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2.3 PROPERTIES OF KALMAN FILTER

“We will now give some physical feel for why the Kalman filter is optimum. Let
“us go back to our discussion in Section 1.2. Recall that for our two-state g-h
tracking we have at time n two estimates of the target position. The first is y,,
based on the measurement made at time n (see Figure 1.2-3). The second is the
prediction x, ,, based on past measurements. The Kalman filter combines
these two estimates to provide a filtered estimate x,;, for the position of the
target at time n. The Kalman filter combines these two estimates so as to obtain
an estimate that has a minimum variance, that is, the best accuracy. The
estimate x; , will have a minimum variance if it is given by [5-7]
* HH:!- Yn 1

nn = |VARGE, ;) | VAR(Y,)| 1/VAR(x;,) + 1/VAR()

(2.3-1)

That (2.3-1) provides a good combined estimate can be seen by examining
some special cases. First consider the case where y, and x¥ | have equal
accuracy. To make this example closer to what we are familiar ?:F we use the
example we used before; that is, we assume that y, and x¥, _, represent two
independent estimates of your weight obtained from two scales having equal
accuracy (the example of Section 1.2.1). If one scale gives a weight estimate of
110 1b and the other 120 Ib, what would you use for the best combined-weight
estimate? You would take the average of the two weight estimates to obtain
115 1b. This is just what (2.3-1) does. If the variances of the two estimates are
equal (say to o), then (2.3-1) becomes
* RHEW_ Yn 1 HH:I_ +.<=

=|———+= = — 2.3-2
Fnn g g 1/02+1/0? 2 ( )

Thus in Figure 1.2-3 the combined estimate x} , is placed exactly in the middle
between the two estimates y, and x; ;.
Now consider the case where x* | is much more accurate than the estimate

n,n—1

y . For this case VAR(x) ,_|) < VAR(y,) or equivalently 1/VAR(x) ) >

n,n—I

1/VAR(y,). As a result, (2.3-1) can be approximated by

xr 1

* n,n—1
x¥ = | —=—+0 :
- B 1) 1/VAR(x;, ) +0

VAR(x

n,n—1

. *

H..‘a.:,zl_ ﬁquwV
Thus the estimate x;* , is approximately equal to x, ,_,, as it should be because
*

nn—
the combined estimate x is placed very close to the estimate x| (equal
to it).

the accuracy of x* | is much better than that of y,. For this case, in Figure 1.2-3

Equation (2.3-1) can be put in the form of one of the Kalman g—h tracking
filters. Specifically, (2.3-1) can be rewritten as

VAR(x},
.ﬂ.“n_: = .d_u.__n,z\_ lT gﬂv‘ A-«w: - .HH.._I_V ﬁMwlm—v
This in turn can be rewritten as
ku_n_: = HH:I_ +gnlvn — .«H:l_u (2.3-5)

This is the same form as (1.2-7) [and also (1.2-8b)] for the g—h tracking filter.
Comparing (2.3-5) with (1.2-7) gives us the expression for the constant g,.
Specifically

VAR(x, o
& = VAR, feel

Thus we have derived one of the Kalman tracking equations, the one for
updating the target position. The equation for the tracking-filter parameter h,, is
given by

CoV(x},ik,)
VAR(yn)

hy = (2.3-7)

A derivation for (2.3-7) is given for the more general case in Section 2.6.

24 KALMAN FILTER IN MATRIX NOTATION

In this section we shall rework the Kalman filter in matrix notation. The Kalman
filter in matrix notation looks more impressive. You can impress your friends
when you give it in matrix form! Actually there are very good reasons for
putting it in matrix form. First, it is often put in matrix notation in the literature,
and hence it is essential to know it in this form in order to recognize it. Second,
and more importantly, as shall be shown later, in the matrix notation form the
Kalman filter applies to a more general case than the one-dimensional case
given by (2.1-3) or (1.2-11).

First we will put the system dynamics model given by (1.1-1) into matrix
notation. Then we will put the random system dynamics model of (2.1-1) into
matrix notation. Equation (1.1-1) in matrix notation is

X, 1 = OX, (2.4-1)




where

X, = |:" | = state vector (2.4-1a)
Xn

and

1 T
0 1
= state transition matrix for constant-velocity trajectory [5, 43]  (2.4-1b)

To show that (2.4-1) is identical to (1.1-1), we just substitute (2.4-1a) and
(2.4-1b) into (2.4-1) to obtain

Xnti o 1 r Xn

i | =10 114, (2.4-1¢c)
which on carrying out the matrix multiplication yields

et | o [Fat T (2.4-1d)

Xnt1 Xn

which we see is identical to (1.1-1).

As indicated in (2.4-1a), X, is the target trajectory state vector. This state
vector is represented by a column matrix. As pointed out in Section 1.4, it
consists of the quantities being tracked. For the filter under consideration
these quantities are the target position and velocity at time n. It is called a
two-state vector because it consists of two target states: target position and
target velocity. Here, ® is the state transition matrix. This matrix transitions
the state vector X, at time n to the state vector X,,; at time n+ 1 a period T
later.

It is now a simple matter to give the random system dynamics model
represented by (2.1-1) in matrix form. Specifically, it becomes

Xpp1 =®X,+ U, (2.4-2)
where

0

Up

= dynamic model driving noise vector (2.4-2a)

To show that (2.4-2) is identical to (2.1-1), we now substitute (2.4-1a), (2.4-1b),

and (2.4-2a) into (2.4-2) to obtain directly from (2.4-1d)

.u.«.:i_ 1 — Xn + N;.Ha s 0 AN&TNGV
Xntl Xn Up

which on adding the corresponding terms of the matrices on the right-hand side
of (2.4-2b) yields

a1 | _ [ %n+ Ty (2.4-2¢)
\w.=+_ \«.m:lT_R: .

which is identical to (2.1-1), as we desired to show.
We now put the trivial measurements equation given by (1.2-17) into matrix
form. It is given by

Y, = MX, + N, (2.4-3)
where
M =[1 0] = observation matrix (2.4-3a)
N, = [v,] = observation error (2.4-3b)
Y, = [yn,] = measurement matrix (2.4-3¢)

Equation (2.4-3) is called the observation system equation. This is because it
relates the quantities being estimated to the parameter being observed, which,
as pointed out in Section 1.5, are not necessarily the same. In this example, the
parameters x, and x, (target range and velocity) are being estimated (tracked)
while only target range is observed. In the way of another example, one could
track a target in rectangular coordinates (x, y, z) and make measurements on the
target in spherical coordinates (R, 6, ¢). In this case the observation matrix M
would transform from the rectangular coordinates being used by the tracking
filter to the spherical coordinates in which the radar makes its measurements.

To show that (2.4-3) is given by (1.2-17), we substitute (2.4-3a) to (2.4-3c),
into (2.4-3) to obtain

al=01 01" |+ Wil (2.4-3d)

which on carrying out the multiplication becomes
[¥a]l = [xa] + [va] (2.4-3¢)
Finally, carrying out the addition yields
[yn] = [xa +va] (2.4-3f)

which is identical to (1.2-17).



Rather than put the g—h tracking equations as given by (1.2-11) in matrix
form, we will put (1.2-8) and (1.2-10) into matrix form. These were the
equations that were combined to obtain (1.2-11). Putting (1.2-10) into matrix
form yields

XL, (2.4-4a)
where
*
X
i g (2.4-4b)
i \ﬂa.:
%
w
R a0 (2.4-4c)
le‘_.:

This is called the prediction equation because it predicts the position and
velocity of the target at time n + 1 based on the position and velocity of the
target at time n, the predicted position and velocity being given by the state
vector of (2.4-4c). Putting (1.2-8) into matrix form yields

Xy, nxﬁ-_ +Hy(Yn—MX), ) (2.4-44)

Equation (2.4-4d) is called the Kalman filtering equation because it provides the
updated estimate of the present position and velocity of the target.

The matrix H, is a matrix giving the tracking-filter constants g, and h,,. It is
given by

H,= |h, (2.4-5)

for the two-state g—h or Kalman filter equations of (1.2-10). This form does not
however tell us how to obtain g, and h,. The following form (which we shall
derive shortly) does:

Hy =Sk, M7 [Ry + ms;, M"| (2.4-4e)
where

s* _ = aost ¢" 4+ Q, (predictor equation) (2.4-4f)

nn—1 n—1,n-1

and

Q. =COV|[U,| = E[U,U] (dynamic model noise covariance)
(2.4-4¢g)
Sma-1 =COV(X¥,_)=E[X}, XX (2.4-4h)

n,n nn—1
R, = COV(N,) = E[N,NT] (observation noise covariance) 2.4-4i
n
B i =00OVIX) )

n— n—1,n—1

=[l-H,_\M]S,- -2 (corrector equation) (2.4-4))

As was the case for (1.4-1), covariances in (2.4-4g) and (2.4-4i) apply as long as
the entries of the column matrices U, and N, have zero mean. Otherwise U/ W
and N, have to be replaced by U, — E[U,] and N, — E[N,], respectively.
These equations at first look formidable, but as we shall see, they are not that
bad. We shall go through them step by step.

Physically, the matrix S}, | is an estimate of our accuracy in prediciting the
target position and velocity at time n based on the measurements made at time
n—1 and before. Here, S, | is the covariance matrix of the state vector
X w .1~ To get a better feel for $* | let us write it out for our two-state X .

n,n—12 n=1*

From (1.4-1) and (2.4-4¢) it follows that

Il

CoV Xy X X7

nn—1 nn—

[ % * * * = %
H:.:J_ * <k .RP:I_H:.:I_ Hx.:l_lﬁ:.nl_
= —.H o X g =
L.m.u." nn—1 nn—1 = * F e
| an—1 .H:.:l_.n.z,:l_ H:.::T«:.:J_
i *2 * = %
- H:.a\_ .n.P:I_Ha.a\_
: * Y]
-.H:.:r_k..._al_ .ﬂz,zl_
=
* *
s hy
= 00 0r | _ o
=1 x | =Snn (2.4-4k)
[ S10 11

where for convenience E[Z] has been replaced by Z, that is, E|[-] is replaced by
the overbar. Again, the assumption is made that mean of XH:\_ has been
substracted out in the above.

The matrix R, gives the accuracy of the radar measurements. It is the
covariance matrix of the measurement error matrix N, given by (2.4-4i). For
our two-state filter with the measurement equation given by (2.4-3) to (2.4-3c),

COV [N,] = wallvn] = [allon]

= gl =g

= [o}] = [07] (2.4-41)

R,

Il




where it is assumed as in Section 1.2.4.4 that o, and o, are the rms of v,
independent of n. Thus o2 and Qm are the variance of v, the assumption being
that the mean of v, is zero; see (1.2-18).

The matrix Q,, which gives the magnitude of the target trajectory
uncertainty or the equivalent maneuvering capability, is the covariance matrix
of the dynamic model driving noise vector, that is, the random-velocity
component of the target trajectory given by (2.4-2a); see also (2.1-1). To get a
better feel for Q,, let us evaluate it for our two-state Kalman filter, that is, for
U, given by (2.4-2a). Here

E 0
0. =COVU, =U,U! = 0w,
Uy,
-0 0- 0 0
N B I (2.4-4m)
Uy -0 wu,-u, 0 u;

Equation (2.4-4f ) allows us to obtain the prediction covariance matrix § H_T_

from the covariance matrix of the filtered estimate of the target state vector at

TABLE 2.4-1. Kalman Equation

Predictor equation:

X = DX (2.4-4a)
Filtering equation:
X=Xy +Ha(Yn—MXY, ) (2.4-4d)
Weight equation:
Hy=S), M"[R,+MS), M"]" (2.4-4e)

nn

Predictor covariance matrix equation:

55 it =CONES 3] (2.4-4h)
Y LR L (2.4-4f)
Covariance of random system dynamics model noise vector U*:
Q, =COV(U,) =E[UUT] (2.4-4g)
Covariance of measurement vector Y, = X, + N,:
R, =COV(Y,) = COV(N,) = E[N,N]] (2.4-41)
Corrector equation (covariance of smoothed estimate):
.muw_‘?_ = OO<C~M.__= == 27_33.“\__:\“ (2.4-4j)

“ If E[U] = E[N,| = 0.

% *

n—1,n—1

time n — 1 given by S | . The filtered estimate covariance matrix S

is in turn obtained from the previous prediction covariance matrix .wHLsnm
using (2.4-4j). Equations (2.4-4e), (2.4-4f), and (2.4-4j) allow us to obtain the
filter weights H,, at successive observation intervals. For the two-state g— filter
discussed earlier, the observation matrix is given by (2.4-3a) and the filter
coefficient matrix H, is given by (2.4-5). The covariance matrix for the initial a
priori estimates of the target position and velocity given by Se_, allows
initiation of the tracking equations given by (2.4-4d). First (2.4-de) is used
to calculate H (assuming that n = 0 is the time for the first filter observation).
For convenience the above Kalman filter equations are summarized in
Table 2.4-1.

The beauty of the matrix form of the Kalman tracking-filter equations as
given by (2.4-4) is, although presented here for our one-dimensional (range
only), two-state (position and velocity) case, that the matrix form applies in
general. That is, it applies for tracking in any number of dimensions for the
measurement and state space and for general dynamics models. All that is
necessary is the proper specification of the state vector, observation matrix,
transition matrix, dynamics model, and measurement covariance matrix. For
example, the equations apply when one is tracking a ballistic target in the
atmosphere in three dimensions using rectangular coordinates (x, y, z) with a
ten-state vector given by
T
HP:I_
< %
k:.:l_
..*
.H:.:I_

*
v\a.:l_
.k
Wi
: o (2.4-6)
.<:.=I_
*
N;L‘.l,
L%
NP:L_

N:.:\_

B

n,n—1

where /3 is the atmospheric drag on the target. One can assume that the sensor
measures R, 0, ¢, and the target Doppler R so that Y, is given by

" (2.4-7)



In general the vector ¥, would be given by

Yin
O Ry (2.4-8)
Ymn
where y;, is the ith target parameter measured by the sensor at time n.
The atmosheric ballistic coefficient 3 is given by
m
B= e (24-9)

where m is the target mass, Cp is the atmospheric dimensionless drag
coefficient dependent on the body shape, and A is the cross-sectional area of the
target perpendicular to the direction of motion. [See (16.3-18), (16.3-19),
(16.3-27) and (16.3-28) of Section 16.3 for the relation between drag constant
and target atmospheric deceleration.]

For the g-h Kalman filter whose dynamics model is given by (2.1-1) or
(2.4-2), the matrix Q is given by (2.4-4m), which becomes

0 0
0=y 52 (2.4-10)

if it is assumed that the mean of u, is zero and its variance is o2 independent of
n. For the equivalent g—h—k Kalman filter to our two-state g—h Kalman filter
having the dynamic model of (2.4-2), the three-state dynamics model is given
by (1.3-3) with (1.3-3a) replaced by

\.&H.T._.: “..M..H_: A_vS\_: AMLi_ﬁu

where w, equals a random change in acceleration from time n to n + 1. We
assume w,, is independent from n to n + 1 for all n and that it has a variance Q.N_..

Physically w, represents a random-acceleration jump occurring just prior to the
n + 1 observation. For this case

(2.4-12)

The variance of the target acceleration dynamics o2 (also called o2) can be

a

specified using an equation similar to that used for specifying the target velocity
dynamics for the Kalman g-/ filter. Specifically

o T Xiiax

8

(o

(2.4-13)

where C is a constant and X, is the maximum X. For the steady-state g—h—k
Kalman filter for which Q is given by (2.4-12) g,h, and k are related by (1.3-
10a) to (1.3-10c) [11, 14, 15] and qm. qm, and T are related to g and k by [14]

4_2 2
35 . (2.4-14)
4o7 l=g
For the general g—h—k Kalman filter (2.4-5) becomes [14]
&n
hy
Hi=|T (2.4-15)
2k,
T2

This is a slightly underdamped filter, just as is the steady-state g~k Kalman filter
that is the Benedict-Bordner filter. Its total error Eqy = 30,41, + b* is less
than that for the critically damped g-h—k filter, and its transient response is
about as good as that of the critical damped filter [11]. In the literature, this
steady-state Kalman filter has been called the optimum g-h—k filter [11].

If we set o2 = 0 in (2.4-10), that is, remove the random maneuvering part of
the Kalman dynamics, then

0 0
0= 0 0 (2.4-16)

and we get the growing-memory filter of Section 1.2.10, the filter used for track
initiation of the constant g-h filters.

2.5 DERIVATION OF MINIMUM-VARIANCE EQUATION

_In Section 2.3 we used the minimum-variance equation (2.3-1) to derive the

two-state Kalman filter range-filtering equation. We will now give two
derivations of the minimum-variance equation.

2.5.1 First Derivation

The first derivation parallels that of reference 7. For simplicity, designate the
two independent estimates x,;, _, and y, by respectively x} and x¥. Designate
Xy ,» the optimum combined estimate, by x*. We desire to find an optimum
linear estimate for x*. We can designate this linear estimate as

xf =kxT +kaxd (2.5-1)



