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Abstract

This work considers the problem of filtering a system in which the dynamic noise occasionally

has an impulse value that is an order of magnitude or more larger than its typical expected distribu-

tion. This is particularly challenging when the ratio of measurement noise to typical dynamic noise

is large enough that the impulse dynamic noise cannot be easily distinguished from a large random

occurrence of measurement noise. A new filter model is proposed using a multiple model approach

in which one of the models is an impulse. The implementation of the model is demonstrated in a

Kalman filter framework. Simulation results show the improvement of the new filter over existing

methods across a range of measurement, typical, and impulse dynamic noises. The filter is then ap-

plied to three different problems: 2D human motion tracking using ultra-wideband (UWB) position

measurements, power system state estimation on a coupled bus, and handling outlier measurement

noise in UWB tracking. In each case the new filter demonstrates a 2-4% improvement over existing

state-of-the-art techniques.
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Chapter 1

Introduction

This work considers the problem of filtering a system in which the dynamic noise occasion-

ally has an impulse value that is an order of magnitude or more larger than its typical expected

distribution. This is particularly challenging when the ratio of measurement noise to typical dy-

namic noise is large enough that the impulse dynamic noise cannot be easily distinguished from a

large random occurrence of measurement noise. A new filter model is proposed using a multiple

model approach in which one of the models is an impulse. The implementation of the model is

demonstrated in a Kalman filter framework. Simulation results show the improvement of the new

filter over existing methods across a range of measurement, typical, and impulse dynamic noises.

The filter is also demonstrated on real ultra-wideband (UWB) position tracking data and simulated

power system data, showing an improvement over existing methods. Finally, it is shown how the

same idea can be applied to measurement noise to address the outlier measurement problem in UWB

position tracking data, yielding a similar improvement.

The following example demonstrates the concept. The system in this example is position

over time. The dynamic noise of the system is represented by variations in velocity. The importance

of measurement noise and dynamic noise is demonstrated in the following figures. Figure 1.1 shows

an example trajectory of the system and demonstrates two different levels of measurement noise.

The measurement noise on the right is higher than the measurement noise on the left. Figure 1.2

shows a trajectory affected by a typical distribution of dynamic noise, visible as changes in the

slope of the trajectory over time. The figure shows the same trajectory with two different amounts

of measurement noise to emphasize that it is the ratio of measurement-to-dynamic noise that is

1
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(a) Low measurement noise
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(b) High measurement noise

Figure 1.1: Measurement noise
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(a) Typical dynamic noise with low measurement noise
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(b) Typical dynamic noise with high measurement noise

Figure 1.2: Typical dynamic noise
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Figure 1.3: An impulse in dynamic noise in a system with large measurement-to-dynamic noise

important in designing a filter. Figure 1.3 demonstrates an occurrence of an impulse in dynamic

noise, visible as a sudden larger change in trajectory. In the presence of a large ratio of measurement-

to-dynamic noise, the impulse creates a unique challenge.

Figure 1.4a demonstrates filtering on this type of data. For most of the time, the dynamic

noise is small enough that the slope of the data is changing very little, except at time 163 sec,

when there is a large impulse of dynamic noise. Measurements are being taken every second and

have relatively large measurement noise. The common solution to large measurement noise is to

filter with a measurement-to-dynamic noise ratio that is large enough that the filter output exhibits

strong smoothing, as shown in Figure 1.4b. Doing this however causes a delay in the presence of

the impulse dynamic noise; in this case the filter output can be seen to lag after time 163 sec.

Conversely, the measurement-to-dynamic noise ratio of the filter can be lowered so that the filter

output responds more quickly, as in Figure 1.4c. However, in this case the benefit of smoothing

the measurement noise is greatly reduced. The goal of this work is the development of a filter that

behaves as shown in Figure 1.4d. This filter combines the effect of strong smoothing in the presence

of a large measurement-to-dynamic noise ratio with the benefit of a quick response to an occasional

3
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(b) Filter tuned for larger smoothing of measurement
noise
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(c) Filter tuned for quicker response to dynamic noise
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(d) Filter response sought in this work

Figure 1.4: An example problem showing a large ratio of measurement-to-dynamic noise at all times
except t=163 sec when an impulse in dynamic noice occurs.

impulse in dynamic noise.

This work is motivated by the observation of human motion tracking using UWB sensing.

The accuracy of UWB sensing in an indoor environment is typically in the range of 30-100 cm [62].

Normal human motion involves a typical dynamic motion where changes in velocity and direction of

motion are relatively small, but with occasional impulse dynamic motion where acceleration is much

larger. The latter occurs for example when a person starts or stops moving, or drastically changes

direction. This work suggests modeling this type of system using a multiple-model filter where one

model describes a lower range of typical dynamic noise, and a second model describes a higher range

of impulse dynamic noise. The impulse in dynamics is assumed to happen with low frequency.
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Figure 1.5: Example of trilateration to estimate position

The following sections provide background on related tracking systems that inspire this

work, general filtering background, and previous works in filtering related to the proposed new

method.

1.1 Global Navigation Satellite System

The type of tracking system that inspired this work is exemplified by a global navigation

satellite system (GNSS). A GNSS is a multiple-satellite system which provides global position in-

formation to moving objects. The Global Positioning System (GPS) is the most famous GNSS,

with others having since been developed by Russia, the European Union, and China [40]. A GNSS

works by calculating ranges or distances from multiple satellites to a receiver and then finding an

intersection point of 3D spheres placed on those satellites. This process is called multilateration.

For example, Figure 1.5 shows trilateration, a type of multilateration in a two-dimensional space,

using the positions of the cities around Clemson and their distances to Clemson. A range estimate

between a satellite and a receiver is computed by multiplying the travel time of a radio frequency

5



(RF) signal from a satellite to a receiver by the speed of light [42]. In general, the travel time of the

RF signal, also known as time of arrival (TOA), is used in range computations, but other quantities

can be used to compute range estimates such as time difference of arrival (TDOA) or angle of arrival

(AOA) and the overall processes are similar.

The intersection point of a multilateration is affected by errors in range estimates, which in

turn can be caused by many different noise sources such as geometric satellite positions, clock errors,

ephemeris errors, atmospheric distortion, relativistic effects, radio signal inferences, and multipath

[40]. For example, line-of-sight is not guaranteed in a highly cluttered city area, and this non-line-of-

sight condition affects the travel time of the RF signal from a satellite to a receiver and thus corrupts

range estimates. The current GNSSs systematically model these noise sources and use various filter

frameworks to mitigate measurement noise to improve the accuracy of position tracking [54].

Measurements from different types of sensors can be fused to improve position tracking

accuracy. For example, in the differential GPS, a network of fixed ground-based reference stations

can be used for range error corrections. The positions of the stations are precisely surveyed and

are closer to the receiver, thus having less error in range estimates. The stations broadcast bias

estimates of their surveyed locations relative to their GPS derived position estimates to receivers to

help correct for errors in GPS position measurements [54]. Other types of sensors commonly fused

with a GNSS include an inertial measurement unit (IMU) [56], gyroscope, mobile tower, and road

map [15, 60, 63]. As a result of noise modeling and augmentations, the GNSS measurement accuracy

has been improved to better than 1 m [57].

1.2 Ultra-wideband Position Tracking System

An ultra-wideband (UWB) position tracking system is a type of local positioning system

(LPS). An LPS operates using the same basic principles as a GNSS, i.e. multilateration, but is

intended to work in an indoor building-sized area. An LPS suffers from similar measurement noise

sources as a GNSS, including non-line of sight (NLOS), multipath, and satellite constellation. It

is expected that NLOS conditions and multipath effects will be more common than for a GNSS

due to the nature of an indoor environment. Therefore, LPS transmitters should broadcast signals

with enough power to be able to penetrate through any internal obstacles and then to be detected

by LPS receivers. Several technologies have been investigated for indoor position tracking, such as
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Figure 1.6: UWB signal frequency spectrum

RFID [58], Bluetooth [16], infrared, ultrasound, wireless local area network (WLAN) [73], and UWB

[25, 44].

This work is inspired by UWB position tracking. UWB signals have a wide frequency

spectrum as shown in Figure 1.6, making them more likely to penetrate internal obstacles with

enough power for range estimation [41]. A UWB signal is a very short duration RF signal at low

energy. Its usage has been extended from non-cooperative radar imaging to communication [74],

sensor data collection, and precise position tracking. The U.S. Federal Communications Commission

began regulating the use of UWB signals for public use in 2002 [22]. The power of a UWB signal is

strictly limited at low level compared to other RF signals as shown in Figure 1.6 [27], to prevent it

from interfering with other RF signals or wireless networks. Like a GNSS, a UWB position tracking

system uses multilateration to compute position measurements, but the roles of a transmitter and

receiver are switched. Specifically, a human to be tracked carries a transmitter called a tag, which

periodically emits a UWB signal while moving, and then fixed multiple receivers detect the UWB

signal and compute range estimates using TOA.

The sources of measurement noise in a UWB tracking system are very similar to those in

a GNSS. However, at least three sources more prevalent and deserve some explanation. Figure 1.7

depicts NLOS and multipath measurement noise. Under the assumption that a direct path between

a transmitter and receiver is established and UWB signals propagate through open space, the speed

of light (299,792,458 m/s) can be used in range calculations. However, this assumption is violated

by NLOS conditions, in which UWB signals have been propagated through wall or furniture which
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attenuates the velocity according to the dielectric properties of the material. As a result, range

estimates are affected by errors and UWB position measurements are also corrupted.

When NLOS conditions are present, reflected UWB signals, which propagated through an

alternative path instead of a direct path, can also be detected by UWB receivers. The alternate

path usually causes delay in the travel time of the UWB signals and therefore adds errors in range

estimates. This noise source is called multipath.

Finally, a UWB system typically determines which range estimates to use from all its avail-

able receivers based upon received signal strength. This work makes use of a commercial UWB

system produced by Ubisense Inc. This system selects the five UWB receivers with the strongest

received signal strength. This sensor set is independently determined at each point in time (for

each new position calculation). This allows the sensor set to change over time even when a target

object stands still, causing a type of noise referred to as sensor set switching noise [5]. Figure 1.8

demonstrates the effect of sensor set switching noise in a two-dimensional space. It can be observed

from the figure that even though the target object stands still, the UWB position measurements can

appear to jump back-and-forth over time.

1.3 Filtering

Filtering is the process of estimating latent or unobservable states of a system from their

indirect noisy measurements. Typically, there are two main equations in filtering, called a state
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Figure 1.8: UWB sensor set switching noise example. The true position of an object of interest is
marked as the filled circle, and the position measurement from a UWB position tracking system is
marked as the filled star. All the plus signs represent UWB receivers.

transition equation and measurement equation. A state transition equation describes how the state

of a system can be expected to evolve over time. A measurement equation describes how indirect

noisy measurements can be expected to be obtained from a given state. Note that these equations do

not have to be perfect amalgams of the actual system behavior; filtering can tolerate approximate

models, but more accurate models tend to yield more accurate filtering results. The following

sections describe a filter model, recursive Bayesian filtering, the Kalman filter, and asynchronous

Kalman filtering.

1.3.1 Filter Model

In filtering, a state represents any number of variables of interest in a system. They are

traditionally written in a vector form. Equation 1.1 shows an example of a state vector at time t,

Xt, where xt is a position and ẋt is a velocity in a one-dimensional space.

Xt =

xt
ẋt

 (1.1)

Another aspect of filtering is that it estimates a state vector with uncertainty (or degree of

belief). This uncertainty is generally expressed as a probability distribution. A state vector with

the highest probability in the distribution is the best estimate that a filtering process usually makes.

For example, Figure 1.9 shows this concept when the probability distribution is a Gaussian, and X̂t
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Figure 1.9: Gaussian distribution and its best estimate

is the best state vector estimate with the highest probability.

A state transition equation f(·) can be possibly a time-varying, non-linear function of a

state vector Xt and random dynamic noise vector wt as shown in Equation 1.2 where wt represents

uncertainties in a state transition process.

ft(Xt,wt) (1.2)

If a constant velocity model is selected to describe state evolution in 1D position tracking, a state

transition equation can be simplified to a time-invariant, linear function like Equation 1.3, where a

random variable wt represents acceleration uncertainty acting on a velocity ẋt and ∆t is a sampling

interval. Their matrix form is also present in Equation 1.4, where Φ is called a state transition

matrix.

f(Xt,wt) =

 xt = xt−1 + ẋt−1 ·∆t

ẋt = ẋt−1 + wt

 (1.3)

f(Xt,wt) =

[
Xt = ΦXt−1 + wt

]
(1.4)

Φ =

1 ∆t

0 1

 (1.5)
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wt =

 0

wt

 (1.6)

Likewise, a measurement equation g(·) can be possibly a time-varying, non-linear function

of a state vector Xt and measurement noise vector vt as shown in Equation 1.7 where vt represents

uncertainties in a measurement process.

gt(Xt,vt) (1.7)

If additive measurement noise to a position is assumed to describe a measurement process in 1D

position tracking, then a measurement equation can be expressed by a time-invariant, linear function

as shown in Equation 1.8, where a random variable vt additively corrupts a position. Their matrix

form is also present in Equation 1.9, where H is called an observation matrix.

g(Xt,vt) =

[
zt = xt + vt

]
(1.8)

g(Xt,vt) =

[
zt = HXt + vt

]
(1.9)

H =

[
1 0

]
(1.10)

vt =

[
vt

]
(1.11)

1.3.2 Recursive Bayesian Filtering

A state estimation problem can be written in a general recursive form using Bayes’ theorem

[4]. Equation 1.12 shows the form, where X0:t is a sequence of state vectors and z1:t is a set of

available measurements at time t. The left side of the equation represents a probability of a possible

sequence of state vectors given all measurements at time t. The goal of this general problem is to
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find the most probable sequence of state vectors, X̂0:t.

p(X0:t|z1:t) =
p(zt|Xt)p(Xt|Xt−1)

p(zt|z1:t−1)
p(X0:t−1|z1:t−1) (1.12)

The goal of a filtering problem is to estimate the most probable state vector at time t given

all measurements. Its recursive form is written in Equation 1.13 [4]. In filtering, the computation of

p(Xt|z1:t−1) is called the prediction process while the multiplication by p(zt|Xt) after the prediction

is called the update process. Note that no assumptions are made in the derivation of Equation 1.13

which means that there are no restrictions on the distribution of a state vector and a system property,

i.e. a linearity. Therefore, Equation 1.13 is applicable to any situations, but an analytical solution

to a filtering problem is not always available.

p(Xt|z1:t) =
p(zt|Xt)

∫
p(Xt|Xt−1)p(Xt−1|z1:t−1)dXt−1

p(zt|z1:t−1)

=
p(zt|Xt)p(Xt|z1:t−1)

p(zt|z1:t−1)

(1.13)

p(Xt|z1:t−1) =

∫
p(Xt|Xt−1)p(Xt−1|z1:t−1)dXt−1 (1.14)

1.3.3 Kalman Filter

The Kalman filter [37] provides the optimal state vector estimate upon a new measurement

under the assumption that all the distributions in Equation 1.13 are Gaussian and the system holds

a linearity condition [4], i.e. the state transition and measurement equations are linear and time-

invariant. In the Kalman filter, filtering is simplified to updates of a mean and covariance of a

state vector since the state vector lies on a Gaussian distribution which can be fully characterized

by a mean and covariance, and a linear transform of a Gaussian random variable is also normally

distributed.

Specifically, the Kalman filter provides the optimal state vector estimate by balancing a

predicted state vector and measurement based on their corresponding covariances. This is usually

accomplished in two phases, called a prediction and update. Assume that an initial state vector X0

and its covariance P0 are known. At time t − 1, the optimal state vector estimate X̂t−1 and its

covariance P̂t−1 are estimated from the Kalman filter, and filtering at time t with a new measurement

12
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Figure 1.10: Dynamic noise

zt.

In a prediction phase, the Kalman filter first computes a predicted state vector X̂−t and its

covariance P̂−t as shown in Equation 1.15, where Q is a covariance matrix of a random dynamic

noise vector wt and is a user-specified parameter. The standard deviation of this dynamic noise

remains fixed throughout the filtering as shown in Figure 1.10.

X̂−t = ΦX̂t−1

P̂−t = ΦP̂t−1ΦT + Q

(1.15)

In an update phase, a Kalman gain is computed using Equation 1.16 where R is a covariance

matrix of a measurement noise vector vt and it is another user-specified parameter. The Kalman

gain determines the balance between a predicted state vector and measurement. For example, if a

Kalman gain is small, the Kalman filter credits a predicted state vector more, and if a Kalman gain

is large, the Kalman filter credits a measurement more.

Kt = P̂−t H
T[HP̂−t H

T + R]−1 (1.16)

Lastly, Equation 1.17 shows the update rule of the optimal state vector estimate and its
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covariance at time t. It is worth noting that zt−HX̂−t , which is called an innovation or residue, and

its covariance shown in Equation 1.18 are the important components in the multiple-model filter

theories [48, 51], which will be explained later.

X̂t = X̂−t + Kt(zt −HX̂−t )

P̂t = [I−KtH]P̂−t

(1.17)

Ct = HP̂−t H
T + R (1.18)

The Kalman filter guarantees the optimal state vector estimate only when all distributions

are Gaussian and state transition and measurement equations are linear. If any of these assumptions

are violated, the Kalman filter no longer provides the optimal state vector estimate and its state

vector estimate might diverge at the worst case scenario.

The extended Kalman filter (EKF) can handle a non-linearity in state transition and mea-

surement equations by linearizing them at the most recent state vector estimate using a Jacobian

matrix [70]. The unscented transform Kalman filter (UKF) is another method, which can handle a

non-linearity, and it uses representative samples of a distribution to overcome a non-linearity in state

transition and measurement equations and to directly compute a mean and covariance of a distribu-

tion [36]. However, the EKF and UKF also break down if any of the distributions in Equation 1.13

are not Gaussian or if state transition and/or measurement equations are intractable.

1.3.3.1 Asynchronous Kalman Filter

The implementation of a Kalman filter is simplified when a constant sampling interval is

assumed. The UWB system used for experiments in this work has a nominal sampling rate of

approximately 10 Hz, but due to various sources of measurement noise it occasionally operates at

irregular intervals. Figure 1.11 shows a histogram of sampling intervals of the system, which were

recorded during 37 minutes of operation using one transmitter. As shown in the figure, the nominal

sampling rate is most commonly achieved but other sampling rates sometimes occur. Therefore this

work implements an asynchronous Kalman filter.

The sequential steps of the asynchronous Kalman filter are the same as the Kalman filter
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Figure 1.11: Ubisense sampling interval histogram (37 min)

except that the state transition matrix Φt and dynamic covariance matrix Qt are now functions of

the sampling interval ∆t and therefore they have to be computed at each iteration. For example,

if a constant velocity model is selected to describe state evolution in 1D position tracking as in

Equation 1.3, Φt and Qt can be computed using Equation 1.19 and Equation 1.20, respectively

[5]. Q′ in Equation 1.20 represents a base covariance matrix constructed using a random dynamic

variable wt in asynchronous filtering. The detailed derivation of the asynchronous Kalman filter can

be found in multiple references [5, 18].

Φt =

1 ∆t

0 1

 (1.19)

Qt =

∆t3/3 ∆t2/2

∆t2/2 ∆t

Q′ (1.20)

15



Q′ =

σ2
w 0

0 σ2
w

 (1.21)

1.4 Time-varying noise distribution

As illustrated in Figure 1.10, the basic Kalman filter assumes that the standard deviation of

the distribution of dynamic noise (and of the measurement noise) remains constant. In general, there

are two approaches that relax this constraint: the adaptive Kalman filter (AKF) and the multiple

model Kalman filter (MMKF). Figure 1.12a shows the basic control flow for the AKF. It directly

estimates the ratio of dynamic noise to measurement noise at each iteration. It starts with an initial

guess as to the proper value, but learns the actual value while operating. Figure 1.12b shows the

basic control flow for the MMKF. It uses multiple a priori defined models where each model can use

a different ratio of measurement-to-dynamic noise. It either selects one of the filters as the most

likely or combines them in a weighted estimate at each iteration.

Figure 1.13a illustrates how the AKF can adapt its standard deviation of dynamic noise at

each iteration. At times 50, 100, 150 and 200, the system changes its dynamic noise to an unknown

value. The AKF will observe this in the innovation and recalculate the dynamic noise covariance

in the filter [50]. Note that the dynamic noise can take any value in this scenario. Figure 1.13b

illustrates how the MMKF can adapt its standard deviation of dynamic noise at each iteration.

Again, at times 50, 100, 150 and 200, the system changes its dynamic noise but in this illustration

it is to one of two possible values, both of which were known a priori and used to formulate the two

models. Note that both of these approaches show a lag in the adjustment of the filter’s dynamic

noise as compared to the actual system.

1.4.1 Applications

The AKF is commonly used in GPS/INS navigation applications where the unavoidable bias

error of an INS sensor measurement is mitigated using occasional GPS position updates. There have

been many different AKF algorithms depending on adaptation criteria and targets. Mehamed, et al.

[51] proposed one AKF algorithm which maximizes the maximum likelihood criterion. It directly

estimates a dynamic noise covariance or measurement noise covariance. Hu, et al [31] presented

two AKF algorithms focusing on the adaptation of a dynamic noise covariance. One weights a
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Figure 1.12: Flow diagrams for filtering time-varying noise
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Figure 1.13: Two approaches to time-varying dynamic noise
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pre-determined dynamic noise covariance based on the discrepancy between the theoretical and

sample innovation covariances, and the other directly estimates a dynamic noise covariance using

a Gauss-Markov model. Ding, et al. [17] developed another version of the AKF which weights a

pre-determined dynamic noise in a similar way to [31].

The MMKF has been the mainstream approach in maneuvering target tracking [43]. Many

different MMKF algorithms have been developed. The autonomous multiple model (AMM) is the

first generation of the MMKF algorithm [43, 46]. The AMM assumes that a unique model of a target

system is unknown, and this uncertainty is handled by calculating model probabilities of multiple

models and combining state estimates from those multiple models based on their probabilities.

Ackerson, et al, [2] proposed the first order generalized pseudo Bayesian (GPB1) algorithm which

extends the AMM by including the Markov transition model and reinitializing each model filter

with a combined state vector estimate from a previous iteration. The GPB1 was further extended

to the second order (GPB2) [13] by Chang, et al. The interacting multiple model filter (IMMF) is

an intermediate between GPB1 and GPB2, and it individually reinitializes each model filter in a

process called mixing [9]. Extensions to the particle filter were also suggested by many researchers

[10, 28, 34, 49].

In GPS/INS navigation, the GPS and INS have complementary characteristics where the

GPS provides accurate position updates but runs at a low sampling rate while the INS provides

real-time position updates but accrues cumulative measurement error over time. Using the Kalman

filter with GPS position updates and INS sensor’s statistics, i.e. measurement noise covariance, a

large bias error of an INS sensor measurement can be estimated and compensated to compute better

position estimates during the period of loss of GPS satellite signals. However, the INS sensor’s

statistics are hard to estimate in advance and are even subject to change over time, and therefore,

many researchers have developed an adaptive Kalman filter to handle this issue [3, 17, 29, 51].

Kim, et al [38] applied the MMKF approach in maneuvering vehicle tracking where the

constant velocity model and constant-speed turn model are implemented in the filter to track vehicles.

Barrios, et al [7] used multiple state transition models to predict vehicle locations. Dyckmanns, et

al [19] suggested to use the MMKF approach to predict vehicle positions at an intersection. El

Mokhtari, et al [20] used the multiple-model filter to estimate vehicle information and ultimately

to perform a map matching. Jordan, et al [35] implemented the multiple-model filter to estimate a

vehicle mass.
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Farmer, et al [21] used the multiple-model filter to track human motion in a car for the airbag

suppression system. Isard, et al [34] proposed to use the particle filter version of the multiple-model

filter to track a bouncing ball and switch between different hand drawing motions.

Weng, et al [71] implemented the concept of multiple model filtering in video object tracking

by changing the dynamic noise and measurement noise covariances depending on the occlusion rate

of a tracking object in a scene. Yu, et al [75] also implemented the concept of multiple model

filtering in such a way that the dynamic noise covariance of the Kalman filter switches between two

pre-determined values using a statistical hypothesis test called T-test to detect a power harmonic

injection.

1.4.2 Adaptive Kalman Filter

The sequential steps of the AKF algorithm developed by Mehamed, et al. [51] are presented

in this section. In the results, the performance of this filter is compared against the one newly

developed in this work. Like the Kalman filter, the AKF starts with a prediction of a state vector and

its covariance as shown in Equation 1.22. It then computes a Kalman gain based on Equation 1.23

and updates a state vector estimate and its covariance using a new measurement as shown in

Equation 1.24. Note that unlike the Kalman filter, a computation of an innovation it is formally

added to an update phase (Equation 1.24) and it is defined as the difference between the predicted

and actual measurements.

X̂−t = ΦX̂t−1

P̂−t = ΦP̂t−1ΦT + Q

(1.22)

Kt = P̂−t H
T[HP̂−t H

T + R]−1 (1.23)

X̂t = X̂−t + Kt(zt −HX̂−t )

P̂t = [I−KtH]P̂−t

it = zt −HX̂−t

(1.24)
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In the last step the AKF executes an adaptation phase. During this phase, the AKF

first computes a sample innovation covariance Ĉ using the last W innovation samples as shown in

Equation 1.25, where W is a window size and is an user-specified parameter. Finally, the AKF

estimates a dynamic noise covariance Q̂ or measurement noise covariance R̂. Their adaptation

equations are shown in Equation 1.26 and Equation 1.27, respectively. The positive semi-definite

form of the measurement covariance adaptation equation is also shown in Equation 1.28 [69].

Ĉ =
1

W

t∑
t′=t−W+1

it′ i
T
t′

(1.25)

Q̂ =KtĈKT
t

σ̂a =

√
Q̂

(1.26)

R̂ = Ĉ−HP̂−t H
T

σ̂m =
√

R̂

(1.27)

R̂ = Ĉ + HP̂tH
T (1.28)

1.4.3 Interacting Multiple Model Filter

The interacting multiple model filter (IMMF) takes the MMKF approach to adaptation. Its

basic algorithm is presented in this section. The performance of the IMMF is compared against the

method newly developed in this work in the results. The IMMF runs a bank of filters in parallel,

each of which uses its own model, i.e. state transition and measurement equations. Its operation

consists of three major stages, called interaction, filtering, and combination, in each iteration as

shown in Algorithm 1. They are briefly explained in the following.

The interaction or mixing stage of the IMMF reinitializes initial conditions of each model

filter, X0
t−1 and P0

t−1, by mixing state vector estimates from all model filters at a previous iteration

based on mixing probabilities µ
i|j
t−1. These are computed using Equation 2.7. Note that Equation 2.7

can be interpreted in the context of the Bayesian theorem where the mixing probability is a posterior,
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Algorithm 1 IMMF algorithm

Interaction for model j

(a) Compute a mixing probability.

µ
i|j
t−1 =

1

cj
pijµ

i
t−1 (1.29)

where, pij is a model transition probability from model i to model j, µit−1 is a probability of
model i being correct at time t− 1, and cj is a normalization factor.

(b) Compute a mixed initial state X0
t−1 and its covariance P0

t−1.

X0
t−1 =

∑
i

X̂i
t−1µ

i|j
t−1

P0
t−1 =

∑
i

{P̂it−1 + [X̂i
t−1 −X0

t−1][X̂i
t−1 −X0

t−1]T}µi|jt−1

(1.30)

where, X̂i
t−1 is a state estimate from model i at time t− 1, and P̂it−1 is its covariance.

Filtering for model j

(a) Compute a predicted state X̂−t and its covariance P̂−t .

X̂−t = ΦjX
0
t−1

P̂−t = ΦjP
0
t−1ΦT

j + Qj

(1.31)

where, Φj is a state transition matrix of model j and Qj is a dynamic noise covariance of
model j.

(b) Obtain a measurement zt.

(c) Compute an updated state X̂j
t and its covariance P̂jt .

Kt = P̂−t H
T
j [HjP̂

−
t H

T
j + Rj ]

−1

X̂j
t = X̂−t + Kt(zt −HjX̂

−
t )

P̂jt = [I−KtHj ]P̂
−
t

(1.32)

where, Hj is an observation matrix of model j and Rj is a measurement noise covariance of
model j.

(d) Compute an innovation it and its covariance Ct.

it = zt −HjX̂
−
t

Ct = HjP̂
−
t H

T
j + Rj

(1.33)

(e) Compute a model probability.

µjt =
1

c
Λt
∑
i

pijµ
i
t−1 (1.34)

where, Λt is a likelihood function, p(it|N (0,Ct), and c is a normalizing factor.

Combination

(a) Compute an unified state estimate.

X̂t =
∑
j

X̂j
tµ
j
t (1.35)
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the model transition probability pij is a likelihood, and the model probability µjt−1 is a prior. It is

also worth noting that if the transition probabilities between all pairs of model filters are zero, the

IMMF algorithm is reduced to the AMM algorithm [48]. The complete details of the interaction

stage can be found in the interacting part of Algorithm 1.

The filtering stage of the IMMF is almost identical to the normal Kalman filter except for

the model probability computation. The model probability µjt is computed using an innovation it

as shown in Equation 2.12. It represents the probability of a model being correct at the current

iteration. Note that the IMMF algorithm also utilizes innovation information in its operation,

similar to the AKF algorithm. The filtering part of Algorithm 1 shows the detailed procedures of

the filtering stage.

In the combination stage, the IMMF estimates a unified state vector by combining state

vector estimates from all model filters using their model probabilities. The details are listed in the

combination part of Algorithm 1.

1.5 Novelty

This work proposes a new class of problem in time-varying noise. Figure 1.14 illustrates an

example. It is expected that the dynamic noise has one of two possible states, typical or impulse.

The typical dynamic noise occurs frequently, while the impulse dynamic noise occurs infrequently

but with a value one or more orders of magnitude larger than the typical distribution. This figure

can be contrasted with the types of problems intended to be addressed by both the AKF and MMKF

approaches (see Figure 1.13a and Figure 1.13b). Using either of those approaches on the type of

problem illustrated in Figure 1.14 produces sub-optimal results. Neither approach responds quickly

to a change in the noise. This causes problems both in quickly adapting to large trajectory changes

in the system dynamics, and in quickly returning to baseline measurement-to-dynamic noise filtering

to provide sufficient smoothing.

The challenges addressed in this work include developing a new model that describes a

system having occasional impulses in dynamic noise; implementing the model in a Kalman filter

framework; determining its potential for improving upon existing methods across the possible ranges

of measurement, typical, and impulse dynamic noises; demonstrating its performance on the practical

problems of tracking human motion using UWB sensing and power state estimation; and applying
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Figure 1.14: The proposed filter is intended to adapt to occasional impulses in dynamic noise.

the same idea to measurement noise to handle outlier measurements in a UWB position tracking.
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Chapter 2

Impulse Model for Dynamic Noise

This chapter first presents an analysis of a publicly available data set of humans being

tracked while moving in an indoor space. This is done to motivate the development of a new filter

model of human motion. Finally, an algorithm for implementing this model in an MMKF framework

is detailed.

2.1 Investigation of 2D Human Motion

Human motion can be studied in many ways, such as tracking hand motions during task

completion, or facial feature tracking during communication, or full-body skeletal tracking of articu-

lated joints during activities. The multiple model filtering approach has been applied in many such

domains [43, 48], and is a popular technique to synthesize, classify, and track human motion [55, 64].

This work is motivated by the desire to track simple 2D human motion, such as location within a

building as would be indicated by a map. To the author’s knowledge no experimental assessment of

the profile of this sort of human motion has been reported. Therefore, this section analyzes a publicly

available dataset to determine its motion characteristics, in particular its acceleration profile.

Acceleration ā is defined as the rate of a change in velocity ∆v over a period of measurement

time ∆t as shown in Equation 2.1. The SI unit of acceleration is m/s2. By definition, acceleration

depends on the time interval over which it is measured. It is important to have a common measure-

ment time interval when comparing accelerations of different objects. Instantaneous acceleration can

be defined using Equation 2.2, but in practice it is impossible to measure because the measurement
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Segment
Time
(sec)

Speed
(m/s)

Acceleration
(m/s2)

0 - 10 m 1.85 5.41 2.92
10 - 20 m 1.02 9.80 4.30
20 - 30 m 0.91 10.99 1.30
30 - 40 m 0.87 11.49 0.50
40 - 50 m 0.85 11.76 0.31
50 - 60 m 0.82 12.20 0.51
60 - 70 m 0.82 12.20 0.0
70 - 80 m 0.82 12.20 0.0
80 - 90 m 0.83 12.05 -0.18
90 - 100 m 0.90 11.11 -1.04

Table 2.1: Usain Bolt 100m speed data in 2008 Beijing Olympics

must take place over an interval of time. Alternatively, the average acceleration also can be defined

over measured distances instead of time intervals. For example, human sprint races are sometimes

analyzed this way, as shown in Table 2.1 [14].

ā =
∆v

∆t
(2.1)

a = lim
∆t→0

∆v

∆t
(2.2)

Accelerometers have been used to analyze and classify human motion [6, 12, 47], but these

works studied motion more complex than simple 2D position. This section analyzes human motion

videos from the CAVIAR project [24], which contain a variety of indoor human activities including

people walking alone, meeting with others, and simulated fighting. The videos were analyzed to

determine the acceleration profiles of human motion in 2D. Some example human activities of the

dataset are shown in Figure 2.1. The videos were captured at 25 FPS and the resolution of each

video is 384 x 288.

The ground truth image coordinates of each person in a video are available as an XML

format in the dataset. For the acceleration analysis, the image coordinates of each person were

projected onto the pre-surveyed two dimensional real world coordinate using the provided homog-

raphy matrix. Figure 2.2 shows two different walking patterns in 2D world coordinates after the

projections. Acceleration measurements were computed using these position data.

The accelerations of 29 people were measured at every 200 ms during 377 seconds (13
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(a) Walking (b) Meeting (c) Fighting

Figure 2.1: CAVIAR dataset
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(b) Walking pattern two

Figure 2.2: Two different walking patterns
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(b) Histogram with zoom-in

Figure 2.3: Measured acceleration histogram

seconds for each person on average). Figure 2.3 shows the resulting histogram of the acceleration

measurements. A zoomed-in version is shown in Figure 2.3b. From the figures, it can be observed

that the acceleration profile resembles a Gaussian but has noticeable spikes out in the tails, marked

as the filled stars. These spikes represent occasional large accelerations or decelerations. Figure 2.4

shows an illustration of this type of distribution. This work is motivated to develop a filter model

that follows this distribution to improve the accuracy in tracking of 2D human motion.

2.2 Proposed Human Motion Model

Equation 2.3 is proposed as a model for 1D human motion. It can be applied to two

dimensions by duplication, once for each coordinate. It describes how the dynamics of human

motion evolves over time where s represents a dynamic motion state, x represents a 1D position,

and ẋ represents a 1D velocity. It is assumed that the dynamics of human motion follows the

constant velocity model and alternates between a typical dynamic noise state (s = 0) and an

impulse dynamic noise state (s = 1). Equation 2.4 describes the measurement process, where z

is a 1D position measurement.

There are four parameters (pn, σa, σi, σm) in the equations. The parameter pn is a probabil-

ity of remaining in a typical dynamic noise state given that a previous state is also a typical dynamic

noise state. The parameters σa, σi, and σm represent standard deviations of typical dynamic noise,
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impulse dynamic noise, and measurement noise, respectively.

st =


0 if st−1 = 1 or U[0, 1] ≤ pn

1 otherwise

xt = xt−1 + ẋt−1T

ẋt =


ẋt−1 +N(0, σ2

a) if st = 0

ẋt−1 +N(0, σ2
i ) if st = 1

(2.3)

zt = xt +N(0, σ2
m) (2.4)

2.3 Multiple-Model Kalman Filter with Impulse Response

In this section an algorithm is described that implements the proposed motion model in an

MMKF framework. The new filter is called MMKF-IR (impulse response). The basic idea is that

the filter executes a number of copies of Equation 2.3 where each copy takes turns transitioning into

the impulse state (s = 1). In effect, the set of models is taking turns “guessing” that an impulse has

just occurred. The MMKF framework calculates its output as a weighted sum of the set of model
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outputs. It is assumed that those models undertaking the transition to an impulse state when no

impulse has occurred will provide less weight to the output on average. It is also assumed that the

single model that correctly “guesses” at the time when an impulse does actually happen will provide

more weight to the output on average.

Algorithm 2 shows how the concept of the MMKF-IR can be implemented in the IMMF

framework. The MMKF-IR algorithm uses a predefined matrix of state transitions to indicate when

each model copy transitions to the impulse state. Let C represent the number of copies of the model,

and let S represent the length of the pre-defined state transition sequences. The following matrix is

used by the filter:

M(C+1)×S =

01×S

IC×S

 (2.5)

where the vector 01×S indicates a copy of the model that never transitions to the impulse state, and

the matrix IC×S represents C copies of the model that each transitions to the impulse state once.

The use of an identity matrix insures that no two copies of the model transition to the impulse state

at the same time. The following equation shows an example for when C=3 and S=3:

M4×3 =



0 0 0

1 0 0

0 1 0

0 0 1


(2.6)

Even though S can be set to any number, it may be preferable to set that length according

to the likelihood of transitioning to the impulse state as specified by pn in the motion model. For

example, if pn is set to 99.7%, it can be assumed that the impulse dynamic noise state occurs on

average 1 out of 333 samples according to its model probability (0.3%), and therefore S can be set
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Algorithm 2 IMMF-IR algorithm

Interaction for model j (Identical to IMMF)

(a) Compute a mixing probability.

µ
i|j
t−1 =

1

cj
pijµ

i
t−1 (2.7)

where, pij is a model transition probability from model i to model j, µit−1 is a probability of
model i being correct at time t− 1, and cj is a normalization factor.

(b) Compute a mixed initial state X0
t−1 and its covariance P0

t−1.

X0
t−1 =

∑
i

X̂i
t−1µ

i|j
t−1

P0
t−1 =

∑
i

{P̂it−1 + [X̂i
t−1 −X0

t−1][X̂i
t−1 −X0

t−1]T}µi|jt−1

(2.8)

where, X̂i
t−1 is a state estimate from model i at time t− 1, and P̂it−1 is its covariance.

Filtering for model j

(a) Compute an index k = mod(t,S).

(b) Compute a predicted state X̂−t and its covariance P̂−t .

X̂−t = ΦjX
0
t−1

P̂−t = ΦjP
0
t−1ΦT

j + QM(j,k)

(2.9)

where, Φj is a state transition matrix of model j, and QM(j,k) is a dynamic noise covariance
of dynamic noise state M(j, k).

(c) Obtain a measurement zt.

(d) Compute an updated state X̂j
t and its covariance P̂jt .

Kt = P̂−t H
T
j [HjP̂

−
t H

T
j + Rj ]

−1

X̂j
t = X̂−t + Kt(zt −HjX̂

−
t )

P̂jt = [I−KtHj ]P̂
−
t

(2.10)

where, Hj is an observation matrix of model j and Rj is a measurement noise covariance of
model j.

(e) Compute an innovation it and its covariance Ct.

it = zt −HjX̂
−
t

Ct = HjP̂
−
t H

T
j + Rj

(2.11)

(f) Compute a model probability.

µjt =
1

c
Λt
∑
i

pijµ
i
t−1 (2.12)

where, Λt is a likelihood function, p(it|N (0,Ct), and c is a normalizing factor.

Combination (Identical to IMMF)

(a) Compute an unified state estimate.

X̂t =
∑
j

X̂j
tµ
j
t (2.13)

30



to 333. In this case, the IMMF-IR can be built using the matrix specified in Equation 2.14.

M334×333 =



0 0 0 0 0 · · · 0

1 0 0 0 0 · · · 0

0 1 0 0 0 · · · 0

...
...

...
...

...
. . . 0

0 0 0 0 0 · · · 1


(2.14)
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Chapter 3

Simulation

This chapter uses simulations to explore the potential of the new filter for improving tracking

performance. The simulations allow for the testing of performance across a range of values for

measurement noise, typical dynamic noise, impulse dynamic noise, and impulse frequency. The

first section examines these ranges relative to human and automobile motion, and to camera, GPS

and UWB sensors, in order to provide context. The following section describes the data that

was generated across these ranges. An evaluation metric is then defined. The configurations and

initializations of all the filters are defined, and an upper bound on performance is established. The

results of all the filters are then evaluated using this context.

3.1 Ranges of Analysis

The purpose of this section is to provide context for ranges of typical dynamic noise and

impulse dynamic noise. The context is provided by enumerating ranges for each quantity with

respect to human and automobile motion. This section also provides context for measurement

noise by enumerating ranges for camera, GPS and UWB tracking systems. Finally these data are

combined to enumerate ranges of measurement-to-dynamic noise ratios.

As stated in Chapter 2, the measurement of acceleration requires either a defined amount

of time or distance. Both were used with different data sources to obtain reasonable ranges for

human and automobile motion. Table 3.1 lists the results. The first ranges of human motion were

obtained by analyzing Usain Bolt’s 100m dash accelerations from Table 2.1. The impulse range
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Human Automobile
Usain Bolt [14] CAVIAR [24] Bayat [8] Range Bokare [11]

σa (m/s2) 0.1 ∼ 0.18 0.1 ∼ 0.2 0.1 ∼ 1 0.1 ∼ 1 0.2 ∼ 0.3

σi (m/s2) 2.92 ∼ 4.3 1.5 ∼ 2.5 9 ∼ 12 1.5 ∼ 12 1.5 ∼ 3

Table 3.1: Standard deviations for typical and impulse dynamic noise

Camera [24] GPS [52] UWB [62]

σm (m) 0.04 1 ∼ 10 0.3 ∼ 1

Table 3.2: Standard deviations for measurement noise

was taken from the periods of time in which the sprinter achieved maximum acceleration, while the

remaining periods of time were used to define a range of typical acceleration. The second estimates

were obtained from the CAVIAR acceleration histogram in Figure 2.3. The impulse range was taken

from the tails of the distribution while the rest of the range was used to define the range of typical

acceleration. The third estimates were obtained from smart-phone acceleration data in Figure 2 of

Bayat’s work [8]. The impulse range was taken by including all the local acceleration extrema, and

the rest of data were used to define the range of typical acceleration. The cumulative span of these

three ranges is summarized in the “range” column of Table 3.1 and highlighted in bold. Finally,

estimates of impulse and typical accelerations of automobiles were taken from the data in Figure

5 of Bokare’s work [11], in which a number of different vehicle types were measured to determine

acceleration profiles. The impulse range was obtained from the region of speed 0 - 5m/s, while the

typical range was obtained from the region of speed more than 25m/s.

Table 3.2 shows the standard deviation values (σm) for measurement noise for three sensor

types. The measurement noise (4 cm) of the camera system is computed from the CAVIAR video

data by projecting one pixel difference to real world coordinates using the provided homography

matrix. The measurement noise of the GPS (1 ∼ 10m) is taken from a recent technical report

analyzing its performance [52]. The measurement noise of a UWB position tracking system (30 -

100 cm) is taken from a recent survey of published results [62].

Using the previously determined ranges, the range of measurement-to-typical-dynamic noise

for a camera system tracking human motion is estimated as:

σCamera
m /σHuman

a =
0.04 m

0.1 ∼ 1 m/s2
≈ 0.04 ∼ 0.4 (3.1)
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Figure 3.1: Measurement system σm/σa ratio ranges

Camera GPS UWB

σm/σa 0.04 ∼ 0.4 3.33 ∼ 50 30 ∼ 1000

Table 3.3: Measurement system σm/σa ratio ranges

The range of measurement-to-typical-dynamic noise for the GPS tracking automobile motion is

estimated as:

σGPS
m /σAuto

a =
1 ∼ 10 m

0.2 ∼ 0.3 m/s2
≈ 3.33 ∼ 50 (3.2)

The range of measurement-to-typical-dynamic noise for a UWB system tracking human motion is

estimated using the following two equations:

σHuman
a = 0.1 ∼ 1 m/s2 ·

(
1 s

10 sample

)2

= 0.001 ∼ 0.01 m/sample2 (3.3)

σUWB
m /σHuman

a =
0.3 ∼ 1 m/sample

0.001 ∼ 0.01 m/sample2
≈ 30 ∼ 1000 (3.4)

These equations assume a UWB system operating at a rate of 10 Hz, similar to the equipment

available for real data experiments described in the next chapter.

Table 3.3 summarizes these ranges, and Figure 3.1 illustrates them on a logarithmic scale.

The placement of these systems on this scale helps provide context for the simulation results.

Another important ratio is impulse-to-typical dynamic noise. This describes the magnitude

of an expected impulse relative to its usual distribution. The range for humans and automobiles
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Figure 3.2: Context for σi/σa ratio ranges

were derived using the same data from above as follows:

σHuman
i /σHuman

a =
1.5 ∼ 12 m/s2

0.1 ∼ 1 m/s2
≈ 1.5 ∼ 120 (3.5)

σAuto
i /σAuto

a =
1.5 ∼ 3 m/s2

0.2 ∼ 0.3 m/s2
≈ 0.5 ∼ 10 (3.6)

Figure 3.2 illustrates these ranges on a logarithmic scale. It can be seen that they largely overlap,

but that humans have a slightly higher range. However, note that these data are based upon defined

periods of distance or time for estimating accelerations, and thus must be viewed accordingly.

The final important range is the percentage of impulse dynamic noise. For one estimate,

the CAVIAR data set was again analyzed as illustrated in Figure 3.3. The percentage of data in the

two tails (shaded areas) was found to be 2.8%.

3.2 Data Generation

Simulated motion data was generated using the human motion model proposed in Sec-

tion 2.2. This data was used to compare the performance of newly proposed filter against existing

techniques. For clarity, the equations for the human motion model are repeated in Equation 3.7 and

Equation 3.8.

There are four variables of interest: measurement noise (σm), typical dynamic noise (σa),
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Figure 3.3: Typical and impulse dynamic noise areas. Non-grey region represents the typical dynamic
noise area, while grey region represents the impulse dynamic noise area.

Scenario pn σa σi σm Range

σm/σa 0.997 0.1 10.0 varying 0.1 ∼ 105

σi/σa 0.997 0.1 varying 30 10 ∼ 104

σi(%) varying 0.1 10.0 30 0.1 ∼ 5

Table 3.4: The three different scenarios

impulse dynamic noise (σi), and frequency of impulse occurrence (pn). However, it is the ratio of

measurement-to-dynamic noise that affects filter performance. Therefore, three ranges were evalu-

ated in the simulations. First, the ratio of measurement-to-typical-dynamic noise was simulated by

changing σm while fixing the other parameters. Second, σm was fixed to the value which generated

the largest performance difference between the MMKF-IR filter compared to previous methods, then

σi was varied across a range of impulse-to-typical dynamic noise. Finally, under the same value of

σm, a range of the percentages of impulse dynamic noise was explored. Table 3.4 summaries how

the three different ranges were simulated. The sampling rate 1/∆t was fixed to 1 sample/sec for all

simulations.

Each value in each range was used to generate independent data sets 100 times, each of

which was filtered. This was done to find average performance. For example, Table 3.5 shows a

sample parameter set of human motion with a ratio of measurement-to-typical-dynamic noise equal
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pn σa σi σm

0.997 0.1 10.0 30

Table 3.5: The sample parameter set of simulated human motion

to 300. This particular parameter set was used to generate 100 datasets to compute the average

performances of all the filters. A dataset generated by the sample parameter set can be interpreted

in such a way that the typical dynamic noise state (s = 0) dominates the ground truth positions

(99.7%), while the impulse dynamic noise state (s = 1) rarely occurs (0.3%); σa and σi are set to

0.1 and 10, respectively and the ground truth position is corrupted by Gaussian noise with σm=20

to generate the measurements.

st =


0 if st−1 = 1 or U[0, 1] ≤ pn

1 otherwise

xt = xt−1 + ẋt−1T

ẋt =


ẋt−1 +N(0, σ2

a) if st = 0

ẋt−1 +N(0, σ2
i ) if st = 1

(3.7)

zt = xt +N(0, σ2
m) (3.8)

3.3 Error Metric

The root means square error (RMSE) is calculated as the error metric. Its percentage im-

provement relative to the measurement RMSE is used to compare filter performances. The meaning

of RMSE is the same as the standard deviation. It represents how spread out state vector estimates

are from the ground truth. The RMSE equation is shown in Equation 3.9 where N is the number of

measurements. The RMSE was computed 100 times on 100 different datasets of the same simulated
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ratio to compute the average RMSE.

RMSE =

√√√√ 1

N

N∑
i=1

(Xi − X̂i)T(Xi − X̂i) (3.9)

3.4 Filters

The simulations compare four different types of filter: the Kalman filter, AKF, IMMF and

IMMF-IR. Their initial setup information is given in this section. All the filter parameters are set

according to the parameter set which generated a simulated human motion dataset. The initial

states of filters are set using the first ground truth position x1 as in Equation 3.10, and the initial

state covariances of filters are set using σa as shown in Equation 3.11.

X0 =

x1

0

 (3.10)

P0 =

0 0

0 σ2
a

 (3.11)

Two Kalman filters, KFlow and KFhi, are implemented, differing according to the selection

of dynamic noise. The KFlow filter was implemented using σa for its dynamic noise while KFhi

was implemented using σi for its dynamic noise. The KFlow filter provides optimal filtering during

typical dynamic noise, while KFhi provides optimal filtering during impulses.

The dynamic noise of the AKF was initially set to σa, and its window size (W) was set to

40. The value of 40 was empirically found to provide best results for the sampling rate and pn.

Two IMMF filters, IMMF1 and IMMF2, were evaluated. Each of them consists of two

model filters since there are two different dynamic motion models in the simulated human motion

model. IMMF1 has the transition probability of Equation 3.12 which reflects the model transition

probability of the dataset, while IMMF2 has the transition probability of Equation 3.13 which

assumes independence between the model filters.

pij =

pn 1− pn

1 0

 (3.12)
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pij =

1 0

0 1

 (3.13)

Lastly, the model filters of IMMF-IR were evaluated using the matrix specified in Equa-

tion 3.14. The number of the pre-defined state transition sequence (S) was set to 333 since an

impulse dynamic noise state occurs 1 out of 333 samples according to the model probability 1− pn

(0.3%), and therefore the number of copies of model (C) is 333. However, note that a different set

of model filters for IMMF-IR can be constructed regardless of the model probability. Equation 3.15

shows the model transition probability of the filter.

M334×333 =



0 0 0 0 0 · · · 0

1 0 0 0 0 · · · 0

0 1 0 0 0 · · · 0

...
...

...
...

...
. . . 0

0 0 0 0 0 · · · 1


(3.14)

pij = I334×334 (3.15)

3.5 Performance Upper Bound

In order to establish an upper bound on the possible performance improvement that could

be provided by a multiple model filter, a version of a KF was implemented that switched between

σa and σi at perfect times. This was done by coding the filter to follow the same set of impulse

times calculated during generation of the simulated data sets. Figure 3.4 shows an example, where

the filter can be seen to be behaving ideally. The dotted vertical line in the figure indicates the time

when the impulse dynamic motion occurred.

Figure 3.5 shows the filter’s performance on the simulated human motion datasets across

ranges of measurement-to-typical-dynamic noise ratios and impulse-to-typical dynamic noise ratios.

When the ratio of measurement-to-typical-dynamic noise is low, the filter offers little improvement

over the raw measurements. In other words, there is really no need for any type of filter; because

the measurement noise is so low, the raw measurements themselves can be used. This range is
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Figure 3.4: Ideal multiple model Kalman filter position estimate
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Figure 3.5: Upper bound
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(b) Impulse-to-typical dynamic ratio

Figure 3.6: Kalman filter performance

where camera-based tracking of human motion tends to reside. As the range increases past 100,

a performance improvement begins to occur, eventually rising as high as 90%. With respect to

the ratio of impulse-to-typical dynamic noise, a performance improvement of approximately 70%

was found across the entire range. These curves establish an upper bound for the performance

improvement that can be expected by this approach.

3.6 Performance Analysis

This section presents the performances of the filters on the simulated human motion data,

and analyzes the reasons why one filter outperforms the other filters using examples.

3.6.1 Kalman Filter

Figure 3.6a shows the RMSE percentage improvement of the two Kalman filters relative to

the measurement RMSE across a range of measurement-to-typical-dynamic noise. As can seen in

the figure, KFlow performs worse than the raw measurements and KFhi at low σm/σa ratios since

it tries to balance between a predicted state vector estimate and measurement instead of relying

on almost noise-free measurements. However, its performance exceeds KFhi at high σm/σa ratios

because of large measurement noise. In opposite to KFlow, the performance of KFhi is compatible

with raw measurements at low σm/σa ratios due to its high weighting of measurements that are

corrupted by low levels of noise, but its performance becomes worse than KFlow as the σm/σa ratio

41



10
−1

10
0

10
1

10
2

10
3

10
4

10
5

−40

−20

0

20

40

60

80

100

σ
m

 / σ
a

Im
pr

ov
em

en
t (

%
)

 

 

Measurement
AKF

(a) Measurement-to-typical-dynamic ratio

10
1

10
2

10
3

10
4

−20

−10

0

10

20

30

40

50

60

70

80

σ
i
 / σ

a

Im
pr

ov
em

en
t (

%
)

 

 

Measurement
AKF

(b) Impulse-to-typical dynamic ratio

Figure 3.7: Adaptive Kalman filter performance

increases. Finally, the performances of the two KF filters are similar to each other at extremely

large measurement noises since the values of dynamic noise used by the filters do not make much

difference in this situation.

The results across a range of impulse-to-typical dynamic ratios are shown in Figure 3.6b.

The performance of KFlow rapidly degenerates as the σi/σa ratio increases because its response

time to the impulse dynamic motion gets longer and longer. Conversely, the rate of performance

degeneracy of KFhi is relatively slow compared to KFlow, and its performance converges to the raw

measurements.

In the later summary, only KFlow will be compared against the other types of filters as the

representative of the Kalman filter since its performance is better at high σm/σa ratios.

3.6.2 Adaptive Kalman Filter

The AKF exhibits a similar performance pattern as KFlow across the range of σm/σa ratios

as shown in Figure 3.7a. Unlike KFlow, however, its performance starts degenerating again after

σm/σa reaches 4000 because its window size is not large enough to correctly estimate a dynamic

noise covariance in a large measurement noise condition. Its performance degeneracy is also similar

to KFlow as σi/σa increases as shown in Figure 3.7b. This is because a big difference between σa

and σi makes a correction statistics estimation more difficult and thus causes a large lag in the filter

response.
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Figure 3.8: Interacting multiple model filter performance

3.6.3 IMMF

The performance results of the two IMMFs are shown in Figure 3.8. It can be observed

in Figure 3.8a that IMMF2 outperforms IMMF1 at low σm/σa ratios due to the fact that IMMF2

with the transition probability set by Equation 3.13 is more sensitive to impulse dynamic noise at

low σm/σa ratios. However, this sensitivity makes its performance worse than IMMF1 with the

transition probability set by Equation 3.12 at high σm/σa ratios as shown in Figure 3.8a. Therefore,

in the summary both IMMF1 and IMMF2 will be compared against the other types of filters.

3.6.4 IMMF-IR

Overall, the IMMF-IR displays a similar performance pattern as the two IMMFs across the

range of σm/σa ratios as shown in Figure 3.9a. However, its rate of performance degeneracy is much

faster than the two IMMFs when the σi/σa ratio increases which can be observed in Figure 3.9b.

This is because the magnitude of impulse dynamic noise relative to measurement noise also becomes

large at high σi/σa ratios. Its effect is similar to a relatively low measurement noise environment

where measurements can provide reliable information on a dynamic change of motion, and therefore

IMMF outperforms IMMF-IR at high σi/σa ratios.
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Figure 3.9: Interacting multiple model filter with impulse response performance
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Figure 3.10: Summary of filter performances on various σm/σa ratios
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Figure 3.11: The best IMMF-IR performance relative to the other filters

3.6.5 Summary

Figure 3.10 summarizes the performances of the different types of filters. Generally, KFlow

shows the worst performance among all the filters. The performance of the AKF is slightly better

than KFlow. It can be seen from the figure that IMMF2 and IMMF-IR collectively achieve the best

performance across the whole test range. The IMMF-IR shows the best performance in the range

characterized by human tracking using UWB sensing. Figure 3.11 shows a zoomed view of the area

around which the IMMF-IR shows the best performance improvement relative to the other filters.

The performances of the filters across a range of impulse-to-typical dynamic noise ratios are

summarized in Figure 3.12. It can be observed that KFlow and AKF rapidly drop as the σi/σa ratio

increases. The performance of IMMF-IR is best until just past the range 102.

Figure 3.13 summarizes the filter performances across a range of percentages of occurrences

of impulse. All the filters generally deteriorate as the percentage of impulse dynamic noise increases.

In particular, the rates of performance decrease of the IMMFs are faster than the other filters

except for KFlow, and they both start performing worse than AKF after the impulse dynamic noise
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Figure 3.12: Summary of filter performances on various σi/σa ratios

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
20

30

40

50

60

70

80

90

100

σ
i
 (%)

Im
pr

ov
em

en
t (

%
)

 

 

Measurement
KF LOW
AKF
IMMF1
IMMF2
IMMF−IR
Upper Bound

Figure 3.13: Summary of filter performances on various σi percentages
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pn σa σi σm

0.997 0.1 10.0 30

Table 3.6: The sample parameter set of simulated human motion

percentage reaches 3.0%. Conversely, the rate of performance decrease of IMMF-IR is relatively

slow as the impulse dynamic noise percentage increases compared with the other filters. IMMF-IR

maintains the best performance over all the experimented pn percentages. Note that the different

set of model filters of IMMF-IR is constructed according to the impulse dynamic noise percentage

in each experiment. For example, if the impulse dynamic noise percentage is set to 1%, the model

filters of IMMF-IR are built using the matrix specified in Equation 3.16 where C = 100 and S =

100.

M101×100 =



0 0 0 0 0 · · · 0

1 0 0 0 0 · · · 0

0 1 0 0 0 · · · 0

...
...

...
...

...
. . . 0

0 0 0 0 0 0 1


(3.16)

3.6.6 Examples

In this section, the filters are demonstrated on the dataset which is generated using the

parameter set in Table 3.6. The position estimates of AKF and IMMF2 are analyzed and compared

against that of IMMF-IR to give an idea why IMMF-IR performs the best at high σm/σa ratios. All

the filters are initialized according to the setup instructions in Section 3.2.

3.6.6.1 Adaptive Kalman Filter

The AKF was developed under the assumption that the statistics of a target system do not

frequently change over time and remain stable for at least the previous W iterations. Thus, the

correct estimation on an innovation covariance using innovation samples is feasible. Otherwise, the

AKF fails to adapt correct statistics, and consequently fails to estimate a state vector of a target

system. This assumption does not hold in the simulated human motion data since the impulse

dynamic noise state instantly occurs. As shown in Figure 3.14b, the AKF starts to fail to adapt
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Figure 3.14: AKF position estimate

a correct dynamic noise σa around the acceleration point. Figure 3.14a shows a lag in the AKF

position estimate caused by the incorrect estimation of dynamic noise, which makes its performance

worse than IMMF-IR.

3.6.6.2 Interacting Multiple Model Filter

The IMMF works well when the ratio of measurement noise to typical dynamic noise is small

which means measurements can provide reliable information on a dynamic change of motion. But

if the ratio is large, the IMMF easily gets confused whether a big jump in a position measurement

is due to the measurement noise or a model change. Figure 3.15 shows such a situation where the

IMMF with two models is applied on a dataset. As shown in Figure 3.15b, the filter with the typical

dynamic model remains dominant for a while even after the acceleration point, and IMMF tries to

catch up to the position difference by switching to the impulse dynamic model about 7 seconds after

the acceleration point. This is why its response to impulse dynamic motion is slower than IMMF-IR

as shown in Figure 3.15a. This also makes the overall performance worse than IMMF-IR.
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Figure 3.15: IMMF position estimate. Model 1 represents a filter set with σa while model 2 represents
a filter set with σi.
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Chapter 4

UWB Position Tracking

This chapter describes experiments testing the new filter on real UWB measurements track-

ing 2D human motion. First, the test facility and the Ubisense tracking system are described. Then

the estimation of ground truth motion and collection of tracking data are provided. Finally, the

performance of the new filter is compared against existing methods.

4.1 Test Facility

The test facility is located in the basement of Riggs Hall at Clemson University. The floor

plan of the test facility is given in Figure 4.1. As shown in the floor plan, the dimension of the

test facility is approximately 8 m x 10 m. It includes part of a hallway and open lab space that

are separated by a 20 cm thick concrete wall. The floor plan also depicts the metal and wooden

cabinets, metal cupboards, and vending machine as parts of a normal indoor environment that

possibly obstruct a UWB signal. The images in Figure 4.2 and Figure 4.3 show the test facility from

the inside and outside of the lab space. As shown in the figures, the ceiling is covered by fiber tiles.

The receivers for the tracking system are installed above this dropped ceiling, which together with

the other obstacles make the system susceptible to NLOS and multipath errors.
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Figure 4.1: Test facility floor plan
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Figure 4.2: Test facility: an open lab space

Figure 4.3: Test facility: a hallway
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Figure 4.4: Test facility: eight receiver positions. The filled square represents a receiver, and the
line coming from that filled square represents its orientation.
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(a) Receiver (20cm x 14cm x 6.5cm) (b) Transmitter (3.8cm x 3.9cm x 1.65cm)

Figure 4.5: Ubisense receiver and transmitter

4.2 Ubisense Tracking System

The tracking system is a real-time locating system developed by a U.K. based company,

Ubisense Inc. It comprises multiple pieces, including transmitters, receivers, a timing distribution

unit, and a network switch. Its typical installation layout can be found in the Ubisense system

documentation [67]. The system computes range measurements to moving transmitters, which

run on batteries, using angle of arrival (AOA) and time difference of arrival (TDOA) information

collected from receivers that are powered by a network switch [66]. After the range measurement

synchronization by the timing distribution unit, the system generates 3D position measurements

through multilateration using range estimates from at least two receivers [66].

In this work, eight receivers of the Ubisense Series 7000 IP sensors are installed in the

Riggs test facility as laid out in Figure 4.4. Their 3D positions were precisely surveyed using hand

measurement tools based on the user-defined origin. Figure 4.5a shows an installation picture of one

of the receivers inside of the dropped ceiling. The signal propagation delays between the receivers

and timing distribution unit are calibrated for the range measurement synchronization using one of

the Ubisense Series 7000 Compact tags (or transmitters) that is placed at a fixed known location.

The pitches and yaws of the receivers are also calibrated in the same manner. Figure 4.5b shows a

picture of the transmitter.

The installed receiver is capable of providing real-time position updates of transmitters [66].

However, in reality this capability is limited by the working frequencies of the transmitter, which is

in the range of 0.00225 Hz - 33.75 Hz [65], and the number of the transmitters in use at the same
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Figure 4.6: Camera network and its coverage area. Filled circles represent cameras, and the lines
coming from filled circles represent their orientations. The big gray rectangle in the center represents
the camera network coverage area.

time. Our experiments show that the Ubisense tracking system works approximately at 10 Hz when

the number of the transmitters is 1 - 4, but this working frequency drops down to about 5 Hz when

the number of transmitters is 5 - 8.

4.3 Ground Truth

A network of six cameras was used to calculate 2D ground truth positions for UWB tracking

data. The camera network operates at 20Hz [5]. Figure 4.6 illustrates how the six cameras are

installed and how much area the camera network covers in the lab space.

Specifically, an occupancy map (640 × 480) is created from the camera network through

background subtraction and pixel-to-plane projection, and then a target object is detected and

tracked in the occupancy map using a blob detection algorithm [30]. For example, the white target

circle in Figure 4.7a is detected as the white blob on the right of the occupancy map in Figure 4.7b.

Each pixel in the occupancy map indicates space in the lab floor, and its binary intensity represents
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(a) White target circle with Ubisense tag (b) Occupancy map. White represents occupied
while black represents unoccupied.

Figure 4.7: Camera network target tracking

Mean Standard deviation

Error (X,Y) (0.19cm, 0.17cm) (0.47cm, 0.56cm)

Table 4.1: Camera network position error statistics

occupancy. In Figure 4.7a the Ubisense tag is placed in the center of the white target circle so that

the center of a white blob in an occupancy map can be treated as an Ubisense tag location. Finally,

pixel coordinates of the center of a blob are projected from the occupancy map to the Ubisense

tracking system coordinate to provide the 2D ground truth positions for UWB tracking data.

The accuracy of the camera network was evaluated at 12 different locations as shown in

Figure 4.8. In the figure, a mean position (×) from the camera network is displayed together with

its ground truth position (+) and UWB measurements (·). Each mean position of the camera network

is calculated using 500 camera network position measurements. The position error statistics of the

camera network are summarized in Table 4.1, and overall they show better than 1 cm accuracy.
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Figure 4.8: Camera network accuracy
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Figure 4.9: Camera network synchronization with Ubisense tracking system.

The synchronization of the camera network with the Ubisense tracking system was also

evaluated using data shown in Figure 4.9. The data was collected when instantly pushing the

target object along X axis to test the synchronization between the camera network and the Ubisense

tracking system. The switching points of the camera network are compared against those of the

UWB measurements, i.e. acceleration to move or deceleration to stop points. The switching points

of UWB measurements were extracted as the follows: UWB measurements were manually partitioned

into multiple motions as shown in Figure 4.10, then a line was fitted to each partition of data as

shown in Figure 4.11, and then the switching points were extracted from the line intersections [61].

As can be seen in Figure 4.9, the synchronization is less than 0.1 sec between the camera network

and the Ubisense tracking system.

4.4 Data Collection

Figure 4.12 shows a measurement tool built for these experiments. The white target circle

is secured at the end of the metal ruler and the other end of the metal ruler is duct-taped with a
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Figure 4.11: Three fitted lines on raw measurement data.
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Figure 4.12: Measurement tool

Track name
Acceleration to

motion
Deceleration to

stop
Measurement
RMSE (cm)

1 6 6 18.14

2 6 6 13.96

3 6 6 19.21

4 6 6 29.10
5 6 6 20.04

Table 4.2: Linear track data

bamboo stick. This setup ensures that the white target circle is about 1.5 m away from the bamboo

stick end, and therefore it minimizes any camera occlusions of the while target circle by a user during

the data collection. The metal ruler is bent about 20◦ near to the white target circle to facilitate

tool manipulation.

Tracking data was collected while manually moving the measurement tool along pre-defined

tracks. Figures 4.13a - 4.13b depict the five linear tracks tested. Ten trials were recorded for each

track. The linear tracks start and finish at the rightmost point of each track and stop at each dot

for about 10 seconds. Figures 4.13c - 4.13e depict more complex tracks that were tested. Fifteen

trials were recorded for each track. In this case, the tracks start at either at the rightmost or right

bottom point, and make one loop movement. The complex tracks also stop at each dot for about

10 seconds.
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Figure 4.13: Pre-defined track paths.
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Figure 4.14: Pre-defined track acceleration histograms
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Track name
Acceleration to

motion
Deceleration to

stop
Measurement
RMSE (cm)

M shape 8 8 24.86

Circle shape 4 4 31.58

Eight shape 6 6 23.86

Table 4.3: Complex track data

σa(m/s2) σi(m/s
2) σm(m)

0.01 1.00 0.16

Table 4.4: Filter parameters

Tables 4.2 - 4.3 provide information about the collected data. The range of raw measurement

error was 14 - 32 cm and each recording contains 4 - 8 dynamic impulses. Figure 4.14 shows their

acceleration histograms. It can be seen that the histograms in Figure 4.14 exhibit multi-modality,

similar to the histogram of CAVIAR walking data in Figure 2.4.

4.5 Filters

The asynchronous versions of three different types of filter were evaluated: the AKF, IMMF

and IMMF-IR. The initial setup information of the applied filters is given in this section. It is

assumed that the recorded human motion follows the constant velocity model and undergoes two

different types of acceleration, typical and impulse accelerations. In addition, it is also assumed that

each of two different accelerations can be modeled by a single Gaussian, and therefore they can be

modeled by the proposed human motion model.

All the filters make use of the same assumptions in their models, and their parameters are

primarily set by values in Table 4.4 unless otherwise mentioned. The initial states of all the filters are

set using the first ground truth position (x1,y1) as in Equation 4.1, and the initial state covariances

of filters are set using σa as described in Equation 4.2.

X0 =



x1

0

y1

0


(4.1)
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P0 =



0 0 0 0

0 σ2
a 0 0

0 0 0 0

0 0 0 σ2
a


(4.2)

The AKF is initially set with dynamic noise equal to σa, and its window size is set to 40. The

two models of the IMMF are constructed according to the previous assumptions with the transition

probability of Equation 4.3. The model filters of the IMMF-IR are built using the matrix specified

in Equation 4.4, where C is 5 and S is 5. Equation 4.5 shows the model transition probability of

IMMF-IR.

pij =

1 0

0 1

 (4.3)

M6×5 =



0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


(4.4)

pij = I6×6 (4.5)

4.6 Performance Analysis

The performance results of all the filters on the Ubisense tracking data are summarized in

Table 4.5 and Table 4.6. The best performance figure for each track is marked in bold. It can be

seen in the tables that the IMMF-IR has the best performance among all the applied filters. Its

average percentage improvement relative to measurement RMSE is 16.54% as shown in Table 4.7,

which is 2.83% higher than that of IMMF. In the following, the position estimates are analyzed in

four different captured scenarios to demonstrate why the IMMF-IR worked the best.
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Track name
RMSE (cm)

Measurement AKF IMMF IMMF-IR

1 18.14 51.19 15.52 14.53

2 13.96 49.39 13.28 12.33

3 19.21 51.70 18.49 18.22

4 29.10 62.29 24.54 23.63

5 20.04 65.25 17.82 17.33

Average 20.09 55.96 17.93 17.21

Table 4.5: Filter performance on linear track data

Track name
RMSE (cm)

Measurement AKF IMMF IMMF-IR

M shape 24.86 62.60 20.10 19.79

Circle shape 31.58 73.86 26.18 25.19
Eight shape 23.86 69.40 21.03 20.57

Average 26.77 68.62 22.44 21.85

Table 4.6: Filter performance on complex track data

Measurement AKF IMMF IMMF-IR

Average RMSE (cm) 23.25 61.96 20.06 19.41

Improvement (%) 0 -166.45 13.71 16.54

Table 4.7: Filter performance and percentage improvement
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Figure 4.15: Filter position estimates when the human motion becomes stationary after a decelera-
tion.

4.7 Filter Estimate Analysis

Figure 4.15 shows the position estimates of the three filters when the human motion remains

stationary after deceleration. As shown in the figure, the IMMF-IR achieves the best performance,

as its position estimate closely oscillates around the ground truth position after stabilization. The

tendency of the position estimate of the IMMF is similar to the IMMF-IR, but its performance

is slightly worse than that of IMMF-IR. On the other hand, the position estimate of the AKF

overshoots and tries to get back to the trajectory after deceleration, and therefore it shows the worst

performance. At the worst case scenario, the AKF diverges after a velocity changing point and

generates a large performance error.

When human motion experiences velocity changes, i.e. deceleration, the performance of the

IMMF is more sensitive to the magnitude of measurement noise around the velocity changing point

than that of IMMF-IR. Figure 4.16 shows a case where the measurement noise is large around the

deceleration point. As can be seen in the figure, both IMMF and IMMF-IR quickly adapt their

position estimates to the ground truth position after the deceleration. The opposite scenario is

shown in Figure 4.17. In this case, the IMMF fails to punctually detect the impulse change or
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Figure 4.16: Filter position estimates. Human motion undergoes deceleration at 79.3 sec, and then
remains stationary. Measurement noise is large around the deceleration point.

deceleration. Therefore, its performance worsens a lot around the deceleration point. However, the

IMMF-IR more quickly adapts its position estimate to the ground truth position as shown in the

figure.

An outlier can occur in UWB position tracking. Figure 4.18 shows an example of how the

three filters respond to such a case. It can be observed from the figure that IMMF and IMMF-IR

quickly recover their position estimates from the outlier, but the outlier creates a large error for

both filters. This problem is further discussed in Chapter 6.
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Figure 4.17: Filter position estimates. Human motion undergoes deceleration at 41 sec, and then
remains stationary. Measurement noise is small around the deceleration point.
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Figure 4.18: Filter position estimates. Human motion is at the constant velocity. Outlier in mea-
surement appears at 37.7 sec.
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Chapter 5

Power System State Estimation

This chapter explores the application of the new filter to a state estimation problem for a

power system. Simulated power system data was generated that exhibits impulse-like spikes due to

faults. The new filter was applied in an extended Kalman filter (EKF) to handle the non-linearity

in the measurement process. A modified RMSE metric is defined and used for evaluation. Finally,

the performance of the new filter on the simulated power system data is compared against existing

methods.

5.1 Problem Description

State estimation can be used in electrical power grids to monitor the state of a power

system and to provide inputs for other essential operations such as power security analysis [1, 32, 72].

Conventionally, the state estimation problem has been solved using the weighted least square (WLS)

algorithm in which a single set of possibly noisy, asynchronous measurements is used to estimate

the state of a power system [59]. However, the WLS algorithm ignores the dynamic characteristics

of a power system, instead reinitializing at every iteration [32, 33, 68]. Recently, filter techniques

have been applied which include the dynamic model of a system in their operations [26, 33, 68]. In

filtering, the prediction of states is feasible due to this dynamic model and it is beneficial especially

when some quantities cannot be easily measured. It can also be used to help detect anomalies such

as abrupt faults or bad measurement data [32, 68].

Figure 5.1 shows a model of two alternating current (AC) power buses connected via a
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Figure 5.1: 2-bus power system and state estimation problem
.

transmission line [1]. In the figure, Vi and θi represent the voltage and phase at bus i, Pkm and

Qkm represent real and reactive power flows from bus k to bus m, and Z is the impedance of a

transmission line between bus k and m. Figure 5.2 shows an example of normal voltage and phase

signals.

Figure 5.1 illustrates the state estimation problem considered in this work. The objective of

the problem is to estimate the voltage and phase at bus m (Vm, θm) while the real and reactive power

flow (Pkm,Qkm) are observed, even during a fault or grounded condition i.e. thunder. The fault

appears as a sudden drop in voltage and phase. Figure 5.3 shows an example. The fault resembles

an impulse in the dynamic noise. For this problem, it is assumed that (Vk, θk,Z) are provided as

constants. Equation 5.1 formulates how the components in the figure are mathematically related

to each other, where gkm is a real part of the impedance Z and bkm is an imaginary part of the

impedance Z. Note that the measurements Pkm and Qkm are non-linear functions of the unknown

variables Vm and θm in the equations.

Pkm = V2
kgkm −VkVmgkm cos (θk − θm)−VkVmbkm sin (θk − θm)

Qkm = −V2
kbkm + VkVmbkm cos (θk − θm)−VkVmgkm sin (θk − θm)

(5.1)
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Figure 5.2: Normal voltage and phase signals.
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Figure 5.3: Voltage and phase signals with a fault near the beginning.
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5.2 Simulated Power System Data

Figure 5.4 shows the IEEE 16-machine 68-bus system [53]. It represents the simplified

equivalent of the interconnected New England test system and New York power system. It consists

of 83 pairwise interconnections between the buses. This means the data has 83 2-bus state estimation

problems. This system was simulated in the Real-Time Power and Intelligent Systems Lab at

Clemson University to generate simulated power system data using the real time digital simulator

(RTDS) [39]. One fault is simulated in the beginning in the simulation. The data was collected at

30Hz for 3 seconds at each bus. In the data set, the voltages and phases (V,θ) are available at buses

as the ground truth, and the real and reactive powers (P,Q) between buses are available as noise

free measurements. The impedances Z between buses are also provided in the data set.

The measurement noise in a power system is known to be modeled by an additive zero

mean Gaussian distribution as in Equation 5.2, where z̄t is an ideal measurement while zt is a noisy

measurement [1]. The standard deviation σm of the noise can be determined depending on the

property of a chosen measurement device. In this work, a range of zero mean Gaussian noise was

tested in order to evaluate the performance of the filter under various measurement conditions. An

example of simulated noisy power measurements is shown in Figure 5.5 when σm = 0.1.

zt = z̄t +N(0, σ2
m) (5.2)

The data set was analyzed to evaluate if the voltage and phase signals in the data can be

modeled by the proposed dynamic model in Section 2.2. For this purpose, the second derivatives of

the voltage and phase signals were computed and the histogram of them was calculated as shown

in Figure 5.6. From this figure it can be seen that there is a small but noticeable multimodal

distribution caused by the faults. Hence, the voltage and phase signals can be modeled by the

proposed dynamic model.

5.3 Extended Kalman Filter

This section explains the sequential steps of the EKF algorithm. It is worth noting that these

sequential steps of the algorithm are simplified to deal with only a nonlinearity in the measurement

process. The prediction of the algorithm is shown in Equation 5.3. It is the same as the Kalman filter
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Figure 5.5: Real and reactive power measurements. Zero mean Gaussian noise with σ = 0.1 is added
to the original noiseless power measurements.
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Figure 5.6: Histograms of second derivatives of voltage and phase.

algorithm because it is assumed that the state transition process is linear. The algorithm computes

a Jacobian matrix JH using the most recent estimate X̂−t as in Equation 5.4, which is defined as

the derivative of the measurement function g(·) with respect to the state X. Subsequently, the

Kalman gain is computed using Equation 5.5 and the algorithm updates the state vector as shown

in Equation 5.6.

X̂−t = ΦX̂t−1

P̂−t = ΦP̂t−1ΦT + Q

(5.3)

JH =
∂gt(X̂

−
t )

∂Xt

(5.4)

Kt = P̂−t J
T
H[JHP̂−t J

T
H + R]−1 (5.5)

X̂t = X̂−t + Kt(zt − JHX̂−t )

P̂t = [I−KtJH]P̂−t

(5.6)
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σVa σVi σθa σθi σm

0.0005 0.005 0.007 0.7 0.2 - 7

Table 5.1: Filter parameters

5.4 Error Metric

This chapter uses the RMSE between ideal measurements z̄ and estimated measurements

ẑ as the error metric. It is calculated using Equation 5.7. In this way, the quality of two separate

state estimates V̂ and θ̂ can be jointly evaluated in one measure whose unit is available. Estimated

measurements ẑ or (P̂, Q̂) can be computed from state vector estimates using Equation 5.1. The

RMSE was computed 100 times on 100 different datasets to compute the average RMSE for each

measurement noise standard deviation σm. A relative improvement to a measurement RMSE will

be used to compare the performances of filters, which is a similar performance measure as the

performance index used in [68].

RMSE =

√√√√ 1

N

N∑
i=1

(z̄i − ẑi)T(z̄i − ẑi) (5.7)

5.5 Filters

The AKF, IMMF, and IMMF-IR were applied on 83 state estimation problems of the sim-

ulated power system data. Their parameters are primarily configured by the values in Table 5.1

where σVa and σθa represent typical dynamic noise standard deviations for voltage and phases, and

σVi and σθi represent impulse dynamic noise standard deviations for voltages and phases. The range

of measurement noise standard deviation σm is selected so that it covers 3 - 120% of the ideal mea-

surement magnitude standard deviation. The initial states of all the filters are set using the first

ground truth (V1,θ1) as in Equation 5.8. The initial state covariances of filters are set using the

typical dynamic noise as described in Equation 5.9.

X0 =



V1

0

θ1

0


(5.8)
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P0 =



0 0 0 0

0 σ2
Va 0 0

0 0 0 0

0 0 0 σ2
θa


(5.9)

The AKF is initially set with the typical dynamic noise, and its window size is set to 10.

The two models of the IMMF are constructed according to the proposed dynamic model with the

transition probability of Equation 5.10. The model filters of the IMMF-IR are built using the matrix

specified in Equation 5.11, where C is 100 and S is 100. Equation 5.12 shows the model transition

probability of IMMF-IR.

pij =

1 0

0 1

 (5.10)

M101×100 =



0 0 0 0 0 · · · 0

1 0 0 0 0 · · · 0

0 1 0 0 0 · · · 0

...
...

...
...

...
. . . 0

0 0 0 0 0 · · · 1


(5.11)

pij = I101×101 (5.12)

5.6 Performance Analysis

Figure 5.7 summarizes the performances of AKF, IMMF, and IMMF-IR in terms of a per-

centage improvement relative to measurement RMSE. In the range of σm = 0.2− 1.0, which is the

typical range of measurement noise for this problem, the IMMF-IR shows the best performance.

Interestingly, although the AKF performs the worst in the beginning of the tested σm range, it

starts performing better than the other two filters after σm = 3, suggesting that in the presence of

very noisy measurement devices it would be the best filter.

To show an example, the voltage and phase estimates of the filters at bus 12 are plotted in

Figure 5.8 when σm = 0.3. The estimates are captured only around the fault because this is when
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Figure 5.7: Summary of filter performances on various σm. The first row of the X labels represents
real values used in the simulation while the second row of the X labels represents their percentages
relative to the ideal measurement magnitude standard deviation.

the filters have the most difference. As depicted in the figure, the response of the IMMF-IR to the

fault is slightly faster than that of the IMMF even though overall they both adapt to the fault. On

the other hand, the AKF has the slowest response time among the filters.
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Figure 5.8: Voltage and phase estimates at bus 12 when σm = 0.3
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Chapter 6

Measurement Outliers

The ideas in this dissertation were developed to address impulses in dynamic noise. This

chapter explores if the same idea can be applied to measurement noise. Outliers are a well-studied

phenomenon and can be detected and eliminated by a number of methods, such as RANSAC [23].

This chapter considers the possibility that an outlier could be modeled as an impulse in measurement

noise. First, the appearance of measurement noise in real UWB tracking data is investigated. Then

a measurement model is developed incorporating an impulse component. A filter algorithm that

implements the new measurement model is developed in the Kalman filter framework. Finally,

the performances of the MMKF filters integrated with the new measurement model on the UWB

tracking data are compared against the previous results.

6.1 Investigation of Measurement Error

In this section, the measurement errors of the UWB tracking data are analyzed. The

histogram of the measurement errors was calculated using ground truth positions versus raw mea-

surements and is shown in Figure 6.1a. Figure 6.1b shows a zoomed view of the histogram with

one standard deviation σ marked as two vertical dashed lines. Note that this standard deviation is

usually used in filtering to set up a measurement covariance. From the figure, it can be seen that

outliers appear with greater frequency than would be suggested by a unimodal distribution. This

motivated the development of a model that specifies an outlier component.
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Figure 6.1: Measurement error histogram of UWB tracking data (X axis)

6.2 Proposed Measurement Model

As before, a constant velocity model is used to explain a state transition process as shown in

Equation 6.1 where x represents a 1D position and ẋ represents a 1D velocity. Equation 6.2 represents

the proposed measurement model for a measurement process where k represents a measurement noise

state and z is a 1D position measurement. This measurement model assumes that measurements are

additively corrupted by noise and the measurement process switches between typical measurement

noise state (k = 0) and outlier measurement noise state (k = 1). The proposed model can also be

extended to two dimensions by duplication.

There are four parameters (qn, σa, σm, σo) in the equations. The parameter qn is a proba-

bility of remaining in a typical measurement noise state given that a previous state is also a typical

measurement noise state. The parameters σa, σm, and σo represent standard deviations of dynamic

noise, typical measurement noise, and outlier measurement noise, respectively.

xt = xt−1 + ẋt−1∆t

ẋt = ẋt−1 +N(0, σ2
a)

(6.1)
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kt =


0 if kt−1 = 1 or U[0, 1] ≤ qn

1 otherwise

zt =


xt +N(0, σ2

m) if kt = 0

xt +N(0, σ2
o) if kt = 1

(6.2)

6.3 Kalman Filter with Outlier Handling

This section explains an algorithm that implements the proposed measurement model in

the Kalman filter framework. The fundamental idea is that the filter estimates a measurement noise

state k based on the probability of the innovation i. The innovation represents the difference between

the predicted and actual measurements. It is highly likely that the magnitude of an innovation is in

a certain range during the operation of filtering. However, when an outlier occurs, the magnitude

of the innovation gets extremely large and the probability of having that innovation becomes low.

Hence, whenever the probability of an innovation is less than a certain threshold, it can be assumed

that the measurement process is in the outlier measurement noise state (k = 1). The equations

to compute an innovation and its covariance are shown in Equation 6.3. The probability of an

innovation can be computed using Equation 6.4.

it = zt −HX̂−t

Ct = HP̂−t H
T + R

(6.3)

Λt = p(it|N (0,Ct)) (6.4)

Algorithm 3 shows how the concept of the new filter is implemented in the Kalman filter

framework. The most important part of the algorithm is excerpted in Equation 6.5. In the equation,

Pmin is a minimum innovation probability to be classified as a typical measurement noise state while

c is a pre-defined constant for an outlier measurement noise state. c controls how the Kalman filter

responds to outlier noise measurements by adjusting the new measurement covariance R′, i.e. the
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Figure 6.2: Measure error histogram of UWB tracking data (X axis)

higher the constant c is, the more likely the filter is to give lower weight to the measurement. In

other words, the Kalman gain determines the balance between a predicted state and measurement

based on the ratio of dynamic noise covariance and measurement noise covariance and this balance

can be adjusted by scaling the original measurement covariance as shown in Equation 6.5.

kt =


0 if Λt ≥ Pmin

1 otherwise

R′ =


R if k = 0

cR if k = 1

(6.5)

Figure 6.2 illustrates two standard deviations located in the measurement error histogram

of the UWB tracking data when c = 100, which means 10 times a measurement noise standard

deviation for outlier handing. As shown in the figure, c = 100 is reasonable since 10σ covers the
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Algorithm 3 KF with Outlier Handling algorithm

(a) Compute a predicted state X̂−t and its covariance P̂−t .

X̂−t = ΦX0
t−1

P̂−t = ΦP0
t−1ΦT + Q

(6.6)

where, Φ is a state transition matrix, and Q is a dynamic noise covariance.

(b) Obtain a measurement zt.

(c) Compute an innovation it and its covariance Ct.

it = zt −HX̂−t

Ct = HP̂−t H
T + R

(6.7)

where, H is an observation matrix, and R is a typical measurement noise covariance.

(d) Compute an innovation probability Λt.

Λt = p(it|N (0,Ct) (6.8)

(e) Determine a new measurement noise covariance R′.

kt =
{

0 if Λt ≥ Pmin
1 otherwise

R′ =
{
R if kt = 0
cR if kt = 1

(6.9)

where, Pmin is a minimum innovation probability, and c is a pre-defined constant for outlier
measurement noise state.

(f) Compute a Kalman gain Kt.

Kt = P̂−t H
T[HP̂−t H

T + R′]−1 (6.10)

(g) Compute an updated state X̂t and its covariance P̂t.

X̂t = X̂−t + Kt(zt −HX̂−t )

P̂t = [I−KtH]P̂−t
(6.11)

local peaks in the tail of the histogram.
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Pmin c σa(m/s2) σi(m/s
2) σm(m)

10−10 100 0.01 1.00 0.16

Table 6.1: Filter parameters

Track name
RMSE (cm)

Measurement AKF IMMF IMMF-IR

1 18.14 51.19 15.48 (-0.04) 14.53 (0.00)

2 13.96 49.39 13.28 (0.00) 12.33 (0.00)

3 19.21 51.70 18.49 (0.00) 18.22 (0.00)

4 29.10 62.29 23.78 (-0.76) 22.52 (-1.11)

5 20.04 65.25 16.54 (-1.28) 16.47 (-0.86)

Average 20.09 55.96 17.51 (-0.42) 16.81 (-0.40)

Table 6.2: Filter performance on linear track data. The numbers in the parentheses ( ) represent the
difference between the previous and current performances, and minus sign means an improvement
from a previous performance.

6.4 Filters

The asynchronous versions of AKF, IMMF, and IMMF-IR were applied on the UWB track-

ing data as in Chapter 4. The IMMF and IMMF-IR filters were further extended to handle outlier

measurement noise using the new filter algorithm. Their parameters are listed in Table 6.1. The

extension of the AKF to handle outlier measurement noise was not considered here because its dy-

namic noise covariance is adaptive in nature and thus computing a stable innovation probability is

impossible. All other initial conditions, setups, and assumptions are the same as in Section 4.5.

6.5 Performance Analysis

The performance results of all the filters on the UWB tracking data are summarized in

Table 6.2 and Table 6.3. Their overall percentage improvement is also shown in Table 6.4. It can

be seen that the filters with the outlier handling extension achieve better performance than before.

Specifically, the performance of IMMF has been improved about 4.28 % and the performance of

IMMF-IR has been improved about 4.12 %.

The position estimates of IMMF and IMMF-IR are also depicted before and after the outlier

handling in Figure 6.3 and Figure 6.4. As shown in Figure 6.3b, the responses of IMMF and IMMF-

IR to the outlier measurement have been significantly reduced. However, Figure 6.4 shows the
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Track name
RMSE (cm)

Measurement AKF IMMF IMMF-IR

M shape 24.86 62.60 19.95 (-0.15) 19.81 (0.02)

Circle shape 31.58 73.86 22.83 (-3.35) 21.97 (-3.22)

Eight shape 23.86 69.40 20.47 (-0.56) 20.01 (-0.56)

Average 26.77 68.62 21.08 (-1.36) 20.60 (-1.25)

Table 6.3: Filter performance on complex track data. The numbers in the parentheses ( ) represent
the difference between the previous and current performances, and minus sign means an improvement
from a previous performance.

Outlier handling
Average RMSE (cm)

Measurement AKF IMMF IMMF-IR

Before 23.25 61.96 20.06 19.41

After 23.25 61.96 19.20 18.61

Improvement (%) 0 0 4.28 4.12

Table 6.4: Filter performances improvement

opposite scenario. In the figure, the behaviors of IMMF on the outlier measurement do not show

much difference before and after the outlier handling. This may be due to the presence of multiple

consecutive outliers in the same neighborhood, which could be caused by either a measurement

impulse or a dynamic impulse. On the other hand, IMMF-IR mitigates the outlier measurement in

this case.
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Figure 6.3: A successful example of filtering a measurement outlier using an impulse model
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Figure 6.4: An unsuccessful example of filtering two consecutive measurement outliers, possibly due
to their initial resemblance to a dynamic impulse.
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Chapter 7

Conclusions

This dissertation investigated the possibility of an impulse model in dynamic noise in the

presence of large measurement noise. By analyzing some real 2D human tracking data, it was ex-

perimentally demonstrated that human motion can exhibit a multimodal distribution caused by

occasional impulses in velocity. A new dynamic model was proposed to model this phenomenon. A

new filter that implements the new dynamic model was developed in the MMKF framework. Its

performance was initially evaluated using simulations to test its efficacy across a wide range of mea-

surement and dynamic noises. In these experiments, the new filter showed about 4% improvement

over existing methods.

The performance of the new filter was examined for two different applications. First, UWB

tracking data was collected in the Riggs test facility using a camera network system to measure

ground truth. The performance of the new filter on the UWB tracking data was measured. The new

filter showed the best performance among the applied filters with about 2.8% average improvement

over existing methods. Second, the new filter was applied on a power system state estimation

problem using simulated power system data obtained from the Real-Time Power and Intelligent

Systems Laboratory at Clemson University. Its performance was evaluated over the typical range

of measurement noise standard deviations. In this case, the new filter showed about 4% relative

improvement.

Finally, the idea of the impulse model in dynamic noise was extended to measurement

noise to address outlier measurements. A new measurement model was proposed to model the

outlier measurement noise, and then an outlier handling algorithm was developed using the pro-
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posed measurement model. The new filter with the outlier handling algorithm was applied on the

UWB tracking data again. The performances of the applied filters have been improved about 4.2%

compared to the previous performances.

7.1 Future Works

Further work could investigate the performance of the IMMF-IR in other contexts. For

example, the core of the problem in this dissertation is how to detect and respond to an impulse in

dynamic motion. It may be interesting to investigate the relation of IMMF-IR to classic impulse

response filters in other domains of digital signal processing.
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Acronyms
AKF Adaptive Kalman filter

AMM Autonomous multiple model

AOA Angle of arrival

EKF Extended Kalman filter

GNSS Global navigation satellite system

GPB Generalized pseudo Bayesian

GPS Global positioning system

IMMF Interacting multiple model filter

IMMF-IR Interacting multiple model filter with impulse response

IMU Inertial measurement unit

INS Inertial navigation system

KF Kalman filter

LPS Local positioning system

MMKF Multiple-model Kalman filter

MMKF-IR Multiple model Kalman filter with impulse response

NLOS Non-line of sight

RF Radio frequency

RMSE Root mean square error

TDOA Time difference of arrival

TOA Time of arrival

UWB Ultra-wide band

WLS Weighted least square
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