

(A)

Figure 1.9

jure 1.8
LARE. (Photograph courtesy of LAAS-CNRS, Toulouse, France.)

Figure 1.7
Shakey. (Photograph courtesy of SRI International.)

gure 1.9 (continued)

;)

Stanford Cart. (B) CMU Rover. (Photographs courtesy of Hans Morav obotics Institute, Carnegie-Mellon University.)

The **REAL** robot

Hermies-III robot at Oak Ridge National Lab

- Scale: 2 meters in height
- LRF mounted at "cyclops" position

Application: Indoor Mobile Robot Navigation

range image #1

space envelope #1

range image #2

space envelope #2

How did robot move between views?

aligned by motion estimate

Computer Vision Example

(a) Initial knowledge

(b) Range image

(c) Floormap from (b)

(d) Second range image (e) Floormap from (d)

(f) Combined floormap

Figure 1. Material Transport using Ant-like Robots

Figure 1: Applications of Metamorphic Robots

Fig.1 Programmable MARS(Micro Autonomous Robotic System)

Traditional Mobile Robot

Onboard Sensing

Problems:

- first person perspective
- moving sensor data fusion
- •image blur (camera motion)

Sensor Networked Robot

Network Sensing

Advantages:

- third person perspective
- •stationary sensor data fusion
 - self-localization
 - map fusion
- reduced image blur