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ABSTRACT

We introduce a device capable of detecting in real time information concerning bites taken during

a meal. The device can count the total number of bites the user has taken and provide the rate of

bites taken (bites per minute) of the user. The device could find use in a number of applications,

including helping a user with obesity, eating disorders, or eating rate problems. We have built three

prototypes of a bite detector device. Each is based on a different sensor for detecting the motion

of the wrist, with particular emphasis given to the rolling motion of the user’s wrist. During use,

information gathered can be utilized to provide real-time feedback to the user. Information can

also be stored to review the motion events as well as to evaluate the performance of the device.

Experiments have been conducted to determine the accuracy of the invention. The sensitivity of the

device can reach as high as 91%.
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CHAPTER 1

INTRODUCTION

This thesis introduces a wrist-worn device capable of detecting in real time information with

regards to bites taken during a meal. Eating occurs in a variety of environments, including homes,

restaurants, places of business, and other social gathering spots. It is very difficult to monitor

food intake at all these locations using manual methods. Furthermore, while people eat they may

simultaneously engage in a variety of other activities, including talking, reading, watching television,

and working. These activities distract from efforts meant to monitor food intake. For example, when

105 participants were asked to manually count the number of bites taken during each meal in a 24-

hour period by using an index card and slash system, 43 participants lost count during the meal or

forgot to count the number of bites entirely [40].

1.1 Background and motivation

A bite detector device could be used in several applications. First, our proposed bite detector could

help overweight or obese people to manage their body weight. Overweight1 and obesity are a growing

concern in the United States. Body weight can be classified by the body mass index (BMI), which

is weight (in kilograms) over the square of height (in meters). A person whose BMI is between 25

and 29.9 is overweight; if the BMI is more than 30, the person is obese; if the BMI is above 40, the

person is extremely obese [47]. According to this classification and data from the National Health

and Nutrition Examination Survey (NHANES), in 2003-2004, 66.3% of US adults were overweight,

32.2% of US adults were obese and 4.8% of US adults were extremely obese. If arranged by sex,

in 2003-2004, 70.8% of US men and 61.8% of US women were overweight, 31.1% of US men and

33.2% of US women were obese, 2.8% of US men and 6.9% of US women were extremely obese

[45]. In addition, the number did not change much between 2003-2004 and 2005-2006 for men or

women [44]. The most recent assessment of global obesity and overweight by the World Health

Organization (WHO, 2006) revealed that 1.6 billion adults (ages 15+ years) were overweight and

400 million adults were obese in 2006 according to BMI values [67].

1The term “overweight” is most often used as an adjective in vernacular English, but in the medical community,

it is also commonly used as a noun.
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The reason that overweight and obesity are such a big concern is that they are strongly associated

with several major health risk factors. A number of health problems have been linked to a rise in

body weight, including heart disease, hypoxia, sleep apnea, hernia, and arthritis. [65]. Table 1.1

shows a survey result that overweight and obesity are related to different health problems. It is

based on the largest telephone survey of adults in the United States, the Behavioral Risk Factor

Surveillance System (BRFSS), which is a cross-sectional telephone survey conducted by the Centers

for Disease Control and Prevention and state health departments. The second row in the table

shows there were 195,005 people in this investigation. Using the BMI obesity definition, 84,469 of

them are normal weight, 70,231 of them are overweight, 35,767 of them are obese and 4,538 of them

are extremely obese. The first column shows different types of health problems. It includes diabetes

(DIA), high blood pressure (HBP), high cholesterol (HC), asthma (AS), arthritis (AR) and general

health problems (GH). The data shows that both overweight and obesity are significantly associated

with diabetes, high blood pressure, high cholesterol levels, asthma, arthritis, and fair or poor health

status.

Total Normal Overweight Obesity Extreme Obesity
(N=195,005) (n=84,469) (n=70,231) (n=35,767) (n=4,538)

DIA(%) 7.9 4.1 7.3 14.9 25.6
HBP(%) 25.7 15.9 27.8 40.9 50.9
HC(%) 31 23.5 34.1 39.4 36.2
AS(%) 11 9.9 10 13.9 22.6
AR(%) 23 17.7 23.7 32.1 44.2
GH(%) 15.2 11.8 14.1 22.5 37.6

Table 1.1 Relation between BMI and health problems (DIA: Diabetes, HBP: High blood pressure,
HC: High cholesterol, AS: Asthma, AR: Arthritis, GH: General health problems). Taken from [43].

Flegal et al. [19] found that obese and extremely obese people were linked to increased mortality

compared to the normal weight people. In 2000, costs for obesity in the U.S. were estimated at more

than $117 billion [34]. So it is very important to successfully manage our body weight.

Terre et al. [63] reviewed several obesity treatments such as pharmacotherapy, very low-calorie

diets and surgery. They also mentioned the disadvantage of these methods. For instance, these

treatments were costly, had side effects and had disappointing long term results.

A second use for the proposed bite detector could be for helping eating disorders. Eating disorders

have also become a serious problem among people. There are two common eating disorders: anorexia
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and bulimia [18]. “Individuals with anorexia nervosa are unwilling or unable to maintain a body

weight that is normal or expectable for their age and height [49].” The activities of anorexia can

lead to a variety of medical complications. These include increased physical activity; depression;

obsessional preoccupation with food; reductions in heart rate, blood pressure, and metabolic rate;

increased cortisol production; and decrease in the production of estrogen (or, in males, testosterone)

[64]. On the other hand, “individuals with bulimia nervosa regularly engage in discrete periods of

overeating, which are followed by attempts to compensate for overeating and to avoid weight gain

[48].” Bulimia nervosa is also associated with a lot of health risk factors, including constipation,

tooth decay, irregular menstrualcycles, extremely low blood pressure, depression, and substance

abuse [7].

Many methods are suggested to treat eating disorders. Garner et al. [22] discussed several

treatments such as psychodynamic, feminist, family approaches, hospital methods, drug treatments

and educational approaches. However, Zandian et al. [68] pointed out that the outcome has not

improved significantly over a long term and all these treatments are based on very weak evidence

and results.

A third use for the proposed bite detector is to control eating rate. Although research has not

conclusively shown that slowing down eating rate would reduce food intake [41], several experiments

have shown that eating slowly was of great benefit. Otsuka et al. [50] and Sasaki et al. [55] both

found that eating fast had a significant positive relationship with BMI. Stuart [60] mentioned that

controlling eating rate could help not only reduce the amount of food intake but also help people

enjoy the taste.

1.2 Related work

1.2.1 Food intake detection

In a more general view, the goal in all of these problems (the overweight problem, the eating disorder

problem, and the eating rate problem) is to balance consumption and expenditure. Currently, there

are no widely used tools for monitoring food intake.

The most common way to monitor food intake is to manually track the food eaten and calculate

the number of the food calories. Beidler et al. [8] established a system, called Personal Nutrition

Assistant Project, which provided web-based tools using a search engine interface to the USDA
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database for clients to get their intake analysis. Clients could select their daily diet entry in the

database. Then, they could go to the next browser to enter diary entry with measurement units.

Siek et al. [58] presented a study about electronic intake monitoring application for chronic kidney

disease patient who had low literacy and low income. The application, Barcode Ed, was designed

with an off-the-shelf Palm OS Tungsten T3 PDA and Socket In-Hand SDIO card scanner. In this

three-week study, participants scanned barcode or voice recorded what, when, and how they ate.

The result of this study showed barcode scanning would be helpful for recently diagnosed CKD

patients in learning about diet entry strictly. However, these types of systems force the user to

input, scan, or voice-record food eaten into a system. People often forget or dislike doing this sort

of task after every meal.

Another method to measure the amount of food intake is to weigh the amount of food before

and after eating. So the difference of the weight is the amount of food intake. Westerterp-Plantenga

[66] monitored food intake using an electronic built-in table with a weighing scale under the plate.

The food intake details, the amount eaten, the eating time, the average eating rate, the average

bite size, and the average bite frequency, were recorded by a digital computer that was connected

to the scale. They developed cumulative food intake curves that can be used as adequate tools to

analyze the dietary and clinical interventions on meal size. Chang et al. [13] proposed a dining table

which could measure the food intake. The table consisted of weighing sensors and Radio Frequency

Identification (RFID) sensors. The food should be placed in the container which also had a RFID

tag. Different foods should be placed in different table cells so that the RFID sensors would be able

to identify it. By recognizing the RFID tag on the container and the existed database, the table

could analyze the food intake by weighing the container. However, these methods can only monitor

people when they eat at the instrumented table, and for example it can not be used to monitor

people when they dine at a restaurant or at a friend’s house.

In other methods, instead of weighing the pre-eaten food and post-eaten food, people take photos

before the eating and after the eating and use image processing to tell the amount of food intake.

Takeda and colleagues [62] [20] [54] discussed such a concept. First, they took images of the dish

before and after intake. Second, they used thresholds to convert the image into black and write

images. Third, they applied a network algorithm to measure the intake calorie. Zhu et al. [69]

also used image processing to evaluate the amount of food intake. They used a PDA with a camera
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inside. After taking a picture of the food, the user needed to label the food manually. Then the

system would analyze the food by image segmentation, feature extraction and image classification

and measure the amount and nutrient of the food. However, these sorts of systems require carefully

constructed environments similar to the dining tables with built-in scales. The foods measured

must also be restricted due to the difficulty of using image processing techniques to detect pre and

post-eaten differences.

Some researchers studied the sound made by chewing the food. Drake [17] recorded the chewing

sound and crushing sound through a microphone and a sound recorder-reproducer. Then he used

tools such as spectrum recorder, voltmeter, attenuator, oscillograph and audio generator to analyze

the amplitude, frequency and duration of the sound. He also compared chewing sounds made by

different foods and chewing sounds produced by different people. DeBelie et al. [9] also studied the

sounds made by chewing food. They recorded the chewing sounds of four different dry-crisp snacks

(potato chips, prawn crackers, cornflakes and low calorie snacks) and they compared them using

FFT analysis and multi-way data analysis. They found that different people had different chewing

sounds. After calibrating the sound of different people, they could almost distinguish the sound

from different types of food though it is hard to identify the potato chips because of their irregular

shape. Amft et al. [3] discussed the chewing sounds and the best position to put the microphone.

They concluded that when they put the microphone in an inner ear, they could get high chewing

signal intensity but low speech signal intensity. After getting the signal of the chewing sound, they

used chewing segmentation and classification to tell different food products apart. However, these

methods have poor precision in differentiating many kinds of food due to low signal to noise ratio.

Furthermore, the recording procedures are very expensive.

The sound caused by swallowing food has also been investigated. Logan et al. [39] analyzed

the spectrograms of four kinds of sounds, deglutition, respiration, voluntary cough, and vocaliza-

tion. Sound was amplified from a microphone and recorded on a tape recorder for later analysis.

It was found that deglutition sounds performed a particular spectrographic pattern which was dif-

ferent from those three. Limdi et al. [38] used the electrodes near the neck to record the surface

electromyography. After amplifying and filtering the signal, they could detect the swallowing rate.

If the rate was too high, they would give feedback to the user. Recently, Amft et al. [4] put a

microphone sensor on the neck to record the sound and used gel electrodes to transduce the surface
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electromyography. With the continuous data, they detected the swallowing events by using a sliding-

window and bottom-up algorithm and a feature similarity search. Because of the same problem as

analyzing chewing sound, these methods are inaccurate and costly.

Other technologies have also been involved. Some studies have been undertaken to measure the

fat content of meat using near-infrared (NIR) spectroscopy [33] and nuclear magnetic resonance

(NMR) imaging [24] [6]. These methods are targeted towards meat and food inspection rather than

individual user consumption. In addition, most of these methods require the use of large equipment.

1.2.2 Wrist worn device

All of the methods discussed so far are not applicable for general, everyday-use for food intake mon-

itoring. The device should be able to be worn casually, and its feedback and recording capabilities

should not embarrass the user. Towards this goal, we now look specifically at wrist-worn devices

and what they have been used to measure in previous works.

Wrist-worn devices can be used for many applications. Sharples and Beale [57] reviewed a

variety of monitoring devices that could be worn, including many that are wrist-worn. Such devices

have been proposed or built to measure environment and health properties, including temperature,

barometric pressure, altitude, and heart rate.

Many applications are concerned with some aspects of health. Harland et al. [26] described a

wrist-worn device for ambulatory monitoring of the human electrocardiogram (ECG). They used

two wristwatch style sensors to acquire high resolution ECG and displayed it on a laptop computer

through a wireless transceiver. Gagnadre et al. [21] proposed a wrist-worn device using an optic

fiber sensor to measure heart rate, breathing frequency, blood pressure variations and breathing

amplitude. With these parameters, they could detect different sleep phases. Ching et al. [14]

designed a circuit connected to a microphone on the wrist to calculate heart rate. From a survey of

the subject including gender, age, body weight and the linear relationship between the heart rate

and oxygen consumption, they could tell if the subject was in bad health. Sugimoto et al. [61]

had the same idea as Ching et al. [14]. They presented a wrist-worn device which can measure

the heart rate. By sending the data wirelessly through a Bluetooth technology, they calculated the

oxygen consumption, and estimated the energy expenditure. Ouchi et al. [52] [51] used a wrist-worn

device which mainly comprised of four different sensors, pulse meter, thermometer, galvanic skin

reflex electrodes and 3-axis accelerometer, to acquire pulse wave, skin temperature, perspiration and
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movement. Sending these measuring data to a PDA through a Bluetooth connection, they could

estimate the user’s health condition.

Wrist-worn devices have also been used in non-health-monitoring applications. Heil et al. [27]

used a wrist-worn light to document that indoor lighting for a particular day-shift work environment

could serve as the primary light exposure dosage for humans. Maurer and colleagues [42] [59]

developed an E-watch. This E-watch had a lot of applications. It can be used as a normal watch to

show the current time. It could also use light sensors and a microphone to recognize the location and

use a temperature sensor to detect the temperature. In addition, it had a calendar function which

could communicate with a cell phone or a computer. Blasko et al. [10] used a small wrist-worn

projector and projected a large image onto surfaces.

A very important reason researchers prefer putting a non-invasive device on the wrist instead of

on other parts of the body is because the wrist-worn devices can be used to study hand motion and

gesture recognition in various domains. Howard et al. [29] designed a lightglove, a virtual typing and

pointing system, which was worn around the wrist. This wrist-worn device sent out beams of fan

shape light directing from the wrist. While descending a finger into the light beam, there was a key

closure generated that provided the host system with visual feedback to complete the input. This

keyboard/mouse mimicry visual control mitigated constraint of posture and position and allowed

other hand operations. Ogris et al. [46] used ultrasonic sensors, accelerometers and gyroscopes to

measure the distance and the motion to determine the gesture of a pre-defined bicycle repair task.

Schmidt et al. [56] conducted a study about a wrist-worn computer and platform, named eWatch,

which could detect light and acceleration data. The analysis of velocity and gesture recorded by the

eWatch was similar to analysis of orchestra beating. They confirmed that the eWatch was a suitable

input device for acceleration based gesture recognition for the virtual orchestra system. Chambers et

al. [12] used accelerometers to detect the acceleration and used a hidden Markov model to recognize

the gestures. Lementec et al. [37] used sensors to recognize the arm gestures. They used four

sensors in different parts of the body: upper part of the left arm, upper part of the right arm, the

left wrist, and the right wrist. They defined three states: the steady state, the oscillation state and

the unclassified state. They also defined five positions: high, medium-high, medium, medium-low

and low. With the combination of the sensors states and positions, they could classify the different

motion gestures. Amft and colleagues [2] [32] used wrist-worn sensors in combination with sensors
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on the upper arms, head, and ears, to classify an eating action taken by a person. Their methods

searched for pre-defined patterns in the signals conveyed by all the sensors in order to classify a

motion pattern as one of drinking, using a spoon, using cutlery, or using fingers to eat. In contrast,

we are interested in a simpler problem. We use a single wrist-worn sensor to detect a bite taken by

a person regardless of the type of food or motion involved in the bite.

1.2.3 Related patent

There are some patents related to our bite detector device. Some devices can be used to monitor

the amount of food and calorie intake that one consumes during a given day.

U.S. Patent No. 4,321,674 to Krames et al. [35] described such a system. People entered the food

items into the device, and the device would calculate the total calories and the nutritional values.

If the calories exceeded the daily calorie limit, a warning would be shown.

U.S. Patent No. 4,686,624 to Blum et al. [11] described a device to calculate the calorie of the

food input by the user as well. Furthermore, this device included the time when the user recorded

the food and the device could transfer the data to a remote computer so it could be reviewed by the

doctor.

U.S. Patent No. 4,575,804 to Ratcliff [53] and U.S. Patent No. 4,911,256 to Attikiouzel [5] also

developed a device with the same idea. In addition, their device included a weighing scale. With

the weighing scale and the food items input by the user, the device could calculate the calorie and

protein value.

Unfortunately, such devices usually lack the ability to provide real time feedback to a user. Also,

many of these devices require the user to enter information into a computer which takes time and

effort. It is a tedious job to manually track or note in a diary every meal consumed, and manual

tracking provides obvious opportunities for bias and misreporting. Moreover, devices developed for

clinical or hospital or research monitoring of food intake are not applicable for everyday use by an

average person.

Devices that offer real time feedback to a user have also been described. For instance, U.S.

Patent No. 5,398,688 to Laniado [36] described a device that could detect changes in physiological

variables such as heart rate, stroke volume, and blood pressure corresponding to initiation of eating.

A detected change in a physiological variable started a timer and after a predetermined amount of

time had passed, the device would notify the user to stop eating.
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U.S. Patent No. 5,864,518 [23] to Geiser described a device and method for analyzing a swimmer’s

swim stroke. He used two metallic sensors in the watch to count the stroke. When the hands were

in the water, it would form a short circuit. When the hands were out of the water, it would form a

open circuit; therefore it was counted as one stroke.

U.S. Patent No. 5,563,850 [25] to Hanapole described a device that alerts the user when it was

acceptable to take another bite based upon the time interval between individual bites. The device

utilized a wrist motion detector that activated a timer upon wrist motion.

U.S. Patent No. 6,135,950 [1] to Adams described a device that included a first sensor placed

on a user’s throat to monitor swallowing and a second sensor that was placed near the user’s heart.

Feedback from the two sensors allowed better quantification of the amount of food ingested.

Other sensors have been developed to monitor other bodily functions. For instance, U.S. Patent

Application Publication No. 2005/0245793 [28] to Hilton, et al. described an apparatus and method-

ology that may be used to measure and store physiological parameters indicative of sustained activity

by a user including walking, sleeping, exercising, or other activities.

1.3 New solution - the idea of a bite detector

While the above methods offer improvements in the art, room for additional improvements exist.

What is needed is a non-invasive, inexpensive, easy to operate, and discreet device that can measure

food intake. Thus, we envision a bite detector device that is worn like a watch and can detect

individual bites and count them when the person wearing it eats. We demonstrate three different

prototypes of the bite detector. Each device is placed on the person’s wrist and connected to an

external computer. During use, the device can gather and interpret information with regard to the

motion of the user’s wrist during a meal, with particular emphasis given to the rolling motion of

the user’s wrist. Information gathered can be utilized to provide real-time feedback to the user.

Information can also be stored to maintain a long term record of eating, so as to better examine the

user’s eating habits over time. The following chapter will introduce the bite detector device, the bite

detection algorithm, the experiments conducted, and the performance of the bite detector in detail.
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CHAPTER 2

METHODS

2.1 Overview

This chapter covers in greater detail the actual implementation of our bite detector device. First,

we introduce three sensor prototypes we built for our bite detector. They are based on the wired

InertiaCube3 sensor, the wireless InertiaCube3 sensor and the STMicroelectronics LIS3L02AL sensor

respectively. Each sensor can detect the orientation data in degrees in real time. For the first two

prototypes, we just need to directly connect the sensors to the computer’s RS-232 port or USB port

via a wired or wireless connection. For the third prototype, we need to design a circuit board and

then connect the LIS3L02AL sensor to the computer through an analog input-to-digital I/O board.

Second, we introduce our algorithm of bite detection. It includes collecting the orientation data,

controlling the record frequency, selecting the useful orientation, dealing with the bound problem,

smoothing the signal, calculating the derivative, defining the coordinate system of wrist motion, and

defining the bite period. Then we will describe the video capture scene and we will develop two

graphical user interfaces (GUI) for our bite detector device. The first graphical user interface is used

to detect the bite information and give feedback to the user in real time. The second graphical user

interface can be used to review the stored information of sensor data and synchronous recorded video.

It can detect the bite offline with regard to different parameter settings. It can also evaluate the bite

detector after marking the ground truth bite manually by reviewing the data and the synchronous

video. At last, we will discuss how to evaluate our bite detector.

2.2 Sensor prototypes

We have built three prototypes for the bite detector device. Each uses a different sensor for detecting

the motion of the wrist. The sensor is used to calculate the motion of the user’s wrist in order to

identify individual bites during a meal. These sensors can sense the angular rate of roll, pitch

and yaw. The three different kinds of sensors are the wired InertiaCube3 sensor, the wireless

InertiaCube3 sensor and the STMicroelectronics LIS3L02AL sensor. Figure 2.1 shows a picture

of two of the sensors. Both InertiaCube3 sensors are the same size (the left side of Figure 2.1), the

difference being that the one pictured uses a wire to connect to a computer while the other is wireless
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but needs a battery. The STMicroelectronics sensor in the middle is much smaller compared to the

other two.

Figure 2.1 The InterSense InertiaCube3 sensor and the STMicroelectronics LIS3L02AL sensor

2.2.1 Wired InertiaCube3 sensor

The first prototype is based upon a wired InertiaCube3 sensor produced by InterSense Corporation

(InterSense, Inc., 36 Crosby Drive, Suite 150, Bedford, MA 01730, www.isense.com). The wired

InertiaCube3 sensor is an inertial 3-DOF (Degree of Freedom) orientation tracking system. It is

based on micro-electro-mechanical systems (MEMS) technology. It contains an accelerometer, a

gyroscope and a magnetometer on each of the 3 axis so it can provide 360 degree measurement in

all three orientations: pitch, yaw and roll [30]. The whole sensor package includes the orientation

sensor, the RS-232 serial interface, the AC power cable and the AC/DC +6VDC power supply. All

of these parts are shown in Figure 2.2.

To get the orientation data from the wired InertiaCube3 orientation sensor, we need to link

the sensor to the computer. First, we attach the orientation sensor to the RS-232 serial interface

connector. Then we plug the serial interface connector into a personal computer’s RS-232 port.

After that, the AC to DC power is connected to the main power and the +6VDC power is connected

to the RS-232 serial interface connector.

The InterSense company also provides a library file ISENSE.DLL and a header file ISENSE.H

so that the user can initialize and retrieve data from the wired InertiaCube3 sensor by using

development software Microsoft Visual Studio C++ 6.0. To initialize the sensor, the function
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AC/DC +6VDC

Power Supply AC Power

Cable

Wired

InertiaCube3

RS−232

Serial

Interface

Figure 2.2 The components of the InterSense wired InertiaCube3 Sensor
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ISD OpenTracker in the ISENSE.H header file should be used. If the function return value is

TRUE, it means the sensor has been opened successfully through the RS-232 port. After that,

we can use the function ISD GetData to get the orientation data in yaw, pitch, and roll from the

configured sensor. At last, we can use the function ISD CloseTracker to shut down the sensor, close

the communication port and release all the resources allocated by the sensor.

2.2.2 Wireless InertiaCube3 sensor

The second prototype is mainly based on a wireless InertiaCube3 sensor which is also produced

by the InterSense Corporation (InterSense, Inc., 36 Crosby Drive, Suite 150, Bedford, MA 01730,

www.isense.com). The wireless InertiaCube3 sensor is also an inertial 3-DOF (Degree of Freedom)

orientation tracking system as the wired InertiaCube3 sensor. The main difference between these

two sensors is that the wireless InertiaCube3 sensor can connect to the computer wirelessly and it

allows up to 16 different channel selections [31]. It consists of a wireless InertiaCube3 sensor and

an InertiaCube3 receiver which uses the same channel. The wireless InertiaCube3 sensor and the

InertiaCube3 receiver are shown in Figure 2.3.

9V

Battery
Wireless

InertiaCube3

InertiaCube3

Receiver

Figure 2.3 The components of the InterSense wireless InertiaCube3 Sensor

To get the orientation data from the wireless InertiaCube3 sensor, we attach a 9 volt battery

to the wireless InertiaCube3 sensor and connect the receiver to the computer through a USB port.
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After that, we use the software “DeviceTool” provided by the InterSense company to configure the

wireless InertiaCube3 sensor and the InertiaCube3 receiver. The software will search for all linked

receivers and the paired wireless InertiaCube3 sensor. After the link is established, the green LED

on the battery will stay on steady. As said in [31], if the voltage is below 5.2 Volts, the green

LED will flash until the voltage goes back to at least 5.5 Volts. If the voltage is below 4.5 Volts,

the communication will be disconnected. At last, we can use the same library ISENSE.DLL and

the same functions as the wired InertiaCube3 sensor to read the orientation data from the sensor

wirelessly.

2.2.3 STMicroelectronics LIS3L02AL sensor

The third prototype uses a MEMS inertial sensor LIS3L02AL produced by STMicroelectronics Cor-

poration (STMicroelectronics, 39 Chemin du Champ des Filles, C.P.21, CH 1228 Plan-Les-Ouates,

Geneva, Switzerland, www.st.com). The sensor is shown in the middle of Figure 2.1.

The LIS3L02AL is a 3-axis linear capacitive accelerometer. It is small, has low power consumption

and has a bandwidth of 1.5 KHz.

Figure 2.4 shows the circuit design for a STMicroelectronics LIS3L02AL sensor that we built.

The design guide is taken from the user manual of the LIS3L02AL sensor [16]. A power supply

decoupling capacitor (100 µF ceramic or polyester + 10 µF aluminum) should be connected to the

Vdd leg of the device. The LIS3L02AL allows to band limit Voutx
, Vouty

and Voutz
through the

use of external capacitors. The frequency range should be less than 1.5 KHz. The equation for the

cut-off frequency (ft) of the external filter is given using Equation 2.1:

ft =
1

2π · Rout · Cload(x, y, z)
(2.1)

Rout has a nominal value equal to 110 kΩ, so we can simplify the Equation 2.1 into Equation

2.2.

ft =
1.45 µF

Cload(x, y, z)
[Hz] (2.2)

In our design, we have chosen a 22 nF capacity as Cload(x), Cload(y), and Cload(z), thus calcu-

lating from Equation 2.2, the cut-off frequency of the external filter is 66 Hz. We have also built the

test mode of the circuit. In Figure 2.4, if the wire from ST is connected to Vdd, it is in test mode;
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otherwise it is in normal mode. The final STMicroelectronics LIS3L02AL sensor circuit is shown in

Figure 2.5.

Figure 2.4 Circuit design for the STMicroelectronics LIS3L02AL sensor

We have attached the LIS3L02AL sensor to an analog input-to-digital I/O board in a computer.

We used the PCI-DAS08 produced by Measurement Computing Corporation (Measurement Comput-

ing Corporation, 10 Commerce Way, Norton, MA 02766, USA, www.measurementcomputing.com).

The analog input-to-digital I/O PCI-DAS08 board is shown in Figure 2.6.

The PCI-DAS08 is a multifunction measurement and control board designed to operate in com-

puters with PCI bus accessory slots. All hardware configuration options on the PCI-DAS08 are

software controlled. There are no switches or jumpers to set [15]. The board uses a 37-pin male “D”

connector. The main connector pinout of the analog input-to-digital I/O PCI-DAS08 board and the

connection with the STMicroelectronics LIS3L02AL sensor are shown in Figure 2.7.

2.3 Bite detection algorithm

The key ability of the bite detector device is to detect a bite in real time during a meal. In this

section, we describe the algorithm of bite detection. We have developed the bite detection algorithm

in Microsoft Visual C++ 6.0. Figure 2.8 shows the flow diagram of our bite detection algorithm.

Before the loop, we initialize Bite Count as 0 and two time parameters, T1 and T2, also as 0 where

T1 is the old time and T2 is the current time. When we update the time from the system, if the
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Figure 2.5 Circuit board for the STMicroelectronics LIS3L02AL sensor

Figure 2.6 Analog input-to-digital I/O PCI-DAS08 board
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Figure 2.7 Main connector pinout of the analog input-to-digital I/0 PCI-DAS08 board and the
connection with the STMicroelectronics LIS3L02AL sensor
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current time is more than 1

60
second plus the old time, we replace the old time with the current

time and get one sensor orientation data from the sensor. After that, we handle the bound problem,

then smooth the data, calculate the derivative data, and judge if a bite has happened at this specific

time. If so, the parameter Bite Count will increase by 1 and then we get the current time again.

Otherwise, we just get the current time again. All the steps are discussed in detail in the following

subsections.

T1 = T2 = 0

Bite_Count = 0

T2 - T1 > (1/60)

Handle Bound Problem

Yes

T1 T2 in seconds

T1 = T2

Get Time T2

No
Record in 60Hz

Get Orientation Degree

Smooth Data

Calculate Derivative

Is this a Bite? Bite_Count ++Yes

No

Figure 2.8 Flow diagram of bite detection algorithm

2.3.1 Data collection and orientation selection

All data streams are recorded at 60Hz. We have observed that the sensor can update the data at
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approximately 100Hz without any time control. The issue of data rate will be discussed more later

in the next chapter.

To record sensor data stream at 60Hz, the following algorithm is performed:

start = clock(); %time in milliseconds

data_count = 0;

loop:

update sensor data;

data_count++;

while ((clock() - start) < data_count * 1000 / 60);

Next, it needs to be decided which data is useful. For each meal, all three prototype sensors

can record the movement of the wrist in three orientations: pitch, yaw, and roll. Figure 2.9 shows

the data of three orientations recorded by three different people on three different days 11-17-2007,

11-18-2007 and 11-24-2007 respectively. From Figure 2.9 the data look meaningless in time domain,

so we perform the DTFT (Discrete Time Fourier Transform) of the original data to transfer the data

into frequency domain. The transformed data is shown in Figure 2.10. We can see from this figure

that although the DTFT of the original data is still very noisy, unlike the other two orientations, the

roll data has some peaks other than 0. For example, the first subject has some peaks around 0.18

Hz, 0.24 Hz and 0.35 Hz, the second subject has a peak around 0.14 Hz and the third subject has a

peak around 0.2 Hz. It means the subjects have rolled their hands periodically every few seconds.

From these data in frequency domain, we can make the hypotheses that although we cannot detect

a bite only depending on the orientation frequency, we can use the roll data while discarding the

yaw data and the pitch data to detect bites during a meal. As a result, we will only use the roll

orientations to develop the bite detection in our algorithm.

2.3.2 Bound problem

Note that when the sensor records the orientation data, the orientation range is from −180◦ to

180◦. If the data goes past 180◦, it will suddenly change to −180◦, and vice versa. Because of this,

the signal may be discontinuous. In order to smooth the data signal in the next step, we have to

transform this discontinuous signal to a continuous signal. We use a common approach (for example,
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Figure 2.9 Original pitch, yaw, and roll orientation data in three different meals recorded by the
InterSense InertiaCube3 sensor
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Figure 2.10 Discrete time Fourier transform of the original pitch, yaw, and roll orientation data in
three different meals recorded by the InterSense InertiaCube3 sensor
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[37]). Considering that a person cannot rotate his or her hand 180◦ in a very short time (less than

0.1 seconds), a simple and effective way is shown below:

if (R_t - R_(t-1) > 180)

new_R_t = R_t - 360;

else if (R_t - R_(t-1) < -180)

new_R_t = R_t + 360;

else

new_R_t = R_t;

Where R t is the roll data at time t and R (t − 1) is the roll data at time t-1.

2.3.3 Smooth the roll data

As in Figure 2.9, the raw sensor data is noisy. To remove the noise, we have applied a Gaussian-

weighted window. A normalized Gaussian distribution is shown in Figure 2.11. The midpoint of the

window corresponding to the peak of the Gaussian is centered on the current measurement, so that

only a half of a Gaussian distribution is used for smoothing. This half of the Gaussian distribution

is marked as ∗ in Figure 2.11. Equation 2.3 shows how we compute the smoothed roll data. In

this equation, Ot is the original roll orientation measured at time t and St is smoothed data at

time t, N is the Gaussian-weighted window size and R is the Gaussian standard deviation. In our

implementation, the default value of N and R are 120 and 20 respectively.

St =

0∑

i=−N

Ot+i ×
e−

(t−N)2

2R2

N∑

x=0

e−
(x−N)2

2R2

(2.3)

2.3.4 Compute the derivative of smoothed roll data

Different people may wear the sensor at a different angle. If we use the absolute value of the roll

data, it is difficult to define a bite period. Therefore, we compute the derivative of the smoothed

roll data. Using the derivative data, the behavior of rotation by different people will be the same.

The derivative is computed simply as the difference between consecutive smoothed measurements:

dt = st − st−Q (2.4)
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The default value of Q is 120. To calculate the derivative data, we just simply use the Equation

2.4 where dt is the derivative data and st is the smoothed data at time t. Because the default Q is 120

and our data collection frequency is 60 Hz, the value for dt/2 is the roll velocity (degrees/second).

In order to smooth the original roll data and compute the derivative of the smoothed roll data, the

computer must buffer the most recent Q measurements. The contents of the buffer are updated

after each new measurement, shifting out the previously stored oldest measurement.

2.3.5 Bite detection

We have discovered that while eating, the wrist of a person undergoes a characteristic rolling motion

that is indicative of the person taking a bite of food. Referring to Figure 2.12, the roll motion

takes place about the axis extending from the elbow to the hand. We define a positive roll as

clockwise direction motion if viewed from the elbow looking towards the hand, and negative roll as

a counterclockwise motion. This coordinate system is defined for a right hand; the same coordinate

system could be applied to a left hand but with the roll directions reversed.

Figure 2.12 Coordinate system for defining wrist motion

The characteristic motion involves a cycle of the roll motion that contains an interval of positive

roll followed by an interval of negative roll. Figure 2.13 shows the characteristics of the motion.

If the velocity of the roll is measured over time, then three events define the motion that cor-

responds to a bite. First, the velocity must surpass a positive threshold (10 degrees/second in our
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Figure 2.13 Roll motion corresponding to a bite
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figure). Second, a specified period of time must elapse (2 seconds in our figure). Third, the velocity

must surpass a negative threshold (-10 degrees/second in our figure). The detection of these three

events provides a strong evidence that a person has taken a bite of food.

This characteristic roll is important because it differentiates wrist or arm motions caused by a

variety of activities, such as moving food around a plate or engaging in non-eating-related activities,

from a motion that can be directly associated with taking a bite of food. The detection of this

characteristic roll is indifferent to the time taken between bites. Thus, we have discovered methods

to build an actual bite detector.

An algorithm for implementing the detection of a bite via the characteristic wrist roll can be

implemented as follows:

bite_start = 0

loop:

Let v_t be the measured roll velocity at time t

If v_t > T1 and bite_start = 0 then

bite_start = 1

Let s = t

If v_t < T2 and t-s > T3 then

Bite detected

bite_start = 0

The variable bite start notes the first event of the cycle of roll motion. The thresholds T1 and

T2 define the roll velocities that must be exceeded to trigger detection of the first and second events

of the roll motion. The threshold T3 defines the interval of time that must elapse between the first

and second events of the roll motion. In our default setting, T1 is 10 (degrees/second), T2 is -10

(degrees/second) and T3 is 2 seconds.

For a typical person, the positive roll happens when a person is raising food from an eating

surface (such as a table or plate) towards the mouth. The negative roll happens when the hand

is being lowered, or when food is being picked up by fingers or placed on a utensil. The actual

placing of food into the mouth usually occurs between the positive and negative rolls. However,

even when a person does not follow this particular pattern, the cycle of motion (positive to negative
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roll) is almost always witnessed during the taking of a bite of food. We present data to support this

conclusion later.

Figure 2.14 shows three images demonstrating the two events defining the roll motion corre-

sponding to a bite. In the first image, the subject’s wrist has exceeded the threshold for positive

roll; in the third image, the subject’s wrist has exceeded the threshold for negative roll; the second

image shows the bite of food taken in between.

Figure 2.14 Images of a subject demonstrating the wrist roll events that correspond to eating a bite

Figure 2.15 shows the wrist roll data that was recorded simultaneously to the images shown in

Figure 2.14. The square shows when the positive roll velocity threshold was first exceeded, and

corresponds to the image on the left. The right-most line shows when the negative roll velocity

threshold was first exceeded, and corresponds to the image on the right. The rectangle in between

those marks corresponds to when the subject first placed food into his mouth, as shown in the middle

image in Figure 2.14.

Figure 2.15 Wrist roll velocity over time, showing the events that correspond to eating a bite
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2.4 Video capture

A Canon HG10 video camcorder is used to record the meal. This enables the experimenter to review

the video with the synchronized sensor data after the meal. The camcorder is placed in front of a

subject in order to capture the subject and the food he or she eats. The camcorder starts to record

before the subject begins to eat. It keeps recording until the subject finishes eating. The video is

saved in a MTS file format and it can be transferred to a personal computer through a USB port.

2.5 Graphical user interfaces

Two user interfaces have been developed for this project. Both use the WIN32 API in Microsoft

Visual C++ 6.0.

2.5.1 User interface of bite detection in real time

The first user interface is used to display the raw sensor and the bite information in real time. It

includes the bite counts and the bite speed, for instance bites per minute. It gives feedback about

the amount of the food eaten to the subject. Figure 2.16 shows the interface we have developed. On

the top is the time elapsed. When a bite is detected by the computer, the line in the axis increases

by 1 and the total number of bites is shown on the line. In the middle part of the user interface, it

gives the feedback of the bite speed (bites per minute) and the raw sensor data.

2.5.2 User interface of bite review

The second type of graphical user interface is used to review the stored information. This graphical

user interface is shown in Figure 2.17.

As shown in Figure 2.17, the lower part is the sensor data. The top left part is the corresponding

video. There are five buttons beside the video, which are used to play forward, rewind, pause and

stop the video. The instruction is on the top right part. The green square is the current point, the

blue rectangle is the manual bite detection and the red line is the automatic bite detection by the

computer. The first line in the right center section is the index of the sample data; it corresponds

to the point where the green square is. The second line is the corresponding time according to the

green square and the third line is the value of the sensor data. The user interface has three main

functions. We will discuss them in the following subsections.
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Figure 2.16 The graphic user interface to detect the bite information in real time

Figure 2.17 The graphic user interface to review the eating video and recorded data, detect the bite
offline with regard to different parameter settings, and evaluate the bite detector
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2.5.2.1 Review the sensor data and the synchronized video

First, we must extract the frame from the video and show it on the user interface. Canon HG10

video camcorder was used to record the meal and the format of the video file is MTS, which is the

AVCHD video file format. Because the publicly available library can only read MPEG-1 files, we

use the following steps to convert the MTS file to a MPEG format:

1. Use the software “Avchd Convert V5” to convert the MTS file to five separate files (AC3,

AVC, DGA, PCM and AviSynth Script)

2. Use the software “VirtualDub” to convert these files to JPEG image sequence.

3. Use command “djpeg” in Linux operating system to convert JPEG image sequence to PPM

image sequence.

4. Use command “ppmtompeg” in Linux operating system to convert PPM image sequence to

the MPEG-1 file.

5. Use the library “mpeg2raw” to display the frame of eating video (MPEG-1 format) on the

user interface. Note that the frame rate of the MPEG file is 30Hz after conversion.

Second, we must synchronize the sensor data and the eating video. In our experiment, the video

camcorder has always been opened before we run the bite detection program, and we will also ask

the subject not to move his or her hand before the bite detection program starts running. To make

the video and the data synchronous, we should first find out a time where a video frame is point

to the corresponding sensor data. We watch the sensor data to find out the first time the sensor

data has some waves instead of a horizontal line, for example if it is the S th sensor data then we

watch the video and find out which frame is the first frame the subject move his or her hand, for

example, it is the F th frame. The F th frame and the S th sensor data we find should be almost

synchronous. Note that video frame rate is always 30 Hz. Suppose that our recording sensor data is

T Hz (The default value is 60 Hz, but we can change the sample rate easily which will be discussed

in the next chapter), thus the X th sensor data should correspond to the Y th video frame where

Y can be computed by Equation 2.5:

Y = F −
T

30(S − X)
(2.5)

Then we can review the video and the sensor data again. If we find they are not synchronizing
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exactly, we just need to change the value F in a small range to find the best consequence.

After synchronizing the video and the sensor data, we can play the eating video as mentioned

before. We have five buttons on the right side of the video. From the left to the right, they are

fast back, slow back, start/pause, forward, fast forward. By pressing the fast back button, the video

goes back 10 frames; by pressing the slow back button, the video goes back 1 frame; by pressing the

forward button, the video goes forward 1 frame; by pressing the fast forward button, the video goes

forward 10 frames. After clicking the buttons, the video will play, and the corresponding data in

the low part of the graphical user interface will also play. In addition, the sample index, the current

time and the value of the data shown in the middle right section will also be updated.

2.5.2.2 Detect the bites offline

We can run our bite detection algorithm offline to review the bite counts or bite speed (bites

per minute). We can also change the record frequency and setting parameters in the graphical user

interface to improve our bite detector. The setting parameters including the Gaussian-weighted

window size, the Gaussian-weighted window variance, the derivation window size, the interval of

time that must elapse between the first and second events of the roll motion and the thresholds

which define the roll velocities that must be exceeded to trigger detection of the first and second

events of the roll motion. The results will be discussed in the next chapter.

2.5.2.3 Mark the ground truth bites and evaluate the bite detector device

We can also manually mark the ground truth time of a bite taken. As mentioned in the first

chapter, we define a bite as when a person puts food in his or her mouth. Because every second

has 30 video frames, it is hard to tell which frame is exactly the ground truth bite. In this thesis,

we define a reasonable way to mark the ground truth bite. For example, Figure 2.18 and Figure

2.19 shows continuous 30 frames of a subject during his eating. The process includes the subject

picking up the food, putting the food in his mouth, eating it and putting the utensil down. We can

approximately tell that in frame 10, the food first reached the subject’s mouth and in frame 23,

the food first left the subject’s mouth which means from frame 10 to frame 22, the food is in the

subject’s mouth. As a result, we mark the middle frame of 10 and 22 as the time whcih a ground

truth bite happened. This frame is frame 16.

Using this method, we can mark all the ground truth throughout the whole eating process. For
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Figure 2.18 Continuous frames of a subject during eating (part 1)
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Figure 2.19 Continuous frames of a subject during eating (part 2)
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each frame of the ground truth bite, we will input the corresponding sample index (in milliseconds)

in sequence into a .txt file. If we finish this step, we can load the ground truth bite .txt file to see all

the actual times of bites during a whole meal. We can also use our evaluation method in the next

section to calculate the sensitivity of the bite detector.

2.6 Evaluation of bite detection algorithm

We have also developed a simple evaluation to assess our bite detector; First, we manually mark

the ground truth bites. Then, we calculate the correspondences of computer-detected wrist motion

cycles to manually marked bites taken. Figure 2.20 shows an illustration of how detections were

classified. For each wrist motion cycle detected, a single bite taken within its cycle was classified as

a true detection. Any additional bites taken within that cycle are classified as undetected bites. A

wrist motion cycle detected in which no bites occurred is classified as a false detection. Sensitivity

of the device was calculated for each subject as Equation 2.6:

sensitivity =
total true detections

total true detections + total undetected bites
∗ 100% (2.6)
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Figure 2.20 Methods for classification of computer detections versus actual bites
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CHAPTER 3

RESULTS

We have conducted trials to determine the accuracy of our invention. In our experiments there

were 10 subjects for the preliminary test. They used different hands and different utensils. Eight of

them used their right hand to eat, and two of them used their left hand to eat. Five of them used

forks to eat, three of them used spoons to eat, and two of them used their fingers to eat.

The first experiment tests the raw roll degree data recorded by both the InertiaCube3 sensor

and the STMicroelectronics LIS3L02AL sensor and compares both the noise and the performance.

The second experiment measures the number of bites taken during the meal. The third experiment

calculates the average and variance of time between a bite period. It also measures the number

of times bite is taken between +/- roll or between -/+ roll. The fourth experiment measures the

performance of the bite detector based on 10 subjects. The fifth experiment will analyze the reason

for false detections and undetected bites. The sixth section will bring in 10 different bite patterns

to better evaluate a person’s eating behavior. At last, we will try down-sampling and setting the

new parameter due to the nature of the processor and the memory.

3.1 Comparison of InertiaCube3 sensor and STMicroelectronics LIS3L02AL sensor

In the first experiment, we test the raw roll sensor data recorded by both the InertiaCube3 sensor and

the STMicroelectronics LIS3L02AL sensor. Both sensors were worn at the same time, recording the

same motion. As can be seen in Figure 3.1, the data recorded by the STMicroelectronics LIS3L02AL

sensor is much noiser than the data recorded by the InertiaCube3 sensor. However, after applying

our methods for smoothing and calculating the roll velocity from the raw roll data, both signals are

almost the same. This demonstrates that a small STMicroelectronics LIS3L02AL sensor is capable

of detecting the motion events that corresponding to the motion of taking a bite.

To further verify our conclusion, we calculate the performance of our bite detector on these two

different sensors. Table 3.1 shows the performance of our bite detector using InertiaCube3 sensor

and STMicroelectronics LIS3L02AL sensor at the same time, recording the same motion. We find

that the true bite detections and the undetected bites are the same. When the STMicroelectronics

LIS3L02AL sensor is used, we detect three less false detections. That means even though the recorded
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Figure 3.1 Noise comparison between the InertiaCube3 sensor and the LIS3L02AL sensor
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raw roll data of the STMicroelectronics LIS3L02AL sensor is much noiser than the InertiaCube3

sensor, after applying our bite detection algorithm, the result is very close. This conclusion will

enable us to develop an embedded device in the future.

Sensor True detections False detections Undetected

InertiaCube3 62 12 11

sensor

STMicroelectronics 62 8 11

LIS3L02AL sensor

Table 3.1 Performance comparison between the InertiaCube3 sensor and the STMicroelectronics
LIS3L02AL sensor

3.2 Number of bites taken during the meal

For the 10 people tested, we measure the number of bites taken during the meal. This number varies

from 19 to 65. In order to evaluate our methods, we first present data supporting the conclusion

that the taking of a bite of food can be characterized by the detection of the three motion events

as outlined in our methods. Table 3.2 shows the number of bites taken by each person, and the

relationships between bites taken and wrist roll cycles.

We can see from Table 3.2 that there are a total of 283 bites occurring 1:1 with wrist roll cycle, 28

occurrences of >1 bite in a wrist roll cycle, and 121 occurrences of 0 bite in a wrist roll cycle. Thus,

for 66% of the total roll cycles, exactly one bite occurs between a positive roll and the subsequent

positive roll (a wrist roll cycle). For 6.5% of the total roll cycles, more than one bite occurs during

the cycle, and for 28% of the total roll cycles detected, no bites occur.

We can also see from Table 3.2 that there are a total of 347 bites for all the ten people. Thus, for

82% of the total bites, exactly one bite occurred between a positive roll and the subsequent positive

roll (a wrist roll cycle). For 8.1% of the total bites, more than one bite occurred during the cycle,

and for 35% of the total cycles detected, no bites occurred.

3.3 Average value and variance of time between a bite period

Breaking it down further, Table 3.3 shows the statistics for the bites taken that corresponds directly

to the wrist roll cycles (the bites in column 3 of Table 3.2). As can be seen, there is a great deal

of variance on the time elapsed between the detected positive and negative roll motion events. This

is why it is important to detect both events in order to verify a bite has been taken. However, the
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Bites occurring Occurrences of Occurrences of
Person Total bites taken 1:1 with wrist >1 bite in a 0 bites in a

roll cycle wrist roll cycle wrist roll cycle
1 65 44 10 12
2 21 20 0 8
3 60 43 6 13
4 35 35 0 12
5 37 37 0 15
6 26 14 6 6
7 23 23 0 22
8 30 25 2 20
9 19 19 0 1
10 31 23 4 12

total 347 283 28 121
Average 34.7 28.3 2.8 12.1

Table 3.2 Correspondence of wrist roll cycles to bites taken

last two columns of Table 3.3 show that in most cases the actual bite of food is taken between the

positive and negative roll motion events.

Average and Average and Number of times Number of times
Person variance of time variance of time bite is taken bite is taken

between +/- roll between -/+ roll between +/- roll between -/+ roll
1 8.0 (57.32) 3.1 (4.8) 40 14
2 8.7 (63.22) 5.8 (31.75) 14 6
3 7.9 (85.01) 4.9 (17.95) 44 5
4 4.3 (19.06) 8.5 (28.65) 31 4
5 6.3 (15.96) 4.3 (8.49) 35 2
6 9.6 (58.36) 3.7 (13.18) 17 3
7 7.0 (64.54) 8.8 (61.67) 19 4
8 4.0 (25.94) 9.0 (96.47) 21 6
9 6.2 (10.56) 3.9 (2.72) 19 0
10 6.7 (161.35) 8.0 (237.16) 18 9

Table 3.3 Statistics for single bites corresponding to wrist roll cycles

3.4 Performance of the bite detector

In order to evaluate the performance of our bite detector, we calculated the correspondences of

computer-detected wrist motion cycles to manually marked bites taken. Figure 2.20 shows an

illustration of how detections were classified. For each wrist motion cycle detected, a single bite

taken within its cycle is classified as a true detection. Any additional bites taken within that cycle

are classified as undetected bites. A wrist motion cycle detected in which no bites occurred is

classified as a false detection. Table 3.4 summarizes the performance of our bite detector using these
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classifications on the 10 subjects. The sensitivity of the device was 91% and only 9% of the actual

bites were undetected. In its current state, the device is sensitive, erring on the side of over-detection.

Person True detections False detections Undetected Sensitivity
1 54 12 11 83%
2 20 8 1 95%
3 49 13 11 82%
4 35 12 0 100%
5 37 15 0 100%
6 20 6 6 77%
7 23 22 0 100%
8 27 20 3 90%
9 19 1 0 100%
10 27 12 4 87%

Table 3.4 Performance of our bite detector on 10 subjects

3.5 Reasons for false detections and undetected bites

Although the bite detector works quite well, we still want to find out the reasons for the false

detections and the undetected bites. As a result, we reviewed the video and analyzed each bite of

these 10 subjects. Table 3.5 and Table 3.6 summarize the reasons for our false detections and the

undetected bites.

Person 1 2 3 4 5 6 7 8 9 10 total
total false detections 12 8 13 12 15 6 22 20 1 12 121
grab the food, but don’t eat 7 4 8 5 14 2 16 3 1 2 62
do stuff before the first bite of the meal 1 1 3 5 10
use the napkin 2 6 11 4 23
rotate when resting 5 3 1 1 1 2 3 1 17
sensor error 1 1
put down the utensil 1 1
for drink reason 3 3
rotate when eating 4 4

Table 3.5 Reasons for false detections

In Table 3.5 and Table 3.6, the first column lists the reason for false detections and undetected

bites, the following ten columns list the number of occurrence. From these two tables, we can see

that there are three main reasons for false detections. First, the subject grabs the food, but does

not eat it and puts the food back on the plate or container. Second, the subject uses a napkin while

eating. Third, after taking a bite, the subject tends to rest for a while before the next bite, however,
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Person 1 2 3 4 5 6 7 8 9 10 total
total undetected bites 11 1 11 0 0 6 0 3 0 4 36
roll orientation doesn’t rotate enough degrees 3 1 3 2 4 13
bite more than once with one utensil’s food 8 10 18
for drink reason 1 2 1 4
the first bite of the whole meal 1 1

Table 3.6 Reasons for undetected bites

he or she keeps rotating his or her wrist during this period. All these three behaviors will seem like

taking a bite to the bite detector so they will result in false detections. On the other hand, there

are two main reasons for undetected bites. First, a subject does not roll enough degrees during a

bite. In other words, a subject does not roll fast enough during a bite. Second, after the subject

puts the food on the utensil, he or she does not eat all the food in one bite. Instead, he or she bites

the food on the utensil several times until he or she finishes it. As a result, the bite detector thinks

the subject only has taken one bite during the whole period.

3.6 Bite patterns

We have examined a set of “bite patterns” for our bite detector. Figure 3.2 shows the results. In

the figure, “/” means when the subject raises his or her hand, “\” means when the subject puts

down his or her hand, “ ” means when the subject rests during the meal, and “*” means when

the subject takes a bite. We define a total of 10 patterns of the bites taken. They are:

1. The subject raises his or her hand, eats the food immediately, puts down his or her hand and

rests for a while before the next bite.

2. The subject raises his or her hand, eats the food immediately, rests for a while, puts down his

or her hand and rests for a while again before the next bite.

3. The subject raises his or her hand, rests for a while, and then eats the food, after the bite, he

or she rests for a while again, puts down his or her hand and rests for a while before the next bite.

4. The subject raises his or her hand, rests for a while, and then eats the food, after the bite, he

or she puts down his or her hand and rests for a while again before the next bite.

5. The subject raises his or her hand, rests for a while, eats some of the food in the utensil, rests

again, eats some more food in the utensil, after that, he or she rests for a while again, puts down

his or her hand and rests for a while before the next bite.
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6. The subject raises his or her hand, eats the food immediately and puts down his or her hand

while still eating.

7. The subject raises his or her hand, eats the food immediately, rests for a while and puts down

his or her hand after rest.

8. The subject raises his or her hand, rests for a while, and then eats the food, after the bite, he

or she rests for a while again and puts down his or her hand.

9. The subject raises his or her hand, rests for a while, and then eats the food, after the bite, he

or she puts down his or her hand.

10. The subject raises his or her hand, rests for a while, eats some of the food on the utensil,

rests again, eats some more food on the utensil, he or she rests for a while again and then puts down

his or her hand.

From the figure, we can see that some patterns happen much more frequently than the others.

For example, pattern 1, pattern 4 and pattern 6 occur almost 2

3
of the total bites among these ten

subjects.

On the other hand, different people have different patterns. For example, as for the first person,

58% of her patterns are pattern 1, pattern 6 and pattern 7. While for the second person, 89% of

her patterns are pattern 1 and pattern 2. Table 3.7 shows the two or three most used patterns for

each person and the percentage of these patterns. Analyzing these bite patterns will help the bite

detector development in the future. As a result, we can consider to develop individual-oriented bite

patterns to increase the percentage of true detections greatly.

Figure 3.2 Ten bite patterns for ten subjects taken the experiment
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Person Most used pattern Percentage
1 1, 5, 6 58%
2 1, 2 89%
3 1, 4, 6 62%
4 1 79%
5 1, 2, 4 78%
6 3, 6, 8 68%
7 4, 6, 9 78%
8 1, 6 78%
9 1, 8, 9 68%
10 1, 4 67%

Table 3.7 Most used patterns for different subjects

3.7 Down sampling and changing the default parameters of bite detection algorithm

Although our default parameter setting and sample rate works quite well in our bite detection,

these default settings are based on our hypotheses. There may exist other good parameters. More

importantly, the final envisioned embodiment of our bite detector device is a sensor of small size

which is wearable. This means we want to embody a device that can easily and comfortably be

worn on the wrist, similar to a wristwatch. If we down-sample and change some default parameters,

we can use fewer buffers in the memory, which will both increase the speed of our algorithm and

decrease the size of the memory on the device. Our default values are the following:

1. Sample rate is 60Hz.

2. Gaussian-weighted window size N = 120.

3. Gaussian standard deviation R = 20.

4. Derivative window size Q = 120.

5. Roll velocities that must be exceeded to trigger detection of the first events of the roll motion

is T1 = 10.

6. Roll velocities that must be exceeded to trigger detection of the second events of the roll

motion is T2 = -10.

7. Interval of time that must elapse between the first and second events of the roll motion is T3

= 2 seconds.

Table 3.8 shows the comparison between down-sampling and our default 60Hz data recording

rate. We also have to change some parameters settings. When we down-sample at 10Hz, we choose

N = 20, R = 3, Q = 20, T1 = 10, T2 = -10, and T3 = 2 seconds. The data in the parentheses is
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the result sampled at 60Hz. There are a total 304 of true detections when sampled at 10Hz, and

311 true detections when sampled at 60Hz; there are a total 128 of false detections when sampled

at 10Hz, and 121 false detections when sampled at 60Hz; there are a total 43 of undetected bites

when sampled at 10Hz, and 36 undetected bites when sampled at 60Hz. The result is quite similar.

When sampled at 10Hz, there are only seven less true detections, seven more false detections and

seven more undetected bites. Thus, if we are bounded by limited memory and limited processing in

the device, considering down-sampling and use of fewer buffers is an alternative way that could still

perform relatively well. As shown above, it will not affect the results much.

Person True detections False detections Undetected
1 54(54) 10(12) 11(11)
2 20(20) 9(8) 1(1)
3 50(49) 13(13) 10(11)
4 35(35) 13(12) 0(0)
5 36(37) 15(15) 1(0)
6 21(20) 7(6) 5(6)
7 22(23) 22(22) 1(0)
8 23(27) 24(20) 7(3)
9 19(19) 0(1) 0(0)
10 24(27) 15(12) 7(4)

TOTAL 304(311) 128(121) 43(36)

Table 3.8 Bite detection result comparison between down sample rate and the default 60 Hz sample
rate (in parentheses)
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CHAPTER 4

CONCLUSIONS

4.1 Results discussion

In this thesis, we introduce a device for detecting and counting bites of food taken by a person during

eating. This device can help people who are overweight or obese to manage their body weight. It

can also control people’s eating rate and help people with eating disorder.

We have introduced three sensor prototypes we used in our experiment. They are based on the

wired InertiaCube3 sensor, the wireless InertiaCube3 sensor and the STMicroelectronics LIS3L02AL

sensor respectively. We have developed our bite detection algorithm and discussed an evaluation

method for our bite detector device. To give the feedback of bite counts in real time to the subject

and to review the eating procedure, we have also developed two graphical user interfaces.

We have conducted several experiments based on the bite detector device we invented. We

compare both the noise and the performance recorded by the InertiaCube3 sensor and the STMi-

croelectronics LIS3L02AL sensor. We also measure the number of bites taken during the meal and

compute statistic results including the average and variance of time between a bite period. With the

evaluation method, we measure the performance of the bite detector, analyze the reason for false

detections and undetected bites and bring in 10 different bite patterns to better evaluate people’s

eating behavior.

The result is quite promising. All three prototypes can be used for motion measurement; our

bite algorithm can decrease the effect of the noise and detect the bites very well. The sensitivity of

the device is very high, it can reach as high as 91%. Down-sampling also results in good outcome so

that we can save both the resources of the processor and the memory. The reason for false detections

and undetected bites and the bite patterns applied on different people will also help the research in

the future.

4.2 Future

In the near future, we will improve some defects in the proposed bite detector device. For example,

the video conversion method is not only complicated but also time consuming; we want to find
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an easy way to convert the video. Another aspect of the device that needs improvement is the

bite detection algorithm. We notice that there is still some high percentage of false detection that

exists. To reduce the number of false detections and undetected bites, there are several things worth

considering. For instance, we can use other methods to smooth the raw data, such as Kalman filter.

We can also apply more factors on bite detection. For now, we only depend on the roll velocities

that must be exceeded to trigger detection of the first events, roll velocities that must be exceeded

to trigger detection of the second events, and the interval of time that must elapse between the first

and second events of the roll motion. In the future, we can add more critical factors such as average

value, variance, pitch data, yaw data and so on. We can also develop different patterns for different

people. We already notice that different people have specific patterns while eating, so this may be

also a very efficient way to improve the performance of the bite detector.

In long term, we would like to develop the second generation of the bite detector device. This

device will be similar to the first generation device in a way that it will be fully self-contained,

including an orientation sensor, onboard computing, memory storage, and battery. However, this

device will also contain a feedback mechanism (actuator) that the device can use to notify the user

of salient events. For example, during a period of eating, while the device is counting bites, the

feedback mechanism could be used to alert the user that a specific count of bites has been reached.

The purpose of the second generation device is to enable testing automated feedback (based upon

bite count) to users during eating. Similar to the first generation device, this version will look much

like a watch. It will be wearable on the wrist, taken on and off in a manner similar to a watch. It

will have a simple on/off switch that the user is intended to toggle before and after eating a meal.

Although this device will likely be somewhat larger than the first generation device, due to the

inclusion of a feedback mechanism, we will try to keep the size as small as possible.

We will also develop desktop software that is intended for the user of a bite detector device. This

software will allow the user to periodically download data from the device to a desktop computer,

and store the data in a bite log. The user will be able to view his or her history of bites taken over

a period of days, weeks, or months. Statistics will be calculated and graphed, such as the total time

spent eating, the times of day when eating was monitored, and the relationship between the total

bites taken and days of the week. The goal for this software is to provide the user with long-term

information for motivational purposes, and to identify problem bite behaviors.
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