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Abstract

The goal of this research is to improve the precision in tracking of an ultra-

wideband (UWB) based Local Positioning System (LPS). This work is motivated by

the approach taken to improve the accuracies in the Global Positioning System (GPS),

through noise modeling and augmentation. Since UWB indoor position tracking

is accomplished using methods similar to that of the GPS, the same two general

approaches can be used to improve accuracy.

Trilateration calculations are affected by errors in distance measurements from

the set of fixed points to the object of interest. When these errors are systemic, each

distinct set of fixed points can be said to exhibit a unique set noise. For UWB indoor

position tracking, the set of fixed points is a set of sensors measuring the distance

to a tracked tag. In this work we develop a noise model for this sensor set noise,

along with a particle filter that uses our set noise model. To the author’s knowledge,

this noise has not been identified and modeled for an LPS. We test our methods on

a commercially available UWB system in a real world setting. From the results we

observe approximately 15% improvement in accuracy over raw UWB measurements.

The UWB system is an example of an aided sensor since it requires a person

to carry a device which continuously broadcasts its identity to determine its location.

Therefore the location of each user is uniquely known even when there are multiple

users present. However, it suffers from limited precision as compared to some un-
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aided sensors such as a camera which typically are placed line of sight (LOS). An

unaided system does not require active participation from people. Therefore it has

more difficulty in uniquely identifying the location of each person when there are a

large number of people present in the tracking area. Therefore we develop a general-

ized fusion framework to combine measurements from aided and unaided systems to

improve the tracking precision of the aided system and solve data association issues in

the unaided system. The framework uses a Kalman filter to fuse measurements from

multiple sensors. We test our approach on two unaided sensor systems: Light Detec-

tion And Ranging (LADAR) and a camera system. Our study investigates the impact

of increasing the number of people in an indoor environment on the accuracies using

a proposed fusion framework. From the results we observed that depending on the

type of unaided sensor system used for augmentation, the improvement in precision

ranged from 6− 25% for up to 3 people.
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Chapter 1

Introduction

In the past few decades, the precision of radionavigation aids [71] used for out-

door navigation such as Global Navigation Satellite Systems (GNSS) have improved

from hundreds of meters to a few meters. This increase in accuracy has led to an

expansion of the original applications in military vehicle tracking and battlespace

awareness to include civilian vehicle navigation and automated farming [85]. The

accuracy of GNSSs have been improved in two general ways: noise modeling and

augmentations. Systematic modeling of noise due to atmospheric effects, timing jit-

ter, and satellite constellation is typically used in a Kalman filtering framework along

with related signal processing approaches [71, 106, 117] to reduce the noise and im-

prove the precision. Augmentation methods include using additional signals such as

in differential land-based signals or position estimates from other hardware such as

inertial systems to improve the precision of raw GNSS measurements [52].

Indoor position tracking is a new area in navigation which facilitates navigation

within a building-sized area. For example, navigating a large building such as an air-

port can be confusing to the unexperienced traveler. A navigational aid similar to one

used for outdoor navigation could help in such a situation. However, current aids used
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Acronym Meaning
ADC Analog to Digital Converter
AOA Angle of Arrival

CLEAR Classification of Events, Activities and Relationships
EKF Extended Kalman Filter

ETISEO Evaluation du Traitment et de L’Interpretation de Séquences Video
GLONASS Globalnaya navigatsionnaya sputnikovaya sistema

GNSS Global Navigation Satellite System
GPS Global Positioning System
IMU Inertial Measurement Unit
IR Infrared
LOS Line of Sight
LPS Local Positioning System

MEMS Micro Electro Mechanical Sensors
MOT Multi-Object Tracking

NAVSAT Navigation Satellite System
NLOS Non-Line of Sight
PDF Probability Distribution Function
PSD Power Spectral Density
RF Radio Frequency

RFID Radio Frequency Identification
TDOA Time Difference of Arrival
TOA Time of Arrival
USA United States of America
UWB Ultra-wideband
WLAN Wireless Local Area Networks

Table 1.1: Table of acronyms.
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for outdoor navigation cannot work indoors due to low signal strength. Technologies

such as wireless local area networks (WLAN), radio frequency identification (RFID),

cameras, and infrared (IR) have been used for indoor positioning. The accuracy of

current positioning systems in small buildings range from 30-100 cm [81, 112, 140],

suitable for applications requiring rough room-level precision such as location based

navigation, surveillance [78], asset tracking [93, 102] and indoor vehicle positioning.

UWB is a relatively new technology used for indoor position tracking which uses the

principle of trilateration, similar to GNSSs. Improving the precision of current indoor

positioning systems could expand potential applications to telepresence, augmented

reality, military training [35, 65], entertainment and medicine [51, 58]. In this work,

we are inspired by methods used to improve the precision of a GNSS through noise

modeling and augmentation methods.

The following sections provide some background on GNSS, LPS, UWB tech-

nology, aspects of data fusion, sensor ontology, and filtering techniques. These ideas

form the basis for the work undertaken for this dissertation.

1.1 Global Navigation Satellite Systems

A GNSS is a global system of satellites that provides geo-spatial tracking

information. The GPS is the first GNSS developed by the United States. The idea

of GPS was conceived in the early 1960s in order to improve the tracking accuracy of

the existing TRANSIT, also known as NAVSAT (Navy Navigation Satellite System).

It was primarily developed for military applications such as tracking intercontinental

ballistic missiles, ships and battlespace awareness [87]. The project was renamed

Navstar-GPS after other branches of the US military joined the project, but the

shortened name GPS is popularly used. The GPS consists of a constellation of 24
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Satellite 1

Satellite 2

Satellite 3

Satellite 4

Airplane

Earth

Figure 1.1: GNSS used for tracking an airplane.

evenly spaced satellites placed in 12 hour orbits and inclined at 55◦ orbit to the

equatorial plane [62].

The Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) is an-

other operational GNSS developed by Russia. Two other GNSSs currently under

development are the Galileo positioning system, a joint effort by the European Union

and the European Space Agency, and the Compass (or Bediou-2) navigation system

by China. Although GNSS signals are primarily used for outdoor tracking, a brief

discussion of this technology is provided since some of the concepts used for UWB

indoor tracking are similar [93].

The principle of a GNSS is to measure the time it takes for a satellite to

broadcast the signal to a receiver [87]. This is known as measuring the TOA (time

of arrival). Each satellite contains an atomic clock providing precise timing which is

synchronized using ground control stations. At least four satellites are required to

calculate the position of the receiver. Figure 1.1 shows a diagrammatic representation

of four satellites being used to track an airplane in three dimensions. The satellites

4



A B

C

P

Figure 1.2: Trilateration in the presence of noiseless signals.

in a GNSS have been configured around the earth in such a manner that at any point

of time there are at least 4 satellites overhead.

Figure 1.2 illustrates the technique used to calculate the position of the re-

ceiver from the satellite signals. This technique is known as trilateration. A single

measurement places the receiver on a known circle (sphere in 3D) from the satellite.

The ‘+’ indicates the center where the satellite is placed while the solid circle indi-

cates the possible locations of the receiver. Using the knowledge of the time taken

to receive the signal and multiplying it by the speed of light gives the distance of

the satellite from the receiver. Using at least three satellites, the 2D position of the

receiver can be calculated by finding the intersection of the circles. Similarly, this

idea can be expanded to 3D using the intersection of spheres and 4 satellites. There

are several variations on this technique, including measuring the time difference of

arrival (TDOA) and angle of arrival (AOA). Each of these methods varies somewhat

in how each distance is measured, but the basic principle is the same.

In practice, the range measurement from each satellite to the receiver has an

error in measuring the TOA of the signal which in turn affects the accuracy of the

5
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P

Figure 1.3: Trilateration in the presence of noisy signals.

distance measurement. This error is caused due to noise sources including atmospheric

distortions such as ionospheric and tropospheric delays, relativistic effects, timing

jitter, clock drift, interference and multipath [62]. In such a case the circles do not

intersect at a single point as shown in Figure 1.3 and the position of the receiver is

calculated by least squares fit or a similar method. In the following paragraphs, we

briefly describe the noise sources present in a GNSS.

As mentioned before, the satellites have precise atomic clocks which are used to

provide timing information to the receiver. Even with highly precise atomic clocks,

the timing difference between the satellite and ground control stations can be as

high as 1 ms. This roughly translates to a distance error of 300 km (distance =

speed × time, where the speed is 3 × 105 km/s). This noise can be reduced by

sending clock correction signals to the satellites periodically, typically reducing this

error to the range of 1-4 m. Error is also added to the range measurements due to

the difference between the expected and actual orbital position of a GNSS satellite,

known as ephemeris error. This noise is small and causes an error on the order of

0.8m. The satellite clock is also affected by both special and general relativistic errors.

These errors are caused by the changes in the satellite speed relative to the Earth

6



Noise Error (m)
Clock 1-4

Ephemeris 1-5
Receiver 0-10
Ionosphere 10-30
Troposphere 10-30
Multipath 1-3

Table 1.2: GNSS error sources.

and in the gravitational potential. The errors due to these can reach a maximum of

70 ns (approximately 21 m in accuracy).

As the signal propagates through the troposphere and ionosphere it experiences

refraction due to a change in the refractive indices of these layers. This causes a change

in the speed of the signal in these layers as compared to free space. The errors caused

by the atmospheric effects for each of these layers are in the range of 10-30 m.

GNSS signals can receive interference from existing narrowband signals such

as amplitude modulated signals, frequency modulated harmonics, intentional continu-

ous wave jammers, and wideband signals such as television transmitter harmonics and

matched bandwidth jammers [71]. In a highly cluttered environment such as a city,

the signal can bounce off (reflect from) buildings and sometimes even be diffracted.

Since this signal is delayed before reaching the receiver, there is a bias in the distance

measured. The errors due to interference and multipath are typically in the range of

1-3 m. In addition, the receiver may be affected by noise due to weather conditions,

thermal noise jitter and inaccuracies in the antenna design. The errors caused by all

these typical noise sources are summarized in table 1.1 [71]. In a modern GNSS re-

ceiver, these noises are modeled and filtered to improve the accuracy of the calculated

position [71].

Several augmentations, or other sources of information, have also been com-

bined with GNSS to improve its accuracy. For example, a differential GNSS (DGNSS)

7



uses an Earthbound (nearby to the receiver) tower that has a more expensive and

accurate clock than the receiver to obtain an additional distance measurement [37,

59, 73, 111, 161]. It is assumed that the tower’s position has been carefully surveyed

and is known more precisely than its GNSS estimate. Together, these sources of in-

formation can be used to improve the accuracy of the trilateration. In GNSS-denied

environments such as mountainous regions and cities, additional hardware such as an

inertial measurement unit (IMU) [123], gyroscope, radio frequency (RF) signal from

mobile towers [76] or wireless routers [138] can be used to provide tracking measure-

ments. Road maps have been incorporated in modern automobile navigation systems

to improve the accuracy. In this case, any position calculated by pure GNSS is pulled

towards the nearest road through the use of a filtering method [48, 54]. All these

techniques have led to an increase in the accuracy of GNSS tracking, thus increasing

its potential applications.

1.2 Local positioning systems

An LPS as the name suggests is concerned with operations in local areas such

as buildings. The GNSSs do not transmit signals with enough power to penetrate

indoors. Even if the GNSS signals do penetrate indoors, they are degraded, providing

accuracy (if at all acceptable) in the range of 1 – 100 m, which is unsuitable for

most indoor applications. The problem of indoor navigation is similar to outdoor

navigation but suffers from distinctive challenges such as high degree of clutter, non-

line of sight (NLOS), placement of transmitters such that there is a good coverage

of the area, the ease of installation, placement and calibration of the position of the

transmitters, as well as their security. Privacy concerns and market awareness are

some other challenges that have an impact on the widespread use of LPSs [78]. Over
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the past couple of decades a number of technologies have been used for navigation

and surveillance indoors. These include optical, pressure, IR, ultrasound, RFID, and

WLAN. The following paragraphs briefly describe some of these sensors to provide an

idea of their strengths and limitations in LPS applications. Some of these sensors have

been discussed in greater detail by Ganjali in his thesis [45]. Mautz [102] provides a

detailed survey of the range and accuracies of existing LPSs. Kolodziej and Hjelm [78]

also describe in detail various sensors used in current indoor positioning systems.

Optical sensors such as cameras or photodiodes sense the amount of light they

receive from the environment and convert it into voltage levels, which are then stored

as different pixel values. These sensors can be used to identify the occupants of a

room without their active cooperation. They can also provide information about the

state of the person, such as sitting or standing. The advantage of these sensors is

that they do not require the tracked person to carry an additional device. However,

they require LOS signals. Occlusions can degrade performance. These sensor systems

also require a significant amount of computations to process information about the

color, depth and pose so as to uniquely identify occupants in the room. Microsoft’s

EasyLiving [15] is an example where computer vision is used to process the videos

acquired by cameras to develop an indoor tracking system.

Systems such as Smart Floor developed at Georgia Tech use pressure sensors to

identify and locate a person using the force signature of the person [116]. Although

this system can identify and locate a person with greater than 90% accuracy, it

requires placement of a large number of sensors which increases the cost.

IR sensor based positioning systems consist of an array of transmitters and

receivers which are used to determine the position of the object. These transmitters

emit uniquely modulated IR beacons which are used to identify the object. These

beacons are not visible to the human eye. Although these devices can provide high
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accuracy tracking, their range is limited to a few meters. Moreover, these signals

cannot pass through opaque objects and hence requires placement of a large number

of sensors leading to an increase in cost.

Ultrasound sensor systems are used in indoor ranging systems to improve the

accuracy of tracking, since they can provide high time resolution. They are usually

used in conjunction with other existing systems such as RF. Examples where ultra-

sound sensors have been used are the Active Bat [57] and Cricket [122] systems. These

sensors can achieve sub-decimeter accuracy for a large number of measurements, but

they face some of the same disadvantages as IR sensors, such as LOS and cost.

RFID based systems contain two basic components – scanners and tags. There

are two types of RFID sensors, passive and active. Passive RFID tags are used only

in conjunction with the scanners that read them. These tags do not use any batteries

and they modulate the reflected signals in such a way so as to uniquely identify the

tag. Passive devices have a range between 1-2 meters. Active RFID tags contain

batteries to power small tranceivers that broadcast their ID which in turn is picked

up by receivers. The range of active RFID can be as large as tens of meters. However,

these devices can only report the presence of the tag in the area and not its exact

location. Therefore, these systems are not suitable for high accuracy tracking [93].

LANDMARC is an example where active RFID has been used to determine the rough

locations of objects indoors [114].

In a WLAN-based tracking system, the RF signal strength at a location is

reported to a server. The location of the receiver is then estimated using RF finger-

prints previously stored in a database. These systems require an extensive calibration

process to develop these fingerprints [63, 70, 141]. WLAN systems use IEEE 802.11

as the networking protocol. The advantage of this system is that a large part of

the backbone is already in place. An example of a tracking system using WLAN has
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been developed by Ekahau [33]. This system utilizes the existing WLAN access points

installed in the facility and the network cards already installed on user devices. Al-

though these systems have low infrastructure costs, the accuracy of a typical WLAN

tracking system is low (3 to 30 meters).

1.3 Ultra-wideband

The term “UWB” originated with the Defense Advanced Research Projects

Agency’s (DARPA) report in 1990 on the assessment of short-pulse wave technology

and served as a way to distinguish it from other conventional radar technologies [44].

UWB technology has been used in indoor positioning systems since the U.S. Federal

Communications Commission authorized limited use of UWB devices in 2002 [40].

UWB signals are defined as signals with ultra short pulses (< 1 ns) with a low duty

cycle (< 0.5%) capable of transmitting signals over a wide range of frequencies (3.1

to 10.6 GHz simultaneously) and having a large bandwidth (> 500 MHz) [93]. The

UWB frequency range is shown in Figure 1.4 [82]. Due to its large bandwidth and high

data rate UWB can be used for a variety of applications such as data communications

for high bandwidth video and data transmission [30, 41, 121], radar for through wall

imaging to detect people and objects [1, 19, 83, 110] medical imaging [11, 20, 27, 84],

and localization for inventory and target tracking [2, 42, 133, 159]. Our work makes

use of an UWB-based LPS. This technology has shown promise towards meeting the

challenges of indoor position tracking, including ease of installation, handling NLOS

and potential accuracy in tracking targets [41].

The pulses are short so that they will not disrupt other signals in the broad

frequency range and avoid pulse-on-pulse overlap from neighboring transmitters. The

low duty cycles enable low power consumption by UWB transmitters as compared to
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Figure 1.4: Frequency range for FCC approved UWB signals.

existing RF transmitters, making them suitable for battery operated equipment [47].

Due to the short duration of the UWB pulses, the probability of signal reflection

overlap caused by multipath is reduced, making it easier to filter the original signal

[49]. This property also makes UWB robust to multi-path fading as compared to

other narrowband signals [50,115,128,163]. The UWB signals have a very low power

spectral density (PSD) since their energy is spread over a wide range of frequencies.

As the PSD is below the noise threshold of existing narrowband receivers, it appears as

noise to these systems. Another advantage of UWB compared to other narrowband

transceivers is that UWB transmitters do not require power amplifiers or complex

mixers due to carrierless transmission.

However, UWB technology is not immune to multipath and interference from

other signals. UWB signals can degrade significantly when propagating in harsh

environments where dense multipath is expected. For example in a shipyard where

cargo containers are being tracked, UWB signals can experience a significant amount

of multipath from signals reflected from the metallic walls of the containers. In

addition, they can experience interference from narrowband emitters dependending

on the type of antennas being used and their orientation [105]. When propagating

through walls, UWB signals can suffer distortion due to the dispersive properties of

the walls in addition to some attenuation [109]. The different spectral components of
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a UWB signal also suffer varying amounts of delay and attenuation since the dielectric

properties of the material through which they propagate behave differently at different

frequencies. Due to the short, nanosecond pulses, time synchronization and sampling

provides a challenge in the development of high frequency analog-to-digital converters.

This makes UWB systems sensitive to timing jitter and drift.

1.4 Data fusion

The American Joint Directors of Laboratories (JDL) Data Fusion Panel [155]

has defined data fusion as “a process dealing with the association, correlation, and

combination of data and information from single or multiple sources to achieve refined

position and identity estimates, and complete and timely assessments of situations and

threats as well as their significance”. Other researchers involved in multi-sensor data

fusion have also defined it similarly [97,148,150]; as a tool for synergistic combination

of signals from different sources to provide a better understanding of the phenomenon

under consideration and to improve the quality of information.

Multi-sensor data fusion is needed when no single sensor can provide a com-

plete picture of the phenomenon taking place. Some of the issues caused by the use

of a single sensor that are resolved by use of data fusion are overcoming occlusions,

reducing uncertainty in measurements, covering large tracking areas and improving

precision [55, 56, 124, 148]. These issues are described briefly in the following para-

graphs.

A single sensor has only a partial view of the environment and therefore may

not be able to identify multiple targets in an area [18]. A complete view of the

environment can be achieved by using multiple sensors. Hence multiple sensors placed

at different locations can help to segment multiple targets effectively. For example,
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a single camera can identify multiple targets in a room if they are well separated.

However, if multiple targets are close to each other or if they are partially occluded

the camera will not be able to segment them effectively [10, 66, 95]. If an additional

camera is placed at a different location then the two cameras will be able to provide

a better view of the environment. This method of data fusion is known as cooperative

fusion.

A single type of sensor can provide data only in the visible range of the elec-

tromagnetic spectrum. For example a camera can only sense in the visible spectrum.

If there is a change in environmental conditions, for example, poor lighting condi-

tion caused by an unexpected power failure, this sensor may not be able to operate

satisfactorily. This will lead to uncertainty in measurements. Use of a different type

of sensor, such as an infrared camera which can provide data in another modality

can be used to reduce the uncertainty in measurements received by the first sen-

sor type [7, 79, 143]. Other applications where multiple sensors are used to reduce

uncertainty are fusion of radar with infrared for multi-target tracking [107] and fu-

sion of synthetic aperture radar (SAR) with LiDAR for mapping forest structure for

wildlife [67]. This type of data fusion is also known as competitive fusion.

Large-scale applications such as battlespace or traffic analysis require place-

ment of multiple sensors in order to provide a complete coverage of the area. The

sensors used in these applications may be either of the same or different types. In

such applications typically a distributed architecture is used to handle the data fusion

process. Hence, this type of data fusion is also known as distributed fusion. In such

large scale applications data management issues play an important role due to the

large number of sensors present in the system. Bandwidth required for communica-

tion is another issue in distributed sensor techniques [166]. Therefore the choice of

the optimal sensor parameters varies significantly based on the application [157,165].
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Another type of data fusion is to improve the precision or quality of data.

An example of this is D-GPS, where land based stations provide signals to correct

the GPS pseudoranges [117]. The correction signals are examples of how data from

multiple sensor systems (GPS and land based antennas) can be used to improve the

positioning accuracy.

In the applications discussed above, data fusion occurs at different levels based

on the type of information obtained by the system [31, 97, 98, 120]: signal level, pixel

level, feature level, and symbol level. Signal level of data fusion can be considered

as a pre-processing step where signals of different types are fused to create a new

signal with a higher signal to noise ratio. For example, a combination of SAR and

multispectral imaging camera can be used to provide a higher resolution image. In

pixel level of data fusion, signals are fused on a pixel-by-pixel basis. It refers to the

fusion of the measured physical measurements. The fusion of measurements from

multi-spectral and visible range cameras is an example of pixel level fusion. At the

feature level, features such as position, speed, edges, textures, etc. are extracted

from the raw measurements provided by the sensors. Raw measurements from visible

and infrared cameras can be processed to extract features which are used to identify

the location of a target. The symbol level is where data is fused at a high level of

abstraction. Data from multiple sensors are fused at this level. For example, camera

data is segmented to extract the location of the target. Range information from

multiple RF sensors can be combined to calculate the location of the target. The

location information obtained from the camera and RF sensors are then fused to

provide a better estimate of the location of the target. This level is also known as

decision level.

Chapter 3 of this dissertation is concerned with data fusion combining different

sensor modalities to improve tracking accuracy. In the next section we discuss sensor

15



ontology and introduce the distinction between aided versus unaided. We develop

new methods to fuse data from aided and unaided sensors in a filtering framework.

1.5 Sensor ontology

The distinction of passive and active sensor types can be useful in the con-

sideration of tracking problems. A passive sensor acquires data without probing the

environment. An active sensor transmits and receives signals by actively probing the

environment. The advantage of using passive sensors is that they can acquire data

unobtrusively. Since the information being extracted by passive sensors is known only

to the operator, the information is more secure. Data security can be a concern, for

example in military applications where active sensing can be intercepted. Infrared

(IR), ultrasound, RFID, WLAN and UWB are some examples of active sensors while

optical, pressure and electromagnetic sensors are a few examples of passive sensors.

Researchers have investigated combinations of active sensors [38,92,103,142,156], pas-

sive sensors [16, 24, 61, 91, 129] and hybrid active and passive sensors [34, 86, 127, 132]

for target tracking [26].

Some researchers have classified sensor systems based on whether the targets

are cooperative or non-cooperative [164]. A cooperative sensor system is where the

target actively participates in its tracking and/or is aware that it is being tracked.

In this case the target may carry an additional device. Liu et al. [94] described a

non-cooperative sensor system as one where the target is passive and does not trans-

mit signal. A non-cooperative sensor system can can also be perceived as one where

the target is trying to prevent its identification on purpose. This may be true of

targets in military applications. However, there is ambiguity in this nomenclature

since non-cooperative can have multiple meanings. Bosch and Lescure [13] proposed
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an algorithm to determine the reflection coefficient of non-cooperative targets using

time-of-flight measurements of a laser rangefinder. Kim et al. [75] designed methods

to measure six-degree-of-freedom displacement using cooperative targets. Gavan [46]

developed a RFID system for detection and identification of remote cooperative tar-

gets.

In this work we propose a new ontology: aided versus unaided, based on

whether the target aids in its tracking. An aided sensor is one that receives informa-

tion from the target(s) being tracked specifically intended to assist with determining

location and/or identity. An unaided sensor is one that does not receive such informa-

tion. The distinction does not precisely align with cooperation. An aided sensor may

be said to be tracking cooperative targets, but an unaided sensor may be tracking

targets that are cooperative, uncooperative, or indifferent to the fact they are being

tracked.

Figure 1.5 shows a possible sensor ontology that combines the passive/active

distinction with the aided/unaided distinction, along with examples of each type.

Active Passive

Target tracking 

systems

Aided Unaided

Active Passive

Eg: A person wearing 

marker suit,

passive RFID,

IMU/INS

Eg: Cameras,

thermal imaging

Eg: UWB, GPS

Mobile phone

Eg:  SONAR,

LADAR

Figure 1.5: Classification of target tracking systems.

GPS, mobile phones, UWB are some examples where the target uses an addi-
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Figure 1.6: Example of aided target tracking using an active sensor.

Figure 1.7: Example of aided target tracking using a passive sensor.

tional device to broadcast information about its location. The mobile phones broad-

cast their unique ID to the cell towers and their position is calculated using multilat-

eration. Figure 1.6 shows an example of a person using a mobile phone to aid tracking

by broadcasting their identity (source: US District Court, Southern District of TX).

Since the phone actively probes an environment using radio waves to transmit and

receive data it is an example of an aided system employing active sensors.

A target wearing a motion capture/marker suit in an indoor environment

whose motion is captured using a camera can be considered an example of aided

target tracking system that employs a passive sensor [108]. Figure 1.7 shows a person

wearing a motion capture suit [23]. The motion capture suit shown in the figure

contains LEDs (Light Emitting Diodes) placed at specific locations on the suit which
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Figure 1.8: Example of unaided target tracking using active sensor.

makes it easier for a passive sensor to segment the location of the target. IMU/INS

and passive RFIDs are other examples of aided tracking where passive sensors are

used.

SONAR, LADAR and ultrasound are examples of unaided tracking systems

where active sensors are used. In these systems the positions of the targets are

detected by calculating the time between the transmission and reception of signals.

The targets do not provide any information about their position. Figure 1.8 shows an

example of tracking people and objects using ultrasonic sensors [60]. Here the sensors

actively probe the environment to determine the positions of targets.

Figure 1.9 shows an example of unaided multi-target tracking in a room using

multiple video cameras [125]. The figure shows four targets present in the room. The

targets do not provide any information about their position. When they are far away

from each other and do not overlap, they are easier to segment uniquely over time. If

the targets overlap then it becomes difficult to distinguish them and sometimes leads

to switching of target identities. In such a situation use of a different type of sensor

that provides additional information can help to classify the targets.

In indoor position tracking we are concerned with solving two problems: im-

proving precision and data association. Data association is a major problem in un-

aided tracking systems since the sensor does not have knowledge of the position of the
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Figure 1.9: Example of unaided target tracking using a passive sensor.

target(s). The advantage of aided tracking systems is that there is no data association

problem since the target broadcasts its identity. In our work we combine an aided and

unaided target tracking systems to solve the data association problem and improve

the precision of tracking. When the unaided system provides precise measurements

as compared to the aided system, the fused output improves the precision of the aided

system. On the contrary when the unaided system provides imprecise measurements

the aided system is used to improve the precision of the fused tracking.

1.6 Filtering

A filter is a mathematical tool that uses an expected dynamic model to help

mitigate noise in sensor data. A filter can also be used to fuse data from multiple

sensors. The Kalman and particle filters are two popular filtering algorithms that are

used in tracking applications. We use the Kalman filter when the system is linear

and the noises are Gaussian, and the particle filter when the system is nonlinear or

intractable or when the noises are non-Gaussian. The following sections describe the
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filter model we use for our experiments, and provide background on the Kalman and

particle filters.

1.6.1 Filter model

In the context of filtering the parameters of the model which describe the be-

havior of the object are known as state variables. The values of interest are assumed

to lie on a distribution, rather than at a specific value. This allows for the repre-

sentation of uncertainty about the values. In the case of tracking people in the X-Y

plane we can consider the state variables to be xt, yt as the positions and ẋt, ẏt as the

velocities along the x and y axes at time t. The state of the system Xt can be written

in the matrix form as

Xt =



















xt

ẋt

yt

ẏt



















(1.1)

The state transition equations are a set of equations that describe the range

of expected behaviors of the thing being tracked. Like the state variables, these

equations can be anything. For a discrete 2D linear, constant velocity model, the

state transition equations f can be written as [4–6, 14, 32, 74, 88, 89, 134]

f =



















xt+1 = xt + (δt)ẋt + (δt)ux,t

ẋt+1 = ẋt + ux,t

yt+1 = yt + (δt)ẏt + (δt)uy,t

ẏt+1 = ẏt + uy,t



















(1.2)

The state transition equations use dynamic noise to describe the variability in the

21



possible range of next states. The state transition equations can be expressed in

matrix form as

f =

[

Xt+1 = ΦXt +BUt

]

(1.3)

where the state transition matrix Φ can be written as

Φ =



















1 δt 0 0

0 1 0 0

0 0 1 δt

0 0 0 1



















(1.4)

and δt is the time interval between two consecutive measurements.

The matrix B is written as

B =



















δt 0

1 0

0 δt

0 1



















(1.5)

The dynamic noise Ut denotes the dynamic noise during a state transition

Ut =







ux,t

uy,t






(1.6)

The dynamic noise models a potential change in velocity during each time

step. The discrete, dynamic noise covariance matrix, Q(ti, t) for an interval δt =

22



(ti − ti−1) is given by [32, 39, 74]

Qt =



















δt3/3 δt2/2 0 0

δt2/2 δt 0 0

0 0 δt3/3 δt2/2

0 0 δt2/2 δt



















Q (1.7)

and

Q =



















σ2
dx

0 0 0

0 σ2
dx

0 0

0 0 σ2
dy

0

0 0 0 σ2
dy



















(1.8)

In the covariance matrix Q it is assumed that there is no correlation between the x

and y axes. Therefore the value of covariance between x and y axes is zero.

Sensors provide observations (measurements) of the object being tracked. The

observation equations are a set of equations that describe the expected range of obser-

vations given the current state of the thing being tracking. The observation equations

use observation noise to describe the potential corruption of sensed observations. At

each time instant t, the set of observed values Z from a sensor can be written as

Z =







x̃t

ỹt






(1.9)
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where x̃t, ỹt is the observed position of the object. The observation equations g are

g =







x̃t = xt + vx,t

ỹt = yt + vy,t






(1.10)

where vx and vy describe the expected observation noise of the sensor. The observation

equations can be written in the matrix form as

g =

[

Zt = OXt +Nt

]

(1.11)

where the observation matrix is given by

O =







1 0 0 0

0 0 1 0






(1.12)

The observation noise matrix N is written as

N =







vx,t

vy,t






(1.13)

and the measurement noise covariance matrix R is given by

R =







σ2
nx

σnx,ny

σnx,ny
σ2
ny






(1.14)

where σ2
nx

and σ2
ny

are variances and σnx,ny
is the covariance along the X and Y axes

respectively.
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1.6.2 Kalman Filter

In a problem where the state transition and observation equations are linear

and the dynamic and observation noises are Gaussian, the Kalman filter provides

an ideal estimate of the state of the object under consideration. The Kalman filter

provides a filtered output by weighting measurements against predictions based upon

measurement and dynamic noise covariances. In order to start the Kalman filter

we need some initial position for the state X. We can assume that the initial state

is provided by the problem definition or the first observation when tracking begins.

Hence intial state can be expressed as

X =



















x0

ẋ0

y0

ẏ0



















(1.15)

where x0, y0 is the initial location of the person along the X and Y axes. In our

example, we consider the initial velocities to be zero. The initial prediction is the

same as the initial state.

The first step in the operation of Kalman filter is the calculation of the Kalman

gain matrix. The gain matrix gives the weighting between measurements and esti-

mates which can be calculated as

Kt = St,t,−1O
T [OSt,t,−1O

T +R]−1 (1.16)

where, K is the Kalman gain and St,t−1 is the predictor error covariance at time t

and O is the observation matrix.
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The next step is updating the state and predictor covariance matrix. The state

is updated using the following equation

Xt,t = Xt,t−1 +Kt[Zt −OXt,t−1] (1.17)

and the predictor covariance matrix is updated using the following equation

St,t = [I−KtO]St,t−1 (1.18)

The final step consists of predicting the next state and predictor covariance

matrix given by

Xt+1,t = ΦXt,t (1.19)

where Φ is the state transition matrix and T is the time interval between two con-

secutive measurements.

Finally, the predictor covariance matrix is predicted as follows

St+1,t = ΦSt,tΦ
T +Qt (1.20)

The basic Kalman filter is suitable only for applications where the transition

and observation equations are linear and the noises are Gaussian. The EKF allows

for non-linear equations by calculating Jacobians at each time step to linearize the

problem [153]. The unscented transform [147,151] is an improvement on the EKF. It

calculates sigma points from the state and covariance matrices by transforming them

through the state transition equation and then rebuilding the state and covariance

matrices. However, all these methods break down when the equations are intractable

or when the distributions are non-Gaussian.
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Figure 1.10: Layout of a golf course.

1.6.3 Particle Filter

Particle filtering is a sequential Monte Carlo methodology where the poste-

rior density function is recursively approximated using a set of random samples and

weights and the estimates are computed based on these samples and weights [3, 29].

The advantage with this approach is that it can use any distribution function even

when the mathematical formula for the distribution function is intractable [64]. By

intractable we mean that the distribution cannot be modeled easily using an analytic

function. The probability distribution is approximated using a set of particles. Each

particle has a state and a weight. The summation of all the particles provides an

approximation to the distribution.

The concept can be explained by the following example. Consider a golf course

where a player hits a ball along a course as shown in figure 1.10. Assume that it is a

par-30 hole (≈ 2500 m in distance; a typical par-3 hole is 230 – 270 m long). Here,

the state is the location and velocity of the ball along x and y axes can be assumed
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Figure 1.11: Illustration of observation and dynamic noise pdfs while playing golf.

to be similar to that given by equation 1.1.

We know that there will be variability in every shot that the player makes due

to changes in motion, wind conditions and other factors. These factors contribute to

the dynamic noise in the system. Let’s assume that the state transition equations f

are the same as in equation 1.2.

We seek to understand the distribution of potential shots. To do this, the

player is asked to hit 10 balls from the same location. We consider these balls to

be the set of particles used to approximate where the ball will land. As the number

of shots is increased, we get a better approximation of where the ball is expected to

land. The shots initially have the same probability (weight) where they could land

(0.1 in this case, since the player was given 10 attempts). Assuming the player to be

good at the game, the probabilities of the ball ending up on the “green” are higher

than in the sand trap or the trees.

Suppose that the player is now playing a game with his friends and we would

like to predict the location of the ball. We are observing the player’s shots from the
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club using binoculars. This can be seen in Figure 1.11. Our observation is partially

occluded by the trees on the course, the distance of the ball from the club and other

factors. These factors contribute to noise (errors) in the observation. Figure 1.11

shows the observation and dynamic noise distributions and the actual location of the

ball. The actual location of the ball is shown by a red circle.

Now we need to answer the question, given the current location of the ball,

what’s the next probable location of the ball? We start with some initial position

(here, the ‘tee-off’ location) and then depending on the observed location of where

the ball was hit in each round and previous knowledge of the player’s shot potential

(dynamics) we update our next estimates. Using the recursive Bayesian estimation

we can write

p(xt+1|zt+1) =
p(xt+1|xt)p(zt+1|xt+1)

p(zt+1|zt)
p(xt|zt) (1.21)

where, xt is the current state, zt is the current measurement and xt+1 is the next

state.

For the next round of shots, we would give higher weight to the shots where

the balls ended up on the green than to the shots where the balls ended up in the

sand trap or the trees due to the expected (previously modeled) dynamic noise, bal-

ancing it against the known observation noise and the actual observation. Since the

transition from p(xt|zt) to p(xt+1|zt+1) is often intractable we use a set of particles

to approximate the distribution. Depending on how closely these particles transition

compared to the actual transition of the system, they receive higher weights.

Mathematically, we can denote the set of particles as,

χ =
{

Xk, wk
}K

k=1
(1.22)
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where, K is the number of particles, Xk is the state of each particle, and wk is the

weight of each particle.

Now, the expected value of the state can be approximated by using χ as

E[χ] =
K
∑

k=1

Xkwk (1.23)

Note that the expected value is assumed to be the weighted mean of the state. This

may not be the only desired answer; for example we can use the highest weighted

particle to be the desired answer.

Now the problem is how to select particles from an intractable distribution

p(x|z) and sample from it? The answer is to introduce a known, easy-to-sample,

proposal distribution q(x|z). The most common approach to selecting q() is called

importance sampling [80] which reduces the weight update equation to

wt(xt) = wt−1(xt−1)p(zt|xt) (1.24)

In order to implement the particle filter we start by choosing the number of

particles used to approximate the probability distribution function (pdf). It is chosen

to be a sufficiently large number, say N=1000. The computation time increases

with an increase in the number of particles. Hence, the number of particles should

be chosen such that there are sufficient particles to approximate the pdf and the

computation time is not extremely long.

In the absence of any knowledge about the initial state of the particles they

can be initialized to the first observation, with equal weights.

χ =
{

Xk, wk
}N

k=1
=

{

0,
1

N

}

(1.25)
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The first step at each time instant is to transition each particle with a different

dynamic noise
{

Xk
t

}N

k=1
= f

{

Xk
t−1, u

k
t

}N

k=1
(1.26)

where, f is the matrix of state transition equations.

The next step is to update the weights for the particles using the new obser-

vation

wk
t = wk

t−1p(Zt|X
k
t ) (1.27)

After the weights have been computed, it is necessary to normalize the new

weights so that the weights add up to 1. This gives the probability of each particle

{

wk =
wk

∑N

k=1
wk

}N

k=1

(1.28)

Finally, the desired output is computed, such as the weighted average.

E[X] =
N
∑

k=1

Xkwk (1.29)

At each time step each particle undergoes a transition to a new state. The new

state comes from the range of possibilities defined by the state transition equations.

Those particles with a transition close to that of the actual transition correspond-

ing to the observation receive higher weights, while those with significantly different

transitions receive lower weights. After a few transitions, some particles tend towards

zero weights. The net result is that after some time only a few particles contribute to

the approximation of the pdf. In this situation, it is necessary to resample the par-

ticles. Resampling is a process by which particles with low probabilities are “killed”

and particles with higher probabilities are split up into newer particles to provide a
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better approximation of the pdf. Various techniques are used to resample the parti-

cles [126]. We use one of the most common techniques called select with replacement

in our experiments [3].

1.7 Previous Work

We use noise models and augmentations in a filtering framework to implement

our ideas for improving UWB based tracking. In the following sections we describe

previous work conducted by researchers in UWB based positioning systems to model

the sources of noise and augment them using other sensors.

1.7.1 Noise Modeling

Suski et al. [140] enumerated six sources of noise prevalent in UWB-based

indoor tracking systems: NLOS, multipath, synchronization, antenna effects, peak

detection and sensor placement. NLOS errors lead to an increase in the time-of-flight

measurements between tags and sensors which can bias range measurements. Mul-

tipath from fixed infrastructure such as stone walls, metallic railings (which tend to

attenuate high frequency pulses) can cause similarly increased time-of-flight measure-

ments. Synchronization is important to TOA and TDOA systems as they depend

on accurate clock references to determine range. A UWB system operates over very

short distances as compared to a GNSS, making the timing information even more

sensitive to jitter and drift. The design and placement of antennas has an affect on

the received power of signals. Accurate peak detection is also affected by TOA and

TDOA measurements.

Previous works that studied the effect of noise sources on the accuracy of UWB

indoor position tracking can be sub-divided by the approach taken: development of
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prototypes and simulations. In the former case researchers have focused on artificially

isolating the sources of error. For example, Fontana et al. [43] implemented one of the

first UWB based localization system for tracking assets. The system consisted of four

receivers spread over a test area approximately 30 × 15 m in dimension. They also

conducted indoor and outdoor tests to determine the maximum range over which the

signals could be transmitted. It was observed that the range decreased considerably

indoors due to attenuation from walls and furniture placed in the laboratory.

Guoping and Rao [53] developed a low cost localization system along with a

delayed correlation detector and high-speed Analog to Digital Converter (ADC) to

reduce the ranging errors caused in TDOA. They conducted experiments to track the

tag along the x and y axes in a 5 × 6 m area and achieved an accuracy of less than

30 cm.

Zetik et al. [160] examined mitigating the effects of multipath, synchronization,

antenna effects and peak detection in a relatively controlled environment. They built

a custom designed multi-channel UWB localizer and conducted experiments that

employed both active and passive approaches to measure the 2D and 3D position of a

moving object. However, experiments were conducted in a small area (2m × 4m) and

NLOS conditions were not considered. Meier et al. [104] also developed a prototype

of UWB transceiver system which suppressed multipath effects in highly reflective

laboratory environments by detecting the LOS and NLOS signals and achieved sub-

millimeter accuracy by filtering the measurement noise using a Kalman filter.

Mahfouz et al. [100] conducted experiments in a small test area and concen-

trated on reducing the effects of multipath, synchronization, antenna effects, peak

detection and sensor placement on UWB localization. In order to determine the im-

pact of each noise source, they conducted 1D, 2D and 3D experiments to measure the

position of the transmitter over a small (1 - 2 m) unobstructed area. Using precision
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optical tools, ground truth positions were established with an accuracy of less than

1 mm. From their experiments on mitigating the effects of different sources of error,

they approached millimeter level accuracies. Zhang et al. [162] proposed an architec-

ture for combining traditional energy-based and carrier-based detection schemes to

minimize carrier phase noise and timing error effects and achieve millimeter accuracy

for static and dynamic tracking. Using this architecture, they achieved root mean

square errors between 2 and 6 mm for 3D tracking. Further research in [158] proposed

a modified correlation algorithm to achieve sub-millimeter positioning accuracy and

reduce the computational burden of systems.

Low et al. [96] reported sub-decimeter accuracy by using a combination of peak

search and match filtering in LOS signals. They conducted experiments in realistic

environments such as large open areas to dense office spaces to observe the effect of

multipath. However, the measurements were conducted in LOS conditions to reduce

large biases in range measurements caused by NLOS.

Muqaibel et al. [109] conducted experiments on ten commonly used building

materials to study the impact of these materials on the propagation of UWB signals.

This is important since UWB signals suffer distortion not only in magnitude but

also in phase due to the large range of frequencies over which it operates. From

the experiments, they observed that each spectral component of the UWB signal

undergoes a significant delay and attenuation due to the dispersive effects of the

material.

Simulations have also been used to demonstrate a proof-of-concept, such as

by Lie et al. [90] combined an envelope detector to a leading-edge pulse detection

method using a tunnel diode to achieve centimeter level accuracy for UWB rang-

ing in a multipath environment. Jing et al. [68] studied the theoretical impact of

propagation of signals through various building materials. Shen et al. [130] proposed
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a new method to identify and mitigate the effects of NLOS signal propagation in

an UWB based indoor localization system by comparing the mean square errors of

the range estimates with the estimated LOS ranges. They conducted simulations to

compare the performance of the proposed method with other methods in this area.

Caron et al. [17] proposed different particle filters which can handle synchronous and

asynchronous measurements received from different sensors in a multisensor system.

These particle filters can switch between different observation models and also handle

cases where sensors fail or their functioning changes. Denis et al. [28] used a modified

Extended Kalman Filter (EKF) and modified regularized particle filter to track biases

caused by transitions from LOS to NLOS and from NLOS to NLOS environments.

1.7.2 Augmentation

A few UWB augmentation techniques have been investigated. Jourdan et

al. [69] combined measurements from an IMU and UWB to correct biases due to

NLOS and incorrect beacon modeling in a particle filtering framework and improve

the tracking accuracy of the object. The IMU provides the attitude and accelerations

which is used to determine the ranges from the fixed positions of the UWB beacons,

which are then used to update the position of the agent. The IMU measurements are

used to discard the outliers caused by NLOS in UWB measurements. They conducted

simulations to test the effectiveness of their method to simultaneously update the

ranging errors and the position of the agent.

Similar work was conducted by Pittet et al. [119] by combining micro electro

mechanical sensors (MEMS) inertial data along with UWB location data to reduce

localization errors caused by multipath, biases due to NLOS and non-optimal channel

modeling, and outliers. They used the EKF to combine the measurements received
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from the sensors and improve indoor tracking of people. Their experiments were con-

ducted in a classroom made of steel walls and approximately 12 × 12 m in dimension.

Even in such an environment where heavy multipath is expected due to reflections

from the steel walls, they achieved an accuracy of less than 1 m by combining mea-

surements from the two sensors.

Corrales et al. [25] also combined an IMU and UWB to track human operators

and their actions in an environment which requires active cooperation with robots.

They attached 18 IMUs along with a UWB tag on a suit which is worn by the operator.

The measurements received from the IMUs and the UWB tag are combined using a

Kalman filter. Using a combination of the two measurements, they reduced the errors

from 56 cm to 14 cm.

Cheok et al. [21] combined measurements from UWB, wheel speed encoders

and a digital compass using an EKF to improve the accuracy of tracking a mobile

robot. They also used fuzzy logic to remove the outliers received from UWB sensors.

MacGougan and O’Keefe [99] achieved centimeter-level accuracy in outdoor

navigation by use of UWB ranges in addition to GPS signals to correct for bias and

scale factor estimation.

1.8 Contributions

This work focuses on two new approaches taken to improve the precision of an

UWB based indoor positioning system for tracking people. The main contributions

of this dissertation are listed as follows:
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1.8.1 Set switching noise

We identify and explore the effect of noise caused by the switching of sensor

sets on the precision of an UWB based tracking system. Although this noise exists

in GNSSs, its effect is much more pronounced in an LPS. This is due to the scale

of a LPS (meter-level) compared to that of a GNSS (kilometer-level). The speed of

operation of a LPS is also higher than in a GNSS causing the sensor sets to switch

at a faster rate. In chapter 2 we begin with a description of sensor set switching

followed by mathematical modeling of the noise due to the switching of sensor sets.

Then we describe a particle filter that can help mitigate this noise. We chose the

particle filter to develop a general framework that can handle Gaussian and non-

Gaussian noises, and both linear and non-linear motion models. Finally we present

experimental results to demonstrate the impact of this noise and how its effect can

be reduced by using a particle filter. The performance is evaluated by comparing the

filtered outputs to the raw measurements for dynamic position tracking.

1.8.2 Augmentation

We develop a filtering framework to combine position data from aided and

unaided sensors. The goal of the proposed framework is to improve the precision of

tracking and to help solve data association issues when multiple targets are present. In

chapter 3 we begin with a description of the fusion framework followed by a description

of multi-object tracking metrics and methods. We present experimental results on real

data by varying the number of people in a room from 1 to 8 to demonstrate the effect

of fusion on multi-object data fusion and precision. The performance is evaluated

by using the multi-object tracking (MOT) metrics defined by the Classification of

Events, Activities and Relationships (CLEAR) workshop [22, 135, 136].
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Chapter 2

Sensor set switching noise

2.1 Motivation

Trilateration-based tracking relies upon measuring the distances from a fixed

set of points (“sensors”) to an object of interest (“tag”). In this work we consider the

noise at the level of a set of sensors used in a single trilateration calculation. This

noise changes when the set changes. In a GNSS, the set of sensors changes slowly

because of the scale of the tracking system (see Figure 2.1). In an unobstructed area,

the set of visible satellites changes approximately every 15 minutes [62]. However, in

indoor UWB indoor position tracking, sensor sets change with every new measure-

ment (typically 100 ms). The sets change while moving around a single room, and

sometimes even while standing still, depending upon the received signal strengths as

shown in Figure 2.2.

The problem caused by set switching is illustrated in Figure 2.3. The sequence

shows three consecutive trilateration calculations that use different sensor sets, each

resulting in a different tracked location, even though the object of interest has not

moved. At time t, the position of the tag is computed from sensors A, B and C.
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Figure 2.1: Trilateration using a GNSS (earth-sized).

At time t+1, a new sensor set consisting of A, B, C and D is used to calculate the

position of the tag. It can be observed that a change in the sensor set has caused

a shift in the calculated position of the tag, due to the changing collective set of

noises in the distance measurements. At time t+2, a new set of sensors consisting

of A, B and E causes another shift in the calculated position. Hence, switching

between sensor sets at each time instant adds a different noise to the measurements

corresponding to the noise model of each sensor set. This causes a “jump” in the

calculated position of the tag, even when the tag is not moving. A video of such a

behavior occurring at our facility using a real UWB position tracking system can be

seen at http://youtu.be/B-oCDTBQLd4.

In this chapter we identify noise due to the switching of sensor sets. This

noise is present in any trilateration-based tracking system, but its effect is much

more pronounced in an indoor positioning system. In preliminary work our group

examined this issue in simulations [45]; this work is the first to study it in a real

system. After providing a mathematical model for this noise, we describe a particle

filter for reducing its effect. We then demonstrate the operation of this particle filter
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Figure 2.2: UWB indoor trilateration (building-sized).
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Figure 2.3: Changing noise due to sensor set switching.
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on data from a real system, showing an approximately 15% improvement in accuracy

over the raw measurements.

2.2 Methods

2.2.1 Facility

Our facility is located in the basement of Riggs Hall at Clemson University.

The test area covers approximately 8 m × 8 m, covering the majority of a laboratory

and part of an adjacent hallway. Figure 2.4 shows a picture of part of this area,

where it can be observed that the laboratory and the adjacent hallway are separated

by a concrete wall which is approximately 20 cm thick. The walls are approximately

5 m high with false ceilings at a height of 3 m. The false ceilings are made up of

thermocol and placed on metal railings. In addition, there are two metal mailboxes

and a vending machine in the hallway, and two cupboards in the laboratory. Figure

2.5 shows the locations of furniture, walls and sensors in the test area.

Sensor

Stone wall

Figure 2.4: The facility and location of one of the eight sensors.
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2.2.2 UWB positioning system

We used a commercially available UWB based local positioning system devel-

oped by Ubisense Inc. (Cambridge, U.K.). We installed eight Series 7000 sensors [145]

in the facility at fixed locations. These sensors detect UWB pulses from Ubisense

tags [144], which are tracked moving throughout the test area. Sensors are powered

over network cabling using a Power-over-Ethernet switch. The Ubisense system uses

a combination of angle of arrival and time difference of arrival, followed by multilat-

eration or hyperbolic positioning, to calculate the position of a tag [146]. The master

sensor chooses five sensors which have the highest demodulation power. We refer to

this collection of five sensors as a sensor set.

Figure 2.5 shows the positions of the eight sensors distributed across our facil-

ity. The company recommends an install where the sensors are placed in a rectangular

pattern surrounding the area of interest, with minimum NLOS conditions. However,

the promise of UWB indoor position tracking is that it can be accomplished without

direct LOS between the tracked object and fixed sensor points. Our install pur-

posefully introduces some NLOS conditions from the facility in order to explore this

challenge. However, it must be noted that NLOS is not the only noise source that

contributes to errors in distance measurements for trilateration, and that even with

a completely LOS install, we have observed significant sensor set switching noise.

The sensors are connected in a daisy-chained fashion with the master sensor

providing the timing signals. These sensors are connected to a central switch which

is then connected to a computer where the location engine software computes the

position of the tags. Figure 2.6 shows a block diagram of the connection between the

sensors and the computer which processes the positions of the tags.
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Figure 2.6: Block diagram of the configuration of the UWB system.
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2.2.3 Noise model

2.2.3.1 Sensor set

We assume that a tracking measurement is calculated from a subset of the

available sensors and each sensor set has a noise model associated with it. We model

the noise associated with each sensor set independently. For the sake of simplicity,

we assume that the noises are non-zero mean Gaussian, but our methods could be

applied with other distributions.

We model the total set of I sensors as {1, 2, ..., imax}. Let a sensor set s

represent any subset of size ≥ 5 sensors drawn from I, denoting a specific sensor

subset. We calculate a Gaussian noise model for measurements relative to their

actual location for each sensor set s as

N (µs
x, µ

s
y, σ

s
x, σ

s
y) (2.1)

The total possible subsets can grow large as the number of sensors I grows. For

example, if ‖ I ‖= 8, then there are a possible total of smax =
(

8

5

)

= 56 sensor

sets. However, we assume that a relatively small number of sensor sets dominates

the possibilities used for tracking measurements. Figure 2.2.3.1 shows a plot of 1,000

measurements made by our Ubisense system, all at a single ground truth location

shown by a ‘+’. The dots represent the actual measurements received from the system.

Figure 2.8 shows the frequency distribution of the sensor sets for these measurements.

The most common 5 sensor sets account for 858 measurements, or 85.8% of the

data. These 5 sensor sets are ‘76540’, ‘75420’, ‘65410’, ‘65420’ and ‘76541’, where the

numbers indicate the sensor (see figure 2.5) used to provide a measurement. The most

commonly occurring sensor set corresponds to the sensors that are most LOS, and
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Figure 2.7: 1000 measurements collected at a single location (450, 590, 92) cm.

therefore generally the most powerful signals. However, it accounts for less than 45%

of the total data. The second most commonly occurring sensor set contains a sensor

which lies in the hallway and contributes approximately 20% of the measurements.

Similarly, other sensor sets contain at least one sensor which lies in the hallway,

providing better angular coverage but more NLOS conditions.

Figure 2.9 shows the noise models for four sensor sets from the data collected

in Figure 2.2.3.1. The noise model for each sensor set is given by (µs
x, µ

s
y, σ

s
x, σ

s
y)

where (µs
x, µ

s
y) corresponds to the average shift of the measurements from the sensor

set relative to the ground truth location, and (σs
x, σ

s
y) corresponds to the standard

deviation of the measurements from their mean. The length of the axes of the ellipses

in figure 2.9 correspond to three standard deviations.

2.2.3.2 Calibration

In order to calculate our noise model, we conduct a calibration step. A tag

is placed at a known location, and 1000 measurements are collected. This process
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Figure 2.9: Noise models of four sensor sets at (X,Y,Z) = (450,590,92) cm.
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is repeated at 6 different locations distributed throughout the facility. The noise

parameters (µs
x, µ

s
y, σ

s
x, σ

s
y) for each sensor set are calculated at each location, and

then weighted-averaged by the number of measurements for each sensor set across

the 6 locations. At a single location, if a sensor set has less than 30 measurements

then no noise model is calculated at that location. After weighted-averaging, some

sensor sets may have no model. We therefore also calculate a facility-wide noise model

that is used by default for measurements taken from a non-modeled sensor set. The

facility-wide noise model is taken as the average of all measurements taken during

the calibration step.

Figure 2.10 shows how calibration data was collected. A tag was placed on

a wooden sawhorse 92 cm in height. This height was chosen since it corresponds to

the typical height of the waist of an upright person. The base of the setup is marked

at intervals of 10 cm so that it can be aligned with markings on the floor of the

facility. This enables accurate positioning of the sawhorse with respect to the ground

truth coordinate system. We used laser levels and tape measures to ensure that the

ground truth locations are accurate to within 1 cm relative to the calibrated Ubisense

coordinate system.

2.2.4 Basic particle filter

A basic particle filter algorithm is described in section 1.6.3. In our experi-

ments we compare the performance of our set noise particle filter to this basic particle
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Figure 2.10: Setup used to collect calibration data.

filter. We initialize all particles to have equal weight and the same initial state:

χ =
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(2.2)

where x0 and y0 are the known starting position of the tag along the x and y axes with

zero initial velocities and K is the number of samples; in this work we use K = 1000.

Here the dynamic noise is chosen to be zero-mean Gaussian random variables with a

standard deviation of σdx , σdy along the X and Y directions.

2.2.5 Set noise particle filter

Using our sensor set noise model, the basic particle filter algorithm is adjusted

as follows. At each time t, the set of observed values Z given by equation 1.9 is

48



modified as

Z =













s̃t

x̃t

ỹt













(2.3)

where s̃t is the sensor set used to measure x̃t, ỹt. The observation equations g given

by equation 1.10 are rewritten as

g =













s̃t ← {1, 2, ..., smax}

x̃t = xt +N (µs̃t
x , σ

s̃t
x )

ỹt = yt +N (µs̃t
y , σ

s̃t
y )













(2.4)

where it is assumed that a random non-zero mean Gaussian noise associated with

sensor set s̃t has been added to the actual position to produce the measurement.

The weight update step given in equation 1.27 is replaced with

p(Zt|X
k
t ) = exp−

(

((xk
t − µs̃t

x )− x̃t)
2

2(σs̃t
x )

2
+
((ykt − µs̃t

y )− ỹt)
2

2(σs̃t
y )

2

)

(2.5)

where (xk
t − µs̃t

x ) and (ykt − µs̃t
y ) gives the most probable measurement of each

particle. Equation 2.5 calculates the likelihood of obtaining the actual observed mea-

surement relative to the most probable state of the particle, according to the measure-

ment noise distribution associated with the sensor set used to take the measurement.

All the other steps are the same as described for the basic particle filter.

2.2.6 Data collection

Figure 2.11 shows the apparatus used to record experimental data for testing.

A tag was placed on a tripod resting on a trolley. The tripod was adjusted so that

it would match up to the same height (92 cm) used to collect calibration data. The
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Figure 2.11: Setup used to collect recordings.

trolley was then pulled manually along a track laid on the ground at different speeds.

For each recording, the apparatus was pulled back and forth seven times along a 250

cm straight line. The total distance covered in each recording is 1750 cm.

Figure 2.12 shows the location of the track in the test area. For each recording

along the track, the Ubisense system provides raw measurements of the tag along the

X and Y axes, and the sensors used to calculate each measurement. We turned off

the simple averaging filters provided by the Ubisense system and collected the raw

measurements.

Five recordings were collected along the track at different speeds. The speed

was varied from ≈11 cm/s (extremely slow motion) to ≈120 cm/s (walk speed) [77,

152]. Table 2.1 lists the recording number and the approximate speed of the recording.

The speeds were chosen to test the viability of our method for a range of motion

dynamics resembling a slow moving robot to the walking of a person.
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Figure 2.12: Test tracks in the facility.

Recording # Total Measurements Speed (cm/s) Raw Error (cm)

1 1521 11 20

2 467 35 22

3 250 65 23

4 164 100 25

5 135 120 23

Table 2.1: Range of motions

2.2.7 Ground Truth

We use a least squares approach to calculate the ground truth data. The tag

is initially placed in the start position and measurements are collected for 15 seconds

at this position before moving the tag. After the tag reaches the end position, we

wait for another 15 seconds before ending the recording. This gives us “flat” regions

near the start and end positions along with linear regions in between which indicate
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the movement of the tag. Now, a subset of measurements in each region is used to

provide a least squares fit to the set of measurements in that region. The measurement

closest to the intersection of the lines determines the start, end or change in dynamics

(change in direction of the tag). Figure 2.13 shows a partial output of this approach.

In this figure, we can observe the “flat” region indicating the start region and two

linear regions indicating the motion of the tag with change in direction.

Since we assume that the tag is moving with a constant velocity, we can

associate each measurement with a ground truth location. The velocity is calculated

by dividing the total ground truth distance covered by the total time taken when the

tag is in motion. Now, multiplying the velocity by the time at which the measurement

was received gives us the corresponding ground truth position of the tag at that time

instant. This can be written as

x̆t =
Dx

T
× t (2.6)

y̆t =
Dy

T
× t (2.7)

where x̆t, y̆t are the ground truth data at time t, Dx, Dy are the total ground truth

distances along x and y axes respectively, and T is the total time taken to complete

a recording .

2.2.8 Error metric

In order to evaluate the performance of the filtered output we calculate the

average Euclidean distance between the filtered data and the corresponding ground

truth data over the total number of measurements. This distance is known as the
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Figure 2.13: Least squares approach to generate ground truth data (partial output).
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position error (P.E.) and can be defined as

P.E. =
1

N

N
∑

i=1

√

(xi − x̆i)2 + (yi − y̆i)2 (2.8)

where, xi, yi are the filtered data, x̆i, y̆i are the corresponding ground truth data for

measurement i and N is the total number of measurements.

2.3 Experimental Results

The output for the particle filter is to some degree controlled by the value cho-

sen for σd, the dynamic noise in the motion model. This value represents the amount

of expected change in velocity at each time step. The lower this value, the more the

filter weights the output towards the system equations, in essence providing more

smoothing. The higher this value, the more the filter weights the output towards

the measurements, allowing a quicker reaction to actual dynamics at the cost of less

smoothing. Figure 2.14 demonstrates this effect. Part (a) shows the raw measure-
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(a) Raw measurements (b) Filtered output, σd = 0.55 cm/s (c) Filtered output, σd = 2.3 cm/s
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(d) Filtered output, σd = 2.8 cm/s (e) Filtered output, σd = 3.7 cm/s (f) Filtered output, σd = 55.0 cm/s

Figure 2.14: Illustration of the effect of σd on filter output.
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ments for a recording; parts (b)-(f) show the basic particle filter output for increasing

values of σd. In part (b), the actual dynamics in the recording (the step changes

in velocity) are considerably larger than the value chosen for σd, so that the filter

output is not able to reliably track the motion. In effect, the filter is smooothing too

much. In parts (c)-(d), the larger values for σd cause the filter to more reliably track

the actual motion, but there is a noticeable lag, particularly at the points where the

actual dynamics change. In part (e), σd most closely matches the actual dynamics so

that the best filter output is obtained. Part (f) shows the output for an even larger

value of σd, where the filter is giving too much weight to individual measurements.

Figure 2.16 shows the error curves comparing the raw measurements, basic

particle filter, and set noise particle filter, for one recording. The error is shown over

a range of σd = 0.01 to 60 cm/s. It is important to evaluate performance across

a range of σd because in practice it is impossible to know the actual dynamics of

the motion. The error curves are the average errors of the recordings over 100 trials

(repeated runs of each filter at each value of σd); this is necessary because the particle

filter is a Monte Carlo approach and a single trial of limited length does not necessarily

provide a typical representative output. From the figure, it can be seen that the set

noise model particle filter performs better than basic particle filter over the entire

range of dynamic noise. The minimum error is 15 cm, and occurs at approximately

σd = 6.0 cm/s, where σd best matches the actual dynamics of the motion for this

recording.

Figure 2.15 shows the basic particle filter and set noise particle filter output

for this recording at σd = 6.0 cm/s. For clarity, only a subset of the data is shown,

and only the X-coordinates are shown (the motion is along a straight line of constant

Y). Because the best value of σd was chosen for this figure, both filters provide a fairly

good output that is better than the raw measurements. However, it can also be seen
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Figure 2.15: Recording 2 at σd = 6.0 cm/s (partial output)
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Figure 2.16: Error curve for one recording.

that the set noise particle filter output is more accurate, particularly in the range of

measurements from 80 to 120.

Figure 2.17 shows the average error curves for all five recordings. From this

figure, it can be observed that the set noise particle filter performs better than the

basic particle filter across the entire range of dynamic noise. There is no global min-

imum like there was in Figure 2.16 because the actual dynamics of all the recordings

vary (see Table 2.1). The average accuracy of the raw measurements is approximately

23 cm. The range of σd = 30 to 50 cm/s shows that the set noise particle filter im-

proved the accuracy of the raw measurements by approximately 4 cm on average,

about double that of basic particle filter. Thus, our set noise particle filter shows an

approximately 15% improvement over a basic particle filter.

2.4 Conclusions

We have identified a new noise source due to the switching of fixed point sets

for trilateration. While this noise is theoretically present in all trilateration-based
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Figure 2.17: Average error curve for all recordings.

systems, it is not readily apparent in large-scale systems like a GNSS, but it can cause

noticeable jump-like behavior in indoor UWB position tracking. We have developed

a mathematical model and particle filter that accounts for this noise. We tested our

methods on a real UWB indoor position tracking system. Our set noise particle filter

showed an approximately 15% improvement in accuracy over the raw measurements.

We use a particle filtering approach since it can handle non-zero mean noise models,

unlike Kalman filtering approaches. In the experiments, we have considered Gaussian

noise models for the sensor sets. However, this work can be easily extended to use

non-Gaussian noise models.

Our experiments have been conducted in a real world setting, where we have

achieved modest improvement in the tracking accuracy over a range of dynamics.

However, we have observed that noise due to NLOS, multipath and timing errors

tend to be more significant than noise caused by sensor set switching. Hence, research

studying the impact of these noise sources in isolation have been able to achieve sub-

decimeter [96, 99] and sometimes even sub-centimeter accuracies [100, 160], while we

have been able to observe only a modest improvement.
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Chapter 3

Augmentation

3.1 Motivation

The work in this chapter is inspired by methods used to improve the ac-

curacy of a GNSS through augmentation. Augmentation methods use additional

instrumentation such as signals from a nearby differential broadcast station, maps

or onboard inertial systems [52]. Figure 3.1 (a) shows an example of a differential

GNSS (DGNSS) where the satellites are used to provide a rough estimate of the loca-

tion and the broadcast stations provide correctional signals to improve the precision.

Since the correctional signals are broadcast from a location which is much closer than

the satellites, the measured distances are more precise. Moreover, these signals are

not affected by noise due to changes in permittivity in the atmosphere and relativis-

tic effects. Therefore these correctional signals are used to augment the raw GNSS

measurements.

Since the principle of operation used in UWB indoor position tracking is similar

to that used in a GNSS, we propose to explore if the same approach of using a

differential signal can be used to improve accuracy. Figure 3.1 (b) shows a diagram
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(a) Differential GNSS. (b) Differential LPS.

Figure 3.1: Example of augmentation on a global and local level.

of how a UWB positioning system could be augmented by using additional sensors

in each room. We assume that the UWB sensors placed around the facility provide

a rough estimate of the position of the target. Since the UWB sensors are NLOS,

the position estimates are less precise. A differential sensor placed in each local area

(here, room level) behaves similar to the broadcast tower in a DGNSS. Since these

differential sensors are placed LOS, they may be able to provide measurements with

higher precision. These higher precision estimates can then be used to augment the

estimates from the UWB sensors.

In our experiments we test two types of augmentation sensors, a LADAR and

a network of cameras. The LADAR provides a 1D waist-high distance scan of the

room. The camera network provides a floor-level image of occupied space (known as

an occupancy map [66]). Fusing each of these sensors with a UWB system introduces

an interesting challenge in data fusion. The UWB system requires tracked targets to

carry a tag, thus actively aiding in their tracking. Each tag transmits a unique code,

identifying the target and simplifying data association over time. Both the LADAR

and camera network do not have this advantage, and instead rely upon segmentation

and temporal data association to determine and maintain track identities. When

60



Aided Unaided

Filter

Segmentation

and temporal

data association

Filtered output

Motion model

Prediction

ID,x,y

ID,x,y

ID,x,y

ID,x,y

ID,x,y

raw data

state transition

equations

ID,x,y

Figure 3.2: Aided and unaided fusion framework.

only one person is in a room, these problems are relatively trivial, but as the number

of people increases, the segmentation and data association problems become more

difficult for the LADAR and camera network. We therefore introduce a new data

fusion framework that combines data from aided and unaided sensors.

The main goal of the work in this chapter is to explore the potential for a

differential augmentation to improve UWB indoor position tracking. However, due

to the interesting nature of the data fusion problem we first describe a new data fusion

framework. We then discuss a switching observation model Kalman filter that is used

to combine asynchronous measurements received from multiple sensors. To evaluate

our methods we use error metrics developed by the tracking research community that

specifically address the two problems of improving precision and data association.

Finally, we demonstrate the operation of the framework on data from a real system

and discuss the results obtained from the fusion.
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3.2 Methods

3.2.1 Framework

We propose a general algorithm to combine asynchronous measurements from

aided and unaided sensors in a filtering framework. For an aided sensor the data

association problem we assume that the targets broadcast their identity in addition

to sensor readings. For an unaided sensor, we assume that the sensor data must be

segmented and associated with tracking identities. Figure 3.2 shows a diagram of our

framework. There are three sources of input: aided data, unaided data, and a motion

model. For an aided sensor such as a UWB sensor, we assume that the ID is provided

uniquely by the sensor for every tracked target in addition to its x,y position. For an

unaided sensor such as a LADAR or a camera network, we assume that the raw data

needs to be segmented to identify the targets. Once the positions of the targets have

been identified they have to be associated. The association can be done temporally

by using the previous positions or by using identity information from another source.

The aided and unaided measurements are combined using a filter such as a Kalman or

particle filter. The filter requires some prior knowledge of the target’s motion model.

The motion model is used to provide an estimate of where the target is expected to

move based upon state transition equations. In our experiments we use a discrete

Kalman filter. A detailed explanation of the working of the discrete Kalman filter is

provided in section 1.6.2.

Figure 3.3 shows the flow of data in the proposed fusion framework. The aided

sensor provides the ID and x, y positions of the target which is directly fed to the

filter. The filter uses the received measurement to update the estimate provided by

the motion model. Based on the motion model the filter makes a prediction which

is fed back to the filter if no measurement from the unaided sensor is available.
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Figure 3.3: Working of an aided and unaided fusion system.

If a measurement from the unaided sensor is available then the prediction is used

to segment the raw data and assist in data association. We used a nearest neighbor

approach to associate the predicted data with the segmented data, but other methods

could also be used. The associated data is fed to the filter which is then used to update

the filter prediction. The updated state is then used as the filtered output.

3.2.2 Facility

Our facility is located in the basement of Riggs Hall at Clemson University.

The test area covers approximately 8 m × 8 m, covering the majority of the sensor

network laboratory and part of an adjacent hallway. Figure 3.4 shows the locations

of furniture, walls, and the UWB, LADAR and camera sensors in the test area. A

detailed description of the facility is provided in section 2.2.2. Since the LADAR and

camera sensor can operate only under LOS conditions we conduct experiments only

in this one room where all sensors are present.
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Figure 3.4: Positions of UWB, LADAR and camera sensors.

3.2.3 Sensors

The UWB positioning system is described in section 2.2.3. The LADAR and

camera systems are connected to the same computer, called ‘Fusion-Net’, while the

UWB positioning system is connected to a standalone computer ‘Ubi-Net’ and for-

wards data to the ‘Fusion-Net’ computer. Three separate threads are used to run

these sensor systems. The time stamped data arriving from the sensors are stored

on the computer for offline analysis. The operation of the sensors are shown using a

block diagram in Figure 3.5. Sections 3.2.3.1 and 3.2.3.2 briefly describe the LADAR

and camera systems and their operation.

3.2.3.1 LADAR system

In our experiments we used a commercially available SICK LMS 291-S05

LADAR manufactured by SICK AG. This sensor is shown in Figure 3.6. The LADAR
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Figure 3.5: Block diagram showing the connection of the sensor systems.

emits a beam of infrared signal across the tracking space. It then calculates the time

taken by the emitted laser beam to return after being reflected from an object [131].

Figure 3.7 shows the LADAR in operation and its raw measurements. In Figure 3.7

the x-axis corresponds to the angle while the y-axis corresponds to the distance from

the LADAR. In this case there are 3 objects present in the tracking area that can be

seen by the shorter distances in the LADAR measurements. The red box corresponds

to the LADAR which scans 0 to 180 degrees from top to bottom in a counter-clockwise

fashion. The yellow squares correspond to the distance measurements at each angu-

lar resolution. In the figure, the raw distance and angular measurements have been

converted into x,y measurements using simple trigonometric equations.

The LADAR sensor has a typical range of 30m with a range resolution of

10mm/±35mm and angular resolutions of 0.25◦, 0.5◦ and 1◦. In our experiment,

we set the scan range to 50 m with an angular resolution of 1◦. The sensor system

operates at approximately 2.5 Hz. The position of the LADAR is shown in figure

3.4. Its position has been carefully measured to within 1 cm using knowledge of

the position of the center of the mirror wheel obtained from its schematic diagram

(see Figure 3.8) and the global coordinate system. The LADAR has been placed at a
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Figure 3.6: SICK LADAR - LMS291.
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Figure 3.7: Raw measurements from a LADAR.
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Figure 3.8: Schematic diagram of LMS291.

height of approximately 95 cm to correspond to the waist height of an average person.

A picture of the sensor in the room is shown in figure 3.9.

3.2.3.2 Camera system

We use a network of six video cameras and fuse their intensity data to create

an occupancy map that is able to track people in a x-y space [66]. The cameras

are placed around the room as shown in figure 3.4, pointed towards the center of

the room. The cameras operate at 30 Hz generating an occupancy map at a rate of

roughly 20 Hz. The occupancy map is a 480 × 640 image where each pixel indicates

the space in the plane of the floor is either empty or occupied. Figure 3.11 shows an

example of an occupancy map. In this example, a single person is walking around in

the room and can be seen as a blob. A blob detection algorithm is used to track the

motion of people in the occupancy map. The output from the algorithm is the x,y

position of the centroids of the blobs. These positions are then converted from the

67



Figure 3.9: Picture of LADAR in the room.

occupancy map space to the UWB coordinate space.

3.2.4 Filtering

Section 1.6.2 describes the basic Kalman filter. For this work, we use a vari-

ation of the Kalman filter to fuse observations received from two or more sensors.

The state transition equations remain the same as described in section 1.6.1, but for

observations our filter uses a switching observation model [39,154]. Since the sensors

operate asynchronously, there are three possibilities of the types of data that are

available for a filter iteration, as shown in figure 3.12.

For the fusion between UWB and LADAR the three cases are enumerated in

equation 3.1. In the first case, a measurement is received from only the aided sensor,

here UWB. In this case the observations, observation matrix and corresponding noise

covariance given by equations 1.9, 1.10 and 1.14 are replaced by those specific to the

UWB sensor. In the second case, when data is received from only the LADAR then

these matrices are replaced accordingly. In the third case when measurements are
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Figure 3.10: Figure showing cameras placed in the room.

Figure 3.11: Example of an occupancy map.
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Figure 3.12: Illustration of timing behavior in asynchronous fusion framework.
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received from both UWB and LADAR simultaneously then the observation and noise

covariance matrices are modified accordingly.

Z,O,R =























Zu,Ou,Ru : when only UWB is present

Zl,Ol,Rl : when only LADAR is present

Zul,Oul,Rul : when both are present

(3.1)

Similarly, for the fusion between UWB and the camera network, the Z, O and

R matrices are replaced based on the type of measurement received at the given time.

Z,O,R =























Zu,Ou,Ru : when only UWB is present

Zc,Oc,Rc : when only camera is present

Zuc,Ouc,Ruc : when both are present

(3.2)

The Z, O and R matrices for the UWB sensor can be written as

Zu =







x̃ut

ỹut






(3.3)

Ou =







1 0 0 0

0 0 1 0






(3.4)

Ru =







σ2
nux

σnux,nuy

σnux,nuy
σ2
nuy






(3.5)

The Z, O and R matrices for the LADAR sensor can be written as

Zl =







x̃lt

ỹlt






(3.6)
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Ol =







1 0 0 0

0 0 1 0






(3.7)

Rl =







σ2
nlx

σnlx,nly

σnlx,nly
σ2
nly






(3.8)

The Z, O and R matrices for the camera network can be written as

Zc =







x̃ct

ỹct






(3.9)

Oc =







1 0 0 0

0 0 1 0






(3.10)

Rc =







σ2
ncx

σncx,ncy

σncx,ncy
σ2
ncy






(3.11)

When observations from both UWB and LADAR sensors are available at the

same time, the matrix Z is adjusted to include both observations and is written as

Zul =



















x̃ut

ỹut

x̃lt

ỹlt



















(3.12)

where x̃ut, ỹut are the observations obtained from UWB and x̃lt, ỹlt are the observations

obtained from the LADAR.
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The observation equations g are

g =



















x̃ut = xut +N (0, σnux
)

ỹut = yut +N (0, σnuy
)

x̃lt = xlt +N (0, σnlx
)

ỹlt = ylt +N (0, σnly
)



















(3.13)

where N (0, σnux
) and N (0, σnuy

) is the 2D zero-mean Gaussian noise for UWB, and

N (0, σnlx
) and N (0, σnly

) describes the 2D zero-mean Gaussian noise of the LADAR.

The observation matrix can be written as

Oul =



















1 0 0 0

0 0 1 0

1 0 0 0

0 0 1 0



















(3.14)

The measurement noise covariance matrix R is rewritten as

Rul =



















σ2
nux

σnux,nuy
0 0

σnux,nuy
σ2
nuy

0 0

0 0 σ2
nlx

σnlx,nly

0 0 σnlx,nly
σ2
nly



















(3.15)

Similarly when observations from both UWB and camera sensors are available,
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the matrix Z is written as

Zuc =



















x̃ut

ỹut

x̃ct

ỹct



















(3.16)

where x̃ut, ỹut are the observations obtained from UWB and x̃ct, ỹct are the observa-

tions obtained from the camera.

The observation equations g are

g =



















x̃ut = xut +N (0, σnux
)

ỹut = yut +N (0, σnuy
)

x̃ct = xct +N (0, σncx
)

ỹct = yct +N (0, σncy
)



















(3.17)

where N (0, σnux
) and N (0, σnuy

) is the 2D zero-mean Gaussian noise for UWB, and

N (0, σncx
) and N (0, σncy

) describes the 2D zero-mean Gaussian noise of the camera.

The observation matrix can be written as

Ouc =



















1 0 0 0

0 0 1 0

1 0 0 0

0 0 1 0



















(3.18)
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Figure 3.13: Calibration locations for unaided sensors.

The measurement noise covariance matrix R is rewritten as

Ruc =



















σ2
nux

σnux,nuy
0 0

σnux,nuy
σ2
nuy

0 0

0 0 σ2
ncx

σncx,ncy

0 0 σncx,ncy
σ2
ncy



















(3.19)

3.2.4.1 Parameters

The noise model for the UWB sensor (σnux
and σnuy

) was set to 40 cm based

on previous experiments conducted using the same system in the same facility [139].

In order to calculate the standard deviation in the measurements for the LADAR

and camera sensors a calibration was conducted. A circular, metallic can having a

diameter of 40 cm which is roughly close to the diameter of an average person was

placed at 5 different locations in the room (Figure 3.13). At each of these locations 100
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measurements for the LADAR and 800 measurements for the camera were collected.

The error in the measurements from the LADAR and camera network with respect

to the ground truth were calculated in addition to the standard deviation in the

measurements. For the LADAR, the values of standard deviations were calculated as

σnx
= 0.28 cm and σny

= 0.16 cm. For the camera network, values of σnx
= 0.27 cm

and σny
= 0.15 cm were calculated. In both these cases, the observation equations

are the same as described by equation 1.10.
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Figure 3.14: Path at which recordings were conducted to determine σd.

As mentioned in section 2.3, the choice of σd in the filter has some control over

the output, defining the expected nominal value of acceleration. To determine the

best value of dynamic noise for the fusion we collected 7 recordings in the center of

the room with a person walking along a straight line as shown in Figure 3.14. The

person walked at different speeds ranging from roughly 14 to 75 cm/s. We plotted

the combined average error of UWB with LADAR, and UWB with camera sensors

for these recordings at different values of σd ranging from 0.01 to 1.5 cm/s (Figure

3.15). From the figure we can observe that the knee of the curves is near 0.2 cm/s.
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We therefore choose the value of σd = 0.2 cm/s in our experiments.
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Figure 3.15: Average error curves for choosing σd.

3.2.5 Data Collection

We used laser levels and tape measures to ensure that the ground truth lo-

cations are accurate to within 1 cm relative to the calibrated Ubisense coordinate

system. The location of the LADAR was also carefully surveyed and aligned to the

Ubisense coordinate system. The cameras have also been calibrated to the same co-

ordinate system. Eight different paths were laid on the ground as shown in Figure

3.16. The arrows indicate the direction of motion taken by a person along each path.

We varied the number of people present in the room from 1 to 8. For the cases where

the number of people was varied from 1 to 3 we collected 10 recordings for a total

of 30 recordings. Where the number of people was varied from 4 to 8 we collected 5

recordings for a total of 25 recordings. Table 3.1 shows the start and end positions

of each path.

We placed the UWB tag on a helmet which was worn by the people being

tracked. This was done so as to provide a rough approximate of the center of the

76



200 300 400 500 600 700

400

500

600

700

800

900

X (cm)

Y
 (

c
m

)

1

2

3

4

5

6

7

8

Figure 3.16: Test paths in the facility.

Path # Start (cm) End (cm)

1 (490,430) (490,840)

2 (200,560) (650,560)

3 (320,840) (320,430)

4 (650,700) (200,700)

5 (650,840) (650,430)

6 (200,840) (650,840)

7 (650,430) (200,430)

8 (200,430) (200,840)

Table 3.1: Start and end positions of the paths.

human body. Figure 3.17 shows a picture of tracking 8 people during a recording. We

assumed that the subjects are moving at a relatively constant speed and as accurately

as possible along the path. We also constrained the speed at which people move to

not more than 30 cm/s. The reason for this constraint is that the LADAR operates
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Figure 3.17: A snapshot of data collection using aided and unaided sensors.

at only 2.5 Hz. This rate is not fast enough to adequately sample the motion of a

normal human pace (which is ≈ 100 cm/s). Due to the complexity of evaluating a

multi-object tracking system for multiple sensors with respect to a known ground

truth we consider only linear tracks.

3.2.6 Error metrics

For single person tracking systems where the target’s path is exactly known the

performance of an algorithm can be evaluated based on its precision. Here precision

is defined as the average distance between the ground truth and actual positions of

the target over all measurements. This metric however does not evaluate potential

data association errors. In a multi-target tracking system the targets may interact

with each other causing occlusions that lead to missed data, data association errors,

and false positives.

The Performance Evaluation of Tracking and Surveillance (PETS) workshop

[118] was convened to help develop standardized metrics for evaluating the perfor-

mance of object detection and tracking algorithms. Ellis [36] categorized metrics that
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have been widely used by researchers to quantify the performance of a system into

two categories – statistical methods and numeric scores. The first category consists

of techniques that use standard statistical methods to compare two population values

while the second category consists of techniques that calculate numeric values such

as the accuracy of detection, average positional errors, specificity, sensitivity, positive

predictive value, false positive and negative and negative predictive value. Black et

al. [12] proposed metrics based on the calculation of a contingency table which pro-

vides a count of the true positives, true negatives, false positives and false negatives.

They measured the tracking accuracy by calculating the average Euclidean distance

between the ground truth and the measurements. ETISEO (Evaluation du Traitment

et de L’Interpretation de Séquences Video), a project sponsored by the French gov-

ernment also proposed a few metrics to evaluate the performance of video surveillance

systems [113]. A drawback of all these algorithms is that they quantify the perfor-

mance of an algorithm over multiple metrics. This makes comparison of different

algorithms difficult. To solve this issue, the Computers in the Human Interaction

Loop (CHIL) [137,149] and Video Analysis and Content Extraction (VACE) [72,101]

programs were instituted to develop a spatio-temporal metric which can take into

account the number of objects detected and tracked, missed objects, and false posi-

tives. The CLEAR workshop was the first international workshop that brought the

CHIL and VACE efforts together [22, 135, 136]. The Multi-Object Tracking (MOT)

metrics defined by Bernardin et al. [8,9] address the issues mentioned previously and

provide an intuitive quantitative analysis of multiple target trackers based on their

spatial and temporal accuracy.

In our work we use the MOT metrics to evaluate the performance of multiple

target tracking. At each time step t, the tracker is assumed to provide a set of mea-

surements {h1 . . . hm} for a set of visible targets {o1 . . . on}. At each of these time
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Figure 3.18: Correspondence error in multi-target tracking system.

steps, we determine the best correspondence between the measurements and ground

truth. Once the correspondence has been achieved we calculate the position error. Fi-

nally, we calculate the number of correspondence errors including mismatches, misses

and false positives. Figure 3.18 shows the three correspondence errors considered in

this metric. A correspondence is considered to be a mismatch if the measurement

correspondence has changed as compared to the previous time step. From Figure

3.18 (a), it can be observed that a set of measurements h1 is initially associated with

target o1. However, after being associated with ground truth o1 for the first two

steps, the measurements are closer to ground truth o2. Since ground truth o2 does

not have any valid measurement associated with it, the identity is switched causing

a mismatch. If there is no measurement corresponding to the ground truth then it

is considered to be a miss (see Figure 3.18 (b)). A false positive is considered to

be the case when a measurement is associated with no visible ground truth or when

the measurement is greater than a specified threshold from the ground truth. The

latter case is shown in Figure 3.18 (c). At the third time instant, the measurement

is greater than a threshold T and is therefore not associated with the ground truth.

Since the measurement is not associated with any ground truth it is considered to

be a false positive. The threshold T puts an upper limit on the precision error for

multi-target tracking. In our experiments we choose T=100 cm based upon a desired

maximum error for tracking the position of a person moving around a room.
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The total average position error between correctly matched ground truth-

measurement pairs over all frames, multiple object tracking precision (MOTP) is

calculated as

MOTP =

∑

i,t d
i
t

∑

t ct
(3.20)

where dit is the error between each target-measurement, and ct is the number of correct

correspondences.

The multiple object tracking accuracy (MOTA) is calculated as

MOTA = 1−

∑

t(mt + fpt +mmet)
∑

t gt
(3.21)

where mt, fpt, and mmet are the number of misses, false positives, and mismatches

respectively while gt is the total number of ground truth targets at time t.

Figure 3.19 illustrates these different errors that can be present in a multi-

object tracking system. We consider two people labeled 1 and 2 moving along paths

that have been labeled A and B respectively. When the people move close to each

other their identities can get switched causing a mismatch error. From the figure we

can observe that person 1 was associated with path A and person 2 was associated

with path B. After they moved together, person 1 was associated with path B and

person 2 was associated with path A. This shows that both persons switched their

identities causing two mismatch errors. In this illustration there are 4 false positives

present. False positives can occur due to limitations of the sensor and they are shown

as stars in the figure. Sensor limitations can also lead to missing data as shown by

the circled region.

In sections 3.2.7.1 and 3.2.7.2 we describe simulations conducted to demon-

strate these metrics for LADAR and camera systems respectively. Theoretically, as
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Figure 3.19: Illustration of metrics used in the evaluation of multi-object tracking.

the number of targets in a given tracking area increase there should be a decrease

in the performance of the system. This is due to an increase in occlusions/overlaps

caused by the interaction of multiple targets, data association issues and other corre-

spondence errors. For sake of simplicity we assume that measurements are received

from the sensors synchronously.

3.2.7 Simulations

3.2.7.1 LADAR
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Figure 3.20: Simulated tracks for LADAR based tracking system.
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A room 700 x 700 cm2 in dimension is considered which contains 4 simulated

tracks as shown in Figure 3.20. We have added a Gaussian noise with a standard de-

viation of 10 cm to the ground truth positions to create measurements. The LADAR

is assumed to be placed at (X,Y) = (350,0) cm facing the Y-axis and scans counter-

clockwise from 0◦ – 180◦. The objects move in a 2D X-Y space as shown in the figure.

We assume that the tracking is conducted over 55 time steps. The LADAR provides

only the distance and the angle to the target as measurements which is then converted

to X-Y coordinates in order to display its position in the figure. The LADAR being

an unaided system can distinguish between multiple targets only when they are well

separated. In this simulation we set the threshold between two separable targets to

be 3◦. For the purpose of evaluating the metrics, a measurement is considered to be a

false positive if the distance between the measurements and its corresponding ground

truth position is greater than 20 cm.

Figure 3.21 shows different scenarios which occur during multi-target tracking.

At time t = 1, the 4 targets are well separated and can be identified uniquely. The

hollow circles show the ground truth locations of the targets and the filled circles show

the corresponding measurements. The colors indicate the correspondence between

the ground truth positions of the targets and their measurements. A false positive

is shown for target 1 at time t = 2 since the distance between the measurement and

its corresponding ground truth is greater than 10 cm and the angular separation is

greater than 3◦. At time t=28, targets 1, 2 and 3 are close to each other causing an

overlap. The ground truth location of target 2 is closest to the measurement and is

therefore associated with it while targets 1 and 3 are considered missed. A switch

in identities can be observed at time t = 31, with targets 1, 2 and 4 being labeled

incorrectly.

Table 3.2 shows the performance of a multi-target tracking system and the
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(a) t = 1 (b) t = 2

(c) t = 28 (d) t = 31

Figure 3.21: Tracking scenarios occuring in a multi-target tracking system.

relationship with an increase in the number of targets. From the table it can be

observed that for a single target, the performance is highest as expected. An increase

in the number of targets is associated with a decrease in performance. It should be

noted that the performance of the system also depends on the interaction between

targets. If tracks are simulated such that the targets do not come close to each other

at any point in time, then the errors due to mismatches and misses will be 0% and

the performance of the system will be close to 100% with errors only due to false

positives.

84



# of subjects # of instances Misses False positives Mismatches MOTA (%) MOTP (%)

1 55 0 2 0 96.36 9.76

2 110 6 2 1 91.82 9.27

3 165 23 4 2 82.42 9.82

4 220 37 4 5 79.09 12.35

Table 3.2: Performance of simulated multi-target tracking system using LADAR.
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Figure 3.22: Simulated tracks for camera based tracking system.

3.2.7.2 Camera

This simulation demonstrates the MOT metrics on a 2D camera based tracking

system. A room of similar dimensions, 700 × 700 cm2 is considered. Here we consider

a network of cameras placed around the room. Using the cameras an occupancy map

is created to extract the targets from the background. The targets are represented as

blobs with their x, y position given by the centroids of the blobs. As in the previous

simulation we assume that there are 55 measurements for each object available at

equal time intervals. The ground truth positions of the tracks are shown in Figure

3.22. We have added a Gaussian noise with a standard deviation of 10 cm to the

ground truth positions to create measurements. In this simulation we assume that

when the Euclidean distance between two targets is less than 30 cm, they overlap

each other and cannot be distinguished. Another assumption is that if the Euclidean

distance between the hypothesis and the target is greater than 20 cm then it is
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considered a false positive.

Figure 3.23 shows different cases where correspondence errors occur in this

simulation. At time t = 1, all measurements are well separated and associated with a

unique target. The measurement associated with target 3 at time t = 2 is greater than

20 cm and is considered a false positive. At time t = 20, targets 1 and 3 overlap each

other since they are closer than 30 cm away from each other. Hence, the measurement

is associated only with target 1. This is considered as a missed error for target 3. We

can observe switching of identities at time t = 26. This is an example of mismatched

error.
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Figure 3.23: Tracking scenarios occuring in a multi-target tracking system.

Table 3.3 shows the performance of the simulated multi-target tracking system

with increasing number of targets. From the figure it can be observed that the miss
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and mismatch errors are 0 as expected. As the number of targets increases the

probability of mismatches and misses increases as the targets overlap each other.

This can seen with the corresponding decrease in the MOTA.

# of subjects # of instances Misses False positives Mismatches MOTA (%) MOTP (%)

1 55 0 5 0 90.91 9.35

2 110 5 6 2 88.18 8.43

3 165 8 19 6 80.00 9.47

4 220 19 20 27 70.00 11.16

Table 3.3: Performance of simulated multi-target tracking system using camera.

3.3 Experimental Results

3.3.1 UWB and LADAR

Figures 3.24 – 3.31 show the results as the number of people in the room is

increased from 1 to 8. In each of these figures, plots (a)–(c) show the Euclidean

error over time, while plots (d)–(f) show the x,y filtered output. Figure 3.32 shows

the average increase in the data association metrics per person versus the number of

people in the room, while Figure 3.33 shows the MOTA and MOTP curves for the

LADAR and UWB sensors and their fusion.

From the figures we can observe that when there is only one person in the

room, the LADAR measurements are not occluded and its precision is better than

that of the UWB. With an increase in the number of people from 1 to 8, the instances

of occlusions for the LADAR sensor increases leading to a rise in missed measure-

ments. In addition, the number of false positives and mismatches also increase due

to incorrect data association (shown in Figure 3.32 (a)). The increase in error due

to missing measurements in the LADAR can also be observed from the plots 3.24 –

3.31 (a). The rise in errors leads to a decrease in MOTA and is reflected in Figure

87



3.33 (a). From the figure we can observe that the MOTA of the LADAR decreases

from 100% to approximately 67%. As the number of people in the room increases

from 1 to 8, the precision of the LADAR also worsens from approximately 17 cm to

34 cm (Figure 3.33 (b)). On the other hand, the accuracy and precision of the UWB

remains relatively constant, around 95% and 31 cm respectively even with a change

in the number of people in the room.

The MOTA of the fusion is better than either the LADAR or UWB sensor

alone, and is close to 100%. This shows that the UWB measurements can help solve

the data association problem for the LADAR sensor. From Figure 3.33 (b) we can

observe that for 1 person in the room, the fusion improves the precision of tracking by

approximately 40% as compared to that of the UWB sensor. The MOTP curve for the

fusion follows the LADAR up to 6 people, improving the precision of tracking over the

UWB sensor alone. This is because the LADAR sensor is assumed to have a better

noise model with a lower standard deviation as compared to the UWB. Therefore,

the filter tends to weight the LADAR measurements more than those from the UWB

sensor. When the error in the LADAR is more than the UWB, the fused output

tends to be closer to that of the UWB since the LADAR is no longer able to provide

precise measurements.

3.3.2 UWB and Camera

As in the previous section, Figures 3.34 – 3.41 show the results as the number

of people in the room is increased from 1 to 8. Figures 3.42 and 3.43 show the accuracy

metrics and MOT curves for the camera and UWB sensors and their fusion.

As in the case of LADAR sensor, we can observe that when there is only one

person in the room, the accuracy of the camera is 100%. When the number of people
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Figure 3.24: Multi-object tracking with 1 people in the room.
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Figure 3.25: Multi-object tracking with 2 people in the room.
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Figure 3.26: Multi-object tracking with 3 people in the room.
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Figure 3.27: Multi-object tracking with 4 people in the room.

92



0 5 10 15 20 25
0

50
100

0 5 10 15 20 25
0

50
100

0 5 10 15 20 25
0

50
100

0 5 10 15 20 25
0

50
100

0 5 10 15 20 25
0

50
100

0 5 10 15 20 25
0

50
100

0 5 10 15 20 25
0

50
100

0 5 10 15 20 25
0

50
100

Time (s)

E
rr

or
 (

cm
)

0 5 10 15 20 25
0

50
100

0 5 10 15 20 25
0

50
100

0 5 10 15 20 25
0

50
100

0 5 10 15 20 25
0

50
100

0 5 10 15 20 25
0

50
100

0 5 10 15 20 25
0

50
100

0 5 10 15 20 25
0

50
100

0 5 10 15 20 25
0

50
100

Time (s)

E
rr

or
 (

cm
)

0 5 10 15 20 25
0

50
100

0 5 10 15 20 25
0

50
100

0 5 10 15 20 25
0

50
100

0 5 10 15 20 25
0

50
100

0 5 10 15 20 25
0

50
100

0 5 10 15 20 25
0

50
100

0 5 10 15 20 25
0

50
100

0 5 10 15 20 25
0

50
100

Time (s)

E
rr

or
 (

cm
)

(a) LADAR (b) UWB (c) LADAR+UWB

200 300 400 500 600 700

400

500

600

700

800

900

X (cm)

Y
 (

cm
)

200 300 400 500 600 700

400

500

600

700

800

900

X (cm)

Y
 (

cm
)

200 300 400 500 600 700

400

500

600

700

800

900

X (cm)

Y
 (

cm
)

(d) LADAR (e) UWB (f) LADAR+UWB

Figure 3.28: Multi-object tracking with 5 people in the room.
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Figure 3.29: Multi-object tracking with 6 people in the room.
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Figure 3.30: Multi-object tracking with 7 people in the room.
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Figure 3.31: Multi-object tracking with 8 people in the room.
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Figure 3.32: Accuracy metrics for LADAR and UWB sensors.

1 2 3 4 5 6 7 8
65

70

75

80

85

90

95

100

# of persons

A
cc

ur
ac

y 
(%

)

 

 

Ladar
UWB
Ladar+UWB

1 2 3 4 5 6 7 8
10

15

20

25

30

35

40

45

# of persons

P
re

ci
si

on
 (

cm
)

 

 

Ladar
UWB
Ladar+UWB

(a) MOTA (b) MOTP

Figure 3.33: MOTA and MOTP for LADAR and UWB sensors.
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in the room increases, the number of distinct blobs present decreases. This results

in missed, mismatch and false positive errors which in turn decreases the MOTA. A

specific example of errors caused by missing measurements can be seen in the Figure

3.41 (a). The increase in errors is reflected in a decrease in the MOTA for the camera

from 100% for up to 2 people to 98% for 8 people. The increase in the number of

people also corresponds with a decreasing precision due to increase in the number of

data association errors. The MOTA for the camera does not drop as dramatically

as observed in the case of LADAR as shown in Figure 3.43 (a). This is due to the

presence of the large number of measurements available for the camera due to its

higher speed of operation (≈ 20 Hz). From Figure 3.43 (b) it can be observed that

the MOTP of the camera worsens from 23 cm for 1 person to 37 cm for 8 people.

As described in the previous section, the MOTA and MOTP of the UWB remains

relatively constant at 95% and 31 cm respectively.

The fusion improves the MOTA for 1 to 8 people with an accuracy around

98%. However, the MOTP curve follows the same trend as the camera; it improves the

precision up to 2 people and then the precision worsens from 22 to 32 cm. The fusion

results are closer to that of the camera due to the larger number of measurements

present as compared to that of the UWB (roughly 4 to 1).

3.4 Conclusions

The work in this chapter was motivated by the idea of a differential GPS. We

explored whether the same idea could be implemented for a UWB based LPS. The

objective was to improve the precision of the UWB sensor by augmenting it with a

differential sensor placed in each room. In our experiments we tested using a LADAR

and camera network as differential sensors.
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Figure 3.34: Multi-object tracking with 1 person in the room.
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Figure 3.35: Multi-object tracking with 2 people in the room.
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Figure 3.36: Multi-object tracking with 3 people in the room.
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Figure 3.37: Multi-object tracking with 4 people in the room.
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Figure 3.38: Multi-object tracking with 5 people in the room.
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Figure 3.39: Multi-object tracking with 6 people in the room.
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Figure 3.40: Multi-object tracking with 7 people in the room.
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Figure 3.41: Multi-object tracking with 8 people in the room.
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Figure 3.42: Accuracy metrics for camera and UWB sensors.
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Figure 3.43: MOTA and MOTP for camera and UWB sensors.
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From our results, we observed that the fusion of the UWB and LADAR sensors

was able to improve precision in tracking for up to 6 people. The precision of the

UWB was almost constant around 31 cm. On the other hand the precision of the

LADAR was roughly 17 cm for 1 person and became worse as the number of people in

the room increased. The fusion improved the precision by roughly 40% when tracking

1 person as compared to that of the UWB. Even with three people in the room the

fused output was able to improve precision by approximately 25%. However, as the

number of people increased beyond 6 the precision of the fusion between UWB and

LADAR also became worse and was closer to that of the UWB. The MOTA for the

UWB was also constant with an accuracy near 95%. The MOTA for the LADAR

was 100% for 1 person tracking and decreased linearly as the number of people in

the room increased. On the other hand, the fused output improved the accuracy for

tracking 1-8 people. The fusion of the UWB and camera was able to improve precision

for only up to 3 people and provide a modest improvement in precision, roughly 15%

when there is only 1 person in the room. The fusion improved the MOTA and is close

to 100%.

We used a Kalman filtering approach since we assumed that the noises in the

sensor observations are zero-mean Gaussian. Our framework could easily be modi-

fied to use another type of filter and can be extended to other noise models. The

expectation while developing the fusion framework was that using an aided (UWB)

and unaided (LADAR or camera network) sensors would help solve the data asso-

ciation problem in the unaided sensor, while the unaided sensor would help inject

higher precision measurements. Our experiments demonstrated the potential for this

methodology, but somewhat failed to achieve the goal due to the low precision of

the differential sensor. If the differential sensor did in fact provide a higher precision

across the range of people tested, we expect that the fusion framework would have
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resulted in higher precision than raw UWB measurements across all conditions. It

would be useful to investigate the use of other sensors for differential measurements,

such as RFID or Bluetooth.

Sensors
# people

1-2 3-6 7-8
UWB ≈ 31 ≈ 31 ≈ 31

LADAR ≈ 17 20–30 30–35
Camera 23–27 30–37 ≈ 37

UWB+LADAR ≈ 16 17–27 ≈ 30
UWB+Camera 22–27 30–32 ≈ 32

Table 3.4: MOTP comparison (cm).

Table 3.4 compares the MOTP of the sensors and sensor combinations we

tested as the number of people in the room increase. From the table it can be seen

that when there are only 1-2 people in the room, the LADAR performs better than

the UWB by approximately 40%. In this case the LADAR augments the UWB and

improves its precision. When there are up to 2 people in the room, the camera also

has the ability to augment the UWB measurements by roughly 15%. As the number

of people in the room varies from 3-6, the precision of the LADAR becomes worse and

the error increases from 20 to 30 cm. However, the precision is still better than the

UWB. The LADAR can therefore still augment the precision of the UWB. When the

number of people is greater than 6, the precision becomes worse than the UWB and

the LADAR is no longer able to improve the precision of the fusion. The camera’s

precision is worse than that of the UWB when the number of people is greater than

2. In conclusion, when the number of people in the room is greater than 6 these

particular unaided sensors did not result in improvement in tracking precision over

the UWB sensor.
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Chapter 4

Conclusions and Future Work

UWB indoor position tracking has the potential to enable new applications in

telepresence, virtual reality, training, asset tracking, navigation and entertainment.

However, the current room/building level precision is on the order of 30 cm. This

needs to be improved to near 1 cm (or better) to enable these applications. Inspired by

methods that have been used to improve GPS tracking, this dissertation has explored

novel techniques to improve UWB tracking precision through noise modeling and

augmentation.

In chapter 2 we identified a new noise source due to the switching of fixed point

sets for trilateration. While this noise is theoretically present in all trilateration-based

systems, it is not readily apparent in large-scale systems like the GPS, but it can

cause noticeable jump-like behavior in indoor UWB position tracking. We developed

a mathematical model and particle filter that accounts for this noise and tested our

methods on a real UWB indoor position tracking system. Our set noise particle filter

showed an approximately 15% improvement in accuracy over the raw measurements.

While this improvement is useful, it is the opinion of this author that noise due to

NLOS and multipath errors tends to be more significant than noise caused by sensor
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set switching. Changes in the orientation of the transmitter tags also cause a varying

noise. Future work should focus on exploring the effects of these noise sources, and

possibly others. The methodology proposed in this dissertation could be used to

approach each of these noises in isolation or in combination.

In chapter 3 we explored the idea of augmenting UWB with a differential sen-

sor. Two types of differential sensor were tested, a single LADAR and a network of 6

cameras operating to created a floor-level occupancy map. Using LADAR augmenta-

tion improved MOTA for 1-8 people in a room, and improved MOTP for 1-6 people

by as much as 40% at 1 person. Using camera augmentation improved MOTA for 1-8

people in a room and improved MOTP for 1 person by 15%, but decreased MOTP

for 3+ people. Future work should explore sensor noise models that vary depending

on the number of people in the room. A more advanced noise model could incorpo-

rate information about the occlusions of the differential sensor caused by people as

they move. Other types of differential sensors could be tried, such as a single LOS

UWB receiver. Another augmentation that could be explored is the inclusion of a

gyroscope or IMU to track the orientation of the transmitting tag, in order to model

and mitigate the effect of antenna orientation noise.

In the process of exploring differential augmentation for UWB position track-

ing, we developed the idea of fusing data from an aided and unaided sensor. This

framework could be applied to other problems. For example, body tracking using

camera and body-worn MEMS sensors might be enhanced by our data fusion filter

framework.

The ultimate goal of this research is to push towards centimeter level accuracy

in building-sized indoor tracking. It took over 30 years for GNSS to progress from

battlespace tracking to consumer level applications, and one would expect that indoor

position tracking will take a similar amount of time to progress from military research
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systems to consumer applications. The work described in this dissertation should be

viewed in that context as only one step in that direction.
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