
ECE 4680L/6680L

Lab #5 - triangle rendering

In this lab you are to write a C program that renders triangles. The program should
read a PLY object filename and 3 rotation angles (degrees) as command line arguments. It
should then set a camera position using the 3 rotation angles and render a 256 x 256 pixel
image saving it in PPM format.

At the course website are several PLY object files that can be used. The program may
be written under linux using gcc or under Windows using Visual C++.

The specific rendering steps include:

1. Parse the PLY file header to determine the number of vertices and faces. All other
header info is irrelevant for this lab.

2. Read the PLY file vertices and faces.

3. Calculate the bounding box on the vertices. This will include the following:

(a) Minimum and maximum X, Y and Z (two vectors denoted 〈min〉 and 〈max〉).
(b) Center X, Y and Z (vector denoted 〈center〉).
(c) Maximum extent of bounding box E = scalar that is largest component of 〈max−

min〉, i.e. largest extent of the three axes.

4. Calculate the camera position and orientation using two vectors 〈camera〉 and 〈up〉 as
follows.

(a) By default assume 〈camera〉 is 〈1, 0, 0〉 (positioned on the X axis) with 〈up〉
oriented as 〈0, 0, 1〉 (positive on the Z axis).

(b) Rotate both the camera vector and up vector by X degrees about the X-axis, Y
degrees about the Y-axis, and Z degrees about the Z-axis, where X, Y and Z were
supplied as command line arguments. Rotations are calculated using equations
2-3.

Rx(θ) =

1 0 0
0 cosθ −sinθ
0 sinθ cosθ

 (1)

Ry(θ) =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

 (2)

Rz(θ) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 (3)

(c) Move and scale the camera vector according to equation 4.

〈camera〉 = 1.5E〈camera〉+ 〈center〉 (4)

1



5. Determine the 3D coordinates bounding the image using equations 5-12.

〈left〉 = 〈up〉 × 〈center − camera〉 (5)

a = ‖〈left〉‖ (6)

〈left〉 =
E

2a
〈left〉+ 〈center〉 (7)

〈right〉 = (〈center − camera〉 × 〈up〉 (8)

〈right〉 =
E

2a
〈right〉+ 〈center〉 (9)

〈top〉 =
E

2
〈up〉+ 〈center〉 (10)

〈bottom〉 =
−E
2
〈up〉+ 〈center〉 (11)

〈topleft〉 =
E

2
〈up〉+ 〈left〉 (12)

6. For each pixel r, c in the image:

(a) Default image color is black (greyscale=0).

(b) Default z-buffer depth is very far (for example, 999999). Note the z-buffer image
must be floats or doubles. Recall it stores the distance to the closest triangle for
each pixel so that only the color for that triangle is drawn.

(c) Calculate vector coordinates 〈image〉 for the image pixel using equation 13, where
COLS and ROWS are the width and height of the image in pixels and it is
assumed c and r index from 0 to COLS − 1 and ROWS − 1 respectively.

〈image〉 = 〈topleft〉+
c

COLS − 1
〈right− left〉+

r

ROWS − 1
〈bottom− top〉 (13)

(d) For each triangle having coordinates v0, v1 and v2:

i. Find the plane equation 〈A,B,C,D〉 that contains the triangle using equa-
tions 14-15.

〈A,B,C〉 = 〈v1 − v0〉 × 〈v2 − v0〉 (14)

D = −〈A,B,C〉 · 〈v0〉 (15)

ii. Find the distance along the image pixel ray to the triangle, denoted n
d
, using

equations 16-17. Test if ray is parallel to triangle (if d is near zero), and if so
skip this triangle for this pixel.

n = −〈A,B,C〉 · 〈camera〉 −D (16)

d = 〈A,B,C〉 · 〈image− camera〉 (17)

2



iii. Find the 3D coordinates 〈intersect〉 of ray and plane using equation 18.

〈intersect〉 = 〈camera〉+
n

d
〈image− camera〉 (18)

iv. Determine if intersection point lies within triangle by calculating the three
dot products in equations 19-21.

dot1 = 〈v2 − v0〉 × 〈v1 − v0〉 · 〈intersect− v0〉 × 〈v1 − v0〉 (19)

dot2 = 〈v0 − v1〉 × 〈v2 − v1〉 · 〈intersect− v1〉 × 〈v2 − v1〉 (20)

dot3 = 〈v1 − v2〉 × 〈v0 − v2〉 · 〈intersect− v2〉 × 〈v0 − v2〉 (21)

v. If any of the dot products is less than zero (if dot1 < 0 or dot2 < 0 or
dot3 < 0), then the intersection point lies outside the triangle and it can be
skipped.

vi. If the distance to the triangle n/d is greater than the current z-buffer value
for this pixel, then the triangle lies behind a closer triangle and it can be
skipped.

vii. Set pixel color to 155 + (i%100) where i is the index of the triangle. This
provides some variation in colors making the object easier to see.

7. Write PPM image.

Test the program using several different rotations (e.g. 90, 45,−135) on several of the
given PLY files. You may want to compile with optimization to speed up program execution.

All students are to complete the lab individually.
This lab is due by the due date given at the course website. Grading will be determined

via demonstration. The lab TA will be available for demonstrations in the lab (Riggs 309)
at the times posted at the course website. If you need to arrange an alternate demonstration
time, work it out with the TA.

You must also submit your C-code canvas. The due date is posted on the course website.
Work for this lab must be completed independently by each student. If it is determined

that a piece of work has been copied, all parties involved will receive zero credit. If it happens
twice, the offending parties will fail the course. Please protect your work!

3


