
Lecture Notes: Root Finding

In order to use the normal equations to fit a model to a set of data, the model must
be a linear combination of basis functions. To solve for nonlinear terms a different tech-
nique must be taken. There are several alternatives, including the Levenberg-Marquardt
algorithm, the Gauss-Newton algorithm, and other variations of gradient descent. All these
methods are iterative. They start with an initial guess (also called approximation) and then
repeatedly calculate a next guess based upon the previous guess. Each of these successive
guesses/approximations gets closer to the true solution. Typically the iterations are halted
when the difference between successive approximations drops below a threshold. These tech-
niques are known as nonlinear regression.

To demonstrate the technique we will look at the Newton-Raphson method (circa 1700)
for root finding. Consider the following problem: how do we calculate the square root of
44? We know that

x2 = 44 (1)

and can rewrite this as
x2 − 44 = 0 (2)

Now consider a function f(x) such that

f(x) = x2 − 44 (3)

We can plot this function using a curve over the x, f(x) space. Using only integers we can
calculate some points by hand that we know are near the solution. At x = 6, f(x) = −8,
and at x = 7, f(x) = 5. Interpolating between these two points we can imagine a curve as
shown in figure 1.

We desire to find where this curve crosses zero, or more precisely where f(x) = 0. As
shown in the figure the true solution is at x = 6.63324958....

The Newton-Raphson method is an iterative approach that uses the derivative of the
function to successively draw near the true solution. First we make a guess, say, 7:

x0 = 7 (4)

Using the derivative of the function, we iteratively refine the guess. The derivative of our
example is

f ′(x) = 2x (5)

We can calculate where the derivative crosses zero because the derivative is linear. Figure
2 is useful to visualize the technique. The derivative can be defined as the slope of a line,
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Figure 1: Plotting a function to see where it crosses zero.

which is the rise (change in y) over the run (change in x):

f ′(x0) =
f(x0) − 0

x0 − x1

(6)

Rearranging terms yields

x0 − x1 =
f(x0)

f ′(x0)
(7)

and finally

x1 = x0 −
f(x0)

f ′(x0)
(8)

In general, for each iteration we can write

xn+1 = xn −
f(xn)

f ′(xn)
(9)

Continuing our example, we can use equation 9 iteratively until our approximation is
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Figure 2: Plot of the derivative crossing zero.

sufficiently close:

x0 = 7 (10)

x1 = x0 −
f(x0)

f ′(x0)
= 7 − 72 − 44

2(7)
= 6.6429 (11)

x2 = x1 −
f(x1)

f ′(x1)
= 6.6429 − 6.64292 − 44

2(6.6429)
= 6.6333 (12)

x3 = x2 −
f(x2)

f ′(x2)
= 6.6333 − 6.63332 − 44

2(6.6333)
= 6.6332 (13)

(14)

For this example the iterations converge quickly towards the true solution.
It is important to note that the calculations are assumed to take place with a fixed level of

precision. (In the case of Netwon circa 1700, this would be equivalent to halting the by-hand
calculations and rounding the final calculated digit; in modern times, this is equivalent to
the level of precision provided by a computer program.) The level of precision is related to
the desired accuracy in the solution. In the above example, I used 4 digits after the decimal
point, but this is an arbitrary decision that can be changed as needed.

The following is a second example of the same technique. Suppose we wish to find x for
the equation sin(x) = x3. Let

f(x) = sin(x) − x3 (15)

and we seek to find the true solution where f(x) = 0. The derivative of f(x) is

f ′(x) = cos(x) − 3x2 (16)

Suppose an initial guess of x0 = 0.3. Using equation 9 the successive approximations (all
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calculations assume radians) are as follows:

x0 = 0.3 (17)

x1 = x0 −
f(x0)

f ′(x0)
= 0.3 − sin(0.3) − (0.3)3

cos(0.3) − 3(0.3)2
= −0.0918 (18)

x2 = x1 −
f(x1)

f ′(x1)
= −0.0918 − sin(−0.0918) − (−0.0918)3

cos(−0.0918) − 3(−0.0918)2
= 0.0019 (19)

x3 = x2 −
f(x2)

f ′(x2)
= 0.0019 − sin(0.0019) − (0.0019)3

cos(0.0019) − 3(0.0019)2
= −0.0000 (20)

(21)

It is easy to see that x = 0 is a true solution for where equation 15 equals zero. However, if
we select a different initial guess x0 = 0.8, the successive approximations are as follows:

x0 = 0.8 (22)

x1 = x0 −
f(x0)

f ′(x0)
= 0.8 − sin(0.8) − (0.8)3

cos(0.8) − 3(0.8)2
= 0.9679 (23)

x2 = x1 −
f(x1)

f ′(x1)
= 0.9679 − sin(0.9679) − (0.9679)3

cos(0.9679) − 3(0.9679)2
= 0.9309 (24)

x3 = x2 −
f(x2)

f ′(x2)
= 0.9309 − sin(0.9309) − (0.9309)3

cos(0.9309) − 3(0.9309)2
= 0.9286 (25)

x3 = x2 −
f(x2)

f ′(x2)
= 0.9286 − sin(0.9286) − (0.9286)3

cos(0.9286) − 3(0.9286)2
= 0.9286 (26)

(27)

The value x = 0.9286 is also an approximate solution for where equation 15 equals zero.
This illustrates one of the concerns with iterative methods: they are sensitive to the

initial guess. In general, the guess should be close to the sought-after solution so that the
method converges. Depending on the shape of the function, it is possible for the method to
get into an unending cycle or follow a diverging path. In some cases, where there is more
than one local minimum (as in the last example), the solution found may differ depending
on the choice of initial guess.

Another issue with this particular iterative method is that the function must be contin-
uous and differentiable. Other methods such as the secant method and bisection method
avoid this restriction by using different approximations.

In practice, the choice of which iterative method to use depends somewhat upon the
problem and shape of the function.
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