great
deal of storage as the resolution of tessellation (and hence model fidelity) is increased. The
oct-tree [2, 4, 23, 25] representation was used to address this problem through a hierarchical
tessellation of space.

The most important limitation to volume intersection is that concavities in the object
cannot be reconstructed, because the interior of a concavity does not appear in any possible
silhouette (see Figure 1). Some works have tried to address this problem through additional
analysis of the self-occluding contours [3, 36]. A recent promising approach is based upon
projected voxel color matching (also called space sweeping) [6, 7, 10, 29, 30]. The traditional
approach to volume intersection uses only the boundary of the silhouette, ignoring the colors
of points in the interior of the silhouette. The voxel coloring approach matches the colors of
projections of all points, which offers greater constraints.

Laurentini [22] showed that some of the points on the surface of an object are hard points,
meaning that they are exactly reconstructible using volume intersection, while other points
on the surface of an object are soft points, meaning that they cannot be exactly reconstructed
using volume intersection. He gives proof of the conditions sufficient for hard points, and
discusses their reconstruction.

In this paper we show how volume intersection can be used to exactly reconstruct the
occupancy in a plane of the visible boundary of an object resting on that plane (see Figure 2).

We prove that all visible points on the boundary of the object touching that plane are hard
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Figure 1: A concavity cannot be reconstructed using volume intersection, because the interior
of the concavity does not appear in the silhouette of the object from any viewpoint.
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Figure 2: The 2D occupancy of space in a support plane (shaded grey in this figure) is
exactly reconstructible using volume intersection, even in a 3D concavity.
points. We then describe an algorithm to compute the occupancy of space in that plane.
The theoretical importance of this work is that we prove that volume intersection can be
used to produce an exact shape model of occupancy in a supporting plane, and in this case
is not hindered by concavities. The practical importance of this work is that this method
for computing occupancy in a plane is extremely fast. We demonstrate a speedup of more
than an order-of-magnitude over some previously published tracking methods that use the
more common paradigm of segmentation and triangulation.

Many applications can make use of continuous monitoring of the occupancy of space in

a plane. For example, a surveillance system can monitor the occupancy of ground space in



the area being monitored to detect intruders. A mobile robot can monitor the occupancy
of floor space in hallways and rooms in order to avoid obstacles. An industrial robot arm
can monitor the occupancy of space on a conveyor to locate objects for pick-and-plane
manipulation. In Section 3 we demonstrate our methods operating in several environments

and different applications.

2 Methods

We first prove that the occupancy in a support plane is exactly reconstructible. We then de-
scribe a method to compute this occupancy. Finally, we present the algorithm to implement

this method and discuss its parallelism.

2.1 Proof of reconstruction
Laurentini provided the following proposition [22]:

A necessary and sufficient condition for a point P belonging to the surface of a
visual hull VH(O) to be hard is that at least one line L passes through P without

intersecting VH(O) at any other point.

Laurentini proved the proposition by considering that for a point to satisfy this condition it
must lie on the surface of the object (and not just the visual hull).

Figure 3 shows a diagram of the situation we are considering in this paper. The point of
interest lies in a support plane (for example, a floor or a table top), and on the boundary
of the object in that plane. We assume that the object does not extend past, or otherwise
break, the support plane. If there exists a viewpoint above the plane that can observe the
point of interest, we propose that such a viewpoint forms a line that satisfies Laurentini’s
proposition of a hard point.

In order to satisfy the proposition, this line must not otherwise intersect the visual hull
of the object. Since the object cannot extend below the support plane, the visual hull cannot

extend below the plane and so we only need consider points above the plane. For the point
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Figure 3: Any point that is visible and lies on the boundary of an object in a supporting
plane satisfies Laurentini’s definition of a hard point.

to be observable, there must be a line that passes through the point but does not pass
through any other point in the object (else it would be occluded). Since the line does not
pass through any other point on the object, it also does not pass through any other point on
the visual hull of the object. (Laurentini calls this the opaqueness property, that “no visual
ray can cross a soft surface without intersecting O (the object)”.) Therefore the point under
consideration is a hard point.

It is reasonable to infer that all points in the support plane enclosed by the observed
boundary are occupied. (The object may be "hollow”, but unless the object moves this
space is not accessible.) Given that all points on the boundary are hard points, and so can
be exactly reconstructed, this provides a theory to compute the occupancy of space in the
support plane. As with the classic volume intersection approach, multiple viewpoints are
generally necessary, in order to observe the complete boundary. We discuss the issue of

number of viewpoints in more detail in Section 3.

2.2 Computing occupancy in the support plane

The idea described in Section 2.1 can be applied to the computation of occupancy in any

support plane. In this section we describe a method to accomplish that construction, using



an indoor floor as an example.

Let (z,vy, z) represent a right-handed three-dimensional coordinate system. The z = 0
plane is assumed to lie in the plane of the floor (the ground plane) of the area being monitored.
Let Olz,y], 0 <z < X, 0<y <Y, zand y integers, define an X-columns x Y-rows
discrete model of two-dimensional space in the z = 0 plane of the (z,y,z) world. Each
Olz, y] models a rectangle of space + X 5 units in size. In this model, O[z,y] = 0 signifies a
rectangle of empty space while O[z, y] # 0 signifies a rectangle of (at least partially) occupied
space. We refer to Olz, y| as an occupancy map [13]. Let I[n,c,r], 0<n< N, 0<c¢<C,
0 <r < R, n, cand r integers, define a set of C'-columns x R-rows pixel images as captured
by N cameras.

Our method is initialized in three steps. First, the cameras are calibrated to provide
a transform 7, from each camera’s image space I[n,c,r] to the (z,y, z) world space. The
transform 7, uses a set of camera model equations and calibration parameters to relate each

pixel [n, ¢, 7] to a ray of space in world coordinates:
To:n,er] = (2,9, 2) + (4,5, k)d - d>0 (1)

where (z,y,2) and (i,7,k) are known for each pixel [n,c,r] via the transform 7,. Our
particular calibration model and methods are detailed in Section 2.3.

Second, a single background image Bln, ¢, ] is acquired for each camera while the space
to be monitored is empty. A binary mask M|[n,c,r| is created for each background im-
age specifying which pixels are empty space, where M|n,c,r] = 0 signifies floorspace and
Min, e, r] # 0 signifies not floorspace. We use a polygon-drawing tool to delineate floorspace
in the images for mask creation. The floorspace to be monitored is a matter of choice.
There is no hard distinction between fixed obstacles and dynamic obstacles, but rather a
continuum. For instance, a person is generally considered dynamic, a wall is generally con-
sidered fixed, and a piece of furniture may be considered either dynamic of fixed depending

on its weight and function. In general, we emptied our experimental area of chairs, desks,
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Figure 4: Background image and floorspace mask for one camera.

tables, etc., during setup, but ignored bookcases and heavy materials sitting along walls. An
example background image and floorspace mask are shown in Figure 4.

The third step to initialize our method is to determine the occupancy map cell O[z, y]
that each image pixel I[n,c,r] views. These locations are determined using the transform

T to solve the following:
To:[ne,r] = (2,y,2) + (4,7, k)d = (24, Y4, 0) (2)

where z4,7, and d are the three unknowns in the three independent equations. The values
(zg4,y,) are rounded to the nearest integers. If d > 0, 0 <z, < X, 0 <y, <Y and

Min,¢,r] = 0, then the mapping F
F : I[n: c, T] A O[J;ga yg] (3)

is established. F is not isomorphic, because any number of image pixels, from any number
of cameras, may view a single occupancy map cell. Our particular solution for F is detailed
in Section 2.4.

The basic operation of our algorithm is to detect differences between the background
image B[n,c,r| and live image I[n,c,r] for each camera. A difference image D[n,c,r]| is
computed as

| 1 if|I[n,c,r] = Bln,c,7]| > T
Din, e,r] = { 0 iflI[n,c,r] — Bn,c,7]| < T (4)
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Figure 5: Live image and difference image.

The threshold 7" controls the sensitivity of the algorithm, and is discussed further in Section 3.

By applying F, the difference image D[n, ¢, r] produces the occupancy map:

Olz,y] = [[ F{DIn, ¢, r]} ()

Using Equation 5, an occupancy map cell is designated as empty if at least one image pixel
that views it sees no difference (Dn,c,7] = 0). An occupancy map cell is only designated
as occupied if every image pixel that can view it sees a difference (D[n,c,7] = 1). The
implementation of this algorithm is detailed in Section 2.5.

Figure 5 shows an example live image and an image where differences with the background
are highlighted. Pixels which are not different imply clear paths to the corresponding ground
plane points, and therefore empty space in the corresponding occupancy map cells. From
a single camera, this perception of occupancy shows the obvious effects of occlusion and
perspective, as in Figure 6(a). As additional camera views are added, a reasonable depiction
of the occupied floorspace emerges, as shown in Figure 6(b)-(d). Note that in this exam-
ple, the concavities in the two-dimensional shape of the bottom of the chair are exactly

reconstructed.

2.3 Camera Calibration Model

Any camera calibration model and technique may be used, but we recommend the camera

model proposed by Tsai [34]. We have found it be robust for a variety of industrial and
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(a) map using only one camera (b) map using two cameras
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Figure 6: Map computed using an increasing number of cameras. The camera locations are
denoted with light grey circles near the edges of the occupancy map.

commercial cameras and lenses, and a dependable implementation is publicly available [35].
In related work [26] we describe steps to simplify calibrating a camera network, particularly
in locating correspondences. The output from this procedure is the set of parameters for

Tsai’s camera model, for each camera in the network. This camera model consists of:

1. the external parameters T (translation vector) and R (rotation matrix), which locate

and position the camera,

2. the internal parameters f (focal length), x (radial lens distortion) and C;, C, (center

of image), which describe the image projection, and

3. the internal parameters d,, d, (sensor element spacing), N,;, N, (sampling resolution)

and s, (scale factor), which describe the process of image digitization.
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These parameters are used to derive a mapping from each camera’s image space to a world
coordinate system.

Using Tsai’s camera model, Equation 1 represents a sequence of four steps. First, a
point in world space P, = [ Tw Yw 2w ]T is transformed to a point in the camera space

T
P.= [ Te Ye Ze ] by applying a rigid body transformation
P.=RP,+T (6)

where T is the translation vector and R is the 3 x 3 rotation matrix. Second, the point in
the camera space P, is transformed through perspective projection, using a pinhole camera

model, to ideal undistorted image coordinates (U,, V4,):

Third, the point is transformed through radial lens distortion to distorted image coordinates

(Uda ‘/;i)
Ud = 13&2 (9)
Vd = I—K:rz (10)

where £ is the distortion coefficient and r = /U2 + V2. Fourth, the point is transformed

through digitization as it is captured by a framegrabber:

Uy =230+ C, (11)
Vi =aVatCy (12)
(13)

where (Uy, Vy) are image pixel coordinates.
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2.4 Transform from image space to map space

Using Tsai’s camera model, the solution to Equation 2 is a series of five steps. This solution
begins by taking a point backward through the steps given in Section 2.3. The first step

transforms a point (Uy, Vy) from image coordinates to distorted image coordinates (Uy, V):

Uy = (U;—Cy)e e (14)
Va = (Vf - Cy)dy (15)

where Cy, Cy, dg, dy, Sz, Ney and Ny, are camera parameters established during calibration.
The second step transforms from distorted image coordinates to undistorted image coordi-

nates (U, V4,):

Us = Uy(1+ kr?) (16)

Vo =Va(1+ kr?) (17)

where k is a camera parameter and r?> = u? + v3. The third step transforms undistorted
image coordinates to camera (3D) coordinates. This step relates an image pixel to a ray.
This ray is described by a starting point and a directed vector. The focal point, located at
(0,0,0), is taken as the starting point. The image plane is located at f (the focal length) on
the z-axis (in camera coordinates). The directed vector may therefore be described by its

intersection with the image plane (U, V,, f), so that
[Uy, Va] = (0,0,0) + (Uy, Va, f)d (18)

where d is an unknown. The fourth step transforms the directed vector from camera co-
T T
ordinates to world coordinates. Let P, = [:L‘c Ye zc] = [O 0 ()] and P, =
T T
[ te Je ke ] = [ U, Vi f ] describe the ray in camera coordinates. Both P, and

P,, are transformed by

P, =R YP.—T) (19)



T T

to give P, = [ Ty Yu 2w ] and Py, = [ w Jw kuw ] , where P, and P, are points in
world coordinates and camera coordinates, respectively, and R and 7" are camera parameters
established during calibration. The fifth and final step solves for the intersection of this ray

with the ground plane (¢ = 0):

(xwaywazw) + (iwajwakw)d = ($g,yg,0) (20)
where (z4,y,) and d are the unknowns as described in Equation 2.

2.5 Algorithm

Since speed of execution is the primary practical importance of this work, it is important
to discuss the actual implementation of our methods in some detail. All the calculations
necessary to solve for F (Equation 3) are independent of image content. Therefore F can
be computed off-line and stored as a look-up table. F provides a two-way mapping, so that
it may be applied in two different manners. The look-up table L;[n, ¢, ] relates each image
pixel for each camera to a unique occupancy map cell. The look-up table Ly[x,y] relates
each occupancy map cell to a set of image pixels, where each set may include any number of
pixels (including zero) from each camera. The use of Li[n, ¢, r] and L[z, y] lead to different
algorithms, which we refer to as image-based and map-based.

In the following pseudo-code listings we maintain the notation established in Section 2.2:
Olz,y] is the occupancy map, I[n,c,r]is a set of live images from N cameras, and B[n, ¢, ]
is a set of background images acquired during system initialization. The indices z and
y refer to map coordinates, ¢ and r refer to image coordinates, and n refers to camera
number. Li[n,c,r] and Le[z,y] refer to look-up tables storing the mappings described by
F (Equation 3). The threshold T controls the sensitivity of the algorithm, and is discussed
further in Section 3.

The arrays O[z,y|, I[n,c,r], Bln,c,r], Li[n,c,r] and Ly|z,y| are multi-dimensional, yet

they can be accessed in one-dimensional order because they have discrete boundaries. For
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the sake of clarity, in the following algorithm descriptions we maintain the multi-dimensional
notation. However, loops on (z, ), on (¢,7), and on (n,¢,r), can be written using a single-
index loop. This reduction in loop overhead yields faster executions.

The image-based algorithm uses the look-up table L;[n,c,r], and is described by the

following pseudo-code:

loop ... time ...
loop x = 0 ... map columns
loop y = 0 ... map rows
Olx,yl =1
end loop
end loop
loop n = 0 ... number of cameras
loop ¢ = 0 ... image columns
loop r = 0 ... image rows

if (|I[n,c,r]-Bln,c,r]] < T)
0[L1i[n,c,r]] =0
end if
end loop
end loop
end loop

end loop

The arrays I[n,c,r|, B[n,c,r], and Li[n,c,r] are accessed in sequential order, which can
be exploited by a cache memory. The array O[z,y] is accessed in non-sequential order, so
that caching does not speed up its access. Entries in Lq[n, ¢, 7] that are unused (entries for
image pixels which do not map to support plane points) are given a sentinel value that points

to a harmless memory location outside the occupancy map. For instance, the occupancy map
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array is allocated as X x Y 41 cells, and the address of the extra cell becomes the sentinel.
An alternative is to add a second conditional statement testing the mask. In the code given

above, the inner-most loop is modified as follows:

if (M[n,c,r] == 0)
if (|I[n,c,r]1-Bln,c,r]| < T)
0[L1i[n,c,r]] =0
end if

end if

In this case an extra conditional statement is executed for every pixel, whereas in the original
code non-useful assignment statements may be executed for some pixels. In our experiments
we always found the sentinel approach to be faster than the mask approach.

The map-based algorithm uses the look-up table Ls[z,y|. Entries in Ly[x,y] are sets of
image pixel identities. The size of each set varies depending on how many image pixels view
the occupancy map cell. This detail can be simplified by placing a maximum on set size, so
that Ls[x,y] may be implemented as a three-dimensional array. The constant set size S is
selected so that the majority of the mappings in Equation 3 may be found in L[z, y, s|.

The map-based algorithm is described by the following pseudo-code:

loop ... time ...
loop x = 0 ... map columns
loop y = 0 ... map rows
0[x,y] =1
loops =0 ...8S

if (II[L2[x,y,s]]1-B[L2[x,y,s]]| < T)
Olx,yl] =0
exit loop s

end if

15



end loop
end loop
end loop

end loop

In the map-based algorithm, the arrays Lq[z,y, s] and Oz, y| are accessed in sequential
order, while the arrays I[n,c,r] and B[n,c,r] are accessed in non-sequential order. As
with the image-based algorithm, unused entries in Ly[z, y, s] may be handled using sentinel
addressing or masking. The sentinel version of the code is shown above. In this case entries
in Lo[z,y,s] which do not map to image pixels are given a sentinel value that points to
memory locations outside the image and background image spaces that cause the conditional
statement to fail.

In our experience, the image-based algorithm is almost always faster than the map-based
algorithm. However, the map-based algorithm implicitly solves the correspondence problem
(all pixels which see the same support plane point are grouped), so it offers potential for
future work to exploit a more complex fusion approach than the simple AND operator used
in Equation 5. Both the image-based and map-based algorithms have great potential for
parallelism on a multiprocessor architecture. In [12] we explored that potential and discov-
ered near linear speedup for both algorithms on a multiprocessor architecture. We expect
this to be increasingly important as common desktop computers move from uniprocessor
to dual-processor architectures (common today) to N-processor architectures (based on the

current trend it seems as though this is likely to become common in the future).

3 Experiments

We have tested our methods in five different locations, using three different computing
platforms, and applied to four different applications. The following locations were used in

experiments:
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. UCSD lab. A university lab, carpeted floor, monitored space 9 x 6.5 m? in area.
Bookshelves lined most of the walls, on which were mounted four Sony XC-999 CCD

caleras.

. Clemson lab. A university lab, carpeted and tiled floor, monitored space 5 x 4 m? in
area. Six Sony XC-75 CCD cameras were mounted on a drop ceiling near the corners

and centers of two walls.

. Industrial lab. An industrial lab, linoleum floor, monitored space 3.5 x 3.5 m? in area.
Six Sony XC-75 CCD cameras were mounted on industrial framing surrounding an

industrial robot arm and conveyor centered in the monitored space.

. Living room. A residential room, ceramic tiled floor, monitored space 6 x 4 m? in area.
Four Sony XC-ST50 CCD cameras were mounted on tripods raised to ceiling height in

the corners of the room.

. CVPR 2000. A hotel ballroom, carpeted floor, monitored space 5 x 5 m? in area. Four
Sony XC-75 CCD cameras were mounted near the top of poles placed at the corners

of the area.

All locations were indoor, and sunlight was minimal. In each location the cameras were

deployed in positions similar to those used for video security (approximately 2.5 to 3 meters

above the ground plane, evenly distributed on the perimeter of the area being monitored).

The cameras were equipped with lenses ranging from 3.5 to 6.0 mm.

In every location, all the cameras were synced and hardwired to a single computer,

equipped with two framegrabbers (using the red, green and blue channels to grab synced

greyscale images from three separate cameras). The following computers were used in ex-

periments:

1. 1997 PC. A custom PC equipped with a 233 MHz Pentium 2 processor and two Matrox

Meteor framegrabbers. Used in the UCSD lab.
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2. 1999 PC. A Dell PC equipped with dual 450 MHz Pentium 2 processors and two

Imaging Technology IC-RGB framegrabbers. Used in the Clemson lab, the living
room, and CVPR 2000.

2001 SMP. A Gateway rack workstation equipped with eight 550 MHz Pentium Xeon
processors and two Imaging Technology PC-RGB framegrabbers. Used in the industrial
lab.

For every platform, the code was written in C, compiled using Microsoft’s Visual C++, and

executed under the Windows operating system (NT 4.0 or Advanced Server). The images

were always processed at full resolution (640 x 480) and the occupancy map size was always

640 x 480. Not including camera installation and wiring, the total time to initialize each

system, including calibration, mask creation, and look-up table creation, took under ten

minutes. In the UCSD, Clemson and industrial labs, the system has been run continuously

for up to three months using a single initialization.

These systems supported experimental work in several application domains. The follow-

ing applications have been tested:

1. Mobile robot navigation. Tracking and controlling the motion of one or two mobile

robots that are otherwise sensor-less [19, 20|. Static obstacles such as furniture and
dynamic obstacles such as people were tested. A video of some experiments in the
UCSD lab was published at ICRA in 1999 [18]. This application is under continuing
development in the Clemson lab, and was demonstrated in a day-long session at CVPR

2000 [5], with as many as five people at a time in the experimental space.

. Learning object dynamics. Tracking the motion of one or more unknown objects after

a controlled collision with a mobile robot, in order to learn the object dynamics (e.g.
mass, coefficient of friction, etc.). Tested in the Clemson lab. Video clips may be seen

at the project website!.

1

www.ces.clemson.edu/~ahoover/snr
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Figure 7: Snapshot of our method applied to augmented reality game.

3. Dynamic object manipulation. Tracking the unknown semi-random motion of an object
in order to effect manipulations. Tested in the industrial lab. Video clips may be seen

at the project website?.

4. Augmented reality gaming. Tracking a person as he or she tries to cross a room,
watching a screen of the tracking result superimposed with virtual enemies. Tested
in the Clemson lab and the residential living room. Figure 7 shows a snapshot of a

person playing the game.

Tracking in the occupancy map was accomplished by finding the centroid of occupied space
in a window surrounding the previous location of the object(s). For each application, the
window size was set based upon the maximum expected velocity of the object(s) being
tracked.

Figure 8 shows some snapshots from a sequence of chairs being pushed across the UCSD
lab. Figure 9 shows some snapshots from a sequence of two people walking around the lab.
Figure 10 shows some snapshots of a robot navigating a path in the lab. In each figure the
observation viewpoint in the accompanying camera views is from the lower-left corner of the

occupancy map, looking rightward across the map space.

2www.ces.clemson.edu/~ahoover /workcell
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Figure 10: Example result for a robot moving around a chair.
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It is interesting to compare our system against other published tracking systems. Table 1
presents statistics for some systems built under the VSAM (Video Surveillance and Monitor-
ing) project [8]. The first three rows list previously published systems, the last two rows list
our UCSD and Clemson lab systems. Before discussing the statistics, it is important to note
the limitations of this comparison. All the cited methods use the more common paradigm of
tracking in individual camera views, followed by fusing the tracking results across multiple
cameras. Our method performs fusion first (in the creation of the occupancy map), followed
by tracking in the fused space. Thus, our approach is limited to 2D tracking while the
cited methods can potentially provide 2D or 3D tracking results. The columns in Table 1
list the number of cameras, pixel resolution of images, and frames per second (fps) for data
processed by a single computer in each system. SPEC is a non-profit organization that
benchmarks computer architectures for comparison. Roughly speaking, a SPEC ratio of 2:1
indicates the computer with the higher number runs programs an average of twice as fast as
the computer with the lower number. The complete architecture details were not available
in the cited publications so the SPEC numbers reported here are best approximations based
upon available data. The summary statistic (final column in Table 1) is the number of pixels
processed per second per SPEC, which can be thought of as the algorithmic throughput of
pixels per computing-power. As seen in the summary statistic, our method shows more than
an order of magnitude speedup over these previously published methods. It is important to
note that this comparison should not be given undue weight, as these tracking algorithms
were all developed with somewhat different goals. None-the-less, in applications where 2D
tracking in a plane is sufficient, our method shows a clearly favorable speed.

The gaming application in the Clemson lab is used as a demonstration and recruiting
tool for visiting high school students, general engineering freshmen students, and other tour
groups. During 2001-2003 it has been tested on over two thousand people, with no pre-
cautions taken regarding the footwear or clothing worn. During all these demos the system

rarely failed to detect and track a person, perhaps one per hundred participants. In the few
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cameras | resolution | fps | computer architecture | SPEC! ﬁ%w
[33] 1 160 x 120 | 12 SGI O2 R10000 10 23k
[11] 1 640 x 240 | 15 | dual 550 MHz Pentium 3 45 51k
[15] 1 320 x 240 | 25 | dual 400 MHz Pentium 2 34 56k
UCSD 4 640 x 480 | 5 266 MHz Pentium 2 10 614k
Clemson 6 640 x 480 | 20 | dual 450 MHz Pentium 2 37 996k

| ! SPEC ’95 int base (approximated) |

Table 1: Comparison of speed of our method to some previously published works.

cases where it has failed, this was usually due to a person wearing footwear of a color too
close to the flooring to be distinguished. At our CVPR 2000 demonstration [5], the usual
interaction involved one or more people blocking the path of the robot to force a change
in its planned path. Some participants hovered over the robot, almost sitting on it, in an
attempt to force the tracking of the robot to fail. Over a six hour period, there were only
five tracking failures.

We have witnessed three problems that can affect our method. First, the system is based
upon image differencing, which is implemented in the algorithm threshold 7. It is of course
possible to introduce an object of similar color to the background, and set 7' to a value such
that the system misses the object. In practice, setting 1 < 7' < 10 forces the system to
see things that people generally cannot see, while setting 7" > 60 forces the system to miss
things that people usually can see. In our experiments, setting 15 < T' < 50 produced results
that generally matched human perceptual expectations. Second, the system depends upon
having multiple views of each mapped cell of the monitored plane. These views are optimally
from cameras with opposing views. Depending on camera placement, as an object moves
towards the boundary of the monitored space this principle can be violated, causing occlusion
distortion. This problem is reduced if the cameras can be placed outside the perimeter of the
monitored area, instead of right on its boundary. The third problem we have witnessed with
our method is the deleterious effect of shadows. Since each pixel is processed independently,

other than setting T" appropriately it is impossible to differentiate between a shadow and
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an actual object. In general we have tried to control the lighting and environment in our

experiments to reduce this problem, but it remains an open issue.

4 Discussion

The common approach to tracking is to model the world as being empty, then fill that model
with observed objects (for example see [28]). Using a network of cameras, the image captured
by each camera is segmented. Segmented areas of interest are then matched across cameras,
and triangulation is used to compute object locations. Abidi and Gonzalez [1] call this
symbolic-level data fusion. In contrast, the volume intersection approach to tracking assumes
the world is completely filled, then empties parts of the model based on observations of free
space. This allows for what Abidi and Gonzalez call pizel-level data fusion. The advantages

of this approach may be enumerated as follows:

1. The segmentation problem is avoided, because each pixel from each camera is processed

independently.

2. The correspondence and camera-handoff problems are avoided, because data fusion is

performed at the pixel level (before tracking).

3. All the necessary triangulations can be computed off-line (for example, in our approach

they are stored in lookup tables).

4. During tracking, an object maintains a constant size in a fused occupancy space,

whereas size diminishes in a camera space as the object moves away from the camera.

One drawback is that the strength of avoiding segmentation can also be a weakness. In
the case of a shadow, a single pixel does not generally provide sufficient information to deter-
mine its identity. Our current work is focused on the possibilities of extending Equation 5.
We are working on methods to analyze the set of image differences at a single location in

space, as observed from different viewpoints, in order to reason about the identity of that
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point. Another potential drawback to our approach is its reliance upon background images

for differencing. Several works (for example [14]) have explored methods to periodically or

continuously update background images to overcome slow changes in lighting or in back-

ground content. It should be possible to implement one of these methods to automatically

update background images for our system, without sacrificing our speed advantage. Cur-

rently, we manually perform this update as needed.
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