
Lecture Notes: Covariances and matrix notation for

filtering

Filtering can be generalized to tracking a state of arbitrary dimension. The 1D example
problem we have been using consists of two variables, position and velocity. In order to move
to an arbitrary state we will switch to matrix notation. This requires an understanding of
covariances. Similar to how a single variable can be associated with a variance, a set of
variables is associated with a covariance.

Formally, the covariance of two variables x and y is defined as:

covariance(x, y) = E[(x− E[x])(y − E[y])] (1)

where E[] is the expected value (or mean). Thus covariance is a measure of how much one
variable deviates from its mean multiplied by how much another variable deviates from its
mean. This is closely related to the definition of correlation, which is defined as:

correlation(x, y) = E[(x− E[x])(y − E[y])]/(σxσy) (2)

The difference between them is that correlation is dimensionless (has no units), while covari-
ance is defined in units of the two variables multiplied together.

Informally, two variables are said to be correlated if a linear change in one is related
to a linear change in the other. For example, the height and weight of humans tends to be
correlated. The taller someone is, the heavier. When data is plotted, the more linear it looks,
the higher the correlation. Figure 1 shows two sets of data. The data on the left have a
fairly strong correlation, while the data on the right are are almost completely uncorrelated.

Covariance can be imagined as how much one variable tends to vary with another variable.
For example, consider the weight and blood pressure of a person. Both of these tend to waiver
up and down over time, defining the variance of each. They also co-vary, in that when weight
is above its usual mean value, blood pressure tends to be above its usual mean value. Thus,
the variances are to some degree related. Numerically, a covariance value of zero indicates
the two variables are independent. A positive value indicates a directionally similar variance,
as in the weight and blood pressure example, while a negative value indicates a directionally
opposite variance.

There are also occasions where it is useful to visualize covariance as an N-dimensional
ellipse. For example, consider a tracking problem in two dimensions where the state variables
are [x, y]. The state can be envisioned as an ellipse where the center of ellipse is the mean
position, and the radii of the ellipse define the uncertainty. Figure 2 illustrates an example.
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Figure 1: The data on the left show a strong correlation; the data on the right do not show
a correlation.
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Figure 2: Visualizing covariance as an ellipse.

2



A covariance matrix gives the covariances of a set of variables. For example, given the
matrix X defined as

X =

[

x1

x2

]

(3)

The covariance of matrix X is

COV(X) =

[

σ2
x1

σx1,x2

σx1,x2
σ2
x2

]

(4)

The diagonal elements of a covariance matrix are the variances of the individual variables.
The non-diagonal elements are covariances. Note that σx1,x2

6= σx1
σx2

(see the definition
from above if this is not clear). Covariance matrices are symmetric.

In filtering, there are three covariance matrices of interest: the measurement noise co-
variance, the dynamic noise covariance, and the state estimate covariance. Each of these will
be defined below as the related equations are discussed.

In switching to matrix notation, my notes use capital letters for matrices. All of the equa-
tions discussed previously, including those for measurements, state transitions, predictions
and updates, can all be written in matrix form for an arbitrary number of state variables.

The measurement equation can be written as

Yt = MXt +Nt (5)

where Yt is the measurements, Xt is the actual state of the system at time t, M is the
observation matrix, and Nt is the random noise during sensing. The measurement equation
from the 1D example problem can be seen as one exemplar of equation 5 as follows:

[

yt
]

=
[

1 0
]

[

xt

ẋt

]

+
[

N(0, σ2
n)
]

(6)

It is important to note that in this notation, Xt representing the true state is different from
Xt,t representing the filtered estimate of the state. We never know the true state. Equation
5 is a conceptual equation, not something that is coded or implemented.

The measurement noise covariance is defined as COV(N), the covariance of the set
of measured noises. For our 1D example problem, the measurement noise covariance is

R = COV(N) = [σ2

n] (7)

Because there is only one measurement, the position yt, the covariance matrix contains only
the variance of the measurement noise of position.

The state transition equation can be written as

Xt+1 = ΦXt + At (8)

where Xt is the current actual state, Xt+1 is the next actual state, Φ is the state transition
matrix, and At is the random dynamics during the sensing interval. The state transition
equation from the 1D example problem can be seen as one exemplar of equation 8 as follows:

[

xt+1

ẋt+1

]

=

[

1 T
0 1

] [

xt

ẋt

]

+

[

0
N(0, σ2

a)

]

(9)
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As with the measurement equation, this is a conceptual equation and is not something that
is coded or implemented during the normal operation of a filter.

The dynamic noise covariance is defined as COV(A), the covariance of the set of
dynamic noises. For our 1D example problem, the measurement noise covariance is

Q = COV(A) =

[

0 0
0 σ2

a

]

(10)

Because there is no dynamic noise on the position portion of the transition equation, its
variance is zero. Therefore the only covariance term is for the velocity portion of the dynamic
noise.

The state prediction equation can be written as

Xt+1,t = ΦXt,t (11)

Unlike equations 5 and 8, this equation is implemented during filtering. Between sensor
readings, we assume that the system undergoes zero dynamic noise in order to predict its
next state. It is this matrix that is weighted against the next sensor readings in order to
find the updated (also called filtered) estimate.

The state estimate covariance is defined as COV(X), the covariance of the set of state
variables. For our 1D example problem, the state estimate covariance is

S = COV(X) =

[

σ2
x σx,ẋ

σx,ẋ σ2
ẋ

]

(12)

Figure 2 is useful as an interpretation for the state estimate covariance, in that it provides
a picture of the uncertainty of the values in the state estimate matrix Xt,t. The diagonal
elements represent the uncertainty in the estimates of position and velocity, and the off-
diagonal elements represent their covariances.

The state update equation can be written as

Xt,t = Xt,t−1 +Kt(Yt −MXt,t−1) (13)

where Xt,t−1 is the predicted state from the last filter iteration, and Xt,t is the updated state
for the current filter iteration given the new sensor readings Yt. The matrix Kt is the Kalman
gain matrix, which is the weights used to combine the estimates. The update equation from
the 1D example problem can be seen as one exemplar of equation 13 as follows:

[

xt,t

ẋt,t

]

=

[

xt,t−1

ẋt,t−1

]

+

[

f(variances)
f(variances)

](

[

yt
]

−
[

1 0
]

[

xt,t−1

ẋt,t−1

])

(14)

We know that the gain matrix is a function of the variances, but previously we only derived
it for one variable. What does it look like for an arbitrary number of variables? Skipping
the derivation, the Kalman gain matrix is calculated as

Kt = St,t−1M
T [R +MSt,t−1M

T ]−1 (15)

In this equation we see two of the covariance matrices that were defined above. In the last
lecture we derived the Kalman filter weights for a single variable (one combined estimate
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of two separate measurements). We saw during that derivation that the weighting term
was a function of the variances of the two measurements. When the derivation is done in
matrix form for an arbitrary number of variables, these terms involve covariances of the
estimates. The equivalent of dividing by a variance (one of the steps during the derivation)
is multiplying by the inverse of the covariance.

The matrix S, giving the covariance of the state estimate, is calculated iteratively just
like the state is calculated iteratively. The state covariance prediction equation can be
written as

St+1,t = ΦSt,tΦ
T +Q (16)

where Q is the dynamic noise covariance matrix defined above. The state covariance

update equation can be written as

St,t = [I −KtM ]St,t−1 (17)

where I is the identity matrix. These equations are one of the neat points of the Kalman
filter. We have an estimate at each time t of the uncertainty of the filtered estimate of state.

Now that we have all the notation and equations for the general Kalman filter, next
lecture we will focus on the implementation details and how it works in practice.
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