
Raw versus linear acceleration in the recognition of
wrist motions related to eating during everyday life

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Masters of Science

Computer Engineering

by

Shaurya Gupta

August 2021

Accepted by:

Dr. Adam Hoover, Committee Chair

Dr. Yongkai Wu

Dr. Linke Guo

Abstract

This thesis investigates the difference between raw and linear acceleration in wrist motion

for detecting eating episodes. In previous work, our group developed a classifier that analyzed

linear motion and achieved good accuracy. However, the classifier can be volatile in the sense that

when retrained and tested on the same data, accuracy varies, especially when trained on small

amounts of data such as for a single individual. We hypothesize that in part this may be due to the

noise in linear acceleration which is significantly larger relative to normal human wrist motions as

compared to the noise in raw acceleration. We therefore perform a set of experiments to determine

if classifier accuracy and/or stability can be improved by analyzing raw acceleration instead of linear

acceleration.

The dataset used for this work is the Clemson All-Day Eating (CAD) dataset. This was

collected over a period of one year, in 2014. In the process of data collection, 351 participants were

recruited and 354 days of wrist data was recorded. The recorded data contained 1,133 meals spread

over 250 hours of eating. The total length of the recorded data was nearly 4,680 hours. In this

work, the CAD dataset was reduced to 342 days and 1034 meals because for some recordings, raw

acceleration data was not saved.

Previous work developing a classifier based on linear acceleration achieved a time-based

weighted accuracy of 80%, a true positive rate of 89% on eating episodes, and a false positive

per true positive rate of 1.7. However, these results were based upon a single run of train and

test. Recently we discovered that the model accuracy varies somewhat between runs. We therefore

perform a replication experiment on the linear classifier to confirm these results by rerunning the

entire experiment 10 times. We report the average and standard deviation of all metrics across these

runs. This helps establish a better baseline for comparison of our new classifier that analyzes raw

acceleration.

ii

We next analyze the same set of data, using the same neural network model and gen-

eral approach as for the linear acceleration-based classifier, to compare its accuracy and stability.

Evaluating all results, we found that the linear acceleration classifier achieved (average ± standard

deviation across 10 runs) a TPR of 86% ± 1.2% and a FP/TP of 1.7 ± 0.3. It also achieved a

weighted accuracy of 79 % ± 0.5 %. Thus, we concluded that the results of original experiment

were above the average results and could either be due to a freak training and testing run or due

to contamination of the testing data. These results set up a new baseline with which we compare

the raw acceleration model metrics. We found that the raw acceleration achieved a TPR of 84% ±

1.3 % and a FP/TP of 1.7 ± 0.3. In the case of time metrics, the raw acceleration model achieved

a weighted accuracy of 78% ± 0.4%. Thus, on average, we found that the linear acceleration per-

formed slightly better than raw acceleration in episode detection. The time metrics for both raw

and linear acceleration were more or less similar but we did see a higher standard deviation for the

raw models.

Our results indicate that linear acceleration does provide greater accuracy than raw accel-

eration. Even though raw acceleration has a higher signal-to-noise ratio than linear acceleration,

in terms of normal human wrist motions, our classifier model has relatively equal volatility when

analyzing either signal. We conclude that the main source of model volatility is still unknown.

Thus, we found that linear acceleration is, overall, a better predictor of eating as compared to raw

acceleration. It should be noted that the difference in the accuracies is very minor and the volatility

in the training process could account for some of the differences.

iii

Acknowledgments

First of all, I would like to thank Dr. Adam Hoover for the time that he spent in the

process of helping me formulate the research methodology, guiding my work and navigating the field

of technical research. Furthermore, even during the uncertain period of pandemic, he did his best

to keep up with our work and help us through whatever means available. Without him, this work

would not have been possible.

I would also like to thank Dr. Yongkai Wu and Dr. Linke Guo for serving on my defense

committee and listening to my thesis defense. I would like to extend my gratitude to all the professors

that taught and shaped my academic career at Clemson University over the past years without whom

I would not have gained the professional skills to pursue higher education.

I would also like acknowledge my fellow students and colleagues that I worked with for their

support. I would like to thank Dr. Surya Sharma for helping me in transitioning to and navigating

the early part of my research and for providing a solid base that I could build off of.

Finally, I am forever indebted to my family for their continued support. I am grateful to

my parents who worked hard so I could have this wonderful opportunity and to my brother who was

always there when I needed him, both as a friend and as someone I could look up to.

iv

Table of Contents

Title Page . i

Abstract . ii

Acknowledgments . iv

List of Tables . vi

List of Figures . vii

1 Introduction . 1
1.1 Overview . 1
1.2 Motivation . 2
1.3 Sensors . 4
1.4 Raw vs Linear Acceleration . 6
1.5 Related Work . 15
1.6 Novelty . 17

2 Methods . 19
2.1 Data Set . 19
2.2 Data Preparation . 24
2.3 Neural Network . 28
2.4 Hysteresis and Meal Segmentation . 35
2.5 Metrics . 37
2.6 Model Training and Evaluation Process . 39
2.7 Measuring Model Volatility . 43

3 Results . 46
3.1 Replication Experiment on Meal Detection . 46
3.2 Raw Acceleration . 50
3.3 Comparison of Raw and Linear models . 51

4 Conclusions and Future Work . 57
4.1 Conclusions . 57
4.2 Limitations and Future Work . 58

Bibliography . 60

v

List of Tables

2.1 Demographic details for participants forming the raw acceleration dataset 24
2.2 Per-window testing accuracies for W = 6 min across the 5 folds obtained by Sharma

in previous work. 43

3.1 Episodic metrics (avg ± std) on CAD dataset for raw and linear models. 49
3.2 Time metrics (avg ± std) on CAD dataset for raw and linear models. 49
3.3 Episodic metrics on CAD dataset for raw and linear models. 51
3.4 Time metrics on CAD dataset for raw and linear models. 51

vi

List of Figures

1.1 Renpho Body Scale : an example of monitoring weight using mHealth. 4
1.2 Hooke’s Law: The force on the spring is linearly proportional to the extension or

compression experienced by the spring. 5
1.3 MEMS accelerometer . 6
1.4 MEMS CVG mechanical structure [MEMS Gyroscope Provides Precision Inertial

Sensing in Harsh, High Temperature Environments by Jeff Watson]. 7
1.5 Difference in interpretation of raw and linear acceleration. 8
1.6 Equivalence principle - The ball can’t tell the difference between acceleration due to

gravity and artificial acceleration. 9
1.7 Bi-axial accelerometer (orange cube) attached to the wrist. In the first case, gravity

aligns with one of the sensor axes. In the second case, the tilt in the wrist causes
sensor axes to deviate from the gravity vector. θ is the angle that gravity makes with
the X axis. 10

1.8 Accelerometer measurements if the ball was weightless. 11
1.9 Accelerometer measurements if the ball was weightless. 12
1.10 Accelerometer measurements if the ball wasn’t weightless. 13
1.11 Magnitude of net linear acceleration (x+ y + z) for a 3 hour time period. Noise can

be seen in the different level plateaus. 14
1.12 The spread of linear acceleration for data detected as rest (blue) and motion (red). . 15

2.1 Outline of the methods section and the subsections. 20
2.2 Front view of the Shimmer device with button labels 21
2.3 Interface of Consensys software showing options to import and configure individual

Shimmer devices. 22
2.4 Interface of MarkerParser software showing the various options related to the meals. 22
2.5 Gaussian smoothing on noisy signal. 25
2.6 Using sliding window to cut windows of data. Here slide used is 2 and window length

is 4. The final windows, stacked together form the dataset of shape NxWx6. 27
2.7 1D Conv vs 2D Conv : The blue filter can only move in 1D, while the yellow can

perform convolution in 2D. We prefer the blue as it can see the acceleration and tilt
in all 6 axis. 29

2.8 Example of global pooling. Each feature map is replaced by its average value. 31
2.9 Example of interconnections between two dense layers in a multi-class model. In both

dense layers, all the neurons are connected to the output of the previous layers. In
the actual model, these connections are scalar values called weights. 32

2.10 Architecture of the CNN model. 35
2.11 Shows hysteresis segmentation with Ts = 0.8 and Te = 0.4. The solid black line is

the probability of eating. The dotted black line mark the start and end of the true
meals eaten while the red dotted line marks the predicted meals. The horizontal lines
mark the Ts and Te. 36

vii

2.12 Graphic explains the metric definitions. We consider a case of a person eating 4 meals
across 8 AM to 8 PM. The classifier detected meals are marked in red while the true
meals are marked in green. The confusion matrix row tells us what each segment is
classified as. 38

2.13 Evaluating the boundary error of the TP meals. Meal 1 is identified by 1 segment.
Meal 2 is identified by 2 segments, we use the boundaries of the combined segments.
Meal 3 and 4 are identified by a single segment, in which case we calculate the bound-
aries for both separately. 40

2.14 K fold CV in action. Each fold is rotated as the test set. This also means that K
models are trained in the process. 41

2.15 5 fold cross validation and data preparation process followed by model training, testing
and episode detection. This process is repeated 5 times, each held out fold acts as a
testing and prediction fold once. 42

2.16 Sources of volatility : Various sources of volatility are marked in bold during the stage
1 and stage 2 of the training and testing process. 45

3.1 Average accuracy (5-fold) of CNN on windows from test split vs window size W, over
10 runs . 47

3.2 Effect of Ts on TPR and FP/TP. The value of Ts is varied while Te is fixed at 0.25. 48
3.3 Effect of Te on boundary error and FP/TP. The value of Te is varied while Ts is fixed

at 0.85. 48
3.4 Testing accuracy of raw acc. model (solid line) vs linear acc. model (dotted line). . . 50
3.5 Effect of Ts on TPR and FP/TP. The value of Ts is varied while Te is fixed at 0.25. 52
3.6 Effect of Te on boundary error and FP/TP. The value of Te is varied while Ts is

fixed at 0.85. 52
3.7 Per Window TPR of the raw and linear models. The linear models have a higher

window TPR than the raw models. 53
3.8 Per Window TNR of the raw and linear models. The raw models have a higher

window TNR than the linear models. 53
3.9 Distribution of meals detected by linear model. 55
3.10 Distribution of meals detected by raw model. 55
3.11 Accuracy and standard deviations per fold for linear acceleration models. 56
3.12 Accuracy and standard deviations per fold for raw acceleration models. 56

viii

Chapter 1

Introduction

1.1 Overview

This work considers the problem of detecting eating episodes using embedded sensors on

a wrist device that track acceleration and tilt of the wrist. Previously, our group created deep

learning models to classify wrist motion on a dataset of 351 people. The models were trained on

linear acceleration which was extracted from raw acceleration data collected by the sensors. Our

work uses a Shimmer3 device that contains sensors and can be worn like a smartwatch. This section

reviews the physics of these sensors and explains how they operate.

Linear and raw acceleration differ in the magnitude as well as the interpretation of the values.

Since the magnitude of normal human wrist motions are small as compared to the acceleration due

to earth’s gravity, linear acceleration gives us an indication of linear motion, i.e. how fast the body

is moving linearly along the 3 axes while raw acceleration gives us an estimation of the orientation

of the body with respect to the earth. One of the main problems with using linear acceleration is

that the noise to value ratio is really high. Since our wrists do not experience high magnitudes of

acceleration, the various sources of noise can affect the readings significantly as the noise magnitude

is comparable to the acceleration magnitude. This is in contrast to raw acceleration, where the

magnitudes of the readings are much higher owing to inclusion of gravitational component. Thus,

noise sources do not play a significant part in the overall measurement, providing far more stable

values that are less affected by noise.

There are arguments to be made for both raw and linear acceleration, therefore we need

1

to determine which one is more feasible to use for future research in this area. The data collected

by our research group contains data regarding 351 days of wrist motion. In this work, we use the

previously collected data to train two different sets of models. The first uses linear acceleration and

gyroscope data, which is a replication of the work previously done by our research group and will

work as both peer review and as the baseline. The other model uses raw acceleration and gyroscope

data. Both models classify the activity taking place during a given window of data as eating or

non-eating. Since we use raw/linear acceleration and gyroscope data to train the models, they must

learn to differentiate between the patterns of motion that the wrist makes during eating and non-

eating. By using metrics, described later in the thesis, we measure the accuracy of the models. The

training process is described in more detail in the methodology section. The accuracy of the models

and the metrics are presented in the results.

The rest of this section provides the necessary background required to understand the work.

Section 1.2 explains the differences between raw and linear acceleration as well as how to convert

one into the other. We explain the issue of noise in section 1.2.5, which is the core reason for this

experiment. In section 1.3, we describe some of the previous work done in this field and finally in

section 1.4, we discuss the novelty of this thesis.

1.2 Motivation

1.2.1 Obesity

Overweight and obesity affect almost a third of entire worlds population. It is estimated

that by the end of 2030, almost 38% of the people will be overweight and 20% will be obese [11].

The United States is one of the most severely affected country in the world with nearly 38.5% of

the US adults and 18.5% of US youth suffering from obesity [6]. The CDC estimates that overall,

obesity rates in US reached 42.4% in 2017/18 [7]. A study by Wang. et. al tracked the progression

of the disease and projected that by the end of 2030, 85% of US adults will be afflicted by obesity

[27]. Furthermore, Obesity is can give rise to many problems that affect people later in life. Obesity

has been shown to correlate with heart disease, stroke, type 2 diabetes and certain types of cancer

[16]. Obesity not only directly impacts our health but also makes us susceptible to other virus based

diseases. A study in US [22] found that having BMI of over 30, the definition of obesity, increased

the risk of catching COVID-19 by almost 113%, and of dying by 48%.

2

Historically, there have been many reasons for obesity, the current epidemic is thought to be

largely caused by modernization [29]. Most jobs in the 21st century are sedentary [19]. Moreover,

as the world climbs the socio-economic ladder, changes in our food habits also contribute to the

problem. While there are many factors that play into the spread of obesity, it all really comes down

to energy balance [26]. Consistently consuming more calories than we burn will slowly cause weight

gain and if the calorie intake is left unchecked, will eventually lead to obesity.

The only method of treating obesity is weight loss, and this can be achieved in different ways.

There exist many surgical solutions for weight loss like liposuction, gastrectomy, abdominoplasty

etc. These surgical procedures all carry complication risks. A study conducted on 551 consecutive

patients [25] over 5 years found that 4.2% of the patients treated with liposuction developed some

form of complication. This number was almost 50% among patients treated with abdominoplasty.

While half of this number were just minor scar deformities, it does show that risk involved in cosmetic

surgeries. Moreover, surgeries like liposuction directly remove fat from areas of concentration but

do not treat the underlying issue of energy consumption or the physiological response to food [13].

Thus, often these surgeries do not have the intended effect in long term.

The simpler, non-surgical method of weight loss is to monitor energy consumption. This

idea of eating less works in theory but is much harder to implement in practice. When a study [5]

asked the participants to estimate the number of calories in a breakfast meal bought from a fast

food chain (a very common routine in developed countries), they found that, on average, adults

underestimated their purchases by 175 ± 636 calories. This leads us to the crux of the problem, i.e.

tracking our health.

There exists a significant correlation between self-monitoring and weight loss [2]. There are

many ways to monitor calorie intake, with the most common being the use of mobile phones. This

idea of practicing medicine or monitoring public health through the assistance of mobile devices is

known as mHealth.

1.2.2 mHealth

mHealth is a sweeping term used to define any telecommunication technology that is inte-

grated with mobile phones and wearable devices to provide health support. While mHealth has its

roots in developed countries, its rapid advancements are largely due to its wide use in developing

nations, where providing in-person help and diagnosis isn’t always possible [1]. Mobile technology

3

has penetrated even the furthest and most remote corners of the world, and as more and more people

embrace mobile devices, the reach of mHealth has grown beyond what was thought possible.

Figure 1.1: Renpho Body Scale : an example of monitoring weight using mHealth.

mHealth is a wide all encompassing term that has various sub-disciplines. In relation to

this work, we focus on the self-monitoring aspect of the term. Advancements in data processing and

mobile phone technology has revolutionized the field of mobile health monitoring. Use of smart-

watches, smart-scales has become common place in our society. Modern scales, as pictured in figure

1.1 can not only measure your weight, but also, through the use of impedance technology, measure

body fat percentage, BMI, muscle mass etc. It also stores these readings allowing a user to view the

changes and trends in the quantities, dating back to more than a year.

1.3 Sensors

Sensors are devices that measure changes in variables of an environment and are often used

in conjunction with a computer processor. Sensors are used everywhere, from detecting vision and

imaging to measuring position and proximity of objects.

Our work uses sensors mounted on a smartwatch-like device to track wrist motion. This

section reviews the physics of these sensors and explains how they operate.

4

1.3.1 Accelerometers

Accelerometers are devices used to measure the proper acceleration of an object. On earth,

proper acceleration is the acceleration relative to free - fall, or the acceleration experienced by an

object in its own rest frame. Thus, an accelerometer that is in free-fall will measure an acceleration

of 0 g while one at rest will record an acceleration of 1 g in the direction directly opposite to the

center of the earth. Thus, two primary components of an accelerometer reading are the gravitational

component and the linear component.

areading = alinear + g (1.1)

F = 0

F = kx

x

m

m

Figure 1.2: Hooke’s Law: The force on the spring is linearly proportional to the extension or
compression experienced by the spring.

Though there are many different types of accelerometers, all find their basis in Hooke’s law.

Imagine an object which has a spring attached to it and a small mass at the end of the spring.

Whenever the object wants to accelerate, the mass will want to remain stationary due to its inertia.

This will cause the spring to compress and elongate, creating the force that can be measured using

Hooke’s law and can be directly associated with the acceleration of the object.

Modern accelerometers are micro-electro mechanical systems (MEMS), as depicted in fig-

ure 1.3. When the mass is displaced from its neutral position, the capacitance between the fixed

electrodes and the mass is measured. Thus, MEMS accelerometers report their readings in terms of

millivolts which is then internally converted into g-force.

5

Mass

Electrodes

Spring Spring

C1 C2

Figure 1.3: MEMS accelerometer

1.3.2 Gyroscope

Gyroscopes are devices used to measure the angular velocity of an object. The angular

motion of the wrist varies according to the activity that is performed. For example, angular velocity

will be low when we are doing a steady task, like writing or brushing teeth but will be high when

doing tasks such as throwing a ball. Since we tend to eat in a consistent manner, a deep learning

network could potentially learn the specific motions and differentiate between eating and non-eating

activities.

Modern MEMS Coriolis vibratory gyroscopes (CVG), like the ones present on the Shimmer

device, use the Coriolis effect to measure the angular motion. They contain a vibrating mass attached

to a rotating support. When the support rotates, the vibrating mass will continue to vibrate in the

same plane, applying a force on the support. By measuring this force, the angular velocity can be

measured.

1.4 Raw vs Linear Acceleration

Linear acceleration, also called inertial acceleration, is acceleration caused by any force

other than gravity. A body moving with constant velocity or at rest experiences zero net force and

6

Figure 1.4: MEMS CVG mechanical structure [MEMS Gyroscope Provides Precision Inertial Sensing
in Harsh, High Temperature Environments by Jeff Watson].

consequently zero linear acceleration. If a body is in any other state of motion, then it implies

that there is some inertial force acting on the body which gives rise to the linear acceleration. This

acceleration is usually measured in m/s2.

Raw acceleration, on the other hand, is a measure of both the physical acceleration of an

object as well as the normal forces which contributes in keeping the device from going into free fall.

This measured quantity, which contains both gravitational component and a linear component of

acceleration is called the raw acceleration. Thus, every raw acceleration measurement contains the

linear acceleration measurement in itself.

While both raw and linear acceleration are measurements of an acceleration vector, their

interpretations vary. In the case of tracking wrist motion, figure 1.5 demonstrates the practical

difference between linear and raw acceleration. Linear acceleration is caused by back-and-forth

hand motions generally is in the range of 0.00-0.04 g. On earth, these are dominated by the force

of earth’s gravity (1 g). The net effect is that linear acceleration provides an estimate of the lateral

motion of the hand, while raw acceleration provides an estimate of the tilt of the hand relative to

earth.

Accelerometers are only capable of reading and recording raw accelerations. While the

modern accelerometers can convert the reading into linear acceleration, directly reading linear ac-

celeration is impossible because of the equivalence principle.

The simplest way to explain what this means is to imagine a person in an elevator with a

ball in his hand. When that person drops the ball, the ball accelerates towards the floor at a rate of

7

X

Y

Z

X

Y

Z

Tilt relative to earth
Linear motion

of the hand

Earth
0.02g

1g

Figure 1.5: Difference in interpretation of raw and linear acceleration.

9.8 m/s2. Does it imply that the elevator is situated somewhere in the gravitational field of earth?

For instance, you can achieve the same result if the elevator was in deep space, away from any source

of gravitational force but accelerated in the upwards direction at a rate of 9.8 m/s2. It would be

impossible for the person in the elevator to know which is the case, is the object falling towards the

floor, and in extension to a source of gravitational force or is the floor accelerating upwards to the

ball which is stationary?

Similarly, accelerometers, being inertial-frame sensors, cannot tell the difference between

acceleration due to the effect of gravity and the acceleration due external force acting on the device,

i.e., movement of the wrist. Thus, it is impossible for a sensor, present on the device for which it is

taking measurements, to be able to capture linear acceleration directly.

1.4.1 Pose Estimation and Raw to Linear Conversion

A tri-axial accelerometer, like the one present on Shimmer device, measures acceleration in

three mutually orthogonal axis. Each axis measures a certain proportion of the linear acceleration

as well as the gravitational component. In the special scenario, when one of the sensors axis aligns

perfectly with the direction of gravity, we can estimate the linear acceleration by simply subtracting

gravitational acceleration from the readings, but in all other cases it becomes necessary to first

estimate the orientation of the device.

Consider a case of bi-axial sensor measuring in X and Y axis as depicted by figure 1.7. In the

8

Figure 1.6: Equivalence principle - The ball can’t tell the difference between acceleration due to
gravity and artificial acceleration.

first case, there is no gravitational component along the X axis, thus extracting linear acceleration

from the readings is straightforward. In the second case, when the gravity is no longer in alignment

with the sensor axis, gravity is distributed proportionally along both the sensor axis and we must

know the angle θ (angle that gravity makes with the sensor axis) to calculate the gravitational

component along each axis.

The same concept can be extended to a tri-axial accelerometer and in that this case, the

total acceleration can be expressed as:

a =


ax

ay

az

 =


aL cos(θx) + g cos(φx)

aL cos(θy) + g cos(φy)

aL cos(θz) + g cos(φz)


Here, a is the total acceleration which is the vector sum of gravity and linear acceleration,

g is the acceleration produced by gravity, ax, ay, az are the acceleration measurements of the sensor

in each of its axis, aL is the total linear acceleration from which we can separate out the linear

9

ax

aY

gravity

gravity

aY
ax

aY = lY + g

ax = lX

gravity

aY = lY + gYCos(θ)

gravity

ax = lX + gxSin(θ)

Figure 1.7: Bi-axial accelerometer (orange cube) attached to the wrist. In the first case, gravity
aligns with one of the sensor axes. In the second case, the tilt in the wrist causes sensor axes to
deviate from the gravity vector. θ is the angle that gravity makes with the X axis.

acceleration in each axis if we know θ, which is the angle that the linear acceleration makes with

the sensor axis. g cos(φx), g cos(φy), g cos(φz) are the gravitational components along each of the

sensor axis and φ is the angle between gravity and each of the sensor axis.

In order to extract linear components of acceleration from raw acceleration, we first need to

estimate the orientation of the device. For the Shimmer device, this information can be estimated

from the MPU-9150 chips that are on-board the device. Due to computational efficiency and com-

pactness, the MPU-9150 estimates the orientation in form of quaternions which can be converted

10

into rotation matrix using the following equation:

R =


1− 2(q22 + q23) 2(q1q2 − q0q3) 2(q0q2 − q1q3)

2(q1q2 − q0q3) 1− 2(q21 + q23) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q0q1 − q2q3) 1− 2(q21 + q22)

 (1.2)

Assuming that the rotation matrix is represented as R, and gravity in earth frame is repre-

sented as Ge, then the gravity, G, in the device frame can be calculated as :

G = [R ·Ge] (1.3)

Once the gravity in device frame is extracted, the linear acceleration (L) can be estimated

from the raw acceleration (R) by subtracting the gravity components (G) from the raw acceleration

components as :

L = R–G (1.4)

It should be noted that the direction of gravity vector, measured by the sensor, points away

from the earth’s surface. Thus gravity must be subtracted from the raw acceleration reading instead

of being added to it. The Shimmer guide [17] explains this using the example of a hollow cube with

a ball inside.

Figure 1.8: Accelerometer measurements if the ball was weightless.

11

Consider the scenario in figure 1.8. If the ball is weightless, then the measurements along

each axis of the accelerometer will be 0 because there will be no force acting on the ball. This case

is akin to the device being in free fall.

Figure 1.9: Accelerometer measurements if the ball was weightless.

Now consider the case in figure 1.9, when the box is accelerated to the right. In this case,

the ball will experience acceleration in positive Y axis due to the force applied by the opposite face

of the box.

Finally, lets drop the assumption of weightlessness and include the effect of gravity on the

ball as in figure 1.10. In this case, the ball will rest motionlessly on the bottom face of the box, as

long as the box is not accelerated. Just like the previous scenario, the ball will experience a force in

the positive Z direction, produced by the surface of the cube. This force, called normal force, works

against the weight of the ball. The ball (or the accelerometer), in this case, will read an acceleration

in positive Z direction produced by the normal force.

1.4.2 Noise in Linear Acceleration

While it is possible to extract linear acceleration from raw acceleration readings, the accu-

racy of the orientation tracking is still a known issue and a major source of error. A study [21],

investigating the orientation error of IMUs found that the overall errors were less dependent on the

algorithm used to track the orientation, and more dependent on the amplitude and frequency of

the movement. Furthermore, they found that one of the biggest sources of error emanated from the

12

Figure 1.10: Accelerometer measurements if the ball wasn’t weightless.

orientation of the rotation axis with respect to the gravity vector.

To estimate orientation, we use a combination of the accelerometer, gyroscope and the

magnetometer but even then 1 degree errors in estimation are very common. This is often due to

the sensitivity of the sensors to external influence. For example, magnetometers are highly sensitive

to all magnetic fields and are even affected by other magnetic materials inside the device. While

it is possible to compensate for constant magnetic fields, any moving source of magnetic field can

destabilize the readings.

Thus, errors in orientation tracking, which can be as high as 1 degree, and high frequency

movement of the wrist, can cause large errors in extracting linear acceleration and because of the

difference in the orders of magnitude between linear hand acceleration and earth’s gravity, the

magnitude of these errors can be comparable to the magnitude of linear acceleration itself.

Furthermore, orientation tracking errors are not the only sources of errors in linear acceler-

ation estimation. When we remove gravitational components from raw acceleration, we ignore the

minor changes in gravity along the earth’s surface which can vary from 9.76 m/s2 to 9.83 m/s2

[10]. Any minor manufacturing defects and biases in the sensors can also severely affect the linear

acceleration estimates because of the difference in the order of magnitude, as explained earlier.

In our work, these noise artifacts can be seen in the linear acceleration values extracted

from the raw acceleration. During certain short periods of time, noise can be seen as plateaus

13

with non-zero heights. Figure 1.11 plots a sample of the net linear acceleration (ax + ay + az) of a

subject’s wrist over the course of 3 hours. As seen in figure, there are plateaus of almost constant

linear acceleration with different heights, indicating different accelerations. Such constant linear

accelerations distributed randomly are most likely periods of rest and highlight the noise that is

present in the linear acceleration reading.

Figure 1.11: Magnitude of net linear acceleration (x+ y + z) for a 3 hour time period. Noise can
be seen in the different level plateaus.

Since the error is non-constant, as is visible from the non-constant heights of the plateaus,

there is no known way of separating this noise from the readings during motion. The noise can

be easily mitigated during rest periods because the ideal value of linear acceleration during those

periods should be 0. Thus, any deviation from that value can be attributed to noise. This creates

a problem of identifying periods of rest when there is no ground truth available and any type of

estimation that we make will likely have error in it.

In his previous work [23], Sharma used a variance based algorithm to detect periods of rest

in the CAD dataset. For each datum, a window of fixed length t was centered on the datum and the

standard deviations of the accelerometer and gyroscope outputs were calculated. Then thresholding

was performed on the sums of the deviations to classify each datum as either being in a state of rest

or in state of motion.

Figure 1.12 shows the distribution of the acceleration values for the data detected as being

in rest and being in motion. Sharma noted that 90% of wrist acceleration was less than 0.04 g. For

data at rest, the acceleration varied from 0.00 g to 0.06 g and that 70% of wrist motion overlapped

with rest periods. Since there is a significant overlap between periods of rest and motion, and the

noise in the rest periods is almost as much as the acceleration in periods of motion, we can conclude

that conversion from raw to linear adds a significant amount of noise to the data. On the other

14

0 0.02 0.04 0.06 0.08 0.1
Acceleration (g)

0

2

4

6

8

10
F
re

q
u
e
n
c
y
 (

%
)

Rest

Motion

Figure 1.12: The spread of linear acceleration for data detected as rest (blue) and motion (red).

hand, since raw acceleration has a much higher magnitude than linear acceleration, the ratio of noise

to the reading is likely to be much lower.

As indicated in Sharma’s work [23], a zero mean filter can be used to reduce the artifacts

during motion. This is accomplished by averaging the value of linear acceleration over a 10 second

window along each of the axis. The window is centered on each datum on a rolling basis. The

averaged value, along each axis, is then subtracted from the linear acceleration value for that datum.

This essentially works as a high pass filter, retaining information regarding global movements while

filtering out slow motions. Thus, using a zero mean filter may help with reducing the error artifacts

but will cause you to lose out on information.

1.5 Related Work

The traditional way to track energy consumption is by using food diaries but this method

is not optimal as it requires you to carry a diary with you at all times, and/or remember accurately

how much you ate and when. Furthermore, most people do not want to spend time required to keep

15

a consistent journal and often people tend to skip writing down the snacks, which account for the

bulk of calories. Thus, researchers in this field are now looking for ways to automate this process.

In past, Dong et. al. [3] have used a iphone, mounted on the wrist, to track wrist motion

of subjects in free living. A total of 43 subjects participated in the data collection. The subjects

recorded 449 total hours of data consisting of 116 eating episodes. Using the data, the group

developed a Bayesian classifier to identify meals. The classifier achieved a weighted accuracy of

81%, detecting 100/116 meals and producing 379 false positives.

In 2019, Kyritsis et. al [14], worked on a method to detect food intake cycles using wrist

micro-movements. They defined wrist micro-movement as a short sequence of actions that the

wrist undertakes when eating a meal, like operating a utensil. They used the publically available

FIC dataset containing triaxial acceleration and orientation velocity from 12 subjects over 21 meal

sessions. In the first part of the experiment, they define 6 micro-movements and use a CNN to

classify windows of eating data as either one of the 6 possible movements. In the second part of the

experiment, the output from the CNN is fed into a LSTM (Long Short Term Memory) network to

classify window sequences as food intake cycles or not. Overall, their second experiment achieved

a F1 score of 0.913 and Precision of 0.895 while their first experiment had an average accuracy of

79%.

In another work by the same group, Kyritsis et. al [15] propose another approach for

detecting in-meal eating behaviour and classifying eating episodes. In addition to the FIC dataset,

this time they also use FreeFIC and FreeFIC held out which are free-living datasets. In this work, the

group takes a bottom-up approach to meal detection. They first attempt to localize ”bite” episodes,

using a combination of CNN and LSTM networks and then use the distribution of detected bites

to segment eating episodes. Their bite detection algorithm achieved a F1 score and precision of

0.923 while the meal start/end point detection on in-the-wild dataset yielded a weighted accuracy

of 0.788. It should be noted that their model has 160,000 trainable parameters which reduce the

ability of the model to work in real time without a dedicated GPU.

It should be noted that the experiments that use laboratory setting to collect data report

high accuracies but are not able to replicate those values on ’in-the-wild’ datasets. For example,

when the bottom-up classifier in [14], was used on a dataset collected by 11 people outside the lab

setting under free-living conditions, the precision decreased to 46% and recall decreased to 63%

[15]. This highlights the need for more research under free-living conditions with a larger number of

16

subjects.

In an attempt to classify eating episodes in less restricted settings, Sharma [23] took a

top down approach to episode detection. Instead of detecting bite events or micro-movements, he

attempted to classify windows of data directly using a CNN. In his work, he collected the Clemson

All Day dataset (CAD), which comprised of 351 subjects, and over 4,680 hours of wrist motion data.

Using a CNN with approximately 7,500 parameters, he attempted to classify windows of varying

sizes (0.5 - 15) as eating or non-eating. A larger window size could potentially allow the model to

learn all the micro-movements related to an ingestion event and thus removing the need for a bottom

up approach. His method achieved a window classification accuracy of nearly 82%. Furthermore,

he found that higher window sizes (> 6 min) did not increase accuracy but did increase inference,

prediction and training times. He recommend a window size of 6 minutes which yielded a FP/TP

of about 1.7.

In a recent work, Wei [28] trained 8 individual models corresponding to wrist motion data

from 8 people and compares their accuracy with a group model trained on the entire CAD dataset.

While the individual models averaged a weighted accuracy of 0.819, the group model only averaged

0.780. Thus, the individual models outperformed the group model, but the amount of improvement

varied depending on the individual. While in one case, there was a 12% increase in the weighted

accuracy, in another individual model, the increase was only 0.2%.

1.6 Novelty

The goal behind this thesis is to determine whether extraction of linear acceleration from

raw acceleration is required for using accelerometer data in a CNN model. The thesis answers

this question by training and testing two sets of models, one using linear acceleration, and other

using raw acceleration. The process of training linear acceleration model doubles as a replication

experiment to compare the previous work and set up a new baseline with which we compare the raw

acceleration models. To account for the model volatility, we rerun this process multiple times to

determine the stability of the model and therefore report accuracies in terms of average ± standard

deviation instead of reporting accuracy from a single run only. We also aim to find the best set of

hyper-parameters for both raw and linear models and see if there is a difference between the two.

To summarize, the thesis tries to find the answers to the following questions:

17

1. Can the results obtained previously using linear acceleration be replicated?

2. Can a classifier recognize eating episodes by analyzing raw acceleration? If so, does the model

perform better or worse than linear acceleration?

3. What set of hyper-parameters yield the best results? Is there a difference in the hyper param-

eters for linear and raw models?

18

Chapter 2

Methods

This chapter provides a detailed description of the methodology used in the experiment.

We begin be describing the dataset and its procurement in section 2.1. Then, in section 2.2, we

discuss the steps taken to pre-process the data and prepare it for the model training. In section 2.3,

we discuss the model architecture and hyper-parameter settings. Following that, in section 2.4, we

describe the various metrics used to evaluate the models. Finally, in section 2.5, the entire training,

testing and evaluation process is described. Figure 2.1 overviews all the methods described in this

section.

2.1 Data Set

The data for this research, called Clemson All Day (CAD) dataset, was collected in 2014

over a course of one year using Shimmer3 units manufactured by Shimmer Sensing. The participants

were recruited from the student, faculty and general population living near the University. The

participants were instructed to wear the wrist motion tracker for a period of 1 day and the device

recorded the acceleration and gyroscopic measurements for the wrist during that time period. To

mark the start and end of a meal, the participants were required to press the button present on

the device. The press times were later extracted and were cross checked with the user to ensure

accuracy.

A total of 408 subjects were recruited which resulted in a total 354 days of usable recordings.

19

Data Collection

Data Preparation

Neural Network

Metrics Description

History Software/Hardware Statistics

Gaussian

Smoothing

Z - Score

Standardization

Sliding Window

Algorithm

Layer Descriptions Model Architecture

Episodic Metrics Time Metrics Boundary Errors

Model Training

and Testing
Folds Creation

Hysteresis and

Segmentation
5FCV

Figure 2.1: Outline of the methods section and the subsections.

Some recordings could not be used due to various reasons like device failure, incorrect usage, or failure

to follow procedure by the participant.

2.1.1 Shimmer3 Device

Shimmer3 is a wearable wireless sensor developed by Shimmer Sensing for recording human

body motion. While it can be work anywhere on the body, for the collection of this dataset, it was

worn on the wrist. The Shimmer device used a MSP430F5437A micro-controller in combination with

a 3 axis low noise accelerometer, 3 axis wide range accelerometer, a gyroscope and a magnetometer.

The accelerometer reported its measurements in terms of g-force or g, where 1 g (9.8 m/s2)

represents the standard gravitational acceleration of earth on sea level. So, a 3 axis stationary

accelerometer would measure 0 g in x and y axis but 1 g in the +z axis due to the gravitational

force exerted by the Earth.

From the two available accelerometers, the low noise accelerometer was preferred over the

wide range because the low noise accelerometer offered more accurate reading with a lower sensitivity

in measurements. Moreover, acceleration of the wrist was not expected to go beyond the range of

the low noise accelerometer which was ± 2 g. For reference, a high speed roller coaster develops 4

g to 5 g of acceleration.

20

Figure 2.2: Front view of the Shimmer device with button labels

The MSP430 microcontroller is capable of writing the data to an external microSD card.

To simplify user interaction, 2 LED lights were available which would signal whether the device was

recording the wrist movements or not.

2.1.2 Data Collection History

The device recorded the raw acceleration and the angular velocity of the wrist in each of

the x, y and z directions. At the time of the data collection, the accelerometer only recorded the

raw acceleration of the wrist and the conversion to linear acceleration, if required, was done offline

after recording.

As stated earlier, the data was collected using the wrist worn Shimmer device capable of

storing the information on microSD card. From the microSD, the data was exported to a PC and

written out to a CSV file using Consensys Software. Consensys could also be used to configure the

device and set the sampling rate for the data collection. The default sampling rate was set to 15.06

Hz and because of device limitations could not be changed. Therefore, the data was under-sampled

to 15 Hz, once the data collection was completed.

After the ConsenSys software exported the collected wrist data to CSV files, a tertiary

program called MarkerParser was used to collate the ground truth data regarding the user-reported

periods of eating during the day of data collection. This required the user to either have memorized

the eating times or to have marked the eating start and end times using the button provided on

the Shimmer Device itself. Aside from the start and end times of the different meals, information

21

Figure 2.3: Interface of Consensys software showing options to import and configure individual
Shimmer devices.

regarding food items consumed, the number of servings, whether the meal was consumed in company

and where the meals were consumed was also recorded.

Figure 2.4: Interface of MarkerParser software showing the various options related to the meals.

2.1.3 Creating Raw Acceleration Dataset

The raw CSV files recorded by the Shimmer devices were stored in 5 separate zip files.

The raw acceleration and gyroscopic measurements were extracted from these CSV files. As stated

earlier, due to the sampling frequency of 15.06 Hz, the data had to be under sampled to bring it to

22

15 Hz. This was done using the time indices that were stored in the CSV files alongside the data.

Starting the clock from the third recorded time index, the clock was incremented at the frequency of

15 Hz, or 66.66 ms and the closest data point to the clock time was recorded. Sometimes, the device

would stop recording data for anywhere from few seconds to few minutes. In these cases, we inserted

the values for the missing time indices based on the length of time that the device would remain

turned off. For a few seconds worth of missing data, we replaced the missing values with the closest

known values on the either borders of the missing data. For larger lengths of time, i.e., longer than

5 minutes, we replaced the missing data with 0 in the acceleration and gyroscope measurements.

The CSV files also had a column which recorded the internal clock times of the Shimmer

Device. This clock had the same tick rate as the sampling rate. In some cases, where the date

time column was either corrupted or missing entirely, the internal clock column was used to under

sample and extract the raw data. Unfortunately, some files had both the internal clock and date-

time column missing so those files could not be used to generate the data. Statistics regarding the

final dataset are expanded upon in the next section.

2.1.4 Data Statistics

During the process of original data collection 408 participants were recruited and data was

collected over all 7 days. Of the 408 participants, 351 managed to successfully complete the data

collection, yielding a total of 354 days of usable data. One participant collected 3 days of data while

another collected 2 days and the rest 1 day. A total of 4,680 hours of data was collected, containing

265 hours of eating activity across 1,133 separate meals in the original data collection. The average

amount of data recorded per participant was 13.2 hours. The average start time for a recording was

8:50 am, while the average end time for recordings was 22:06 pm.

Of these 354 days/files of data, 12 files did not have a consistent and surviving date-time or

clock column so for the purposes of this thesis, our data only consisted of 342 days of use able data.

Each day of data was stored in a unique file, yielded 342 files. Table 2.1 shows some key details

regarding the demographics.

1,101 meals were extracted from the 342 files of which 67 meals were further ignored. This

was because either the meals were too long, too short or did not fulfill the criteria to be considered

a meal. For example, sipping coffee for an hour while driving. Therefore, in total, 1,034 meals from

342 days form the dataset for this thesis.

23

n

342

Age

mean (±SD) 27.53 ± 11.5

Gender

Female 207

Male 125

Not Documented 9

Ethnicity

Black 66

White 202

Other 64

Not Documented 9

BMI

mean (±SD) 25.7 ± 5.65

Table 2.1: Demographic details for participants forming the raw acceleration dataset

2.2 Data Preparation

This section details the techniques used in prepossessing the data to create training and

testing sets as well as the model that was ultimately used to train both liner and raw acceleration

models.

2.2.1 Gaussian Smoothing

Signal smoothing is the process of creating an approximate function that attempts to capture

the important patterns in the data while leaving out noise and outliers. The Shimmer3 stored data at

a frequency of 15.06 Hz meaning that the device sampled roughly 15 values from accelerometer and

gyroscope every second. When sampling at such a high frequency, there is bound to be significant

noise in the readings and when it comes to time series, individual measurements are not as important

as the patterns they form. Thus, the first part of pre-processing was to filter the readings from the

sensors independently using a 1D Gaussian filter.

Gaussian filter is implemented using a Gaussian kernel, which essentially acts as a weighting

24

function. The kernel is slid across each of the axis and convolution is performed across each data

point, yielding a new value which is weighted average of its nearby points.

G(x) = e
−x2

2σ2 (2.1)

In this work, the kernel generated is of size 15, with a variance of 10. Equation 2.4 is used

to generate the 1D kernel. Figure 2.5 shows the effect of smoothing on the original signal.

Figure 2.5: Gaussian smoothing on noisy signal.

2.2.2 Z - Score Standardization

Accelerometers and gyroscopes measure two very different quantities so the range of possible

values that the sensors output also varies. This variation is also present in each of the axis that

the sensors measure. Since, any machine learning algorithm only sees numbers and not the units

associated with those numbers, inputs that have higher variance are treated as more important and

can have more effect on the model. This is a well known phenomenon in machine learning and in

order to avoid forming this internal bias in the model, it is important to feature scale the inputs so

that the model treats them with equal importance. Furthermore, feature scaling has shown to also

increase the robustness of the model and allow the gradient descent to converge quicker.

In this work, Z score normalization was used to feature scale each of the axis. In practice,

this is accomplished by subtracting the mean of the variable from each value and then dividing by

the standard deviation of the variable. This makes the value of each feature have zero-mean with a

25

unit variance.

x′ =
x− x̄
σ

(2.2)

Previous work [4] has shown that Z Standardization works better than the alternative like

min-max scaling.

2.2.3 Sliding Window

Since the dataset was under sampled to a constant 15 Hz, we can treat the collected data as

a time series. When working with a time series data, the most common way of forming training and

testing datasets is to frame the data as continuous windows of fixed length. Providing individual

data points to the model as inputs will not yield good results as these points only tell instantaneous

acceleration and tilt.

In this work, windows of varying lengths were cut, from 0.25 seconds to 15 seconds, and a

set of models were created for each window length, in accordance with the cross validation technique

discussed later. For forming the dataset, we used a slide of 15 seconds which corresponded to 15x15

= 225 data points. Slide refers to the number of data points that the window was moved before we

cut a new slice. While any value of slide could be used, earlier work [23] has shown that a slide of

225 seems to work best for training the models. Slide of 1 was avoided because it would create more

data than we needed to train the classifier and the windows would be too similar to each other,

and that could lead issues like over fitting. We also cannot set the slide to a value greater than the

window length because this would not only decrease the number of windows that can be cut but

also, the uniqueness of each window would mean that the model is looking at completely different

frames rather than a continuous motion.

Figure 2.6 explains the sliding window algorithm as used on the CAD dataset. Each file in

the CAD dataset was stored as a Tx6 array, where T was the total number of data points sampled

by the sensors during the course of the day. The 6 dimensions of the data corresponded to the 6

axis (ax, ay, az, gx, gy, gz) that the sensors measured values in. The size of the new dataset that is

created by sliding window can be calculated by the following equation 2.3:

N =
T −W
S

+ 1 (2.3)

26

Figure 2.6: Using sliding window to cut windows of data. Here slide used is 2 and window length is
4. The final windows, stacked together form the dataset of shape NxWx6.

Here, N is the total number of windows that can be cut from a data that is of length T, W

refers to the size of the window and S is the slide. Thus, for a given day of recorded data, stored in

Tx6 form, we could create a dataset of size NxWx6.

The labels for the dataset were also created using the similar approach. For each window

27

cut from the dataset, its corresponding self reported action was observed. If at least 50% of the

data points in the window overlapped with a self-reported meal then the window was labeled as ‘1’,

otherwise a ‘0’.

2.3 Neural Network

This section describes the neural network architecture used to train the models as well as

the different layers and their purposes.

According to a 2019 survey [9], the most commonly used approaches to detecting eating

by tracking upper limb movements were support vector machines (SVMs), random forests, decision

trees and hidden Markov models. Further, the survey found that only 5 works used deep learning

approach to detecting eating. All of those works used a bottom – up approach to finding the eating

periods i.e. they first identified the gesture and then classified it as eating or non - eating. Previous

work [23] by our research group has shown that a top down approach using CNN is also viable.

2.3.1 Convolutional Layer

Convolutional layer contains a set of filters, with teachable weights that are tuned using

back propagation. The depth of the layer is determined by the number of filters that the layer

has. Convolution of filters across the input generates a feature map. Each filter generates a unique

feature map (also called activation map) and the output of the layer are the feature maps stacked

together.

The output shape of each convolutional layer is determined by the depth of the layer, the

stride of the filters and the padding. Stride refers to the number of data points that the filter moves

between successive convolutions and padding refers to the number of pixels added to the borders of

the activation map to control the shape of the output. Padding is often done to keep the shape of

the feature map same as the input to the layer.

As seen in figure 2.7, when working with time series data we often prefer to use 1D convo-

lutional layers. This is because we expect the kernel (another name for a filter) to move in 1D only.

While the use of 2D layers is possible, it is discouraged because all the variables together paint a

more holistic picture of the movement as opposed to two or three.

For a 1D convolutional layer, we can determine the output shape as indicated by the equation

28

Figure 2.7: 1D Conv vs 2D Conv : The blue filter can only move in 1D, while the yellow can perform
convolution in 2D. We prefer the blue as it can see the acceleration and tilt in all 6 axis.

2.4. Here, O refers to the output size, I is the input size, f is the kernel size and S is the stride.

O =
I − f
S

+ 1 (2.4)

While convolutional layers are often the first layers in CNN, they can also be stacked together

and have their inputs and outputs connected such that the input to the next layer is the output of

the previous layer. This is a very powerful idea and is in fact what allows the model to gain a deeper

insight into the data and learn more powerful patterns that may not be visible to human eye.

For this work, we used a total of three convolutional layers. All of the three layers have 10

filters each and perform convolution with a stride of 2 but have different size of filters. The first

layer has a filter size of 44. This corresponds to about 3 seconds of data and was set to this value

because according to earlier work [24, 20] average bite length is about 3 seconds. The second layer

has a filter size of 20 while the last layer has a filter size of 4. We also place a activation layer after

each convolutional layer, described in more detail in the next section.

2.3.2 Activation Function

Taking a closer look at a neuron, we see that the output is a linear combination of the

weight, input, and the bias, as represented in equation 2.5. Thus, there are no bounds on the output

value of a neuron, the value could range anywhere from -inf to +inf. As stated earlier, if the inputs

are not bounded, the model tends to perform worse. Moreover, if the output becomes too small or

too large, it could cause computational issues.

output = (weights ∗ input) + bias (2.5)

29

Perhaps, the most important problem with the convolutional layer is the linearity. While

a model like this will work well for linearly separable data, in the real world, data like that almost

never exists. Thus, in order for a network to learn more complex patterns, we need to introduce

non-linearity into the model. This is the purpose of the activation function.

In this work, we used the ReLU activation function (Rectified Linear Unit). ReLU is a well-

researched and the most widely used activation function because of its simplicity. A study in 2011

showed that the ReLU function improved the learning ability of a neural network . The function is

mathematically represented as :

f(x) = max(0, x) (2.6)

In the model we use, there is a ReLU activation function present after each convolutional

layer to allow the model to learn complex, hidden arm movement patterns.

2.3.3 Batch normalization Layer

As explained earlier, before we input data to the first convolutional layer, we normalize

the input such that it has zero mean and unit variance. While this remains true for the input

to first layer, due to non-linearity of the model, the output from that layer no longer maintains

this mathematical trait. The value of the mean and the variance of the input changes as it travels

through the model. This is called internal covariance shift, and in order to fix this issue, Loffe et.al

[12] proposed a new layer called Batch Normalization Layer.

This layer works similar to the standardization that is performed during pre-processing.

Before the inputs of the previous layer are fed into the next one, the mean and the variance of the

input batch is calculated, as shown by equations 2.7 and 2.8. Here, B represents the batch, and m

represents the number of training samples in the batch.

µB =
1

m

m∑
1

xi (2.7)

σ2
B =

1

m

m∑
1

(xi − µB) (2.8)

Then, each dimension of the input is normalized separately (2.9) and transformed (2.10).

30

The parameters, γ and β learned during the training period.

x̂i =
xi − µB√

σ2
B

(2.9)

yi = γx̂i + β (2.10)

While there is some evidence that this does not actually solve the internal covariance shift

rather only smooths the objective function, it still reduces the training time and positively affects

the learning rate. In this work, we added a batch normalization layer between each convolutional

layer.

2.3.4 Global Average Pooling

For complex training data, we need to create a sufficiently complex model which requires

stacking more convolutional layers on top of each other. While this works in theory, one of the major

drawbacks, in practice, is the ever increasing size of the outputs. Large outputs not only slow down

the learning rate, but also can cause issues of over-fitting.

Figure 2.8: Example of global pooling. Each feature map is replaced by its average value.

The most common approach to this problem is to use Pooling layers, which reduce the size of

the feature maps by performing a mathematical operation on them. In this work, we use 1D Global

Average Pooling operation, which replace the feature map by their average values, as depicted in

31

figure 2.8. The averaged value still contains all the necessary information for the model to learn the

underlying structure without associating the classification to a particular sample.

2.3.5 Fully Connected Layer

A fully connected (or dense) layer is composed of neurons which are interconnected with the

neurons of the previous layer i.e each neuron in a dense layer receives input from all the neurons of

the previous layer. The input is a linear function of the weight matrix, the previous inputs, biases

and the activation function, as represented by equation 2.8.

Figure 2.9: Example of interconnections between two dense layers in a multi-class model. In both
dense layers, all the neurons are connected to the output of the previous layers. In the actual model,
these connections are scalar values called weights.

In this work, we have two fully connected layers stack at the end. The first layer has

200 neurons, with 2200 trainable parameters, which takes input from the preceding global average

pooling layer. This layer is connected to the output layer which has a single neuron, with 200

trainable parameters. The purpose of the final dense layer is to convert the feature space into a

single scalar value. This value is then fed into a sigmoid activation function (equation 2.11), which

compresses the value between 0 and 1, allowing us to interpret the output of the model as the

probability of eating. If the output is higher than 0.5, then we label the input window as eating,

while a value of less than 0.5 implies non-eating.

σ(z) =
1

1 + e−x
(2.11)

32

2.3.6 Loss Function

Use of back-propagation to train neural networks requires us to select a loss function for

which the gradients are calculated. The most common function that is used in tandem with sigmoid

output is the cross entropy loss function. This is because the output of a sigmoid activation is

bounded between 0 and 1, thus loss functions which feature exponents in their derivative will face

the problem of saturating neurons, as the calculated gradient will be very small.

In information theory, cross entropy is used to differentiate between two probability dis-

tributions. If the vector of true labels, yi is treated as the primary distribution and the vector of

predicted class labels p(yi) is treated as the secondary distribution, then the cross entropy loss can

be calculated as :

Hp(q) = − 1

N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi) (2.12)

2.3.7 Network Hyper Parameters

While the layers determine the model architecture, the hyper-parameters determine the way

the model is trained. Picking the right set of hyper parameters is a challenging task, and one that

is mostly done though trial and error. There are many hyper-parameters that need to be set, the

major ones are detailed here :

1. Batch Size : Batch size refers to the number of training samples that are fed through the

training loop before updating the parameters of a model. While it is possible to use all the

training samples before each update, this not only costs memory but also takes a lot of time.

Thus, using a smaller batch size is often the best practice. When using a batch size other than

the number of samples in training set, we can calculate the total number of parameter updates

that will be performed as :

Updates =
N

b
(2.13)

Where, N is the total number of samples in the set and b is the size of the mini-batches that

we use to train. In this work, we used a batch size of 256 to train all the models.

2. Learning Rate : The learning rate determines the amount of change made in the weights of

the model during the update cycle. A high learning rate can cause the model to either not

33

converge at all where as a very low learning rate could cause the model to take a long time to

converge or get stuck in a local optimum. In this work, we used a learning rate of 0.01.

3. Optimizer : Optimizers are algorithms that monitor and control certain parameters of the

model to minimize the loss function. In this work we use the Adam (Adaptive Momentum

Estimation) Optimizer. Adam works on the idea of momentum i.e. by adding the exponentially

decaying average of the previous gradients, we can either increase or decrease the weight update

value to optimize the learning rate. Equations 2.14 and 2.15 show the first and second order

momentum calculated by the Adam optimizer and equation 2.16 shows the modified weight

update equation.

m̂t =
mt

1− βt
1

(2.14)

v̂t =
vt

1− βt
2

(2.15)

θt+1 = θt −
µ√
v̂t + η

m̂t (2.16)

4. Epochs : The number of epochs determines the total number of times that the model goes

through the entire dataset. In this work, we set the epoch value to 150, to maintain the training

environment as setup by the group previously. By combining this with early stopping, we can

avoid the problem of over fitting.

5. Early Stopping : As the name suggests, early stopping is the mechanism of stopping the

training process early, before it reaches the specified number of epochs. This occurs if a certain

metric used to monitor the process stops improving. In this work, we used the validation loss

as our early stopping criteria with patience of 15 epochs and minimum delta of 0.01.

6. Model Checkpoint : In the process of being trained, a deep learning model goes through

many iterations of back-prop. Each iteration is bound to change the model accuracy, and not

always for the best. Model Checkpoint is a system of saving the model where the model is

saved only if it beats a certain metric that is monitored. In this work, we save the model with

the lowest validation loss.

34

2.3.8 Model Architecture

Figure 2.10 shows the final model architecture that was used to train the models. In sum-

mary, the network has 3 convolutional layers, each with a stride of 2 and L1 norm for regularization.

After stack of convolutions layers, there exists a global pooling layer, a dense layer and finally, the

output layer. All 3 convolutional layers and the dense layer are followed by a batch-normalization

layer. In total, the model contains approximately 7,500 trainable parameters.

Figure 2.10: Architecture of the CNN model.

2.4 Hysteresis and Meal Segmentation

Since the model outputs the prediction as a scalar value between 0 (non-eating) and 1

(eating), we can use the sliding window algorithm to generate a probability curve, p(t). For each

file in the held out fold and for each window size W, we generate windows of data using the sliding

35

window algorithm, with a slide of 1. This generates a window for each datum in the file. Using that

as the input, we generate a continuous curve that peaks when the person is predicted to be eating

a meal.

A Hysteresis algorithm is used to segment the predicted meals from the probability distri-

bution. The algorithm uses two thresholds, Ts and Te. When the probability of eating, p(t) becomes

higher than Ts, we mark that datum as the start of a eating episode and when the probability be-

comes lower than Te, we mark that as the end of the eating episode. Thus, the two thresholds act as

a bounding system for the probability, requiring a strong probability to mark the start of an eating

episode but a more relaxed value to mark the end of the eating episode. The value of Ts is higher

than that of Te because we generally eat faster and thus accrue more eating micro-movements when

we are hungry. The number of micro-movements related to eating are less and more spread out over

time as we become satiated. The models are trained to recognize the movement of the hand and

eating more creates more ingestion events, allowing the model to recognize it with a higher proba-

bility while eating less creates lesser ingestion events, causing a lower probability towards the end of

the meal. Figure 2.11 shows the predicted meals segmented from the probability curve generated by

the model. Note, that while probability axis has ticks up to 1.4, the probability can never go above

1. Ticks from 1 - 1.4 are only used to show the ground truth and the predicted meals.

200000 250000 300000 350000 400000 450000 500000 550000 600000
Datum

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Pr
ob

ab
ilit

y

Predictions
True Meals
Predicted Meals

Figure 2.11: Shows hysteresis segmentation with Ts = 0.8 and Te = 0.4. The solid black line is the
probability of eating. The dotted black line mark the start and end of the true meals eaten while
the red dotted line marks the predicted meals. The horizontal lines mark the Ts and Te.

36

2.5 Metrics

This section details the various metrics used to evaluate the classifiers and compare the

models trained with raw and linear acceleration. In this work, we used two different types of metrics,

one using balanced but randomly distributed dataset and second using ordered but imbalanced

dataset. The metrics are used at different stages and serve different functions. Each metric is

expanded on in the following subsections.

2.5.1 Metrics for Balanced and Randomly Sampled dataset

These metrics were used to analyze the model after the training stage. The goal of this

metric was to configure the model hyper-parameters and the training set to reduce possible over-

fitting and catch any problems before we moved on to more complex, and expansive quantitative

assessments.

Since at this stage the testing data was balanced, we used the raw accuracy score of the

classifier on the testing data as the main metric. In a binary context, accuracy refers to how well

does the classifier differentiate between the two possible classes. If there existed a large gap between

the training accuracy and the testing accuracy of the models, we would stop and reconfigure some of

the parameters like epochs, learning rate etc to reduce the problem. This served as the preliminary

measure of how well is the model doing on unseen testing data.

2.5.2 Metrics for Continuous and Ordered Data

2.5.2.1 Episode Metrics

Episodic metrics quantify the ability of the model to recognize and classify meals, irrespective

of the total time spent eating. For our purposes, any self identified meal counts as an eating

episode and is weighted equally against other meals, no matter the length of the meal. Thus, an

eating episode that takes 13 minutes is statistically as important as the one that takes 5 minutes.

Furthermore, the accuracy of the detected meal, in terms of the amount of overlap in predicted and

true meal is also ignored. This gives rise to 4 possible scenarios, as explained by figure 2.12.

In this work, we label each detected meal segment as either a true positive (TP), false

positive (FP) or a miss. A TP detected meal is a meal that overlaps with a true meal. A detected

meal will be labeled as a TP as long as any amount of overlap exists between the two meals. A FP

37

True Meals

Detected Segments

Meal 1True Meals

Detected Segments

Meal 1 Meal 2 Meal 3 Meal 4

TP TP TP Miss FPConfusion Matrix
8 AM 8 PM

Figure 2.12: Graphic explains the metric definitions. We consider a case of a person eating 4 meals
across 8 AM to 8 PM. The classifier detected meals are marked in red while the true meals are
marked in green. The confusion matrix row tells us what each segment is classified as.

meal is a predicted meal which has no overlap with any of the true meals. A true meal that has no

overlap (and thus remained undetected by the model) is labelled as a miss. There is no definition of

a false negative (FN) in the context of this work and thus is not used as a metric. We do not report

true negatives for episodic metrics because we are only concerned with measuring the accuracy of

detecting eating episodes.

Consider the example in figure 2.12. Meal 1 will be considered detected because at least

one detected segment overlaps with the true meal. Meals 2 and 3 will also be considered detected as

one segment overlaps with both, classifying both as detected. Meal 4 remains undetected and will

be classified as a miss while the last segment will be counted as an false positive because there is no

overlap with a true meal.

The above definitions allow us to calculate the true positive rate (TPR) as :

TPR =
TP

TP +miss
(2.17)

and FP-TP ratio as :

FP/TP =
FP

TP
(2.18)

The TPR tells us the proportion of meals that were correctly detected by a model and should

be as high as possible, ideally being 1. The FP-TP ratio tells us the number of falsely detected meals

for every correctly detected meal. This number should be as low as possible, ideally 0.

38

2.5.2.2 Time Metrics

Time metrics quantify the ability of the models to classify each moment of time (each

datum) as eating or non-eating. We classify each datum as either a true positive, false positive, true

negative or a false negative. The definition of the labels remains consistent with episodic metrics, in

addition of true negative and false negative. A true negative is a datum that is correctly classified

as non-eating, while a false negative is a datum that is incorrectly classified as non-eating i.e. its

true label is eating.

Using these labels, we further calculate the sensitivity, precision, F1 score and weighted

accuracy (ACCW) of the model. Considering that there will always be more non-eating than eating

datums, there exists a class imbalance in the dataset. F1 score and precision are known to be

adversely affected by class imbalance, i.e. they can give a sense of false confidence. Thus, weighted

accuracy is considered the more useful and correct measure of accuracy. Since non-eating occurs

roughly 20 more times than eating, we can calculate ACCW as done previously [18] :

ACCW =
TP × 20 + TN

(TP + FN)× 20 + (TN + FP)
(2.19)

2.5.2.3 Boundary Error

Boundary error, calculated only for meals that are true positives, measures the accuracy of

identifying a meal with respect to its start and end times. In this metric, we calculate the average

difference between the start times and the end times of the actual meal and the predicted meal. In

case that a meal is overlapped by two predicted meals, we use the start time of the first meal and

the end time of the second meal. Figure 2.13 explains the various scenarios that can occur.

2.6 Model Training and Evaluation Process

Having explained the metrics used in evaluation, we now look at the entire training and

evaluation process, from the beginning to the end.

2.6.1 Balancing the Dataset

Imbalance in the dataset occurs when the distribution of classes in the ground truth is uneven

i.e. there are more samples of one class as compared to another class. Such an imbalance can pose

39

True Meals

Detected Segments

Meal 1 Meal 2 Meal 3 Meal 4

Start Boundary Error = Detected Segment Start - Meal Start

End Boundary Error = Detected Segment End - Meal End

Figure 2.13: Evaluating the boundary error of the TP meals. Meal 1 is identified by 1 segment.
Meal 2 is identified by 2 segments, we use the boundaries of the combined segments. Meal 3 and 4
are identified by a single segment, in which case we calculate the boundaries for both separately.

significant problems in predictive modeling because machine learning algorithms expect there to be

equal examples of all classes. Using imbalanced data to train can cause problems like over-fitting

while using imbalanced data to test the model can result in false statistical measurements.

In our case, there exists a natural and expected imbalance in the data. According to a study

conducted by USDA [8], an average American adult only spends about 67.8 minutes of their day in

primary eating and drinking activities. This means, over a 24 hour period, most people only spend

about 1 hour eating food. This is also reflected in our recorded data where there is a roughly 20:1

ratio of eating to non-eating hours.

There are many ways of solving the problem of class imbalance. Depending upon the data

complexity, creating synthetic data is a possibility and there exist many algorithms to do so. Given

the intricate nature and dimensionality of our data, this was not an option. In this work, we balance

our dataset through the method of under sampling the over-represented class. In both training and

preliminary testing stage, after cutting windows of data through sliding window algorithm, we under

sample without replacement the non-eating class so that the number of samples in that class are

equal to the eating class.

2.6.2 K - Fold Cross Validation

K fold cross validation (KFCV) is a model validation technique that can be used to estimate

how well will a model generalize to unseen data. In KFCV, we split the entire dataset into K non-

overlapping subsets, also called folds. Of the K folds, we retain one fold to serve as the ”unseen”

40

data and train the model using the remaining K - 1 folds. This process is repeated K times, and

each fold serves as the testing data exactly once.

Figure 2.14: K fold CV in action. Each fold is rotated as the test set. This also means that K
models are trained in the process.

Model performance is indicated by the averaged value of any performance metric over the K

folds. KFCV has many advantages over training with entire dataset. The variance of any estimate

is lower when measured using KFCV. Moreover, it is extremely easy to implement and works well

with large datasets, where training with the entire set may not be feasible due to limitations on

memory. It also has certain disadvantages like the process has to run K times which means more

compute time and this method does not work well with small datasets where dividing in K folds

may not leave you with enough data to train.

In this work, we use 5 folds to train and evaluate the model. We divide the 342 available

days of data into 5 unique folds. We then train 5 models, with each model being trained on set

of 4 folds and tested on the 5th. Training data for each model is generated using sliding window

and non-eating class is under-sampled to create a balanced training set. Once model training is

completed, we generate a test set from the held out fold. The held out fold is also under sampled

to create a balanced testing set. By comparing the training and testing accuracy, we can determine

41

the degree of over-fitting.

Once the models have been trained to satisfaction, we then use each of the models to make

prediction over their respective held out fold. The model generates a probability curve of eating

over the course of the day. We then use hysteresis algorithm to extract the predicted meals from the

curve. Statistics regarding time and episode metrics are then calculated by comparing the timeline

of predicted and actual meals.

Figure 2.15: 5 fold cross validation and data preparation process followed by model training, testing
and episode detection. This process is repeated 5 times, each held out fold acts as a testing and
prediction fold once.

2.6.3 Striped Folds Creation

The general method of creating folds is to shuffle the dataset randomly and then split it

into K separate groups. This system works well for data that didn’t have any underlying bias in

the collection process. In our case, that is not true. Data collection for this dataset happened in

stages, over the course of a year. Data for students of the Clemson University was collected first,

followed by faculty and staff and then finally local townsfolk. Ideally, there would be no difference

in the eating habits of people of different ages and occupation but we cannot make that assumption

without proof. Therefore, if we follow a random fold creation method, we risk grouping certain

demographics together. If the eating habits do in fact differ across the sections then a model trained

on a particular demographic will not be able to generalize to the rest of the population.

42

To avoid this problem, we follow the method of striped fold creation. Instead of randomly

creating five folds, we organize the data in the order of collection (indicated by file name) and then

split it into 5 groups. Each subgroup is then further split into 5 smaller groups and their order is

then randomized within the subgroup. Finally, we pick one group from each of the five subgroups

and combine them to form a fold. This improves the distribution of demographics across all the 5

folds and will assist in reducing over-fitting.

2.6.4 Differences in Replication and Original Work

There exist certain differences between Sharmas work in [23] and this work. Sharma, in his

work, trains the models for 150 epochs and saves the model with the highest training accuracy. In

this work, we instead use validation loss as the metric for saving the model and also implement early

stopping. If the validation loss does not improve over a period of 10 epochs, then the model training

is automatically stopped and last model with the lowest validation loss is saved. The validation data

is split from the training data with a ratio of 20:80.

The reason behind this change is that when we save models based on training accuracy,

we do not account for possible over-fitting. Training for 150 epochs can easily cause the model to

over-fit on the training data, which would yield a high training accuracy. This may lead us to a

over-confident model which would perform poorly on unseen testing data.

2.7 Measuring Model Volatility

One of the goals of this thesis is to quantify the volatility in the model training process. We

define this volatility as the change in accuracy and the measured metrics (boundary, time, episode)

every time a model is trained.

Testing Fold Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Sharma Testing Accuracy (%) 81 83 85 76 81

Table 2.2: Per-window testing accuracies for W = 6 min across the 5 folds obtained by Sharma in
previous work.

Table 2.2 shows the per-window testing accuracy of the models across the five folds for

window size of 6 minutes as achieved by Sharma’s experiment. In his work, Sharma saw a difference

43

of up to 9% in the accuracy across the folds. Given the large variability in the magnitudes, we

suspect that volatility in the training process might play a key role in the overall model fitting. This

in part motivated us to more deeply test the model volatility.

There are a lot of important variables that are determined during run-time which can

potentially have a impact on the training process. For example, since we train on a balanced

dataset, the choice of windows that are under-sampled from the over-represented class can positively

or negatively affect the model. In our case, in the non-eating class, we want there to be a equal

distribution of various non-eating actions so the model can better learn to distinguish eating actions

from the various non-eating actions. Consider the case where a random under-sampling leads to a

training set where the non-eating dataset is composed of similar actions. While the classifier will

be able to tell this particular movement apart from eating, it won’t be able to generalize well to

other movements. The choice of under-sampled windows is not the only source of volatility. The

initial weight matrices of the model can also determine how the model trains and converges. Each

time we run the model, these matrices can change which could lead the model to converge at a

different minima. Distribution of files in the folds is also a contributing factor to volatility. The

data collected has inherent bias in the sense of demographics. As mentioned earlier, in section

2.6.3, data for students of the Clemson University was collected first, followed by faculty and staff

and then finally local townsfolk. Since we cannot assume that the eating habits are same for each

demographics, randomizing the folds can cause a lot of volatility if certain demographics get grouped

together. Figure 2.16 marks some of the known sources of volatility during the training and testing

process.

In his work, Sharma took a top down approach to detecting windows of eating. He trained

neural network models of varying window lengths and analyzed the testing accuracy to determine

the optimum window size for meal prediction but he only reported the values of a single run, thus

his results do not account for the potential volatility in the training process.

In this work, in an attempt to account for this volatility, we choose to report our results in

terms of average ± standard deviation of the measurement obtained from 10 runs. We define a single

run as a complete five fold cross validation training and testing process. Thus, we repeat the entire

training and testing process 10 times. During each run, we measure the metrics described earlier in

section 2.5, and finally report the averaged value across the runs, along with the standard deviations.

By repeating the training process 10 times and allowing for different set of under-sampled indices and

44

Figure 2.16: Sources of volatility : Various sources of volatility are marked in bold during the stage
1 and stage 2 of the training and testing process.

weight initializations, the averaged value is a more complete measure of the metrics when compared

to a single run. It should be noted that all 10 runs are made on the same distribution of files, i.e.

the folds remain constant over the runs. This was done to reduce the affect of volatility and make

the results more reproducible.

45

Chapter 3

Results

In this section we present the three main results. Firstly, in section 3.1, we show the results

of replicating the original experiment [23] on linear acceleration to confirm its accuracy and establish

a new baseline for the comparison with raw acceleration. We also select the hyper-parameters Ts

and Te for final metrics calculation. Then, in section 3.2, we show the accuracy of the new method,

which uses raw acceleration and select the optimal hyper-parameters for this work. Following this,

in section 3.3, we compare the episodic metrics and time metrics of the raw and linear models based

on the selected hyper-parameters from the previous sections. Finally, we present some secondary

results regarding volatility measure and per-window TPR/TNR of the models. As explained earlier,

we also report model volatility in the experiment by reporting each statistic as average ± std.

3.1 Replication Experiment on Meal Detection

We first show the results of the replication experiment on the CAD dataset. We start by

showing the effect of window size on the accuracy of the network on balanced dataset. We then

show the effect of Ts and Te on the boundary error, true positive rate and FP/TP ratio and select

the optimal value for the parameters.

3.1.1 Effect of Window Size

The figure 3.1 plots the effect of window size on the average testing accuracies obtained

from the five fold cross validation. We notice a curve, similar to what was obtained by Sharma in

46

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Window Size (mins)

66
68
70
72
74
76
78
80
82
84
86

Av
g.

 A
cc

ur
ac

y
(%

)

Replication Accuracies
Sharma Accuracies
Standard Deviation

Figure 3.1: Average accuracy (5-fold) of CNN on windows from test split vs window size W, over
10 runs

his work. As the window size grows larger, the testing accuracy also increases. This is likely due to

the fact that while smaller windows capture individual ingestion events, larger windows are able to

capture continuous patterns of eating which results in a higher accuracy.

Comparing the values with Sharma’s work, we see that Sharma’s values are higher by 1 -

2%. We suspect that this could be due to a leak between training and testing data. Leakage occurs

when certain parts of testing data become available to the model during training, which otherwise

would only be limited to testing phase. Contamination of training data could lead to inflated values,

giving a false sense of confidence in the model.

Contamination is not the only explainable cause of the higher values for example, in the

replication experiment, we average the testing accuracies obtained over the period of 10 runs, thus

accounting for volatility in the training phase. Sharma’s results, on the other hand, were obtained

from a single run. Thus, his numbers could simply be a result of freak training and testing run.

However, this idea is invalidated by the standard deviations obtained by repeating the replication

experiment 10 times. The standard deviations lie comfortably outside the range of the accuracies

obtained by Sharma’s experiment, thus, it is unlikely that a single run would achieve the kind of

accuracy that his experiment did.

There also exists a difference in the fold creating method used by Sharma and in this

experiment. Sharma created the five folds by sorting the files and then dividing them into 5 separate

but continuous sets. In this work, we opt for a stratified fold creation method, where we try

to distribute the demographics across each fold equally, while still maintaining certain amount of

randomness in the distribution of files.

47

3.1.2 Effect of Ts and Te on FP/TP

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
FP/TP

65

70

75

80

85

90

95

100

TP
R

(%
)

0.650.70.75
0.8

0.85

0.9

0.95
W = 6.0 min

Figure 3.2: Effect of Ts on TPR and FP/TP. The value of Ts is varied while Te is fixed at 0.25.

1.0 1.2 1.4 1.6 1.8 2.0 2.2
FP/TP

0

2

4

6

Av
er
ag

e
Bo

un
da

ry
 E
rro

r (
m
in
)

0.2

0.25

0.3
0.35

0.4
0.45 0.50.55 0.6

W = 6.0 min

Figure 3.3: Effect of Te on boundary error and FP/TP. The value of Te is varied while Ts is fixed
at 0.85.

Figure 3.2 shows the effect of Ts on TPR and FP/TP ratio, with Te held constant at

0.25. As the Ts value is increased, the FP/TP ratio decreases because the model needs to be more

confident in order to indicate the start of an eating episode. This makes the model much more

selective in terms of eating detection. A low value of Ts tends to have a higher TPR because it

48

allows more meals to be detected but conversely this also increases the FPR of the model. We pick

the value Ts = 0.85 as the optimal value.

Figure 3.3 shows the effect of varying Te on the average boundary error (ABE) and FP/TP

ratio, while keeping Ts fixed at 0.85. We see the trend of decreasing ABE with increasing Te. This

trend is consistent with Sharmas work but we do get a lower FP/TP ratio and a higher boundary

error. We suggest Te value of 0.3 which provides a balance between average boundary error and

FP/TP.

The start boundary error with Ts = 0.85 and Te = 0.3 is -1.8 ± 0.5 minutes and the end

boundary error is +3.3 ± 0.4 minutes. This means that on average, the model predicts that an

eating episode starts 1.8 minutes before it actually does and marks the end of an eating episode

3.3 minutes after it actually ends. The average boundary error of the model is 2.6 ± 0.4 minutes,

average of the start and end errors.

Work EA Subjects TPR (%) FP/TP Dataset

Sharma CNN 1063 351 89 1.7 CAD

Sharma Replication 1034 342 86 ± 1.2 1.7 ± 0.3 CAD - Linear

Table 3.1: Episodic metrics (avg ± std) on CAD dataset for raw and linear models.

Method Precision (%) Recall (%) TNR (%) F1 Score (%) ACCW (%)

Sharma CNN 36 69 93 48 80

Sharma Replication 37 ± 1.7 72 ± 1.2 90 ± 1 49 ± 1.3 79 ± 0.5

Table 3.2: Time metrics (avg ± std) on CAD dataset for raw and linear models.

Tables 3.1 and 3.2 show the performance of the model on episodic and time metrics (average

± standard deviation) respectively. Statistics of other works have been shown for completeness.

From the 1,034 meals, we detected 886 ± 13, missed 153 ± 13 and had 1,329 ± 275 false positives.

This yields a TPR of 86% ± 1.2% and a FP/TP ratio of 1.7 ± 0.3. When compared to the original

work, we see an average 3% decrease in the TPR. The FP/TP remains consistent between the

original and the replication experiment, with 1.7 FPs per every TP.

In case of time metrics, the replication experiment outperformed the precision and the recall

of the original experiment as well, improving the precision by 1% and the recall score by 3%. We did

see a decrease in the TNR by 3%. The F1 score and weighted accuracy were found to be comparable.

49

Thus, we conclude that Sharmas results were slightly inflated due to a mix of contamination

of testing data and only reporting the best run. In this section, we replicated the experiment and

setup a new baseline with which we can compare any future work.

3.2 Raw Acceleration

In this section, we detail the results of model training and testing using raw acceleration and

gyroscope data. We first report the window accuracy of the models and then do a hyper-parameter

search to find the optimal parameter value for Ts and Te.

3.2.1 Effect of Window Size

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Window Size (mins)

66
68
70
72
74
76
78
80
82

Av
g.
 A
cc

ur
ac

y
(%

)

Raw Acceleration
Linear Acceleration
Standard Deviation

Figure 3.4: Testing accuracy of raw acc. model (solid line) vs linear acc. model (dotted line).

The first thing we notice is that the models trained on raw acceleration are able to distin-

guish between eating and non-eating windows. Though, when tested on a balanced dataset, the

linear models outperform raw models on window lengths larger than 4 minutes. Similar to linear

acceleration, windows larger than 6 minutes do not increase accuracy significantly. Thus we use a

W = 6 min for measuring the various other statistics.

3.2.2 Effect of Ts and Te on FP/TP

Figure 3.5 shows that while smaller values of Ts yield a larger TPR rate, the FP/TP ratio

also increases accordingly. The value of 0.85 maximizes the TPR rate while also maintaining a small

FP/TP ratio. Thus, we recommend a Ts value of 0.85 for the raw acceleration.

50

Figure 3.6 shows the effect of varying Te while keeping Ts fixed at 0.85. We see a common

trend of decreasing boundary error and increasing FP/TP ratio as the value of Te increases. While

there is no clear knee in the graph, the value of Te = 0.3 maintains a low boundary error and a

small FP/TP ratio. Thus, we recommend Te value of 0.3 for raw acceleration.

The start boundary error (average ± standard deviation) with Ts = 0.85 and Te = 0.3 is

-1.6 ± 0.2 minutes and the end boundary error is +2.05 ± 0.4 minutes. This means that on average,

the model predicts that an eating episode starts 1.6 minutes before it actually does and marks the

end of an eating episode 2.05 minutes after it actually ends. The average boundary error of the

model is 1.7 ± 0.3 minutes, average of the start and end errors.

Using the recommended Ts value of 0.85 and Te value of 0.3, the models are able to identify

(average ± standard deviation across 10 runs) 869 ± 13 meals and miss 165 ± 13. They also trigger

a total of 1470 ± 218 FP. The result is a TPR of 84% ± 1.3% and a FP/TP ratio of 1.7 ± 0.2.

3.3 Comparison of Raw and Linear models

Method EA Subjects TPR (%) FP/TP Dataset

Linear 1034 342 86 ± 1.2 1.7 ± 0.3 CAD - Linear

Raw 1034 342 84 ± 1.3 1.7 ± 0.2 CAD - Raw

Table 3.3: Episodic metrics on CAD dataset for raw and linear models.

Method Precision (%) Recall (%) TNR (%) F1 Score (%) ACCW (%)

Linear 37 ± 1.7 72 ± 1.2 90 ± 1 49 ± 1.3 79 ± 0.5

Raw 38 ± 2.1 69 ± 1 92 ± 1.4 49 ± 1.6 78 ± 0.4

Table 3.4: Time metrics on CAD dataset for raw and linear models.

Table 3.3 shows the episodic metrics statistics for the replication experiment and the exper-

iment with raw acceleration. In case of episodic metrics, linear acceleration performs better than

raw acceleration. Linear acceleration has a 2% higher TPR rate (on average). Since the replication

model has a lower per-window accuracy, the episodic metrics are also lower than the original work.

The FP/TP is similar across both raw and linear acceleration.

In case of time metrics (table 3.4), the linear acceleration slightly outperformed raw accel-

eration. We see a mix of results with linear acceleration having a roughly 3% higher recall and a 1%

51

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
FP/TP

65

70

75

80

85

90

95

100
TP

R
(%

)

0.650.70.75
0.8

0.85
0.9

0.95
W = 6.0 min

Figure 3.5: Effect of Ts on TPR and FP/TP. The value of Ts is varied while Te is fixed at 0.25.

1.0 1.2 1.4 1.6 1.8 2.0 2.2
FP/TP

0

2

4

Av
er
ag

e
Bo

un
da

ry
 E
rro

r (
m
in
)

0.2

0.25

0.3

0.35
0.4
0.450.50.55 0.6

W = 6.0 min

Figure 3.6: Effect of Te on boundary error and FP/TP. The value of Te is varied while Ts is fixed
at 0.85.

higher weighted accuracy score than the raw acceleration. The F1 scores of both raw and linear were

similar but raw acceleration had a 2% higher TNR. Thus, based on the episodic and time metrics,

while both raw and linear perform very similar to each other, overall, linear beats raw by a very

thin margin.

Finally, in case of boundary errors, we see a lower average boundary error (ABE) with raw

acceleration as compared to linear acceleration. Using the optimum values of Ts and Te, the ABE in

52

linear acceleration was 2.6 ± 0.4 minutes while in raw acceleration, the ABE was 1.7 ± 0.3 minutes.

Thus, raw acceleration resulted in lower boundary errors than linear acceleration.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Window Size (mins)

62
64
66
68
70
72
74
76
78
80
82
84
86
88

Av
g.

 A
cc

ur
ac

y
(%

)

TPR
Raw Acceleration
Linear Acceleration

Figure 3.7: Per Window TPR of the raw and linear models. The linear models have a higher window
TPR than the raw models.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Window Size (mins)

62
64
66
68
70
72
74
76
78
80
82
84
86
88

Av
g.

 A
cc

ur
ac

y
(%

)

TNR
Raw Acceleration
Linear Acceleration

Figure 3.8: Per Window TNR of the raw and linear models. The raw models have a higher window
TNR than the linear models.

The per-window accuracy, depicted in figure 3.4 is a mix of the TNR and TPR of the raw

and linear models. When TPR of the model increases, the TNR decreases. During the training

process, the model attemps to find the best balance of TNR and TPR that maximizes the average

accuracy on the validation data.

Comparing the per-window TPR (figure 3.7) and TNR (figure 3.8) of the raw and linear

models, we find that the raw models have a higher TNR than linear models. Raw models are more

likely to correctly predict a window as non-eating than linear models. Linear models, on the other

hand, have a higher TPR rate than the raw models. It should be noted that the difference in the

TPR of linear and raw models is larger than the difference in the TNR of the models.

53

Furthermore, TNR of both raw and linear models reaches a higher value than the TPR. This

means that it is easier to recognize non-eating actions than it is to recognize eating actions. This

could simply be because non-eating occurs 20 more times than eating so models learn to identify

that behaviour better than eating. This could also be a result of the higher variability in non-eating

actions as compared to eating actions.

Figures 3.9 and 3.10 show the distribution of the length of the meals as well as the number

of meals detected by raw and linear models respectively. The values are averaged over the 10 runs

and rounded to the nearest integer. We notice that both raw and linear had similar distributions

of detected meals. Linear outperforms raw models in identifying meals between 4-10 minutes. Both

models have almost the same number of identified meals for eating episodes that last longer than 10

minutes.

Finally, we look at the volatility across per window accuracy in the models trained by raw

and linear acceleration across the five folds. Figure 3.11 and 3.12 plot the accuracies of the five folds

vs the window size. The spread of the accuracies over the folds is very similar in both cases. Fold 1

has the lowest accuracy while fold 5 generally outperforms all the other folds.

Furthermore, we noticed that there was a higher volatility across the folds as compared to

the volatility across the runs. Moreover, since the testing accuracies vary so wildly over the folds, this

implies that in order to train a network on wrist movements, we require all the five folds. Training

a model using only a single fold can result in both over or under confident model, depending on

the files in the fold. When we compare the distribution of the accuracies in the linear model with

Sharma’s work, we see that the variation of the accuracies is smaller in the replication work. This is

likely because of striped fold creation where we distribute the demographics equally. Thus, another

factor in accuracy distribution is the fold creation method.

54

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30+
Length of Meals (mins)

0

50

100

150

Nu
m

be
r o

f M
ea

ls

12/23

52%

48/72

67%

93/115

81%

95/111

86%

119/131

91%

92/100

92%

71/86

83%

74/83

89%

64/70

91%

41/46

89%
27/30

90%

25/26

96%

33/35

94% 14/18

78% 10/11
91%

67/77

87%

Total Meals
Meals Detected

Figure 3.9: Distribution of meals detected by linear model.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30+
Length of Meals (mins)

0

50

100

150

Nu
m

be
r o

f M
ea

ls

12/23

52%

49/72

68%

88/115

77%

94/111

85%

116/131

89%

89/100

89%

71/86

83%

71/83

86%

64/70

91%

41/46

89%
27/30

90%

24/26

92%

31/35

89% 15/18

83% 10/11
91%

67/77

87%

Total Meals
Meals Detected

Figure 3.10: Distribution of meals detected by raw model.

55

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Window Size (mins)

62
64
66
68
70
72
74
76
78
80
82
84

Av
g.
 A
cc
ur
ac
y
(%

)

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Figure 3.11: Accuracy and standard deviations per fold for linear acceleration models.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Window Size (mins)

62
64
66
68
70
72
74
76
78
80
82
84

Av
g.
 A
cc
ur
ac
y
(%

)

Fold 1
Fold 2
Fold 3
Fold 4
Fold 5

Figure 3.12: Accuracy and standard deviations per fold for raw acceleration models.

56

Chapter 4

Conclusions and Future Work

4.1 Conclusions

In this work we considered the problem of detecting eating episodes by tracking wrist motion.

The motion of the wrist can be characterized by using accelerometer and a gyroscope, giving us the

information of movement and tilt respectively. There are two kinds of acceleration related to an

accelerometer, linear and raw. In this thesis, we compare two sets of models, one trained on linear

acceleration and gyroscopic data and the other trained on raw acceleration and gyroscope data to

determine if raw acceleration can outperform or replace linear acceleration as a variable.

The very first question that we posed was whether or not the work done previously by our

group, on linear acceleration, can be replicated? The first part of the results confirms that the results

of the previous experiment on the CAD dataset can be replicated. With our replication work, we

established a new baseline for comparison and found that the combination of linear acceleration and

gyroscope data is able to detect (average ± standard deviation across 10 runs) 86% ± 1.2% of the

total meals with a FP/TP ratio of 1.7 ± 0.3 which equals to roughly 5 FP a day. We found that the

per-window testing accuracy of our model is 1% - 2% lower than the previous work. The difference

could be attributed to a leak in training and testing data, which lead to inflated values. In case of

time and episodic metrics, Sharma only reported the best results of multiple runs, and since our

values are within 3 standard deviations of his values, we have reason to believe that his results are

the upper end of the metrics distribution

Secondly, we posed the question, can the results of the linear acceleration be matched by

57

using raw acceleration? We found that raw acceleration tends to perform slightly worse than linear

acceleration. The raw model achieved a TPR of 84% ± 1.3 % with a FP/TP ratio of 1.7 ± 0.2.

The raw model does achieve a higher TNR rate on the time metrics, beating linear by 2%. The

linear outperforms raw with a higher TPR on time metrics, beating raw by 3%. This was consistent

with the per-window accuracies where we noted that the raw model achieved a higher per-window

TNR and a lower per-window TPR than the linear model. Furthermore, we also found that in free

- living datasets, we need large amounts of data to account for the volatility in the training process.

Training on any single fold, which contain up to 71 files - a relatively large number in itself, will not

be enough and could lead to inflated or deflated metric measurements. Finally, we suspected that the

low signal-to-noise ratio in linear acceleration may be a significant contributor to model volatility.

However, training the model with raw acceleration, which has a much higher signal-to-noise ratio,

did not reduce model volatility. Instead, both models showed approximately equal volatility across

10 train-and-test runs. We therefore conclude that sensor noise is not the cause.

Finally, we conducted a space search for hyper-parameters, Ts and Te, for both raw and

linear models. We found that, for both, raw and linear models, Ts = 0.85 and Te = 0.3 are

the most optimal values. Tuning these hyper parameters was also important because the various

statistics that we calculated, detailed in the results section, were dependent upon the choice of the

hyper-parameters.

Thus, in conclusion, we demonstrated that linear acceleration seems to out-perform raw

acceleration by a slight margin.

4.2 Limitations and Future Work

A limitation to this work is that we used the same model to train both linear and raw

models. Since linear and raw acceleration are two different variables, we cannot reasonably expect

the same model to perfectly fit both data types. Moreover, considering the minor gap between

the linear and raw model metrics, raw acceleration could potentially match or outperform linear

acceleration if a better model, that is designed for raw acceleration can be developed. One approach

to this would be to look for deeper networks because the information that we want the model to

extract and learn from raw acceleration is hidden behind the gravitational component.

Secondly, more testing needs to be done across different datasets with data from devices

58

other than Shimmer device. In this work, we only looked at the difference in raw and linear acceler-

ation across the CAD dataset which is collected from the Shimmer device. Since linear acceleration

requires pose estimation, the quality of linear acceleration magnitude will depend on how good the

device that estimates the pose is. On the other hand, raw acceleration readings are directly taken

from the accelerometers and the magnitude of noise in the readings across devices is less likely to

affect the reading because of the higher magnitude of raw acceleration. Thus, raw acceleration

could potentially work more consistently across devices with different chips as compared to linear

acceleration.

Thirdly, the difference between the measured metrics of linear and raw isn’t very large.

While linear outperforms raw acceleration, in this dataset, more testing needs to be done in real

time, online system to determine whether the conversion from raw to linear is worth the costs.

Fourthly, we believe that a major source of volatility is the file distribution. Since, in this

work we keep the file distribution across folds consistent for reproduce-ability, the volatility we see

is here is unique to the given folds. More work needs to be done to measure the volatility across file

distribution by varying the files across the folds and increasing the number of runs.

Finally, there are known errors in ground truth collected from the participants. For example,

we do not consider the affect of pre-meal snacking and post-meal snacking on the model. Participants

may have lightly snacked outside what they perceived as the start and end times of their meals.

Thus, any snacks during pre and post meals are registered in the ground truth as non-eating. These

obviously confuse the model and are likely to reduce the accuracy. Thus, more research needs to go

into how to identify and ignore/include the snacks during the data collection.

59

Bibliography

[1] S. Adibi. mHealth Multidisciplinary Verticals. CRC Press, Melbourne, 2014.

[2] L. Burke, J. Wang, and M. Sevick. Self-monitoring in weight loss: A systematic review of the
literature. Journal of the American Dietetic Association, 111(1):92–102, 2011.

[3] Y. Dong, J. Scisco, M. Wilson, E. Muth, , and A. Hoover. Detecting periods of eating during
free-living by tracking wrist motion. IEEE Journal of Biomedical and Health Informatics,
18(4):1253 – 1260, 2014.

[4] M. Farooq and E. Sazonov. Detection of chewing from piezoelectric film sensor signals using
ensemble classifiers. 38th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, 33(7):4929 – 4932, 2016.

[5] R. Franckle, J. Block, and C. Roberto. Calorie underestimation when buying high-calorie
beverages in fast-food contexts. American Journal of Public Health, 106(7):1254–1255, 2016.

[6] C. Hales, M. Carroll, C. Fryar, and C. Ogden. Prevalence of obesity among adults and youth:
United states, 2015–2016. NCHS data brief, (288), 2017.

[7] C. Hales, M. Carroll, C. Fryar, and C. Ogden. Prevalence of obesity and severe obesity among
adults: United states, 2017–2018. NCHS data brief, (360), 2020.

[8] K. Hamrick, M. Andrews, J. Guthrie, D. Hopkins, and K. McClelland. How much time do
americans spend on food? (1476-2019-2786):64, 2011.

[9] H. Heydarian, M. Adam, T. Burrows, C. Collins, and M. Rollo. Assessing eating behaviour
using upper limb mounted motion sensors: A systematic review. Nutrients, 11(5):1168, 2019.

[10] C. Hirt, S. Claessens, T. Fecher, M. Kuhn, R. Pail, and M. Rexer. New ultrahigh-resolution
picture of earth’s gravity. Geophysical Research Letters, 40(16):4279 – 4283, 2013.

[11] A. Hruby and F. Hu. The epidemiology of obesity: A big picture. PharmacoEconomics,
33(7):673–89, 2015.

[12] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. 2015.

[13] S. Klein, L. Fontana, V. L. Young, A. Coggan, C. Kilo, B. Patterson, , and B. Mohammed.
Absence of an elect of liposuction on insulin action and risk factors for coronary heart disease.
New England Journal of Medicine, 350(25):2549–2557, 2004.

[14] K. Kyritsis, C. Diou, and A. Delopoulos. Modeling wrist micromovements to measure in-meal
eating behavior from inertial sensor data. IEEE journal of biomedical and health informatics,
2019.

60

[15] K. Kyritsis, C. Diou, and A. Delopoulos. A data driven end-to-end approach for in-the-wild
monitoring of eating behavior using smartwatches. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies, 1(3):85, 2020.

[16] C. Lavie, R. Milani, and H. Ventura. Obesity and cardiovascular disease: risk factor, paradox,
and impact of weight loss. Journal of the American college of cardiology, 53(21):1925–1932,
2009.

[17] Realtime Technologies Ltd. Shimmer user manual. 2017.

[18] M. Mirtchouk, D. Lustig, A. Smith, I. Ching, M. Zheng, and S. Kleinberg. Recognizing eating
from body-worn sensors: Combining free-living and laboratory data. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(3):85, 2017.

[19] S. Blair R. Anderson. Encouraging patients to become more physically active: the physician’s
role. Annals of Internal Medicine, 127(5):395–400, 1997.

[20] R. Ramos-Garcia, E. Muth, J. Gowdy, and A. Hoover. Improving the recognition of eating
gestures using intergesture sequential dependencies. IEEE Journal of Biomedical and Health
Informatics, 19(3):825–831, 2015.

[21] L. Rici, F. Taffoni, and D. Formica. On the orientation error of imu: Investigating static and
dynamic accuracy targeting human motion. PLOS ONE, 11(9):1–15, 9 2016.

[22] M. Senthilingam. Covid-19 has made the obesity epidemic worse, but failed to ignite enough
action. BMJ, 372(411), 2021.

[23] S. Sharma. Detecting periods of eating in everyday life by tracking wrist motion - What is a
meal? PhD thesis, Clemson University, 2020.

[24] Y. Shen, J. Salley, E. Muth, and A. Hoover. Assessing the accuracy of a wrist motion tracking
method for counting bites across demographic and food variables. IEEE Journal of Biomedical
and Health Informatics, 21(3):599–606, 2017.

[25] E. Swanson. Prospective clinical study of 551 cases of liposuction and abdominoplasty performed
individually and in combination. Plast Reconstr Surg Glob Open., 1(5), 2013.

[26] United Kingdom National Health Service. Obesity - causes, 2019.

[27] Y. Wang, Beydoun, L. Liang, B. Caballero, and S. Kumanyika. Will all americans become
overweight or obese? estimating the progression and cost of the us obesity epidemic. Obesity
(Silver Spring, Md.), 16(10):2323–30, 2008.

[28] W. Wei. Individualized wrist motion models for detecting eating episodes using deep learning.
Master’s thesis, Clemson University, 2021.

[29] Y. Yadav. Obesity : A modern day plague. Medical journal, Armed Forces India, 58(1):60–65,
2002.

61

	Title Page
	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Overview
	Motivation
	Sensors
	Raw vs Linear Acceleration
	Related Work
	Novelty

	Methods
	Data Set
	Data Preparation
	Neural Network
	Hysteresis and Meal Segmentation
	Metrics
	Model Training and Evaluation Process
	Measuring Model Volatility

	Results
	Replication Experiment on Meal Detection
	Raw Acceleration
	Comparison of Raw and Linear models

	Conclusions and Future Work
	Conclusions
	Limitations and Future Work

	Bibliography

