
Lecture Notes: Particle Filter

Putting together all the theory from recursive Bayesian estimation, Monte Carlo approx-
imation, and sequential importance sampling, we can now describe the particle filter.

As with all other filters, the first step is to define the model that will be used in the
problem. This model includes:

• Xt, a set of state variables

• At, the set of dynamic noises

• f(), the state transition equation

• Yt, the set of measurements

• Nt, the set of measurement noises

• g(), the observation equation

The dynamic noise and measurement noise can be non-Gaussian, but they must be tractable.
That means you must be able to write an equation specifying its distribution. There are
variants of the basic particle filter algorithm that do not require this, but for the version
presented here, we make that assumption.

The state transition equation and observation equation must also be tractable, but they
can be non-linear, non-differentiable, piecewise, or just about anything so long as the equa-
tions can be written.

Since the particle filter is a Monte Carlo approximation, the distribution p(x|y) is rep-
resented using a number of samples. In the context of the particle filter, the samples are
usually called particles. They are denoted as:

χ = {x(m), w(m)}M
m=1 (1)

where x(m) represents the state of particle m and w(m) represents the weight of particle m. A
fidelityM must be chosen, in this case the number of particles used to represent the unknown
distribution p(x|y). A typical value for simple state spaces is M = 100 to M = 1000. The
value chosen will depend upon the number of state variables and the complexity of p(x|y);
in other words, M should be larger as the dimensionality and shape complexity of p(x|y)
increases.

The particle filter can be initialized like all other filters. The state of each particle can be
initialized to reasonable values using the first measurement, or some a priori knowledge, or
zero if nothing else is known. It is important to remember that the state of a particle refers

1



to a vector of state variables. Thus, the values of the state variables for a single particle may
be initialized to different values, or all set to zero. The weight of each particle should be
initialized to 1

M
. It is important to remember that the weight of a particle is a single value;

there is not a weight associated with each state variable of a particle.
Like other filters, the particle filter algorithm follows a predict-update cycle, as follows:

1. Each particle m is propagated through the state transition equation:

{x
(m)
t = f(x

(m)
t−1, a

(m)
t )}M

m=1 (2)

The value a
(m)
t represents the dynamic noise from t − 1 to t, and is randomly and

independently calculated for each particle m. It may be envisioned as each particle
taking a different “guess” at the dynamic noise undertaken for the current iteration.

2. Using the new measurement vector yt, the weight for each particle is updated:

w̃
(m)
t = w

(m)
t−1 · p(yt|x

(m)
t ) (3)

This weight update equation is based upon selecting the importance distribution as
the prior importance function. Other choices for the importance distribution lead to
different formulations for the weight update equation. If this is not clear, please see
the previous lecture notes on importance sampling for further information.

3. Normalize the updated weights, so they sum to 1:

w
(m)
t =

w̃
(m)
t

∑

M

m=1 w̃
(m)
t

(4)

4. Compute the desired output, such as the expected value (mean):

E[xt] ≈
M
∑

m=1

x
(m)
t · w

(m)
t (5)

Recall that the expected value may not be the desired output, but one can use similar
methods to calculate local maxima or other values of interest.

5. Check if sampling is necessary, and if so, resample. This step is explained more below.

6. Let t = t+ 1; iterate.

The net effect of this algorithm is that at each time step, the particles “swarm” to a
distribution of possible new states. It is unknown where the system has actually gone, but
the hope is that some of the particles have transitioned in a similar direction. An observation
is then taken, and the weight of each particle is updated according to how well its predicted
transition matches against the observation. Finally, the weights are renormalized to keep
their sum equal to 1, so that they properly represent a probability distribution.

This algorithm forms the basic operation of the particle filter. However, a problem can
occur. Some particles may wander away to the point that their weight approaches zero.

2



The more this happens, the smaller the number of particles there are that contribute to
the approximation of the distribution. In order to determine if resampling is needed, the
coefficient of variation statistic can be calculated:

CV =
VAR(w(m))

E2[w(m)]
=

1

M

M
∑

m=1

(

w(m) −
1

M

M
∑

m=1

w(m)

)2

(

1

M

M
∑

m=1

w(m)

)2 =
1

M

M
∑

m=1

(M · w(m) − 1)2 (6)

Note that although the time subscript has been omitted, it may be assumed that the equation
refers to the weights after updating. The effective sample size can then be calculated as:

ESS =
M

1 + CV
(7)

The effective sample size describes how many particles have an appreciable weight. In order
to check if resampling is necessary, the effective sample size can be tested against the number
of particles:

if (ESS < 0.5 M)

resample

In this example, the threshold is set to 50% of the particles. For some problems, resampling
every time step may be appropriate. However, as the number of particles grows, a lot of
computations can be saved by resampling only when the ESS grows too small.

Resampling can be accomplished by a variety of methods. The most common resampling
method is called select with replacement. The idea is to kill off particles with negligible
weights, and replace them with copies of particles that have large weights. It works as
follows:

Assume particle states in P[1...M], weights in W[1...M].

Q=cumsum(W); calculate the running totals

t=rand(M+1); t is an array of M+1 uniform random numbers 0 to 1

T=sort(t); sort them smallest to largest

T[M+1]=1.0; boundary condition for cumulative hist

i=j=1; arrays start at 1

while (i<=M)

if (T[i] < Q[j])

Index[i]=j;

i=i+1;

else

j=j+1;

end if

end while

3



index (particle)

weight

0.0

1.0

index (particle)

cumulative
weight

0.0

1.0

Figure 1: Using a cumulative weight distribution to select new particles.

loop (i=1; i<=M; i=i+1)

NewP[i]=P[index[i]];

NewW[i]=1/M;

end loop

This algorithm computes a list of indices of particles. The list may include 1 or more
copies of the same index (particle). It may also skip over 1 or more indices (particles). After
computing the list, it creates a new list of particles of equal weights.

In creating the list, particles with lower weights are less likely to get copied, and particles
with higher weights are more likely to get multiple copies. This is accomplished by searching
randomly in the sorted cumulative weight total. Figure 1 illustrates the process. Imagine
picking a number between 0.0 and 1.0. Find that number on the Y-axis of the cumulative
weight graph. Draw a horizontal line across the graph to where it touches a bar. The index
of that bar is the index of the selected particle. Clearly, this process is more likely to pick
indices of particles that had larger weights.

In summary, the particle filter is not one specific set of equations. It has many options
that need to be specified, besides the usual selection of model variables and equations. These
include:

• proposal distribution q(), which determines the weight update equation

• number of particles M (fidelity of approximation)

• when to resample

• resampling method

Next lecture, an example of the particle filter in operation will be demonstrated.

4


