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Abstract

This research considers training a deep learning neural network for segmenting and clas-

sifying eating related gestures from recordings of subjects eating unscripted meals in a cafeteria

environment. It is inspired by the recent trend of success in deep learning for solving a wide variety

of machine related tasks such as image annotation, classification and segmentation. Image segmen-

tation is a particularly important inspiration, and this work proposes a novel deep learning classifier

for segmenting time-series data based on the work done in [25] and [30]. While deep learning has

established itself as the state-of-the-art approach in image segmentation, particularly in works such

as [2],[25] and [31], very little work has been done for segmenting time-series data using deep learning

models.

Wrist mounted IMU sensors such as accelerometers and gyroscopes can record activity from

a subject in a free-living environment, while being encapsulated in a watch-like device and thus

being inconspicuous. Such a device can be used to monitor eating related activities as well, and is

thought to be useful for monitoring energy intake for healthy individuals as well as those afflicted

with conditions such as being overweight or obese.

The data set that is used for this research study is known as the Clemson Cafeteria Dataset,

available publicly at [14]. It contains data for 276 people eating a meal at the Harcombe Dining

Hall at Clemson University, which is a large cafeteria environment. The data includes wrist motion

measurements (accelerometer x, y, z; gyroscope yaw, pitch, roll) recorded when the subjects each

ate an unscripted meal. Each meal consisted of 1-4 courses, of which 488 were used as part of this

research. The ground truth labelings of gestures were created by a set of 18 trained human raters,

and consist of labels such as ’bite’ used to indicate when the subject starts to put food in their mouth,

and later moves the hand away for more ’bites’ or other activities. Other labels include ’drink’ for

liquid intake, ’rest’ for stationary hands and ’utensiling’ for actions such as cutting the food into
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bite size pieces, stirring a liquid or dipping food in sauce among other things. All other activities

are labeled as ’other’ by the human raters. Previous work in our group focused on recognizing

these gesture types from manually segmented data using hidden Markov models [24],[27]. This

thesis builds on that work, by considering a deep learning classifier for automatically segmenting

and recognizing gestures.

The neural network classifier proposed as part of this research performs satisfactorily well

at recognizing intake gestures, with 79.6% of ’bite’ and 80.7% of ’drink’ gestures being recognized

correctly on average per meal. Overall 77.7% of all gestures were recognized correctly on average per

meal, indicating that a deep learning classifier can successfully be used to simultaneously segment

and identify eating gestures from wrist motion measured through IMU sensors.
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Chapter 1

Introduction

This work addresses the problem of segmenting time-series data using deep neural networks

for identifying different activities that occur during a meal. The data for this research was collected

from a watch-like device worn by subjects on their hand while eating an unscripted meal. Examples

of activities include eating related movements such as taking a bite of food, drinking, cutting food

up into bite size pieces and masticating. Identifying these activities is challenging because different

people eat their meals differently, and hence the proportion of each activity is different for each

person. Moreover a meal is also associated with activities completely unrelated to eating, such as

gesturing to a friend, checking one’s phone or simply resting one’s hand before taking the next bite.

In data analysis segmentation is the grouping of data into sets such that each set exhibits

similar characteristics. Data is grouped based on some homogeneity property that all examples

from a given set exhibit strongly among themselves, while examples from different sets exhibit

poorly among each other. For example when grouping points that lie on a circle we can use the

distance from the center of the circle as a grouping property, since points that lie on the circle will

have the same radius. In the same example points that lie on different circles, or points that lie

outside the circle will have values greater than the radius and hence will be separated out. In the

context of activity tracking from wrist motion data, segmentation is the grouping of activities with

similar wrist movement into each corresponding category or ’gesture’ type.

Owing to the variety in wrist movements possible for a large set of people, it becomes very

difficult to design good features that can be used to characterize each segment of recorded activity.

Hence deep learning is considered important in this study. Deep neural networks can learn a set of
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Figure 1.1: Example of a person wearing a recording device while eating a meal.

representative features from the data provided, and are hence particularly useful in a scenario such

as the one considered in this study.

Deep neural networks are part of the family of machine learning models that are trained

using supervised learning. This means that deep learning neural networks require data to be labeled

or categorized before being used. The process of fitting a deep neural network to data is called as

training, and is one of the many steps that needs to be carefully designed.

Figure 1.1 shows an example of using the device to record eating activity. In the figure, a

subject is wearing a recording device on their right hand while eating. As it can be seen from the

central panel, eating in humans is characterized by three distinct movements of the wrist. These

are making a bite of food ready, turning the hand towards the mouth and moving the hand to the

mouth for actually taking a bite from the utensil (fork or spoon). It must be noted here, that the

same three distinct movements have been observed when eating without using utensils as well.

The rest of this chapter is organized as follows, section 1.1 explains why this research is

needed today, while section 1.2 gives a background on the sensors used to record wrist motion.

Section 1.3 describes related work, including that done by previous researchers in identifying and

characterizing segments from the same dataset. Section 1.4 gives a brief overview on deep learning,

and an example of how deep learning is used in image segmentation that is closely related to this

research. This chapter is concluded with section 1.5 which describes the novel approach taken in

this research study.
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1.1 Motivation

As per the World Health Organization (WHO) overweight and obesity are caused by the

abnormal and excessive accumulation of body fat in individuals [33]. The body mass index (BMI) of

an individual can be used as an estimate or indicator of whether the person is overweight or obese.

BMI is calculated as the weight of a person in kilograms divided by their height in meters [33].

Based on this, a person having a BMI greater than or equal to 25 is considered overweight, while

that greater than 30 is considered obese. Both of these conditions have been linked with several

chronic diseases including cancer, cardiovascular diseases and diabetes.

As per WHO, obesity has nearly tripled since 1975 [34]. As per the 2016 estimate, more

than 1.9 billion people worldwide that are 18 years or older have been classified as overweight.

Amongst these 650 million people were obese. Additionally 40 million children under the age of 5,

were reported to be overweight or obese in 2018, while in the age group of 5-19, 340 million children

or adolescents were overweight or obese as per estimates in 2016 [34].

In the United States of America, the Centers for Disease Control and Prevention (CDC),

have reported that the prevalence of obesity was more than 42% in 2017-2018. In nearly two decades,

from 1999-2000 to 2017-2018, the prevalence of obesity has increased from 30.5% to 42.4%, while

severe obesity has almost doubled from 4.7% to 9.2% [4]. The estimated annual cost of treating

obesity or obesity related disorders in 2008 was $ 148 billion, and the cost for people with obesity

$1,429 higher than that for people with normal weight [4]. Figure 1.2 shows the percentage of people

who reported themselves as overweight or obese in the United States of America during the year

2018, as reported by the CDC. On seeing the figure closely we see that all states and territories had

more than 20% of adults with obesity, with 22 states and Puerto Rico having obesity percentage in

adults between 30% - 35%, while 9 states having more than 35% of their adult population as being

overweight or obese [3].

As per WHO, the leading cause of obesity is the imbalance between the daily calorific

intake and expenditure in humans. This is mainly caused by the largely increasing sedentary forms

of work, transportation and increase in urbanization [34]. This increase in physical inactivity is also

accompanied by increased consumption of energy-dense foods high in fat and sugars.

While there has been an increase in the number of devices that can monitor physical activity

such as fitness-trackers and smartwatches, there is relatively little work done in the area of energy-
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Figure 1.2: CDC: Self-reported obesity prevalence map (2018) [3].

intake monitoring. Conventional methods for monitoring energy intake, including self-reporting and

24-hour recalls such as those described in [12] and [26] are prone to under-reporting and under-

estimation [27]. Additionally these methods are tedious, leading to non-compliance over time. All

this makes monitoring energy intake over time a very challenging task.

Hence this research explores one of the many ways in which energy intake can be reliably

tracked, over the duration of a meal. The foundational idea in our research group is to provide an

end user an accurate estimate of the total calories consumed in a given period of time, with the

additional goal of alerting people if they exceed their suggested daily intake. We believe that this

will certainly push people to be more careful with their daily calorific intake and hopefully help to

tackle the problem of growing obesity in the United States of America and even in other parts of

the world.

1.2 Inertial Measurement Unit Sensors (IMU)

In order to record the wrist activity of a subject, a watch-like device needs to be designed

using sensors capable of sensing motion such as wrist rotation, movement towards the food and back

again to the mouth. This study considers the data recorded using accelerometers and gyroscopes,
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which are themselves part of a large family of sensors fabricated using Micro-electromechanical

technology (MEMS). The advantage of sensors fabricated using this technology, is low cost, small size

and low power consumption [27]. Examples of other sensors from this family include magnetometers,

microphones and optical sensors.

1.2.1 Accelerometers

An accelerometer is an electromechanical device that is capable of sensing acceleration that

a body experiences due to an external force. This force experienced by the body can be static

like gravitational force, or it could be dynamic such as the one experienced while moving one’s

wrist around in regular movement [27]. Based on their specific design, accelerometers can sense the

acceleration, tilt and tilt angle, incline, rotation, vibration, collision or gravitational force acting on

the body on which they are mounted [17].

Typically MEMS accelerometers are fabricated as capacitive devices, in which an inertial

mass is attached to a spring and allowed to move along one axis. In addition to this mass, the sensor

also contains fixed plates that are mounted along the axis of movement.

The basic principle of accelerometer sensing can be explained using Newton’s second law of

motion and Hooke’s Law [27]. According to Newton’s second law of motion, the force (F ) experienced

by a body is directly proportional to the mass of the body (m) and the acceleration (a) it experiences

due to the external force.

F = m× a (1.1)

Based on Hooke’s law, when a rigid mass attached to a fixed end with a flexible spring is displaced,

the force experienced by the spring is directly proportional to the spring constant (k) and the actual

displacement (x) experienced by the body. This can be expressed as:

F = −k × x (1.2)

The negative sign in Equation 1.2 indicates that the force experienced by the spring is in the direction

opposite to that of the moving body. Combining Equations 1.1 and 1.2, we see that the acceleration
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Figure 1.3: MEMS Accelerometer: Sensing principle [19].

is proportional to the displacement of the body, given by:

a = −k × x
m

(1.3)

In practice, the acting forces displaces the inertial mass, causing capacitance change between

the moving plate and the fixed plates. This change is sensed as a voltage (V) which can be converted

to units such as meters/second2 (m/s2) or typically as a proportion of acceleration due to gravity

g = 9.81m/s2.

1.2.2 Gyroscopes

While accelerometers measure linear motion of a body along an axis, gyroscopes measure

angular velocity of a body along an axis of rotation. This adds more degrees of freedom in order

to accurately measure movement of a body in real-life [32]. The sensing principle of a gyroscope

is based on the application of the Coriolis effect for a vibrating body that experiences angular

motion. Specifically when a body having mass m oscillating with a velocity v, experiences an

angular velocity Ω, the rotating platform exerts a force F that is directly proportional to the three

quantities mentioned above. Corresponding to this, the sensing body experiences a reaction force

given by [32],[27]:

F = −2mΩ× v (1.4)

Similar to an accelerometer, gyroscopes sense angular velocity using differential changes in

capacitance of sensing plates. The schematic of the sensing mass shown in Figure 1.4a, shows the

oscillating mass tethered to the inner and outer substrates by compressible springs placed at 90

deg relative to each other. When the mass moves to the outer edges due to the Coriolis effect, the

oscillating mass retains its motion, and experiences a force given by Equation 1.4. This compresses
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(a) MEMS Gyroscope: Sensing mass. (b) MEMS Gyroscope: Coriolis effect.

Figure 1.4: MEMS Gyroscope: Schematic and sensing principle [32].

the outer springs as shown in Figure 1.4b, which causes capacitance changes in the sensing teeth,

which is converted to volts (V). Typically this sensor output needs to be converted to deg /sec

1.3 Related Work

Wearable sensors have been widely studied for monitoring energy intake in humans. This

section describes a few of these sensors, and briefly explains their sensing mechanisms to the reader.

For a comprehensive review, the interested reader is referred to chapter 1.4 of [27] as well as [22].

This section also describes why IMU sensors are thought to be the most suitable for the task of

monitoring eating activities. It concludes by detailing some of the work done by our research group

previously, and explains how this research builds on their foundational idea and takes it further.

1.3.1 Acoustic Sensors

As explained in [27], acoustic sensors, mainly microphones and piezoelectric strain-gauges

are used for detecting sounds that are associated with eating activities such as chewing and swal-

lowing. In [1], the authors considered a microphone located inside the ear canal to identify four

different types of food based on their characteristic chowing sounds. However as explained in [27],

such sensors suffer from environmental noise and hence reference microphones have been considered

to eliminate environmental noise while detecting chewing in works such as [20] and [21]. In [9], the

authors used a Bluetooth headset for sensing chewing sounds, and a Deep Boltzmann Machine for

detecting periods of eating with an accuracy of 94.72% for in-the-field testing. This indicates that

the idea of detecting eating activities through sounds in the ear canal or throat region is a viable

idea. However acoustic sensor based systems still suffer from environmental and background noise,
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limiting their use to laboratory studies or tests conducted under controlled environments [27].

1.3.2 Camera Based Systems

Unlike acoustic sensors which sense a proxy (chewing/swallowing) for detecting eating activi-

ties, camera based systems employ computer vision algorithms for detecting eating related activities

and volume estimation using 3D techniques for estimating the energy intake in participants [27].

SenseCam originally developed in [13] for helping patients with Alzheimer’s recollect their daily

activities, was used in [10] for recording eating activity in a free-living environment. In this research

study, 40 adult participants wore a SenseCam for 4 days (including 1 familiarization day) over a

period of 15 days. The recorded data was stored, analyzed and reported to the subjects as a way of

complimenting traditional self-reporting in free-living eating. In [29] the authors designed a wearable

computer called the eButton, which could be worn inconspicuously by participants for monitoring

daily activity such as eating and physical activity. The authors in [29] also proposed its application

for other tasks such as understanding sedentary behavior in subjects, assisting blind and visually

impaired people and helping older subjects suffering from dementia.

One concern regarding camera based systems, is the privacy of the individual using the

device, as well as that of other individuals with whom he/she might interact. In addition camera

based systems are cumbersome to wear, and are hence largely dependent on the compliance of the

individual wearing these.

1.3.3 Smart Glasses For Monitoring Food Intake

In recent years, there has been an increase in the focus on using smart glasses for monitoring

energy intake in participants. In [15] Huang et al., propose the idea of integrating an electromyogra-

phy (EMG) sensor on glasses that can measure the muscle activity of the lower part of the temporalis

muscle which touches the temple of the glasses worn by participants. This is one of the muscles

associated with mastication. Hence activity in this muscle can be used to monitor food intake. The

authors in [15] achieved 96% accuracy for counting the number of chewing cycles and up to 90.8%

accuracy for classifying between five broadly different food types in a group of seven participants.

More recently the authors in [36] and [37] proposed a similar approach, an EMG sensor along

with an accelerometer integrated into a 3D printed eyeglasses frame for monitoring chewing activity
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and eating related episodes in a free-living environment. In [37] the authors considered a set of 10

participants for their study and their method achieved average food hardness classification accuracy

of 94% and chewing cycle detection precision and recall of over 90% for their in-lab study. When

tested in the field, the accuracy of their method was reasonable, 77% for 122 hours of recordings.

Their eating detection algorithm revealed the 44 eating events they had considered with an average

accuracy of over 95%, thus prompting the authors to conclude that smart glasses were suitable for

monitoring chewing and eating in a free-living environment and could be used to analyze the wearer’s

natural chewing patterns.

Unlike camera based systems described in section 1.3.2, smart glasses based systems mitigate

the concern of individual privacy. Since data that is recorded cannot be used to uniquely identify

individuals by anyone except the researchers themselves, smart glasses offer a better alternative

to monitoring eating activity as compared to both acoustic sensors described in section 1.3.1 and

camera based systems 1.3.2. However these are limited to monitoring eating activities, as drinking a

liquid produces no significant activity of the temporalis muscle which is used in these aforementioned

works for monitoring dietary intake. In addition, not all individuals wear glasses. Hence a subject

who wants to monitor his/her dietary pattern, but does not wear glasses regularly may not be very

compliant with wearing a smart glasses based system for monitoring their eating activity.

1.3.4 Inertial Sensors

Based on the discussion in the previous sections for the different sensing modalities for

detecting eating related activities in individuals, we realize the need for one sensor type that can be

used by a larger group of people than those wearing eyeglasses. This sensing modality needs to be

inconspicuous to use, without drawing attention to the user and needs to be small so that it can be

worn on the body easily. Both of these factors would promote daily usage. It should be relatively

free from environmental and background noise as compared to the acoustic sensors in section 1.3.1,

and there should be no concern of individual privacy, which is major limiting factor in the use of

camera based systems such as those described in section 1.3.2.

Wrist-worn IMU sensors thus seem like the most appropriate form of sensing modality for

monitoring eating related activities in individuals. Unlike eyeglasses, a larger set of people wear a

wristwatch. IMU sensors such as accelerometers and gyroscopes have already been integrated into

devices such as smartwatches and fitness trackers. These can easily be used to sense wrist-motion
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and thereby track eating activities in individuals who are already comfortable wearing these devices

in their day-to-day lives. These sensors are relatively free from environmental noise, except for

vibration and shock, and these can be considered as exceptions to the general rule of thumb when

monitoring eating in individuals. There is no concern for individual privacy like that of camera based

systems, except in rare cases when the data can be accessed by individuals other than researchers or

medical care professionals administering these devices. As a good practice, researchers and medical

care providers can ensure that participant privacy is always maintained by using encrypting and

decrypting all data recorded by the device and also by never storing any information such as name,

age, sex or any other personal information of the participant on the device.

Previous work in our group [6],[7],[8] has focused on characterizing the motion of the wrist,

and designing an algorithm to count the number of times food or drink intake is detected. This

work was also extended to counting the number of bites per minute based on the recording of the

device called as the ’Bite Counter’.

More recently the work had shifted to detecting all different gestures that occurred during

a meal, using hidden Markov models (HMM) [24],[27]. A Markov model is a stochastic model that

can be used to predict the behavior of temporal or sequential data (data that can be ordered in

a sequence as time evolves). Sequential data usually evolves while maintaining some dependency

on its previous output as well as its state. A HMM is a special case of the Markov model where

the states of the model are hidden, or cannot be exactly observed, while the output is completely

observable. Additionally the stochastic process being monitored/tracked by a HMM is said to be a

Markov process. This means that the probability of the stochastic process being in the current state

conditioned on all previous states, is dependent only on the probability of the given state conditioned

on the probability of the previous state and no state before that. This can be expressed as [27]:

P (Xn = xn|Xn−1 = xn−1, ..., X0 = x0) = P (Xn = xn|Xn−1 = xn−1) (1.5)

Here Xn represents a state of the HMM or the stochastic process being modeled, while xn represents

its actual value and P is the discrete probability of the state, where X0 = x0 is the estimated initial

state. It is important to stress that the set of states as well as outputs in a Hidden Markov Model

are discrete, or limited to few possible values.

In [24] the authors considered three classifiers; a K-nearest neighbor classifier, a HMM that
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captures sequential context of subgesture motions and a HMM that models intergesture sequential

dependencies for detecting similar eating related gestures from a data set of 25 meals eaten by differ-

ent subjects. Based on the higher accuracy of the HMM that captured the sequential dependencies

between gestures; 96.5% as compared to 75.8% and 84.3% for the K-nearest neighbor classifier and

the HMM capturing sub-gesture motions respectively; the authors demonstrated that eating gestures

exhibit a sequential dependency among themselves. They suggested that this dependency can be

exploited for improving the recognition accuracy of eating related gestures.

Building on this idea, the author in [27] considered three main variations of HMM’s in

order to model eating in the human subjects. HMM-S considered five different HMM’s, one for

each gesture type considered. This strategy modeled each gesture as a sequence of sub-gestures.

For example a bite of food is often composed of activities such as raising food towards the mouth,

ingestion, and returning the wrist to rest on the table [27]. HMM-N extended this idea to N previous

gestures in order to improve the contextual information captured by a HMM in the task of gesture

recognition. This was loosely based on the idea used in speech recognition HMM’s.

Contextual varying HMM’s were also considered in [27] in which each gesture was further

categorized, in order to separate contextual information to better model the task of monitoring

eating gestures. For example the gesture ’bite’ was further divided into five variations: bite with

fork, bite with spoon, bite with both hands, bite with single hand and bite with chopsticks. These

sub-categories of ’bite’ would certainly be preceded and followed by different gestures and sub-

gestures for the large group of people that was considered. This was thought to improve the overall

classification accuracy of the HMM.

Most recently in [18], the authors used a two step process for detecting food intake via

wrist micromovements. In the first step a convolutional neural network (CNN) is used to learn the

probability distribution of five specific wrist micromovements. This is fed into a recurrent neural

network model known as a long-short term memory network (LSTM), which is used to capture

the temporal evolution of the sequence and classify sequences of food intake cycles. They evaluate

their model on the FIC dataset, which is available publicly at https://mug.ee.auth.gr/intake-cycle-

detection/. This dataset was created using commercially available smartwatches and is hence very

similar to the one being considered in this research. The authors in [18] compare their model against

three state-of-the-art methods, including the one reported in [7]. Their proposed method achieves

the highest F1 detection score of 0.913 in a leave-one-out crossvalidation approach, at detecting
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periods of eating from inertial measurements. This work is really motivating because it suggests

that deep learning can be used to learn features needed for classifying and identifying eating behavior

from inertial measurements of wrist motion.

However one common feature of most of these works, is that they considered pre-segmented

data. That is the data being considered in each of these, was divided by a human-expert into each of

the five gesture categories described in detail later. In [18] the authors did consider a sliding window

approach for generating continuous data used for training their neural network model. However they

assumed that the start and end moments of the meal are known. This corresponds to a situation

in which the user would manually start and stop the recording before starting a meal, and just as

it was about to end respectively. Additionally the FIC dataset they considered is centered around

eating using a fork, knife or spoon and other utensils such as chopsticks, are not taken into account

and neither is eating with bare hands. Finally the data set does not include recordings for drinking a

liquid, thus limiting the trained neural network at detecting only eating related gestures successfully.

The neural network considered in this research proposes a novel approach at monitoring

eating activity. It builds on the foundational idea behind most of the previous work within our

group, including [6],[7],[8],[24] and [27]. However it extends to data that is previously unsegmented

and considers ’drink’ related gestures as well. Hence the neural network classifier being considered in

this research must be able to successfully identify different periods of eating and non-eating related

gestures from data measured using IMU wrist mounted sensors, and it must simultaneously be able

to classify each segment into one of the five categories of gestures considered. This is described in

detail in section 1.5.

1.4 Deep Learning

A neural network is an inter-connection of computing nodes known as neurons, that are

inspired by biological neurons present in human brains. When a set of neurons is arranged with

each having a similar task, and being provided the same input, these neurons are said to be arranged

in a layer. A neural network needs at least two layers, an input layer and an output layer. The

input layer is of the same size as the input, and it works by simply feeding the input provided to any

subsequent layers connected to it. The size and function of the output layer depend on the specific

task that the neural network is being designed for.
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In addition to these two layers, neural networks typically contain one or more hidden layers

which learn a mapping from the given input space into a feature space which can be used for the

specific task at hand. The mapping is itself dependent upon a non-linear function known as the

activation function which is applied at the output of each neuron in a neural network, except for the

neurons present in the input layer. The process of updating a neural network to do better at the task,

is called learning, and it progresses by updating the mapping between layers till a fixed criterion is

met. The mapping between layers is a function of the weights attached to the synaptic connections

between different neurons. These weights get updated in the training of a neural network, and are

eventually stored along with the actual architecture of the network itself for use.

When the input and associated targets of the task are available to the designer, training

the neural network is known as supervised learning. Supervised learning is still the most common

form of training neural networks, in spite of the additional task of generating targets or labels for

individual elements of the input data. This is because the properties of supervised learning have

been widely studied by the pattern recognition and machine learning communities, and there is a

wide consensus regarding when a neural network is considered to be reliably trained.

Deep learning is a highly specialized area within neural networks. Deep learning typically

makes use of multiple hidden layers, each having different activation functions in order to learn

better mappings from input-space to feature-space. Deep learning has been steadily gaining a lot

of momentum in the research community and in industrial settings for the last couple of years.

As a result of this, there has been tremendous effort in researching, designing and implementing a

wide variety of hidden layers, their activation functions etc. The main motivations behind using

deep learning for machine related tasks are the versatility of designing models for a wide variety of

applications using deep learning, and the accuracy with which these tasks can be performed by a

carefully designed model.

Another advantage, and one that is often overlooked when using deep learning, is that

of its re-usability. Typically neural network architectures used for classification follow the same

hierarchical structure of mapping layers followed by downsampling layers arranged in a block. This

block is repeated as many times as necessary, and is followed by one or more fully connected layers

known as dense layers. Hence the architecture used for classifying one set of data such as a collection

of street images, can very easily be re-used by resetting the weights and training the neural network

with another set of images, say those of different clothes. Since the architecture does not differ much
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between these two tasks on similar but distinct data, the neural network can be repeatedly re-used

for both tasks. This functionality can be extended to other sets of images, as long as the data in

the images and neural network architecture do not change much between different tasks.

A final advantage to using deep learning for tasks such as classification, sorting and labeling,

is the concept of transfer learning. Typically owing to their hierarchical structure, deep learning

networks learn the same features for similar data at the higher levels or in the first few layers, with

task specific features or combinations of useful upper level features being learnt in the subsequent

layers. This means that several upper level layers are multi-functional and can be used without

modification for the similar task on different datasets. This greatly improves the versatility of

neural networks, although the performance of the new network is not guaranteed to be the same

as that of the original network. Current research in transfer learning is focusing on understanding

the relation between upper level and lower level layers, and improving the mapping quality between

these in order to enable neural networks to be used without much modification for several tasks.

At this point it must be noted that it is unwise to think that a deep learning neural network

is always required or preferred for a machine related task such as classification, information-retrieval

or labeling. While deep learning has produced state-of-the-art models in most of the tasks mentioned

above, it has taken the researchers and practitioners that designed those models several years in order

to collect the data that was required for reliably training the neural network within each model.

While this was initially seen as a drawback of deep learning models, it is now becoming clear that

acquiring the right kind of data to train a deep learning model, is often a simpler task than designing

a model from start to end using classical approaches.

1.4.1 Deep Learning For Image Segmentation

Image segmentation is the task of labeling each pixel in an image based on some membership

criteria with respect to a fixed number of categories. This is used to understand the image at a lower

level than classification [30]. Typical approaches in computer vision and machine learning solve image

segmentation using a matched filter, in which a window of data having certain properties such as

sensitivity to angles, straight lines, shapes etc. is run through the entire image in a pixel-by-pixel

manner. Based on the specific filter chosen, regions in the image having strong similarity to the

matched filter produce a higher output than regions having weak similarity.

The output of the matched filter can hence be used to determine which regions most resemble
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the desired shape, structure etc. that is present in the matched filter. This output may be used

to train a classifier, over each image region, which would then be used to classify each pixel within

the image region as belonging to one of the many classes chosen for the given classifier. Please note

that this is a form of correlation based matching, in which the cross-correlation between the image

region and the matched filter is used to determine locations having properties similar to that of

the matched filter. In order to use a convolution based approach, the matched filter in question

would have to be symmetrically rotated about its axis and then run over the image in the same

pixel-by-pixel manner.

Recent advances in deep learning, have used a Convolutional Neural Network (CNN) trained

on image patches or regions extracted from around each center pixel in order to obtain a class or score

based on which category each image patch belonged to [5]. These networks comprise of convolutional

layers that work on the same principle of correlation based matching for feature extraction. However

the key difference is that the filter or window is learned iteratively in each layer within such networks.

As explained in [25] this strategy has two drawbacks. First training the network on each

image patch is very slow and redundant as surrounding patches usually have only a few pixels that

are different except for patches considered around the boundaries of objects within images. The

second drawback of this approach is the tradeoff between localization accuracy and context. Larger

patches require more max-pooling layers, those that aggregate information from previous layers,

while smaller image patches do not allow the network to see much context [25].

Hence the approach followed in [25] and [30], differs significantly than the ones mentioned

above. In these approaches a CNN is trained to produce an output image having the same size as

the input image, with fewer or greater number of channels. Each channel represents a probability

of the corresponding pixel belonging to each respective category. This can be pictorially explained

using Figure 1.5.

A neural network, such as the one described in [25] takes as input a standard RGB image,

in which intensity for each pixel is stored as a 3-dimensional vector. Each component of the vector

corresponds to the intensity of the pixel with respect to the red, green and blue channels respectively.

Other color formats are also used, but the RGB format is the most common type. In addition to

the RGB image, the neural network is also provided with a target image, containing the class or

category of each pixel as input. For example, the first pixel in the input image considered in Figure

1.5 belongs to class 2, the second one to class 0, the third to class 1 and so on.
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Figure 1.5: Image segmentation via pixel class prediction.

Based on these inputs, the neural network considered in [30], produces an output image

having three channels corresponding to the number of classes. After successfully training the neural

network, we can expect an output as shown in Figure 1.5. As it can be seen, the value for channel

2 in the output is higher than those in channels 0 and 1. This indicates that the probability of the

first pixel belonging to class 2 is higher than that of the other classes, and hence it is classified as

belonging to class 2, which is the correct output.

This basic idea for image segmentation was extended in [2], which used a deep fully convo-

lutional neural network for semantic pixel-wise image segmentation. The novelty in their approach,

known as SegNet, comes in the decoding phase, in which the decoder uses pooling indices computed

in the max-pooling stage of the corresponding encoder block to first perform non-linear upsampling.

These upsampling maps are sparse and are then convolved with trainable filters for producing dense

feature maps, thereby eliminating the need for upsampling.

As observed in [31], although deep learning methods have achieved state-of-the art perfor-

mance in medical image segmentation, they have not yet demonstrated the necessary accuracy or

robustness needed for clinical use. Hence the authors in [31] propose an interactive segmentation

framework by incorporating a CNN into a bounding box along with a scribble-based segmentation

pipeline. This allows for image-specific fine tuning through the use of a weighted loss function al-

lowing the model to learn and predict previously unseen object classes. As per the authors this
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improves the robustness of the segmentation model and also improves image-specific segmentation

accuracy.

Thus deep learning has been considered by the research community for a variety of image

segmentation tasks, achieving state-of-the-art results in many of these applications. However it

has not been applied for the task of segmenting time-series data, such as that recorded from IMU

sensors. This is the main motivation behind considering a deep learning classifier for our research

as explained in section 1.5.

1.5 Novelty Of Our Approach

The idea of image segmentation using deep learning as described in section 1.4.1 essentially

casts image segmentation as a classification problem. The notable difference however is that instead

of producing a classification score for the entire image, the network produces a score for each pixel.

The weights learned by the neural network, can hence be considered as set of matched filters which

produce locally strong responses in the image to structures contained within each matched filter.

It is common practice for convolutional layers in a CNN to be succeeded by pooling layers. These

successively downsample the response of the network after each convolutional layer. In this way,

only the strongest set of responses are retained for each set of matched filters.

Since the network output needs to be of the same size as the input image, an additional

category of layers is used, called as deconvolutional layers, or up-convolutional layers [25]. These

produce an output that is successively bigger in each layer based on the choice of the filter window

being considered in each layer. These are described in greater detail later on in this report. For

now, the reader should appreciate the fact that a neural network can be trained using end-to-end

learning for labeling each pixel in an image, based on its category or class.

Similar to the idea of using convolutional neural networks for classifying each pixel from a

2-dimensional image, this work considers using convolutional neural networks for segmenting a data

set of time-series. Specifically the data available to us is measured using IMU sensors, specifically

a 3-axis accelerometer and a 3-axis gyroscope fitted inside a watch-like device worn by subjects

on their wrist. This device kept recording while the subjects each ate an unscripted meal for

varying amounts of time. Following this, the data was labeled as belonging to one category from

’bite’,’utensiling’,’drink’,’rest’ and ’other’ by a set of human raters. For details regarding the inter-
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rater agreement and reliability, the interested reader is referred to [27]. Each of these gesture-types

can be considered as a category or class to which a given instance of time belongs to, in a particular

meal.

Hence the novel research question being considered in this work, is whether a deep learning

classifier can be trained to detect and automatically segment such eating related gestures from

previously unsegmented IMU data. The rest of this report, provides more detail on how such a

network was designed, trained, tested and evaluated. It also provides more information about the

data set itself, the preprocessing steps required for converting the data into appropriate units for

the accelerometer and gyroscope readings, as well as those required to make the data suitable for

training for a convolutional neural network.
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Chapter 2

Methods

This chapter provides a detailed description of the actual data used, analysis and design

for the neural network architecture, data preprocessing as well as the evaluation metrics used and

strategies followed for labeling each instance of time within a meal.

2.1 Data

The data for this research was collected from 276 participants eating a meal at the Harcombe

Dining Hall at Clemson University, which is a large cafeteria setting. Each participant ate a meal

that consisted of 1-4 courses. The data includes wrist motion measurements (accelerometer x, y,

z; gyroscope yaw, pitch, roll) recorded using IMU sensors fitted inside a watch-like device that

each participant wore on their hand. Of the total number of courses, 488 were retained as part of

this research. This data is publicly available on the following website [14]. For demographics of

the participants such as age, ethnicity, sex etc. as well as other information regarding the actual

experimental setting, the interested reader is referred to chapter 2 of [27].

In order to measure the wrist-motion of each participant, a ST Microelectronics LIS344ALH

accelerometer, and a ST Microelectronics LPY410AL gyroscope were used. As a reminder to the

reader, an accelerometer when mounted on a person’s wrist measures the orientation of the wrist

with respect to a fixed axis, while a gyroscope measures the angular velocity when the wrist is

turned. These particular devices were chosen as they have three degrees of freedom each, and

can hence measure the wrist movement with a total of six degrees of freedom. In addition to the
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measurements from these devices, the recordings also contain a measurement from OHAUS Scout

Pro SP4001 scale. The last measurement is not a part of the training data used, but is mentioned

for the sake of completeness. Hence each recording contains 7 columns of measurements, where the

first 6 columns of measurements are from the 3 axes of the accelerometer and the yaw, pitch and

roll measurement of the gyroscope respectively. As an additional note, all data was recorded at 15

Hz.

2.1.1 Converting A/D Voltages

As mentioned earlier, sensor readings are typically in volts (V) and hence must be converted

into useful quantities when being used for practical applications. For the accelerometer data this

can be expressed as follows:

Gacc = (Vacc − 1.65)× 5.0

3.3
(2.1)

Here, Vacc represents the voltage measured in each column of the accelerometer recording, while Gacc

represents the converted value in gravities relative to the acceleration due to gravity g = 9.81m/s2.

For the gyroscope measurements, conversion can be expressed as:

Dgyr = (Vgyr − Zerogyr)× 400 (2.2)

Where Vgyr represents the gyroscope output voltage in each column of the recording, and Dgyr

represents the converted output in deg/s. For the gyroscope measurement conversion, we need to

calculate an additional term denoted by the term Zerogyr. This value is the average of the gyroscope

measurements for each of the yaw, pitch and roll axes, and must be calculated separately for each

meal/recording. It’s typical value is around 1.25, and is needed to account for small voltage drifts

for the 0 deg/s reference point as mentioned in [14].

2.1.2 Ground Truth Generation

As mentioned earlier, in a supervised learning setting, any classifier requires targets or labels

associated with the data. The process of adapting a classifier to be more suitable for the task at

hand, requires that the classification output be as close to the corresponding target as possible for

each training example. This means that generating the correct ground truth is as important as
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generating data in case of a supervised learning setting such as a deep learning classifier.

The process of generating these targets, is often called as preparing the ground truth for

the machine learning model or classifier. This research uses the same ground truth labels as those

mentioned in [27]. Since the primary task of this research is automatic segmentation of eating

related activities, the number of intake gestures considered is higher than that of non-intake related

gestures. These as ’bite’, ’utensiling’, ’drink’, ’rest’, ’other’ and ’unlabeled’. The first five gestures

are the same as those defined in [24] and [27]. The last gesture is unique to this research and is

needed because each time instant needs to be labeled in order to use our approach of neural network

based classification. Each of the other gestures can be defined with respect to the following:

1. the description of the activity;

2. the start time of the activity;

3. the end time of the activity;

4. any particular events that need to be included or excluded;

Bite

1. The subject puts food in their mouth.

2. The gesture starts when the hand or utensil starts moving towards the mouth.

3. It ends when the hand or utensil finishes moving away from the mouth.

4. A bite need not begin and end at a plate. Any motion towards and away from a mouth should

define the gesture boundaries. In addition a bite may include multiple successive back-and-

forth motions to and from the mouth, as long as each did not complete the hand motion away

from the mouth was not completed and which were separated by less than 1 second.

Drink

1. The subject puts a beverage into their mouth.

2. The gesture starts when the cup or glass starts moving towards the mouth.

3. It ends when the cup or glass finishes moving away from the mouth.

4. For multiple sips, each should be treated as a separate drink.
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Utensiling

1. The subject uses an utensil or their hand(s) to manipulate, stir, mix or prepare food for

consumption.

2. The gesture starts when food begins to be manipulated.

3. It ends when the manipulation ends.

4. This includes moving food around the plate, cutting food into bite sized pieces, dipping food

in sauce is also considered as a utensiling activity along with other similar activities.

Rest

1. The subject’s dominant hand has little or no motion. The range of motion that may be

considered rest differs from individual to individual. Different people have different levels of

physiological tremor (motion that occurs in everyone and has no medical significance) and thus

the threshold for maximum motion during rest will vary subject to subject.

2. Gesture starts when the instrumented hand stops moving.

3. It ends when a new intent becomes clear (instrumented hand starts moving again with clear

intent for at least 1 second).

4. Only the instrumented hand must be considered when considered when determining rest. It

may include the period when the subjects holds a morsel, drink or utensil still, remaining

relatively motionless.

Other

1. All other actions such as reaching towards food (before an actual bite), gesturing while talking,

cleaning the face with a napkin or moving a plate should be considered as other activities.

2. The subject’s facial expression may be used to discern when the gesture type is ambiguous.

For example slight movement in the instrumented hand when talking may be treated as other,

instead of rest, since this is not a period of rest in between eating activities.
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3. This gesture should be used when the definition between rest and other such as the one scenario

mentioned above, or that between utensiling and other is unclear.

In addition to these five main gesture types similar to the ones defined in [27], an additional type,

’unlabeled’ was considered when creating the data set for this research. This category marks all

instances of time where no activity was labeled by the human annotator. As mentioned earlier, this

gesture type needed to be defined for this research, because each instant of time needs to have a

label in order to use a neural network based classifier for segmenting and identifying gestures from

our data set. For generating the ground truth, a total of 18 raters manually labeled the meals based

on the directions provided above. These raters were trained in several sessions to understand the

process and the definitions of the gestures [27]. A total of 51,614 gestures were manually labeled,

for a set consisting of 276 subjects. Of these the gestures for 264 subjects were retained, and are

also publicly available on [14]. For details such as the assessment of inter-rater reliability, modifying

ambiguous labels etc. the reader is encouraged to refer to chapter 3 of [27].

Figure 2.1 shows one recording of data and ground truth displayed on CafeView, the custom

tool software built by our research group to visualize the data. The central green line in the figure

marks the actual position being observed. The color codes on the left indicate the gesture type that

was labeled by the human annotator, while the actual gesture appears below the actual measurement.

These color codes are as follows, a bite is indicated with red, a drink with aqua, utensiling is labeled

with orange, rest with black and the gesture type other is labeled with a gray. Each annotator marked

the ground truth while watching a video of a subject eating a meal. This process is described in

greater detail in [27].

2.1.3 Sliding Window Approach

Sequential data evolves over time, and hence maintains some relation with its past events.

That is to say data measured previous to the current recording as well as data a few time-steps

ahead is of vital importance in analyzing a given measurement of time. This means that a window

of measurements needs to be considered when training a neural network based classifier for predicting

on time-series data. This allows the temporal relationships between different time-instances to be

seen as individual inputs by the neural network, thereby allowing it to learn a good set of features

based on these temporal relationships. This is a key difference in analyzing images and sequences
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Figure 2.1: CafeView: Example of measurement data & ground truth for one meal. Gesture labels
are red: bite, aqua: drink, gray: other, black: rest, orange: utensiling

using deep learning neural networks.

For this research a sliding window of 30 seconds duration was considered, meaning that a

window of data contains 450 consecutive measurements from each of the 6 axes of data mentioned

earlier. In addition the ground truth label considered for each window is a sequence of labels for each

time-instant as identified in the ground truth file, or marked as unlabeled by a software program.

The parameter 450 is known as the window length, while the period 30 seconds is known as the

window duration. For this particular research, 30 seconds was thought to be an adequate window

size, in terms of the number of measurements to reliably train a deep learning classifier.

In addition to the window length, another parameter of interest is the window stride, which

determines how much the sliding window shifts in each iteration of data generation. This was chosen

as 15 measurements, corresponding to 1 second of time. This means that once a sequence of 450

measurements is considered, the window shifts by 15 time-steps and the next sequence starting from

the new start of the window, up to the next 450 consecutive measurements is considered in the new

window.

This entire process is illustrated in the flowchart in Figure 2.2. HereM stands for the number

of windows in each recording, and is a parameter that varies with each meal. Due to the sliding

window, and because not all meals are guaranteed to be of the same duration, the data generation

24



algorithm needs to monitor that an out of data index is not encountered before proceeding in each

iteration. In addition to this it also needs to monitor that the maximum number of windows allowed

per recording is not exceeded. This value was set to 20,000, which is sufficiently high and can be

used to extract data from all recordings present. In practice, the data acquisition part continued

till the last window fitted just inside of the final data index indicated by the gesture ground truth

file. Any indices beyond this were not considered for training the neural network. The exclusion

can be justified by observing that most eating related activities would more likely occur towards the

start or in the middle of each recording. The later part of each recording would most likely include

periods of extended rest, or inactivity from the subjects.

As it can be seen in Figure 2.2, the gesture unlabeled was identified using the purple color.

The instances of time in between the three gestures (bite, drink and rest) marked by a human

annotator are all identified as unlabeled. In Figure 2.2, N represents the last index of the recording

which fits just inside the last window M . Both these parameters vary from meal to meal, and the

program used for generating the data set does take this into account. It also monitors that the end

index of the last window does not go out of range from the last ground truth entry, and that the

total number of windows does not exceed the maximum mentioned above.

2.1.4 Data Normalization

When dealing with neural networks, an additional step known as data normalization is

needed, which is distinct from the step of normalizing units as described in section 2.1.1. This

process is generally independent of the data generation steps and is hence performed once the entire

data set is available but before the neural network is trained. In earlier experiments, our group found

that neural networks are particularly sensitive to data normalization. We observed that this step

was crucial, and without which a neural network did not learn any useful feature-mapping for a very

simple case of classifying lines having positive and negative slope. The choice of data normalization

is typically task dependent, and there is generally no way of knowing which normalization technique

to use, prior to the actual experimental setting.

For this work, the strategy of min-max normalization was chosen, based on previous expe-

rience within the group, when this strategy worked well for training neural networks on sequential
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Figure 2.2: Creating data set and ground truth labels for each sliding window.
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data. This can represented as follows:

xscaled =
xmeasured − xmin
xmax − xmin

(2.3)

Here xmin and xmax represent the minimum and maximum value recorded for each of the 6 axes

of data mentioned at the start of Section 2.1. These values were calculated separately for each

recording, adding a small computation overhead on the overall algorithm. Correspondingly xmeasured

and xscaled represent the measured value and scaled value for each data entry respectively. Figure

2.3 displays the results after normalizing one sequence of input data for each of the 6 axes of input

measurements.

2.2 Deep Learning Network

This section describes the main types of neural network layers that were used in developing

the deep learning classifier and their role in the overall neural network architecture. Many of these

layers are used more than once. However no two layers are the same, as each layer operates on data

of different sizes. For example the first convolutional layer operates on a sequence length of 450,

corresponding to the number of measurements in each window, whereas the next convolutional layer

in the structure operates on a sequence length of 225. This is obtained by downsampling the output

of the previous layer. In contrast the deconvolutional layers operate on sequences having smaller

length. The layer operation produces a sequence having greater length by convolving it with a filter

window after zero padding the input sequence. Each of these functions is described below:

2.2.1 Reshape Layer

This layer is an additional layer from the one considered in [25] and [30] and is needed

to reshape the data to be compatible for use with the convolutional layer used later in the neural

network architecture. Figure 2.4 shows the general idea behind the reshape layer for reshaping one

window of data. The input to this layer is a data array of size 450 × 6 which is reshaped to be a

3-dimensional array of size 1 × 450 × 6 where each measurement from the IMU sensors mentioned

earlier, is now treated as a channel of information. In terms of the machine learning data, this new

array can be considered as a 2-dimensional image, consisting of 6 channels of information.
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Figure 2.3: Normalizing one sequence of data.
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Figure 2.4: Reshaping input for compatibility with the neural network.

2.2.2 Convolutional Layer

This is one of the most important layers in the neural network, responsible for generating the

feature maps from which the neural network learns representations of the input data. Convolutional

layers are the core building blocks of CNN’s, consisting of a set of learnable filters or weights.

Although the size of each filter is usually very small as compared to the size of the image or in this

case the sequence of data, each filter is repeatedly convolved throughout the entire length of the

data for generating a useful representation.

As an additional feature, convolutional filters are said to share parameters, that is a single

filter is used throughout the length of the sequence. This stems from the idea that an important

pattern may occur more than once in a given sequence, separated by a finite temporal resolution. The

number of filters in each convolutional layer is called its depth, and determines the dimensionality

of the layer output, known as the activation map. It must be noted that a filter is also run along

each channel of information separately. In this way a convolutional filter captures both the temporal

information, as well as the information present each channel of its input.

Even in convolutional layers, the stride plays an important role as it did in the feature

generation part. Stride determines the shift in each convolutional filter, as it runs over the length of

the sequence. It can thus be used to control the size of the activation map as well. In TensorFlow,

there are two options for choosing the parameter stride. These are valid and same with very

distinct functions; choosing stride = ’valid’ convolves the learnable filter along the data sequence

without any zero padding. This results in an output sequence that is smaller than the input in the

same way as convolution of a sequence of numbers with a function in classical signal analysis yields
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a smaller output signal if no zero padding is used. Choosing stride = ’same’, however pads the

input sequence with zeros on either side, so that that output sequence has the same length as that

of the input. As a consequence, the latter was when designing the neural network for this research.

Setting it this way allows us to control the size of the activation map very easily, and downsampling

can be achieved easily as well, using the max-pooling layer described later.

Since the kernel size, the depth of each convolutional layer and its stride are so important

when designing deep learning classifiers, these are often treated as the most important parameters

of a CNN. Note that however, each of their function as well as that of other parameters must be

carefully understood before designing a neural network.

Table 2.1 lists all filter size, stride and depth of each convolutional layer in the neural

network. On seeing this, the reader should observe that the kernel size is a 1-dimensional window

with the first parameter always set to 1. This is because of the earlier reshape operation mentioned

in section 2.2.1 in which the data sequence was reshaped as a 3-dimensional image of size 1×450×6.

Another interesting observation is that the filter size kept reducing as we went deeper into the neural

network architecture, whereas the number of filters that were learned kept on increasing, doubling

actually at each stage. Such an approach was followed in [25], and was hence adopted for this

research as well. The size of the first filter was chosen as 15 along the dimension corresponding to

the axis running along the sequence length. This is because measurements have been recorded at

15 Hz as mentioned earlier, hence using this approach the neural network analyzes each sequence of

input data, 1 second at a time. Owing to the max-pooling layer described later, the activation map

of the convolutional layer is downsampled, and hence the filter size is also reduced by about half in

each subsequent layer. This effectively means that the neural network analyzes the response of the

first convolutional layer at a resolution smaller than a second in the subsequent convolutional layers.

The number of layers and filters chosen was very small as compared to [25]. This can be

explained as follows; the size of each input to the neural network considered in [25] is 512 × 512.

Such a dense array contains far more information for a convolutional layer to train on as compared

to the array size of one input sequence of time-series data such as the one considered in this research.

As mentioned earlier, the size of each individual input sequence to the neural network is 450 × 6,

which is far smaller than the size of the input to the neural network considered in [25]. Hence it was

decided to use a smaller set of output filters in each convolutional layer, and fewer convolutional

layers as well.
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Layer Kernel size Stride Number of output filters
Convolutional Layer 1 (1,15) 1 8
Convolutional Layer 2 (1,7) 1 16
Convolutional Layer 3 (1,5) 1 32

Table 2.1: Convolutional layers: Filter size & output dimensionality.

2.2.3 Batch Normalization

Batch normalization was originally introduced in [16] as a way of improving the training in

neural networks by reducing the shifts in internal covariance of a deep learning neural network. These

shifts are caused by the change in the distribution of a layer’s input due to changing parameters of

the layer preceding it. Loosely explained, as the weights and biases in the previous layer change, so

does the output of the layer, which is being fed directly or through an activation function (described

in section 2.2.4) to the next layer. As explained in [16] this slows the training of neural network by

requiring slower learning rates and careful parameter initialization. Using batch normalization the

output of a preceding layer is normalized in a manner analogous to the data normalization described

in section 2.1.4, with the key differences being that batch normalization is done repeatedly within

a neural network, and that the parameters required for batch normalization are learned during the

training phase of the neural network as explained in [16].

It can be expressed as follows; given a small set of m training examples, henceforth referred

to as a mini-batch, the outputs of one intermediate layer (that precedes another) can be expressed

as B = {x1, x2, ...xm}. The output can be modified using a transformation (batch normalization),

expressed as yi = BNγ,β (xi) where γ and β are parameters that are learned. The procedure for

performing batch normalization during training is defined as follows:

1. For each mini-batch of layer outputs, B = {x1, x2, ...xm}:

(a) Calculate mini-batch mean:

µB ←
1

m

m∑
i=1

xi (2.4)

(b) Calculate mini-batch variance:

σ2
B ←

1

m

m∑
i=1

(xi − µB)
2

(2.5)
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(c) Normalize outputs using the above calculated values:

x̂i ←
xi − µB√
σ2
B + ε

(2.6)

Where ε is a small offset, added to avoid division by zero.

(d) Scale and shift normalized responses:

yi ← γx̂i + β ≡ BNγ,β (xi) (2.7)

As a final note on batch normalization, we must note that the mini-batch statistics µB and

σ2
B are computed only during the training phase of the neural network. As explained in [16], during

testing or inference we want the output to depend only on the input deterministically. Hence we

calculate moving averages of the mini-batch statistics, which can be expressed as:

1. For each activation map (x) within a given network, calculate the moving average of the

mini-batch statistics µB and σ2
B as mentioned earlier:

(a) Update the mini-batch statistics in each training epoch using the following:

E [x]← EB [µB] (2.8)

V ar [x]← m

m− 1
EB
[
σ2
B
]

(2.9)

Where m is the size of each mini-batch as mentioned earlier, Equation 2.9 represents the

unbiased variance estimator and EB is the expectation over training mini-batches of size

m, having sample statistics as µB and σ2
B [16].

2. The linear transformation for batch normalization is changed from Equation 2.7 as:

y =
γ√

V ar [x] + ε
· x+

(
β − γ · E [x]√

V ar [x] + ε

)
(2.10)

where γ and β are learned for the activation corresponding to each layer, as mentioned earlier.

Batch normalization was used after each convolutional and deconvolution layer for the neural
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network considered in this research. The reader is alerted is to an on-going debate in the neural

network community whether batch normalization is to be performed before or after the activation

function, described next. There has been no general consensus regarding this subject, and a beginner

in this field does find himself/herself feeling a little perplexed regarding the correct sequence of

these two operations. For our research we decided on placing the activation function after the

batch normalization operation, since this was the approach followed in the neural network known

as pix2pix referenced in [30].

2.2.4 Activation Function

The activation function is the main non-linear component of a neural network architecture.

Activation functions are used to transform the output of a neural network’s layer into a range that

depends on the specific activation function chosen. All layers in a neural network have an activation

function, with the exception of the input layer and the reshape layer considered in this research, as

these are used to simply broadcast the input to subsequent layers in dense networks or be operated

upon by the first mapping layer in networks such as CNN’s.

Covering the entire range of activation functions is beyond the scope of this research, and the

interested reader is instead referred to a wide variety of articles and papers that are available online,

and that offer a lot of theoretical background as well as practical examples of different activation

functions used in different applications. For this work two activation functions were used, and these

will be described in detail in this subsection. Each intermediate layer in the neural network designed

as part of this research used a Rectified Linear Unit (ReLU) activation function, whereas the final

output layer fed its response into a Softmax activation function.

2.2.4.1 Rectified Linear Unit (ReLU)

The rectifier activation function is defined as the positive part of its input argument, denoted

as:

f (x) = x+ = max (0, x) (2.11)

It was introduced in [11] as a better alternative training-wise to the logistic sigmoid and hyperbolic

tangent activation functions which were widely used in neural networks prior to this. Currently it

is one of the most popular activation function being used in the neural network community owing
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to its ease of use, and because it allows very large networks with a variety of hidden layers to be

effectively trained for many applications. A neural network unit employing the rectifier activation

function is known as a rectified linear unit (ReLU).

2.2.4.2 Softmax

The softmax function is another activation function that has found widespread use in the

neural network community, over other functions such as the binary sigmoid or the hyperbolic tangent

function mentioned above. The main reason for its popularity, is because it allows us to convert the

non-normalized output of a neural network into a probability distribution over the predicted output

classes. It is mainly used in the final layer of a neural network, as follows. Let z = (z1, z2, ....., zK) ∈

RK be the K outputs of a neural network classifier. The standard softmax function (σ : RK → RK)

is then defined as:

σ (zi) =
ezi∑K
j=1 e

zj
∀zi ∈ z (2.12)

It can be easily verified that the sum of all transformed outputs will always be 1, and that each

output would always be in the range [0,1], lending to the probabilistic representation of the network

output. Hence the output of a neural network after applying a softmax activation function on its

final output can be interpreted as an output probability predicted by the neural network with respect

to each class of data considered.

2.2.5 Max-pooling Layers

These layers are used to retain the most significant response from the activation map of

previous layers. This is thought be be similar to the operation of feature selection in classical

machine learning models. These layers thus prevent the neural network from learning based on

weaker features, which may not be useful in the classification task considered.

The max-pooling operation is a downsampling operation that can be done over any dimen-

sion of the input provided to a max-pooling layer. For this research only the dimension along the

sequence length was considered for downsampling while all other dimensions were retained. Hence

the size of the filter in each max-pooling layer was chosen as (1,2) which instructs the software to

only consider the stronger response from two consecutive responses of the previous layer, and upon

doing so move to the next two consecutive responses without operating on the first two again.
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2.2.6 Transposed Convolutional Layers

Transposed convolutional layers, sometimes called deconvolutional layers were first intro-

duced in [35] for the task of image analysis and synthesis via learned mid-level representations.

These were used in [25] and [30] for the task of image segmentation in the latter half of the model

known as the decoding phase.

As explained in [23], these layers produce an activation map or output of a fixed resolution,

based on an input that may be a downsampled version of an earlier activation map of the same

resolution. In order to do this the software pads the input with zeros along each dimension and

performs a convolution similar to that in convolutional layers. The kernel or the filter is also learned

similar to that in convolutional layers. Hence the only difference between these two layers is in the

zero-padding. While zero-padding is an option in convolutional layers, it is the default first step in

a deconvolutional layer.

Owing to their same functionality, both convolutional and deconvolutional layers are followed

by the same operations of batch normalization and activation function. However the step of max-

pooling the response of a deconvolutional Layer is discarded, since we need an output of a bigger

size than that provided as input to each deconvolutional layer. This process is referred to as up-

sampling in [30], although there are some key differences from this operation and up-sampling as it

is explained in the context of classical digital signal processing.

Similar to convolutional layers in section 2.2.2, the kernel size, stride and number of output

filters are important parameters in deconvolutional layers. For the neural network considered in this

research, these are listed in Table 2.2. Notice that unlike the convolutional layers in Table 2.1 the

number of output filters reduces as we increase the number of deconvolutional layers. This structure

is also adapted from the neural network in [25] which use a decreasing number of filters in each

deconvolutional layer, till the depth of the last deconvolutional layer is equal to the desired number

of output classes. The parameter stride is of particular importance in deconvolutional layers.

Choosing stride = (1,2) tells the software to pad one zero on both sides of the axis corresponding

to the sequence length of the input to each deconvolutional layer. Hence the deconvolution operation

increases the size of its input along the axis of the sequence length, creating sequences of increasing

length in each stage of deconvolution. The kernel sizes for each deconvolutional layer are the same as

those of their corresponding convolutional layer, and this choice was made for the sake of maintaining
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Layer Kernel Size Stride Number Of Output Filters
Deconvolutional layer 1 (1,5) (1,2) 32
Deconvolutional layer 2 (1,7) (1,2) 16
Deconvolutional layer 3 (1,3) (1,2) 6

Table 2.2: Deconvolutional layers: Filter size & output dimensionality.

a symmetrical structure in the model. The kernel size in the final deconvolutional layer was chosen

as (1,3) in order for the neural network to generate locally strong responses over shorter temporal

lengths while generating the final output of the classifier. Note that a 1 × 1 kernel size also exists

in neural network literature, but was not thought to be of much use, as this would not consider any

temporal relationship between an element of the output from the penultimate deconvolutional layer

and its immediate neighbors.

2.2.7 Stacking Multiple Layers Into Blocks

Another common feature in deep learning is the arrangement of multiple functional layers

in a sequential manner, known as a block. A neural network can have many such blocks arranged

repeatedly in a hierarchical structure. The neural networks in [25] and [30] have two distinct func-

tional blocks. The blocks consisting of convolutional layers are known as encoder blocks, since they

are used to learn features from the input data. The first convolutional layer is used to learn features

directly from input data. Later convolutional layers are then used to learn useful combinations of

the features learned by upper convolutional layers, thus encoding information available from the

input data.

In the opposite manner, deconvolutional layers are used to decode information from the

previous deconvolutional layer and a convolutional layer from the encoder phase into a more useful

representation such as a segmentation map. Hence these blocks are known as decoder blocks, since

they learn a reverse mapping from feature-space to output-space. A common feature of deconvolu-

tional blocks in the neural network architectures used in [25] and [30] is the presence of a concatenate

layer. This layer merges information from a previous deconvolutional block and a convolutional block

that occurs much earlier in the model architecture. It is thought to be useful, because it merges

information from the encoding and decoding parts of the model. This helps the neural network in

reconstructing information into a useful representation of the input data.

The neural network model used in this research was adapted from those present in [25] and
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Figure 2.5: Model architecture: Convolutional and deconcovolutional blocks stacked in an encoder-
decoder structure.

[30]. Modifications were made to the data such as those described in section 2.2.1 in order to make

the data compatible with the neural network architecture. Other modifications include those made

to the number of convolutional and deconvolutional layers, as well as the number of output filters

in each layer as described in section 2.2.2.

The overall model architecture is shown in Figure 2.5. The resulting neural network model

used in this research is a stack of 3 convolutional blocks, followed by 3 deconvolutional blocks

arranged in an encoder-decoder fashion. At its output a softmax activation function is used to

convert the response of the neural network into a probability distribution over the number of classes

as explained in section 2.2.4.2. The convolutional blocks used in this research are all identical,

whereas the deconvolutional blocks used differ from each other with respect to an additional layer

or a missing layer. These differences are described next.

Convolutional Block

A convolutional block consists of a convolutional layer, followed by a batch normalization

layer, a rectifier activation function and a max-pooling layer. As mentioned in section 2.2.2, each

convolutional layer pads its input with zeros and produced an activation map having the same

sequence length as its input. This can be seen in Figure 2.6. Note that the output dimensions of the

convolutional layer differ from those of its input only in the final axis, corresponding to the number

of information channels. Each convolutional layer transforms its input, encoding it information with

the number of channels as described in Table 2.1.

Batch normalization and the rectifier activation function have no effect on the dimension

of the input and hence these operations do not change the dimension of their input within a con-
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Output: (?,1,225,8)

To further convolutional blocks

From Reshape layer

To decoder block

Figure 2.6: Convolutional block 1: The layers from top to bottom are, Conv2D: convolutional layer
with 8 output filters, BN: batch normalization, ReLU: rectifier activation layer, MP2D: 2-dimensional
maxpooling.

volutional block as seen in Figure 2.6. The final layer in a convolutional block is the max-pooling

layer which downsamples the input along the axis corresponding to the sequence length as described

in section 2.2.5. The output of the max-pooling layer is fed to the next convolutional block in the

model architecture and the corresponding deconvolutional block, which will occur after the encoding

phase of the neural network. All 3 convolutional blocks used in our neural network were identical in

structure, and each operated on input that was successively smaller owing to the max-pooling layer

in the previous convolutional block. The only difference in the third convolutional block was that

its input was fed only to the first deconvolutional block, as there were no more convolutional blocks

after it.
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Figure 2.7: Deconvolutional block 1: The layers are from top to bottom, Conv2D Transpose: de-
convolutional layer with 32 output filters, BN: batch normalization and ReLU: rectifier activation
layer.

Deconvolutional Block

In contrast to the convolutional blocks, each deconvolutional block in the neural network

architecture is different from each other. However each block is similar with regards to its core

function. Each deconvolutional block decodes information from one or more preceding blocks in

order to produce the final segmentation map required at the output of the neural network. The

difference in the 3 blocks comes from the way input is fed into each block and how the output of a

block is used in the subsequent stages of the neural network.

The first deconvolutional block is connected to the third and last convolutional block, and

hence does not need a concatenate layer at its input as seen in Figure 2.7. It operates on a sequence

length of 56, zero pads both sides of each element and performs a filtering operation as discussed

in section 2.2.6. This increases the output sequence length to 112, and is passed to the subsequent

layers in the block. Batch normalization is used to reduce the internal covariance shift of the output

as discussed in section 2.2.3, and this response is passed to the rectifier activation before being finally

passed to the second deconvolutional block.

The second deconvolutional block is the first block in our neural network architecture to

use a concatenate layer at its input. This network merges information from deconvolutional block 1,
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Figure 2.8: Deconvolutional block 2: The layers are from top to bottom, Concatenate: concatenates
output from Deconvolutional block 1 and Convolutional block 2, Conv2D Transpose: deconvolutional
layer with 16 output filters, BN: batch normalization, ReLU: rectifier activation layer and Zero
Padding 2D: needed to increase output sequence length from 224 to 225.

and convolutional block 2 from the encoding phase. The merged input is passed through a decon-

volutional layer similar to that of deconvolutional block 1, and then through a batch normalization

layer and rectifier activation function in order to produce the second stage of the decoded output.

At the end of deconvolutional block 2 in Figure 2.8, we see a zero padding layer. This is used to pad

the response after the rectifier operation with an additional zero along the sequence length, and is

required since we desire that the output of the neural network be a sequence of predictions of length

450, equal to that of each input sequence.

The third and final deconvolutional block also has a concatenate layer at its input which

merges information from the deconvolutional block 2 and convolutional block 1. However in this

block, once the deconvolutional layer has operated upon the merged input, it is not passed through
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Concatenate
Input: [(?,1,225,16),(?,1,225,8)]

Output: (?,1,225,24)

From deconvolution block 2 From convolution block 1

Conv2D

Transpose

Input: (?,1,225,24)

Output: (?,1,451,6)

Cropping 2D
Input: (?,1,451,6)

Output: (?,1,450,6)

To output through softmax activation

Figure 2.9: Deconvolutional block 3: The layers are from top to bottom, Concatenate: concatenates
output from Deconvolutional block 2 and Convolutional block 1, Conv2D Transpose: second decon-
volutional layer with 6 output filters and Cropping 2D: needed to clip superfluous response from
earlier zero padding operation.

a batch normalization layer or the rectifier activation function. This is because the third deconvo-

lutional block consists of the final set of layers in the neural network architecture. Hence its output

needs to be normalized using the softmax activation and used for producing the final segmentation

map. A batch normalization layer is thus not needed at this stage, and the rectifier operation is

to be replaced with the softmax activation function. However before passing this response to the

softmax activation function, we need to clip the superfluous response which occurs due to the earlier

zero padding operation. This is done using the cropping layer as seen in Figure 2.9. After clipping

this response, the neural network response is finally fed through the softmax activation function

and used as the final output of the neural network. This final output of the neural network is a

set of probabilities corresponding to each category of gestures. Thus the neural network produces

a probability distribution over the gesture categories for each time-instant at its output. This is

explained in detail later.

It should be noted that the ’?’ in Figures 2.6, 2.7, 2.8 and 2.9 indicates that the mini-batch

of training examples is allowed to change.
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2.2.8 Training A Neural Network

All the earlier discussions relate to the design of a neural network, and choosing the layer,

activation function or normalization strategy best suited for a particular task. Once the final output

of a neural network is available to us, parameters and functions that are related to how the neural

network updates its weights and biases become important. Weights and biases are key components

in a neural network, since these store the feature mappings learned in layers such as convolutional

layers. Other mappings such as useful recombinations of features, and even decoder mappings in

deconvolutional layers are stored as the set of weights and biases in a neural network.

Here the reader is alerted to the fact that, while the choice of a correct loss or metric is

always important for a neural network, all neural networks parameters are optimized via gradient

descent. The method of gradient descent is an iterative procedure in which the parameter updates

follow a path indicated by the opposite of the gradient of the loss function chosen. This is because

the gradient always follows the path of highest increase, and choosing the opposite indicates that

we are interested in following the path which reduces the loss or error of our chosen model.

The interested reader is again referred to texts other than this report for a comprehensive

review of the set of loss functions possible, since this list is also too big to cover completely in this

report. While a few of these loss functions were experimented upon in the initial stages of this

project, cross-entropy was chosen to be the most suitable for the task of classifying instances of time

as belonging to one of many classes. This is described next:

2.2.8.1 Categorical Cross-Entropy

In machine learning, when calculating model errors between 0 and 1, categorical cross-

entropy is the same as the multi-class log loss expressed as:

f (yo,po) = −
M∑
c=1

yo,c · log(po,c) (2.13)

Where yo is the vector of network targets (ground truth labels) and po is the vector of network

outputs. The negative sign is used because the positive logarithm of numbers smaller than 1 results

in negative numbers and can be confusing to work with, especially when comparing machine learning

models. Setting the loss function in this way also builds on the probabilistic representation of network

outputs as described in section 2.2.4.2.
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However there is an additional step that needs to be done, when using the provided labels

with a cross-entropy loss function. Each component of the vector of network targets is further trans-

formed into a one-hot vector representation, in which one indicates true value and zero indicates false.

For example, consider a vector from a 6 class classification problem, denoted by y = (0, 1, 2, 3, 4, 5)
T

which indicates that the class of the first training example is 0, that of the second class is 1 and

so on. This is transformed into its one-hot vector representation as follows; yo,1 = (1, 0, 0, 0, 0, 0),

yo,2 = (0, 1, 0, 0, 0, 0) all the way up to yo,6 = (0, 0, 0, 0, 0, 1) for the final class label, where yo is

the vector representation to be used in Equation 2.13. The one-hot vector representation can also

be interpreted as a probability over the ground truth labels. However in this case, since the actual

class of the training example is known to us, only one component of the vector will be 1, and all

other components will be 0.

2.2.8.2 Network Hyperparameters

In addition to the correct loss function, other network parameters such as the size of the

mini-batch of training examples, the learning rate, choice of optimizer and its settings, the number

of epochs the network is trained for and the total number of training examples, play an important

part in the reliably training a deep learning neural network. These are collectively known as the

hyperparameters of the network. For the neural network considered these are described as follows:

1. Size of mini-batch of training examples: This controls how fast or slow the loss function

of the neural network converges during the training process, and consecutively the weights

and biases get updated to their final values. Choosing a mini-batch size to be very big results

in slow convergence, as the gradient descent updates need to be made over a larger set of

training examples. On the other hand choosing the value to be very low (close to one), results

in a training curve that is very noisy, as the loss oscillates due to frequent updates to the

weights and biases. Typically the value is chosen as a multiple of 2, since this has been found

to improve the training time on modern GPUs using parallel processing. In this research the

mini-batch value chosen was 32, which is the default setting in TensorFlow.

2. Choice Of Optimizer: An optimizer is the algorithm used to calculate the updates to the

weights and biases of the neural network during each step of gradient descent. Owing to the

popularity of deep learning, the choice of optimizers available in most software packages has
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seen a steady increase in the past couple of years. For this network the adam optimizer, is used

with parameters beta_1 and beta_2, which are momentum parameters set to their default

values (0.9 and 0.999 in TensorFlow- keras respectively).

3. Learning Rate: This parameter controls how much of the update calculated by the optimizer

is used to change each weight and bias within a neural network. Like the choice of the mini-

batch size, this parameter also has an immediate effect on the speed with which the neural

network converges. A parameter close to 1 results in very quick convergence, however the

weights and biases fluctuate in each training epoch, due to the updates made by the optimizer.

Choosing a value too small slows the convergence greatly, but generally results in a smoother

loss curve, and slow convergence of the weights and biases. For this research the learning rate

was also kept at its default value of 0.001.

4. Number Of Training Epochs: An epoch is a pass over the entire training set of a neural

network, whereas a pass over a mini-batch of training examples is known as an iteration. The

number of epochs thus directly controls the training time of the network. Typically deep

learning neural networks require a large amount of time to train reliably. However this should

be monitored closely, and if the model does not show any improvement in convergence for a

large number of consecutive epochs, then training should be halted and only be resumed when

the hyperparameters or the model architecture has been reasonably changed. For this network,

the number of training epochs was varied between 10 to 200, with the network showing better

learning at 100 epochs improving steadily till the number of epochs was increased to 200, and

no significant improvement beyond that. Hence 200 epochs was chosen as the total number of

epochs for this research.

2.2.9 Cross-Validation

When dealing with a training data of fixed size, it is often advantageous to consider training

the network via cross-validation. With this technique, the entire data set is repeatedly divided into

training data and a small portion which is known as the testing data. The latter is used to assess

the model’s capacity for solving it’s task on general data (generalization), since this part of the data

set is unseen for the model in each iteration of cross-validation. It is important to note that a new

model must be initiated for each iteration of cross-validation and that each separation of the data
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set as training set and testing set must be distinct or mutually exclusive, to prevent a false promise

of model generalization.

Cross validation is useful because it provides a way of using sufficient data for training a

model, when data is limited. In addition it also provides a way to assess model generalization,

when the amount of data is limited, cross-validation also allows us to be confident of the model’s

performance in a real-life scenario. Since a new model is initiated, trained and tested on different

data each time, if the model performance is good on average, it indicates that such a model would

be of good use in practice when trained with the entire data set. It is important to note that the

training data in each fold is further sub-divided into train and validation data sets, which are used

to actually train the model and validate against overfitting during the training of the model in each

fold. This process is described in detail later.

Typically cross-validation is used as a k-fold cross-validation in which the data set is divided

into k parts, where k − 1 parts are used as training data and the kth part is used as testing data.

For this research 5-fold cross-validation was used, in order to partition the available data such that

both training and testing data were adequately large for the chosen model.

2.3 Post-Processing

Once a neural network is trained by tuning the hyperparameters and cross-validating over

the entire dataset, it can then be used to predict on an input data sequence as shown in Figure

2.10. Notice that in a manner similar to the image segmentation example in section 1.4.1, the

network prediction is a probability distribution over the class labels for each given input sample. In

a manner analogous to earlier, the output probability of the class corresponding to the ground truth

is significantly higher as compared to the other probabilities, which helps us to distinguish between

the total set of output probabilities for each given sample within a sequence of data.

2.3.1 Max-Voting Strategy

As mentioned in section 2.1.3, each meal is divided into multiple windows of input data

having a fixed size, which are used as input when training the neural network. The neural network

in turn produces a prediction score corresponding to each of the six classes of gestures considered,

for each time instant within each window. Except for the first 15 time-instants, all instances appear
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Figure 2.10: Generating class labels for one segment of data.
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in more than one window. Hence there is a possibility that some instances may be labeled differently

in different windows, and a strategy needs to be designed in order to judge the most likely label of

a time-instant.

The strategy of max-voting was used in this research, and is explained pictorially in Figure

2.11. Using this strategy, the software keeps a count for each gesture type for each time-instant

labeled by the neural network. Time-instants that occur in more than one window, will thus have

different counts for each gesture type. Following this the gesture type with the maximum count

is retained as the final label for a time-instant or datum. In Figure 2.11, this is shown for the

boundary of two gestures, ’bite’ and ’utensiling’. The time-instant 7 gets labeled as a ’bite’ in

Prediction window 1, but gets labeled as ’utensiling’ in each of the other two windows in which

it occurs, and hence ’utensiling’ is retained as the final label for this time-instant. Note that for

the scenario considered in Figure 2.11, each window shifts by three time-instants in each iteration,

and hence this time-instant would not occur in the fourth prediction window. For time-instant 8,

which would occur in the fourth window, the label type is unambiguous, as it has been labeled as

’utensiling’ in each of the previous three windows, and hence its label would remain unchanged.

This ambiguity between gestures is often seen at data corresponding to boundaries between

different ground truth labels. This is to be expected, since a datum within each window which

occurs at such boundary locations has different temporal relationships with the other datums from

the two windows respectively. The class label of such datum, would thus also be dependent on the

specific relationship or feature-mapping that is learned by the neural network.

If a certain datum had equal counts for two or more gestures after applying the max-voting

strategy as described above, the datum was assumed to be part of the previous gesture type and

the last known gesture label was applied to the datum. Figure 2.12 shows a flowchart for the entire

process of generating predictions from a meal using the neural network, as described in this section.

In it we see that all instances of time that occurred outside the final window of predictions are

identified as unlabeled by the prediction algorithm. This is consistent with our approach of labeling

during the data generation phase. Since eating related gestures are more likely to occur at the start

and the middle of each meal, gestures outside the final window of predictions can be treated as

unlabeled instances.

47



1

0 0 0 0 0 0 0 1

0 0 0 1 1 1 1 1

1 1 1 1 1 1 1

Prediction window 1

Prediction window 2

Prediction window 3

Legend:

'bite': 0

'utensiling': 1

'drink': 2

'rest ': 3

'other': 4

'unlabeled': 5

Sample is labeled as 'utensiling' since label 

1 occurs more frequently.

Figure 2.11: Max-voting strategy: Retain most frequent label.

2.3.2 Final Output Of Classifier

After following all the steps listed above, the classifier prediction for all time-instances in

a meal, were stored in a single array. Following this, the software began tracking the label for

each instance for the purpose of printing out each gesture type to a file which would be stored on

disk. This was a simple implementation, by initializing two variables start and end at 0 each, and

increasing end by 1 each time the gesture type of the current instance was the same as that of the

next instance immediately succeeding it. When the two instances were not the same, the program

printed out the current gesture label, the corresponding start and end, and reset the variables start

and end to the index of the succeeding gesture and the counter started anew. This process was

repeated for all time-instants labeled by the classifier, and the final output was stored as an ASCII

text file containing the gesture name, followed by the start and end of the gesture as labeled by the

classifier.

The reader is reminded that the class ’unlabeled’ was not part of the original ground truth

file, but instead created since the output of the network needed to be the same size as the input.

Hence this class of labels was never printed out to the file stored on disk, and neither were the start

and end dates corresponding to each unique gesture identified as ’unlabeled’ by the classifier. Instead
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Figure 2.13: CafeView: Viewing ground truth (top) against classifier output (bottom). Gesture
labels are red: bite, aqua: drink, gray: other, black: rest, orange: utensiling

the count for start and end was simply reset each time a unique gesture identified as ’unlabeled’ was

encountered by the program.

Figure 2.13 displays the classifier output viewed against the ground truth label for the same

meal shown in Figure 2.1. We observe that early into the labeling process, the classifier output

agrees closely with the labels present in the ground truth, which is a good sign when designing

neural networks.

2.4 Evaluation Metrics

Once a given meal had been labeled by the neural network following the different strategies

described in section 2.3, it was necessary to determine the efficiency of the neural network, and

assess how well the generated labels agreed with the ground truth labels provided by the human-

raters. The ideas described in this section build on those described under inter-rater reliability in

[27]. However their approach was used to resolve discrepancies between two ground truth labels

made by two different human raters. This was important because there rarely is perfect agreement

even among humans trained by the same operator, and observing the same data. For our approach,

however we assumed that the ground truth labels were accurate, and only the classifier output
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needed to be evaluated in order to assess the classifier accuracy. This was done in two different

ways, as described in this section.

2.4.1 Counting Number Of Indices Agreed Upon

This was the first stage of assessing the effectiveness of the neural network, and the simplest

way of understanding whether a trained classifier was good for labeling different instances of time

present in the data set. Using this approach, the software kept a count of the number of indices

when the label generated by the classifier (after post-processing) matched that present in the ground

truth file. This process was repeated in the opposite direction, and the number of indices when the

ground truth label matched that present in the classifier label were counted as a way of assessing

the bidirectional accuracy of the model.

Bidirectional accuracy in terms of the number of indices correctly identified is important

when designing a classifier, because we are interested in knowing how many indices labeled by the

classifier are correct. However we are also interested in knowing how many ground truth indices are

correctly identified by the classifier as well. This serves as a sanity check for the classifier, and helps

us evaluate its performance better.

Consider two examples as explained next. Let us assume that a classifier segments and cor-

rectly identifies only two gestures from a meal consisting of ten gestures. In this case the percentage

of classifier indices agreed upon is close to 1.0, while the percentage of ground truth indices agreed

upon is relatively very low. In contrast consider that a classifier segments and classifies all 10 gestures

correctly, but produces superfluous gestures in between each of the 10 ground truth gestures. These

superfluous gestures are indicative of the classifier being unable to identify the unlabeled category

which occurs between gestures such as bite-drink and utensiling-bite for example. The percentage

agreement among ground truth indices would be very high in this case (close to 1.0), while that

among classifier indices would be very low.

Both these scenarios are undesired when segmenting our data set. Bidirectional evaluation

of indices thus serves as a way for us to understand how closely the classifier output resembles the

ground truth, and vice-versa.
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2.4.2 Counting Agreement Among Gestures

While counting the number of indices agreed upon by the classifier and ground truth provides

a way of assessing the overall accuracy of the classifier, it does not provide a way to determine the

gesture level accuracy of the classifier. In other words, there is no way of knowing from the percent

agreement among indices how many gestures the classifier labels accurately. Hence an alternative

strategy was needed as part of this research, which is described below.

Gestures from ground truth and the classifier output were compared based on their overlap.

As mentioned earlier, the ground truth was accepted as the true label of each datum. According to

their overlap with respect to the ground truth, classifier gestures were distinguished as being part

of one of the following:

1. Agreement: One or more classifier gesture matches the ground truth gesture with more

than 50% overlap among their indices, and they each have the same label. Depending on the

network output, there are three possible ways in which a classifier gesture is categorized under

agreement. These are as follows:

(a) Partial agreement: The start index and/or end index of the classifier output do not match

those of the ground truth, but the overlap among the labels is more than 50%. This is

shown in Figure 2.14 (a) and (b). Note that an overlap in either direction is treated as

agreement among gestures.

(b) Partial agreement: The classifier identifies multiple unique gestures within the start and

end indices of the gesture label, and these have the same label as that of the ground truth

label, while the individual start and end indices of the gestures may not match, shown in

Figure 2.14 (c).

2. Missed: The classifier identifies no gesture within the start and end indices of the ground

truth. This indicates that the actual label of the data instances is completely missed by the

classifier, and is the first example of erroneous output of the classifier. It is shown in Figure

2.14 (d).

3. Mislabeled: The classifier identifies one unique gesture with at least 50% overlap with the

ground truth label, but the label of the classifier output does not match that of the ground
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(a) (b) (c)

(d) (e) (f) (g)

Figure 2.14: Gesture comparison with ground truth (top) and classifier output (bottom). Top row,
(a), (b) and (c) represents three ways in which Agreement is identified. In the bottom row we see,
from left to right Missed (d), Mislabeled (e), Mangled (f) and False Positive (g).

truth label. This is termed as the classifier mislabeling the instances of time corresponding to

this ground truth label, shown in Figure 2.14 (e).

4. Mangled: The classifier identifies two or more unique gestures within the start and end indices

of the ground truth label, but the label of at least one output gesture does not match that of

the ground truth, shown in Figure 2.14 (f).

5. False Positive: The classifier identifies a segment of time as a particular gesture, but no label

exists within the ground truth file, shown in Figure 2.14 (g).

As mentioned earlier, these tests were adapted from similar tests in [27]. However the author

in [27] used these to measure the inter-rater reliability between two human raters labeling the ground

truth. For our case we modified these for comparing the ground truth labels that were generated

previously, and assumed to be true, against the classifier output.
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Chapter 3

Results

This chapter explains the results of training the neural network using the cross-validation

technique as described in section 2.2.9, as well the experimental results obtained after evaluating the

accuracy of the classifier, both at the index level and the gesture level as described in section 2.4.

3.1 Deep Learning Accuracy

The metrics described in section 2.4 provide a way of assessing a trained neural network,

for determining its accuracy in terms of automatically segmenting and recognizing gestures. Prior

to this, a neural network also needs to be evaluated during the training process, to ensure that a

phenomenon known as overfitting is not occurring.

Overfitting is the process in which a machine learning model adapts itself to produce a

perfect or near perfect classification score on the training data set, while completely losing on its

ability to classify examples from an unseen test data set. The performance of a classifier on unseen

data is known as the generalization performance of the classifier. It is always desired, that the

generalization performance of the classifier be as good as possible. Hence overfitting is an unwanted

phenomenon when training a classifier. Overfitting typically occurs due to a smaller size of the

training data set, a very large and complex model with a lot of free parameters, inadequate size

of the testing data set (to determine if overfitting has occurred) or a combination of some or all of

these three phenomena.

Hence any machine learning model is typically monitored as it trains, by plotting the loss
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or error incurred on the training data set, against that incurred on an independent data set known

as the validation data set. The validation data set is created by randomly shuffling the training

data set, and reserving a small percentage of it, usually 20% as validation data. A model is said to

overfit to the training data set, if the loss incurred on this set continually reduces as the learning

progresses, while that incurred on the validation data increases or stays the same across multiple

training epochs.

Techniques to prevent overfitting include reducing the model complexity by pruning the

number of free parameters, increasing the data set size by data augmentation techniques and usage

of a dropout, whereby a fixed percentage of neurons within a layer are turned off (input weights

are set to zero), in order to force the leftover neurons to adapt their weights in response to the new

activation maps and targets. In addition as described in section 2.2.9, cross-validation can also be

used to prevent a model from overfitting to a given training data set. By repeatedly partitioning the

available data as training data and testing data, the model learns from different data sets each time,

while providing an estimate of its performance on unseen data during the testing phase. Since a large

part of the available data is used as training data, the model avoids overfitting to this particular

data set.

For our research, the technique of 5-fold cross-validation was used, and the loss-curve was

plotted for the train and validation data sets in each fold along with the average of the loss curve

for all 5 folds. Figure 3.1 shows the results obtained for each of the five folds from Figure 3.1a to

3.1e, while the Figure 3.1f displays the results obtained after averaging the loss for all five folds

respectively.

Once each model was trained for 200 epochs, the absolute difference between the validation

loss and training loss was computed for each model trained in each fold. These values were 0.0409,

0.0380, 0.0342, 0.0271 and 0.002 for each model, from model 1 to model 5 respectively. The mean

and standard deviation of these values was calculated as 0.0286 and 0.0137. Hence we can see that

the maximum absolute difference between validation loss and training loss after the model has been

trained occurs for model 1, where the value is 0.0409. This value is within one standard deviation

of the mean value, and is hence within an acceptable range for the absolute difference between

validation loss and training loss for a trained model. This indicates that no model within any of

the cross-validation folds has overfit to the training data set, and hence the training of the neural

network was successful.
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(a) Loss curve for fold 1.
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(b) Loss curve for fold 2.
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(c) Loss curve for fold 3.
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(d) Loss curve for fold 4.
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(e) Loss curve for fold 5.
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(f) Average loss curve.

Figure 3.1: 5-fold cross-validation for evaluating model learning.
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3.2 Evaluation Accuracy

As mentioned in section 2.2.9, cross-validation produces a distinct model for each fold of the

data set in addition to a distinct test data set. Hence each model can be evaluated on the unique

test set created during each fold, and similar to the earlier discussion in section 3.1, the results can

be averaged over each fold to provide a reliable estimate of model performance on unseen data.

First, the total number of unique ground truth gestures and classifier gestures were identified

for each meal. Please note that while doing so, classifier gestures outside of the start of the first

ground truth gesture and the end of the final ground truth gestures were not considered in the

evaluation phase. These gestures are false positives and do not contribute to any other category

from those considered in section 2.4.2. In addition there is no way to determine if these are actual

false positives, or if a gesture is actually present without having to re-do the entire ground truth

process. The raters in this case would need to identify a unique label for each time-instant within a

meal, and that was considered to be outside the scope of this research. In addition to removing out

of bound gestures before evaluating gesture matching, gestures smaller than 1 second were pruned

as well. This is because gestures smaller than 1 second do not occur in the ground truth labels, and

would hence negatively impact the evaluation process, just like the out of bound gestures.

Once we have defined the boundaries, we can count accuracy both at the index level and

the gesture level as mentioned in section 2.4. It should be noted that the percentage of agreement,

missed, mislabeled and mangled was calculated with respect to the ground truth gestures assumed

to be correct, while the percentage of false positives was calculated with respect to the classifier

output respectively.

3.2.1 Correct Identification Of Indices

As mentioned in section 2.4.1, this is the first level of determining the usefulness of the neural

network classifier for the task of automatic segmentation of time-instants. The average percentage of

ground truth indices matching those of the classifier output, and vice-versa must both be sufficiently

high for the neural network to be considered useful. This indicates that the classifier is able to

correctly label a large number of time-instants from all the meals considered. At the same time, the

standard deviation of the percentage must be low, which would mean that the amount of indices

correctly labeled does not change much from meal to meal.
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Metric Ground truth Classifier
Average 73.12 79.80

Standard deviation 14.19 9.98

Table 3.1: Percentage of indices correctly identified per recording (meal course).

Table 3.1 lists the average percentage of ground truth indices matching the classifier out-

put, as well as the average percentage of classifier indices matching the ground truth along with

the standard deviation of the percentages per meal course/recording. As it can be seen the average

percentage of correctly identified indices is high in both cases, while the standard deviation is rea-

sonably low, indicating that the neural network can correctly identify and label individual instances

of time for the given data set.

Another thing we observe in Table 3.1, is that the percentage of classifier indices that are

correct does not equal the percentage of ground truth indices. This is because the percentages are

calculated as the number of time data in agreement divided by the number of total data labeled.

Since the ground truth and classifier output may have different numbers of total data labeled, the

ratios can be different. As mentioned in section 2.4, both of these percentages are important for

evaluating the usefulness of the classifier.

3.2.2 Correct Identification Of Gestures

In order to compare the classifier at the gesture level, the percentage of gestures that was

correctly identified, missed, mislabeled, mangled and were considered as false-positives were identi-

fied from each meal. Following this the average percentage of each type and its standard deviation

was calculated from all meals. This is listed in Table 3.2.

Like earlier, we want that the percentage of correctly identified gestures be as high as

possible, while the standard deviation of correctly identified gestures should be sufficiently low. This

indicates that the neural network can correctly identify a large number of gestures from each meal,

while the number of correctly identified gestures would not vary from meal to meal. On observing the

first column in Table 3.2, we see that the numbers appear to be reasonable. On average the neural

network identifies close to 78% of gestures correctly from each meal, and the spread of correctly

identification for gestures is about 14%. This was seen as satisfactory performance from a neural

network for this data set.

In contrast to correctly identified gestures from each meal, the average percentage of gestures
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Metric Correct Missed Mislabeled Mangled False Positive
Average 77.77 11.27 5.08 5.86 16.37

Standard deviation 13.79 8.62 5.80 5.00 11.28

Table 3.2: Percentage of various mappings between gestures per recording (meal course).

Metric Bite Drink Utensiling Rest Other
Average 79.61 80.71 78.71 80.97 0

Standard deviation 19.47 26.78 19.09 18.02 0

Table 3.3: Percentage of individual gestures correctly identified per recording (meal course).

missed, mislabeled, mangled or falsely identified by the classifier must be sufficiently low to prevent

erroneous output from the classifier in real-life. In addition the standard deviation of these incorrect

gesture level metrics must be lower than that deemed acceptable for the correctly identified gestures.

On seeing columns 2-5 in Table 3.2, we see that this is indeed the case. The average percentage

of gestures from the classifier output that are mismatched against those from the ground truth

is sufficiently low in each case, and the standard deviation in each case also appears to be lower

compared to the standard deviation for gestures correctly matched between the classifier output

and ground truth. This is further indication of the classifier being useful for the task of automatic

segmentation of different gesture types.

3.2.3 Determining Accuracy Of Each Gesture Type

Since the primary goal of this research is to identify eating related activities that occur

during a meal, intake gestures viz. bite and drink were the most important gestures among those

considered when training our model. Hence in addition to total gesture recognition accuracy, we were

also interested in determining how well our model performed at detecting intake related gestures

from each meal.

In addition the classifier must also be able to correctly identify other gesture types, in

order for the overall accuracy to be sufficiently high. Since we are considering correctly identified

gestures, the average percentage of correct detection over all meals should be high, while the standard

deviation of the percentage must be reasonably low.

Table 3.3 displays the accuracy of our neural network model for identifying each distinct

gesture type. The percentage of correctly identified gestures belonging to each category was calcu-

lated for each meal, and then the average and standard deviation were calculated in the same way

59



Meal ID Bite Drink Utensiling Rest
215/c3 88.46 88.88 71.42 80.00
274/c1 100 100 97.77 80.00
326/c2 100 100 100 100

Table 3.4: Percentage of individual gestures correctly identified in displayed meals.

as earlier. In Table 3.3, we see that the average percentage of each gesture from ’bite’, ’drink’, ’uten-

siling’ and ’rest’ is sufficiently high, close to 80% in each case. The standard deviation of correctly

identified gestures from each type is reasonably low as well, close to 20% in each case. This means

that the chosen classifier is good at identifying these gestures from the recorded meals in our data

set.

However we observe that gestures belonging to the category ’other’ were not identified at

all by the classifier. This can be explained by considering how this category of gestures was labeled

in the first case as explained in section 2.1.2. The annotators were instructed to label all activities

except those related to eating as ’other’, including all ambiguous activity that the annotator was

not entirely sure of. This meant that the recorded signals from the IMU sensors would have a

lot of variability for the period of time corresponding to this gesture type. In addition this type

of gesture occurred most infrequently in our data set. Of all the meals retained for training the

neural network classifier, only 123 meals have segments of time identified as belonging to the gesture

category ’other’. Even in these meals this category occurs very infrequently, typically less than ten

times. This means that the frequency of the data corresponding to this gesture type is very low.

This is a case of imbalanced data, and typically machine learning models such as neural networks

do not perform well on such type of data.

Figures 3.2, 3.3 and 3.4 display the CafeView results for the meals 215/c3, 274/c1 and

326/c2. We see that the classifier is able to identify and segment gestures successfully in each of

these three meals. Table 3.4 contains the percentage of individual gesture types correctly identified

by the model in each of these three meals. Note that neither of these three meals contained any

gestures identified as ’other’ in either the ground truth or the classifier output. We see that the

percentage of correctly identified gestures is very high in each of these three cases, which corresponds

correctly with the displayed results.
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Figure 3.2: CafeView: Comparing ground truth (top) against model output (bottom) for the meal
215/c3. Gesture labels are red: bite, aqua: drink, gray: other, black: rest, orange: utensiling

Figure 3.3: CafeView: Comparing ground truth (top) against model output (bottom) for the meal
274/c1. Gesture labels are red: bite, aqua: drink, gray: other, black: rest, orange: utensiling
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Figure 3.4: CafeView: Comparing ground truth (top) against model output (bottom) for the meal
326/c2. Gesture labels are red: bite, aqua: drink, gray: other, black: rest, orange: utensiling

3.3 Identifying Outliers

In order to understand the performance of the classifier for correctly segmenting gestures

from meals, the distribution of the percentage of correctly identified gestures was plotted as shown

in the histogram in Figure 3.5. On seeing this plot, we realize that the distribution is long tailed

and the percentage of correct classification of gestures drops off drastically 3 standard deviations

away from the mean.

On plotting a histogram for the percentage of ’bite’ and ’drink’ gestures detected correctly,

as shown in Figures 3.6 and 3.7 respectively, we see a similar phenomenon. A long tailed distribution

falling sharply beyond 3 standard deviations away from the mean. This indicates that some meals

are most likely outliers within the data set. Hence it is important to understand the data contained

within such meals, in order to understand why the neural network would perform poorly for these

meals. This section describes a few important observations regarding outlier analysis, and attempts

to explain why the classifier would perform poorly on such data.

Two meals from among the set of outliers were identified as p170/c1 and 117/c4. The overall

percentage of correctly recognized gestures in these two meals was 37.5% and 21.2%. The percentage

of bite and drink gestures correctly recognized in in p170/c1 was 18.5% and 50% respectively while
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Figure 3.5: Plotting histogram to identify meals with lower total gesture agreement.
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Figure 3.6: Histogram for percentage of bites correctly identified.
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Histogram: Drink accuracy

Figure 3.7: Histogram for percentage of drinks correctly identified.
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the percentage of correctly recognized bite gestures in 117/c4 was 13.3%. There were no drink

gestures in the ground truth of 117/c4 and no gestures identified by the classifier as well.

The classifier output is compared against the recorded data and ground truth labels for

these meals shown in Figures 3.8 and 3.9 respectively. In Figure 3.8, observe the two bite gestures,

incorrectly identified as rest by the classifier towards the right of the figure. On observing the signals

recorded by the IMU sensors corresponding to the two bite gestures, we see that there is no activity

present, and the signal values do not show any change in their measurements for a sufficient period

of time. This is typical of a recording corresponding to rest, and is seen at the farther end of the

same figure.

This phenomenon is seen in Figure 3.9 as well, with multiple gestures belonging to ’bite’

and ’utensiling’ showing no significant activity measured by the IMU sensors. This indicates that

the subject ate their meal with an uninstrumented hand. As explained in [27] the ground truth

labels were created by raters, while watching a video of the subject eating their meals. It is most

likely that the rater failed to observe the uninstrumented hand being used for food or drink intake,

while marking the start and end of the ground truth gesture. As the type of recording does not

match with its intended ground truth label, the classifier would not be able to correctly identify such

gestures and would eventually get a low percentage of total gestures and intake gestures correct in

such meals.

However it is known that motions conducted by one arm/wrist/hand tend to cause related

motions in the other arm/wrist/hand. Since the goal of this research is to identify all eating related

activities, we consider it important to build a classifier that can detect eating related gestures from

an instrumented hand as well as an uninstrumented hand. Hence we hope that our classifier can

learn to recognize the motions in the instrumented hand that are related to eating gestures by the

other hand. This is discussed further in chapter 4.
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Figure 3.8: Example 1: An outlier meal from the data set.

Figure 3.9: Example 2: An outlier meal from the data set.
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Chapter 4

Conclusions

This research considers the application of deep learning neural networks for automatically

identifying and segmenting eating related gestures from data recorded by hand-worn IMU sensors

inside a watch-like device. It builds on the work in [27], and takes its inspiration from [25] and [30],

in which a deep learning classifier was used for the task of image segmentation.

Our group has been investigating using wrist-worn sensors for characterizing different eating

related activities for tracking periods of intake [8] and also for characterizing the movement from

hand-to-mouth for subjects [7], [24]. As explained in [28] these sensors can be encapsulated in a

watch-like device, making its use inconspicuous and promoting long-term daily usage. This fits well

with our end goal of accurately tracking eating in subjects, and providing the end user with an

accurate estimate of the number of calories consumed in a day, and to promote healthier eating in

subjects.

Most recently in [27] the researchers identified a potential use for a HMM-based classifier for

accurately detecting eating gestures from the same data set as that used for this research. However

they considered pre-segmented data of fixed duration for training their model. They also identified

the need for a model that could automatically segment gestures from the same data set, without

the need for pre-segmented data. This research is a step in that direction, and proposes using a

deep learning neural network for segmenting and classifying segments of data from a fixed set of

user defined gestures.

Chapter 1 provides a brief introduction to our research, stating that it is of practical use in

today’s world, owing to the increase in the percentage of people both in the United States of America
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and around the world that are deemed to be either overweight or obese. These lead to a variety of

diseases, and can be prevented by monitoring one’s energy intake, while simultaneously increasing

energy expenditure as well. While the majority of focus is on monitoring energy expenditure, there

is a lack of clear understanding in terms of monitoring energy intake, which is the main reason

why the researchers from our group feel motivated to contribute to this area. This chapter also

provides an introduction to IMU sensors, and deep learning neural networks particularly for image

segmentation, for readers that may be unaware of these technologies.

Chapter 2 describes our data set and the gesture labeling methodology used in [27], which

was used to create the data set used in this research. Based on the original data, windowed segments

of measurement data and their corresponding ground truth labels were separated for each meal. This

large array of data was created from all meals belonging to the original data, and used to train the

neural network. This chapter also provides detailed explanation of our deep learning classifier,

its components and design strategies for reliably training the classifier on time-series data such as

the one considered in this research. It concludes by explaining how a trained classifier should be

evaluated when segmenting and identifying gestures from our data set.

Chapter 3 provides an evaluation for our trained classifier, and compares the average per-

centage of correctly classified gestures against categories such as missed, mislabeled, mangled and

false-positives which are undesirable when segmenting data. Chapter 3 also includes results related

to the performance of the model at identifying intake related gestures correctly. It also provides an

explanation, when the classifier is unable to correctly identify gestures from some meals. On average

our classifier was able to identify 77.77% of all gestures correctly per meal, while the average percent-

age of correctly recognized ’bite’ and ’drink’ gestures was 79.6% and 80.7% per meal respectively. In

addition our classifer identified 78.71% of gestures corresponding to the class ’utensiling’ correct on

average per meal, and 80.97% of gestures corresponding to ’rest’ were correctly identified on average

per meal. However the classifier was not able to identify gestures belonging to the category ’other’.

This is most likely due to the imbalance in the training data set corresponding to this gesture type.

This gesture occurred most infrequently in our data set, while having a lot of variability in the input

signals recorded corresponding to it. Hence our classifier was not able to correctly identify these

gestures from any meal within our data set.

It is observed that some meals have ground truth gestures marked by the human rater for

activity that occurred with the uninstrumented hand of the subject. Hence the neural network could
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not correctly identify gestures from such meals as well. It is known that motions conducted by one

wrist tend to cause related motions in the other wrist, and hence we hope that the classifier built

will be able to recognize the motions in the instrumented hand that are related to eating gestures

by the other hand. This is discussed in section 4.1.

4.1 Future Work

In the future, we recommend training the neural network classifier on data collected from

windows of different sizes. It is however unclear how the size of the window would affect the

performance of the classifier. A smaller window size would lead to an improvement in the training

time of the neural network, but may lead it to miss out on important temporal relationships due

to the shorter sequence length of the input. In contrast a bigger window size would mean a longer

time to train the neural network, but important temporal relationships would be modeled effectively.

Hence the trade-off between different window sizes needs to be carefully considered by researchers

in the future.

In addition, the ground truth labels could be expanded to include the instrumented hand

with which the gesture occurred. Such an expansion of classes would most likely improve the

classification accuracy of the neural network as well, by characterizing the sequence of input data

better.

Finally increasing the number of convolutional and deconvolutional blocks in the classifier

could potentially lead to an improvement in detecting motions in the instrumented hand that occur

due to eating activity in the uninstrumented hand. A deeper neural network would definitely lead

to better feature mappings of wrist micromovements that occur during such activities. The concept

of wrist micromovements has been previously discussed in [18], where the authors used a deep

learning classifier for detecting periods of food intake in subjects. Wrist micromovements are thought

to characterize activity of the wrist related to both eating as well as non-eating related gestures.

Hence building a deeper neural network to capture more representative wrist micromovements could

lead to an improvement in the classifier accuracy for detecting gestures in the instrumented and

uninstrumented hands of the subjects.
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