ECE 4680/6680L (Embedded Computing)

Compiling the linux kernel in archlinux running on a VirtualBox VM

Adam Hoover

The following instructions allow you to complete this lab on your own computer.
Additional information is given in class and on the course website.



ECE 4680/6680L (Embedded Computing)

Download and install VirtualBox

https://www.virtualbox.org/wiki/Downloads

Download archlinux iso for attaching to VM

https://archlinux.org/download/

Download from any mirror, e.g. kernel.org. Download any version, e.g. 3.01 x86 64.
You should create a folder where you plan to work on VMs and put this file in that folder
(archlinux-2025.03.01-x86 64.1s0).

Create new VirtualBox VM

start VirtualBox
Machine->New

name: archl (or whatever name you want)

folder: D:\ece468\ (or wherever you want; needs 10 GB space)
ISO image: D:\ece468\archlinux-2025.03.01-x86_64.iso

type: Linux

subtype: ArchLinux

version: Arch Linux (64-bit)

[Finish]

verify settings->Storage->arch1.vdi

hard disk file type: VDI

file virtual size: 8 GB

storage on physical hard disk: dynamically allocated

Troubleshooting starting VM

If you get the error "NtCreateFile(\Device\VBoxDrvStub) failed: 0xc000000034
STATUS OBJECT NAME NOT _FOUND (0 retries)"

then see instructions on following link to install VirtualBox driver and start its service.
https://forums.virtualbox.org/viewtopic.php?t=66442



https://www.virtualbox.org/wiki/Downloads
https://archlinux.org/download/
https://forums.virtualbox.org/viewtopic.php?t=66442

ECE 4680/6680L (Embedded Computing)

How to install archlinux in VirtualBox VM

A more detailed explanation of the following instructions is available here:
https://freedium.cfd/https://medium.com/code-art/virtualbox-complete-guide-to-install-
archlinux-on-virtual-machine-338aca8a5000

Start the VM. Select this option from the boot loader:

‘ boot "Arch Linux install mediaum (x86 64, BIOS)"

Once the VM is booted and you see a shell, type all the following commands:

Command Explanation
fdisk -1 list partition tables
fdisk /dev/sda opens HD to work on partition
m shows fdisk commands
1 shows fdisk partition types
g create new empty GPT partition table
n add a new partition
[ENTER] accept default value for partition number (1)
[ENTER] accept default value for first sector
+1M set size of partition to 1 MB
t change partition type (should show partition (1))
4 change partition type to "BIOS boot"
n add a new partition
[ENTER] accept default value for partition number (2)
[ENTER] accept default value for first sector
+6G set size of partition to 6 GB
t change partition type
[ENTER] select last partition (2)
23 change partition type to "Linux root (x86-64)"
n add a new partition
[ENTER] accept default value for partition number (3)
[ENTER] accept default value for first sector
+1G set size of partition to 1 GB
t change partition type
[ENTER] select last partition (3)
19 change partition type to "Linux swap"
w write partition table



https://freedium.cfd/https:/medium.com/code-art/virtualbox-complete-guide-to-install-archlinux-on-virtual-machine-338aca8a5000
https://freedium.cfd/https:/medium.com/code-art/virtualbox-complete-guide-to-install-archlinux-on-virtual-machine-338aca8a5000

ECE 4680/6680L (Embedded Computing)

Command Explanation
mkfs.ext4 /dev/sda2 | format "Linux root" partition to ext4 file system
mkswap /dev/sda3 initialize "Linux swap" partition

mount /dev/sda2 /mnt | mount "Linux root" to /mnt

swapon /dev/sda3 enable "Linux swap"

fdisk —I print out partition table to see it

Next, install a bunch of packages. You can customize this list if you want to include

more tools.

tools man-db man-pages

pacstrap /mnt base linux linux-firmware grub dhcped openssh vim nano which net-

The following commands set up the filesystem, timezone, and boot loader. For the
commands that edit files, I suggest using nano instead of vim if you are unfamiliar with
vim. There are many tutorials and quick references on the internet for both.

Command

Explanation

genfstab -U /mnt >> /mnt/etc/fstab

arch-chroot /mnt

In -sf /usr/share/zoneinfo/America/New York /etc/localtime

hwclock --systohc

vim /etc/locale.gen

Edit using vim or
nano.

(uncomment by deleting #) en US.UTF-8 UTF-8

This is the only
change made to file;
save after editing.

locale-gen

vim /etc/locale.conf

(add) LANG=en_US.UTF-8

This is the only
content of this file;
save after editing.

vim /etc/hostname

(add) varch

This will be the
name of your
machine; use
whatever name you
prefer. Save after
editing.

passwd




ECE 4680/6680L (Embedded Computing)

(change to) archlinux (or desired password) This will be your
root password; use
whatever you prefer.

grub-install --target=1386-pc /dev/sda

grub-mkconfig -o /boot/grub/grub.cfg

exit Exits arch-chroot

umount -R /mnt Unmounts all
partitions

reboot

During this reboot, select the following options:

select "Boot existing OS"

select "Arch Linux, with Linux linux”

login as "root", password "archlinux" or whatever you picked

The following commands are optional. They customize the way your shell operates. If
you want to know more, search the internet for customizing bash.

vim ~/.bash_profile Optional: edit bash profile to customize.
Add these lines or your preferences.

alias Is='ls -F' Makes it easier to see folders.

alias rm="rm -1' Prompts to confirm file removal.

alias mv="mv -i' Prompts to confirm file moving.

alias cp='cp -1' Prompts to confirm copy overwriting.

alias vi='vim -u NONE' Runs vim as more traditional vi.

PS1="\w>" Customized prompt.

Initialize networking, and configure the machine to it always starts networking on reboot.

Command Explanation
ipl list network interfaces; look for enp0Os3 or
similar for next command
dhcped enp0s3 start network connection
systemctl enable dhcped start network automatically on reboot

Optionally, install any other packages/commands you like to use. For example.

| pacman -S which tcsh




ECE 4680/6680L (Embedded Computing)

kernel compilation in archlinux

The following link provides a deeper explanation of the list of commands below.
https://wiki.archlinux.org/title/Kernel/Traditional compilation

Command

Explanation

pacman -S base-devel

installs gcc and other base tools

pacman -S xmlto kmod inetutils bc

install more tools

pacman -S libelf git cpio perl tar xz

install more tools

pacman -S wget

install wget

Check https://www.kernel.org/ for the latest kernel. At the time of writing it is 6.14.
You can use a different version if you prefer, but will need to update all the below
commands as needed, starting with downloading the source code:

| wget https://cdn kernel.org/pub/linux/kernel/v6.x/linux-6.14.tar xz

Next, unpack the source code and compile it. There are many ways to set up the .config
file; below I demonstrate using menuconfig. When the menuconfig screen comes up,
simply save and exit to create to the .config file.

Command

Explanation

tar -xvf linux-6.14.tar.gz

Unpack source code

cd linux-6.14

This is the source code folder

make mrproper

Clean up any previous builds

make menuconfig

Create the .config file

time make

Build the kernel (and time it). This takes
20-40 minutes.

set up kernel, module and ramdisk files

The following commands create and/or position the newly compiled kernel and support

files into places needed for booting it.

Command

Explanation

cd ~/kernelbuild/linux-6.14

directory holding kernel source

make modules

creates drivers for this kernel

make modules_install

copies them to /lib/modules/...



https://wiki.archlinux.org/title/Kernel/Traditional_compilation
https://www.kernel.org/
https://cdn.kernel.org/pub/linux/kernel/v6.x/linux-6.14.tar.xz

ECE 4680/6680L (Embedded Computing)

cp arch/x86/boot/bzImage /boot/vmlinuz-linux6.14 | copy the kernel file to /boot and
rename it to unique filename

cd /etc/mkinitcpio.d/ directory holding ramdisk info
cp linux.preset linux6.14.preset copy config file for new kernel
vim linux6.14.preset edit the following fields

ALL kver="/boot/vmlinuz-linux6.14"

default image="/boot/initramfs-linux6.14.img"

fallback image="/boot/initramfs-linux6.14-fallback.img"

mkinitcpio -p linux6.14 | create the new ramdisk file

make new grub bootloader

The following commands edit the boot loader and configure it to add the new kernel as a
boot option.

Command Explanation
cd /etc/default directory holding grub settings
vim grub edit "grub" file and make these changes

uncomment "GRUB TERMINAL OUTPUT"

uncomment "GRUB DISABLE SUBMENU"

cd /boot/grub directory holding bootloader files
cp grub.cfg grub.cfg.orig make backup - always a good idea
grub-mkconfig -o grub.cfg make new bootloader

reboot

During this reboot, select the following options:

select "Boot existing OS"

select "Arch Linux, with Linux linux6.14”

login as "root", password "archlinux" or whatever you picked

Type the following commands to verify everything:

uname -a verify it shows 6.14 kernel

Is -al /boot verify can see two different sized vmlinuz files

halt stop machine; can power off safely




