
Lecture Notes: Nonlinear filtering

In filtering, there are two equations that describe the model information brought to bear
on a problem: the observation equation and the state transition equation. The observation
equation describes how the measurements are obtained during sensing. The state transition
equation describes how the system is expected to change over time.

In the Kalman filter, we assume that both these equations are linear. The measurement
equation is:

Yt = MXt +Nt (1)

where Yt is the measurement matrix (sensor readings), Xt is the actual state (which is
unknown), Nt is the random measurement noise at time t, and M is the observation matrix.
For example:
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Now suppose that we want to track something in an X − Y space, but that our sensor
measures polar R−θ readings (like for a radar). What happens to the measurement equation?
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The equations relating polar coordinates to Cartesian coordinates are
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How can these be put into linear matrix form? They cannot. Instead, we must rewrite the
measurement equation in nonlinear form:

yt = g(xt, nt) (6)

where yt is the set of quantities being observed (measurements), xt is the set of variables in
the state model, and nt is the set of measurement noises. The notation g indicates a matrix
of equations. For example:
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Similarly, the state transition portion of the model in linear form is:

Xt = ΘXt−1 + At (8)
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whereXt−1 is the actual state at time t−1 (which is unknown), Θ is the linear state transition
matrix, At is the random dynamic noise during the time from t−1 to t, and Xt is the actual
state at time t (which is unknown). This can be rewritten in nonlinear form as:

xt = f(xt−1, at) (9)

where f is the matrix of state transition equations.
In order to apply the Kalman filtering approach to problems with nonlinear models,

the extended Kalman filter linearizes equations 6 and 9. This is done by rewriting the
measurement and state transition model equations in terms of computable approximations,
via a Taylor series expansion. Recall that

x(t+∆t) = x(t) + ∆tẋ(t) +
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For small ∆t or for small ẍ(t) all but the first two terms are negligible. In the case of the
state transition equation (equation 9), we can write a similar expansion as follows:

xt ≈ x̃t +
∂f

∂x
(xt−1 − xt−1,t−1) +

∂f

∂a
at (11)

Each of these terms takes some effort to understand.
The first term x̃t is calculated using the previous estimate of state xt−1,t−1 assuming no

dynamic noise occurred during the interval t− 1 to t:

x̃t = f(xt−1,t−1, 0) (12)

The values in xt−1,t−1 are the estimate of the state from the previous filter iteration. This
portion of equation 11 is computable.

The second term in equation 11 is the equivalent of a first derivative term in a Taylor
series expansion. It considers the difference between the actual state xt−1 (which is unknown)
and the filtered state xt−1,t−1. This difference, which can be considered a “delta error”, is
multiplied by the partial derivative ∂f

∂x
.

The partial derivative is known as a Jacobian. A Jacobian of a set of functions of several
variables is the differential of every equation with respect to every variable, with the result
in matrix form. For example:
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A Jacobian can be written in several different notations, including:

∂f

∂x
= Jx(f(xt−1, at)) = J

f,x
t (14)

In my notes, I will use only the first notation in order to emphasize it as a derivative.
However, it is important to note that it is in general time-dependent. The shape of the
derivative naturally changes depending on the position on the nonlinear curve.
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The third term in equation 11 is also a first derivative term but considers the effect of
the dynamic noise. The value at can be considered as another “delta error” and is multiplied
by its respective Jacobian ∂f

∂a
, which can also be written as:

∂f

∂a
= Ja(f(xt−1, at)) = J

f,a
t (15)

To summarize equation 11, we have expanded it about its approximation xt−1,t−1 (the
filtered state) using a Taylor series expansion to project to time t. The second and third
terms in the equation are the first order derivatives of the expansion.

Similarly, the measurement equation (equation 6) can be rewritten using a Taylor series
expansion as follows:

yt ≈ ỹt +
∂g

∂x
(xt − x̃t) +
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∂n
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We have again ignored all terms involving second and higher order derivatives. The first
term ỹt is calculated as

ỹt = g(x̃t, 0) (17)

The second and third terms cannot be calculated, as they involve the true state and the
actual (unknown) measurement noise. However, the Jacobians can be calculated and can be
written in shorthand as:
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We can now use equations 11 and 16 to derive an equation for the filtered state estimate.
To do so, we imagine a hypothetical Kalman filter that tracks the difference between the
actual state and measurement, as compared to the approximations calculated from equations
12 and 17. We use the difference between the actual measurement and the approximated
measurement (both of which are known) to update our approximated estimate of state (also
known) towards the actual state (unknown).

We define the “error state” as the difference between the actual state and the calculated
approximate state:

ẽxt
= xt − x̃t ≈
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We define the “error measurement” as the difference between the actual measurement and
the calculated approximate measurement:

ẽyt = yt − ỹt ≈
∂g

∂x
(xt − x̃t) +

∂g

∂n
nt (21)

In this hypothetical Kalman filter we can think of ẽxt
as the actual error (unknown), and ẽyt

as the observation of error. We can imagine calculating an estimated error et using a state
update equation:

et = et−1 +Kt(ẽyt − et−1) (22)
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However, we hope that the actual error will be zero. Therefore we will predict (in this
hypothetical Kalman filter) that the error is always zero, simplifying equation 22 as

et = 0 +Kt(ẽyt − 0) = Ktẽyt (23)

Finally, using this estimated state of error, we can write a filtered state estimate as

xt,t = x̃t + et = x̃t +Ktẽyt = x̃t +Kt(yt − ỹt) (24)

We know the values of the actual measurements yt, and we can calculate the values of the
approximated state x̃t and approximated measurement ỹt. We have now finished linearizing
the equations.

It is important to note that most of the equations presented in this set of notes are
not things that are actually implemented. They are all presented here only to explain the
derivation of the extended Kalman filter. It is also important to note that I left out a detail
concerning the covariances. These need to be updated to reflect the effect of the Jacobians.
In the next set of notes, these details will be discussed as the actual implementation is
presented.
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