L)

15.2 Fitting Data to a Straight Line

A concrete example will make the considerations of the previous section more
meaningful. We consider the problem of fitting a set of N data points (z;, ¥;) to
a straight-line model

y(z) = y(z;a,b) =a+ bz (15.2.1)

662 Chapter 15. Modeling of Data

This problem is often called linear regression, a terminology that originated, long
ago, in the social sciences. We assume that the uncertainty o; associated with
each measurement y; is known, and that the x;’s (values of the dependent variable)
are known exactly.

To measure how well the model agrees with the data, we use the chi-square
merit function (15.1.5), which in this case is

N 2
x*(a,0) = (y—:a———bf—) (152.2)

e ?
i=1 *

If the measurement errors are normally distributed, then this merit function will give
maximum likelihood parameter estimations of a and b; if the errors are not normally
distributed, then the estimations are not maximum likelihood, but may still be useful
in a practical sense. In §15.7, we will treat the case where outlier points are so
numerous as to render the x? merit function useless.

Equation (15.2.2) is minimized to determine a and b. At its minimum,
derivatives of x2(a,b) with respect to a, b vanish.

g=3_>ﬁ=_2§:%_—i:_”ﬂ

da : ol
: -y X (15.2.3)
e zi(yi — a — bzx;)
0= "7 = 22 2

These conditions can be rewritten in a convenient form if we define the following
sums:

N N
s 1 - Li - Yi
szzﬁ Sx=Z;;- sy=Z;§
i=1 A i=1 1 g1
(15.2.4)
Y, 3 Yz
S“EZ'OT% S,,yEZ o
i=1 & i=1 i
With these definitions (15.2.3) becomes
aS+bS; =Sy
(15.25)

Sy + bSzz = Szy

The solution of these two equations in two unknowns is calculated as

A= SS:c:r. = (31)2

o SsaSy = S:Sey
A
S50y = 825y
A

Equation (15.2.6) gives the solution for the best-fit model parameters a and b.

(15.2.6)

15.2 Fitting Data to a Straight Line 663

We are not done, however. We must estimate the probable uncertainties in
the estimates of a and b, since obviously the measurement errors in the data must
introduce some uncertainty in the determination of those parameters. If the data
are independent, then each contributes its own bit of uncertainty to the parameters.
Consideration of propagation of errors shows that the variance a'fc in the value of
any function will be

) 2
o}=) of (B_i) (15.2.7)

For the straight line, the derivatives of @ and b with respect to y; can be directly
evaluated from the solution:

Oa _ Szz — S:i
3y,- % O’?A
36 e SIi —S;;

I ik -

(15.2.8)

-

Summing over the points as in (15.2.7), we get

af, = Sp /A

15.2.9

ot = S/A ()

which are the variances in the estimates of a and b, respectively. We will see in

§15.6 that an additional number is also needed to characterize properly the probable

uncertainty of the parameter estimation. That number is the covariance of a and b,
and (as we will see below) is given by

Cov(a,b) = =S /A (15.2.10)

The coefficient of correlation between the uncertainty in a and the uncertainty
in b, which is a number between —1 and 1, follows from (15.2.10) (compare
equation 14.5.1),

"S:;
Vsszz

A positive value of r,, indicates that the errors in a and b are likely to have the
same sign, while a negative value indicates the errors are anticorrelated, likely to
have opposite signs.

We are still not done. We must estimate the goodness-of-fit of the data to the
model. Absent this estimate, we have not the slightest indication that the parameters
a and b in the model have any meaning at all! The probability () that a value of
chi-square as poor as the value (15.2.2) should occur by chance is

Tab = (15.2.11)

— 2
Q = gammq (—*—-N2 2 X?) (15.2.12)

664 Chapter 15. Modeling of Data

Here gammq is our routine for the incomplete gamma function Q(a,z), §6.2. If
@ is larger than, say, 0.1, then the goodness-of-fit is believable. If it is larger
than, say, 0.001, then the fit may be acceptable if the errors are nonnormal or have
been moderately underestimated. If @ is less than 0.001 then the model and/or
estimation procedure can rightly be called into question. In this latter case, turn
to §15.7 to proceed further.

If you do not know the individual measurement errors of the points o, and are
proceeding (dangerously) to use equation (15.1.6) for estimating these errors, then
here is the procedure for estimating the probable uncertainties of the parameters a
and b: Set o; = 1 in all equations through (15.2.6), and multiply o, and o}, as
obtained from equation (15.2.9), by the additional factor \/x2/(N — 2), where x2
is computed by (15.2.2) using the fitted parameters a and b. As discussed above,
this procedure is equivalent to assuming a good fit, so you get no independent
goodness-of-fit probability Q).

In §14.5 we promised a relation between the linear correlation coefficient
T (equation 14.5.1) and a goodness-of-fit measure, x2 (equation 15.2.2). For
unweighted data (all o; = 1), that relation is

x* = (1 —r*)NVar(y; ...yn) (15.2.13)
where
N
NVar(y1...yn) = > _ (v —)* (15.2.14)
=1

For data with varying weights o, the above equations remain valid if the sums in
equation (14.5.1) are weighted by 1/c?2.

The following function, fit, carries out exactly the operations that we have
discussed. When the weights ‘o are known in advance, the calculations exactly
correspond to the formulas above. However, when weights o are unavailable,
the routine assumes equal values of o for each point and assumes a good fit, as
discussed in §15.1.

The formulas (15.2.6) are susceptible to roundoff error. Accordingly, we
rewrite them as follows: Define

1 Sz .
o e 5y B8] =1,2..., 215
t ai(x s) i=1 N (15.2.15)
and
N
Su=) 1 (15.2.16)
i=1

Then, as you can verify by direct substitution,

N

1 tiyi
b= — 15:2.17
St - % ()
a= Sy = Szb (15.2.18)

S

15.2 Fitting Data to a Straight Line 665

2 _ 1 S2
a=z(1+ o (15.2.19)
1
2 i —
Ub fﬂt (15.2.20)
Cov(a,b) = ~ ;;u (15.221)
_ Cov(a,b) (15.2.22)
Ta0b -

#include <math.h>
#include "nrutil.h"

void fit(float x[], float vy, int ndata, float sigl], int mwt, float *a,
float *b, float *siga, float *sigb, float *chi2, float *q)

a,b and their respective probable uncertainties siga and sigb, the chi-square chi2, and the
goodness-of-fit probability q (that the fit would have x? thié large or larger). If mwt=0 on
input, then the standard deviations are assumed to be urfavailable: q is returned as 1.0 and
the normalization of chi2 is to unit standard deviation on all points.

float gammq(float a, float x);
int i;
float srt.t,sxcsa,sxao.o,sy-o.o.5t2-0.0,ss,sigdat;

*b=0.0;
if (mwt) { Accumulate sums ...
s8=0.0;
for (i=1;i<=ndata;i++) { ...with weights
wt=1.0/SQR(sig[i]);
88 += wt;

sx += x[i]*wt;
sy += y[i]#*wt;

} else {
for (i=1;i<=ndata;i++) { --.or without weights.
sx += x[i];
sy += y[i];
ss=ndata;
}
sX0ss=sx/ss;
if (mwt) {

for (i=1;i<=ndata;i++) {
t=(x[i]-sxoss)/sig[i];
5t2 += txt;
*b += txy[il/sig[i];

}

} else {

for (i=1;i<=ndata;i++) {
t=x[i]-sxoss;
St2 += txt;
*b += t*y[i];

}

}

*b /= st2; Solve for a, b, Oq, and oy,
a=(sy-sx(*b))/ss;

*siga=sqrt ((1.0+sx*sx/(ss*st2))/ss) H

*sigb=sqrt(1.0/st2);

15.4 General Linear Least Squares 671

15.4 General Linear Least Squares

An immediate generalization of §15.2 is to fit a set of data points (z;, ;) to a
model that is not just a linear combination of 1 and = (namely a + bz), but rather a
linear combination of any M specified functions of 2. For example, the functions
could be 1,z,z2%,...,2™~1 in which case their general linear combination,

y(z) =a1 +axx + asz® +-- -+ apz™M? (15.4.1)
is a polynomial of degree /M — 1. Or, the functions could be sines and cosines, in

which case their general linear combination is a harmonic series.
The general form of this kind of model is

M .
y(z) =D arXi(z) (15.4.2)
k=1

where X, (z),..., Xy (x) are arbitrary fixed functions of z, called the basis
functions.
Note that the functions X (z) can be wildly nonlinear functions of z. In this
discussion “linear” refers only to the model’s dependence on its parameters a..
For these linear models we generalize the discussion of the previous section
by defining a merit function

N 2
=3 {yi ot 35 “*Xk(“’i)} (15.4.3)

a;

i=1

As before, o; is the measurement error (standard deviation) of the ith data point,

presumed to be known. If the measurement errors are not known, they may all (as
discussed at the end of §15.1) be set to the constant value o = 1.

Once again, we will pick as best parameters those that minimize 2. There are

. several different techniques available for finding this minimum. Two are particularly

useful, and we will discuss both in this section. To introduce them and elucidate

_ their relationship, we need some notation.

Let A be a matrix whose N x M components are constructed from the M
basis functions evaluated at the IV abscissas z;, and from the N measurement errors
oi, by the prescription

Aij = Rl (15.4.4)

a;
The matrix A is called the design matrix of the fitting problem. Notice that in general
A has more rows than columns, N >M, since there must be more data points than
model parameters to be solved for. (You can fit a straight line to two points, but not a
very meaningful quintic!) The design matrix is shown schematically in Figure 15.4.1.

Also define a vector b of length N by
by =2 (15.4.5)

i
and denote the M vector whose components are the parameters to be fitted,

ai,...,apm, by a.

672 Chapter 15. Modeling of Data

«—— basis functions ————

X)) X() --- Xu()
x Xi(x)) Xolx) .. Xumlx)
O) G G
x2 Xix2) Xolxa) .. Xml(x)
O2 (o] o)
£
g .
& -
=
XN X)) Xalxw) . Xubxw)
On On ON

Figure 15.4.1. Design matrix for the least-squares fit of a linear combination of M basis functions to N
data points. The matrix elements involve the basis functions evaluated at the values of the independent
variable at which measurements are made, and the standard deviations of the measured dependent variable.
The measured values of the dependent variable do not enter the design matrix.

Solution by Use of the Normal Equations

The minimum of (15.4.3) occurs where the derivative of x? with respect to all
M parameters aj, vanishes. Specializing equation (15.1.7) to the case of the model
(15.4.2), this condition yields the M equations

N M
1
0= E F y,‘—E G.J'X_f(wg") Xk(m,-) k=1,...,M (1546)
j=1

f=1 %

Interchanging the order of summations, we can write (15.4.6) as the matrix equation

M
> akja; =B (15.4.7)
Jj=1
where
. X’(ZB{)X}C(I‘,;)
agj = Z 'J—g?_ or equivalently [a] = AT -A (15.4.8)
i=1 $

an M x M matrix, and

o i Xk(:)
B=3 HZEZ orequivalently [= AT b (15.4.9)
i=1 J

g;

i e e - -

15.4 General Linear Least Squares 673

a vector of length M.

The equations (15.4.6) or (15.4.7) are called the normal equations of the least-
squares problem. They can be solved for the vector of parameters a by the standard
methods of Chapter 2, notably LU decomposition and backsubstitution, Choleksy
decomposition, or Gauss-Jordan elimination. In matrix form, the normal equations
can be written as either

[a]-a=[8 oras (AT-A).a=AT.p (15.4.10)
The inverse matrix Cj; = [a]j‘kl is closely related to the probable (or, more

precisely, standard) uncertainties of the estimated parameters a. To estimate these
uncertainties, consider that -

3 . [S Btz
aj =3 [el;! 8= Ci [Z 2—:2—‘} (15.4.11)
k=1 k=1 i=1 i

and that the variance associated with the estimate a; can be found as in (15.2.7) from
J

65;~
2
az(aj) =2 ;_1 o; (J

)

)2 (15.4.12)

Note that a;ji is independent of ¥i, SO that

M
g—“i =" CieXe(z:)/o? (15.4.13)
Yi =1
Consequently, we find that
M M N
Xi(zi) X T;
o*(a;) = ZZ CixCii {Z L,,)EMJ (15.4.14)
k=1 l=1 i=1 t

The final term in brackets is just the matrix [@]. Since this is the matrix inverse of
[C], (15.4.14) reduces immediately to

o?(a;) = C;; (15.4.15)

In other words, the diagonal elements of [C] are the variances (squared
uncertainties) of the fitted parameters a. It should not surprise you to learn that the
off-diagonal elements C, are the covariances between a; and ay (cf. 15.2.10); but
we shall defer discussion of these to §15.6.

We will now give a routine that implements the above formulas for the general
linear least-squares problem, by the method of normal equations. Since we wish to
compute not only the solution vector a but also the covariance matrix [C], it is most
convenient to use Gauss-Jordan elimination (routine gaussj of §2.1) to perform the
linear algebra. The operation count, in this application, is no larger than that for LU/
decomposition. If you have no need for the covariance matrix, however, you can
save a factor of 3 on the linear algebra by switching to LU decomposition, without

el in . o,

674 Chapter 15. Modeling of Data

computation of the matrix inverse. In theory, since AT . A is positive definite,
Cholesky decomposition is the most efficient way to solve the normal equations,
However, in practice most of the computing time is spent in looping over the data
to form the equations, and Gauss-Jordan is quite adequate.

We need to warn you that the solution of a least-squares problem directly from
the normal equations is rather susceptible to roundoff error. An alternative, and
preferred, technique involves QR decomposition (§2.10, §11.3, and §11.6) of the
design matrix A. This is essentially what we did at the end of §15.2 for fitting data to
a straight line, but without invoking all the machinery of QR to derive the necessary
formulas. Later in this section, we will discuss other difficulties in the least-squares
problem, for which the cure is singular value decomposition (SVD), of which we give
an implementation. It turns out that SVD also fixes the roundoff problem, so it is our
recommended technique for all but “easy” least-squares problems. It is for these easy
problems that the following routine, which solves the normal equations, is intended.

The routine below introduces one bookkeeping trick that is quite useful in
practical work. Frequently it is a matter of “art” to decide which parameters ay
in a model should be fit from the data set, and which should be held constant at
fixed values, for example values predicted by a theory or measured in a previous
experiment. One wants, therefore, to have a convenient means for “freezing”
and “unfreezing” the parameters a;. In the following routine the total number of
parameters ay, is denoted ma (called M above). As input to the routine, you supply
an array ia[1..ma], whose components are either zero or nonzero (e.g., 1). Zeros
indicate that you want the corresponding elements of the parameter vector a[1. .ma]
to be held fixed at their input values. Nonzeros indicate parameters that should be
fitted for. On output, any frozen parameters will have their variances, and all their
covariances, set to zero in the covariance matrix.

#include "nrutil.h"

void 1fit(float x[], float y[],”float sig[], int ndat, float a[], int ia[],

int ma, float **covar, float *chisq, void (*funcs)(float, float [], int))
Given a set of data points x[1..ndat], y[1..ndat] with individual standard deviations
sigl[l..ndat], use x? minimization to fit for some or all of the coefficients a[1..ma] of
a function that depends linearly on a, y = 3, a; x afunc;(z). The input array ia[1..ma]
indicates by nonzero entries those components of a that should be fitted for, and by zero entries
those components that should be held fixed at their input values. The program returns values
for a[1..ma], x> = chisg, and the covariance matrix covar[1..ma] [1..ma]. (Parameters
held fixed will return zero covariances.) The user supplies a routine funcs(x,afunc,ma) that
returns the ma basis functions evaluated at = = x in the array afunc[1..ma].
{

void covsrt(float *xcovar, int ma, int ia[], int mfit);

void gaussj(float **a, int n, float **b, int m);

int i,j,k,1,m,mfit=0;

float ym,wt,sum,sig2i,**beta,*afunc;

beta=matrix(i,ma,1,1);

afunc=vector(l,ma);

for (j=1;j<=ma;j++)
if (ialjl) mfit++;

if (mfit == 0) nrerror("1fit: no parameters to be fitted");

for (j=1;j<=mfit;j++) { Initialize the (symmetric) matrix.
for (k=1;k<=mfit;k++) covar[j][k]=0.0;
beta[j][1]1=0.0;

for (i=1;i<=ndat;i++) { Loop over data to accumulate coefficients of
the normal equations.

15.4 General Linear Least Squares 675

(*xfuncs) (x[i] ,afunc,ma);

ym=y [il;
if (mfit < ma) { Subtract off dependences on known pieces
for (j=1;j<=ma;j++) of the fitting function.

if ('ia[j]) ym -= a[jl*afunc[j];
}
sig2i=1.0/8QR(sig[il);
for (j=0,1=1;1<=ma;1++) {
if (ial1]) {
wt=afunc[1]*sig2i;
for (j++,k=0,m=1;m<=1;m++)
if (ia[m]) covar[j][++k] += wt*afunc([m];
beta[j][1] += ym*wt;

¥
}
}
for (j=2;j<=mfit;j++) Fill in above the diagonal from symmetry.
for (k=1;k<j;k++)
covar[k] [jl1=covar[j] [k];
gaussj(covar,mfit,beta,1); Matrix solution.
for (j=0,1=1;1<=ma;1l++)
if (ia[1]) alll=beta[++j][1]; Partition solution to appropriate coefficients
*chisq=0.0; a.
for (i=1;i<=ndat;i++) { Evaluate x2 of/the fit.
(*funcs) (x[i] ,,afunc,ma); .
for (sum=0.0,j=1;j<=ma;j++) sum += a[j]*afunc[j];
*chisq += SQR((y[il-sum)/siglil);
}
covsrt(covar,ma,ia,mfit); Sort covariance matrix to true order of fitting
free_vector(afunc,1,ma); coefficients.

free_matrix(beta,i,ma,1,1);

That last call to a function covsrt is only for the purpose of spreading the
covariances back into the full ma x ma covariance matrix, in the proper rows and
columns and with zero variances and covariances set for variables which were
held frozen.

The function covsrt is as follows.

#define SWAP(a,b) {swap=(a);(a)=(b);(b)=swap;}

void covsrt(float *xcovar, int ma, int ia[], int mfit)
Expand in storage the covariance matrix covar, so as to take into account parameters that are
being held fixed. (For the latter, return zero covariances.)

int i,j.k;
float swap;

for (i=mfit+1;i<=ma;i++)
for (j=1;j<=i;j++) covar[i] [jl=covar[j]1[i]l=0.0;
k=mfit;
for (j=ma;j>=1;j--) {
it (dal3]) |
for (i=1;i<=ma;i++) SWAP(covar[i] [k],covar[i] (j])
for (i=1;i<=ma;i++) SWAP(covar[k][i],covar[j][i])
k--;

L e

