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Abstract

This dissertation describes a “smart dining table” that can detect and measure consumption

events. This work is motivated by the growing problem of obesity, which is a global problem and an

epidemic in the United States and Europe. Chapter 1 gives a background on the economic burden

of obesity and its comorbidities. For the assessment of obesity, we briefly describe the classic dietary

assessment tools and discuss their drawback and the necessity of using more objective, accurate,

low-cost, and in-situ automatic dietary assessment tools. We explain in short various technologies

used for automatic dietary assessment such as acoustic-, motion-, or image-based systems. This is

followed by a literature review of prior works related to the detection of weights and locations of

objects sitting on a table surface. Finally, we state the novelty of this work.

In chapter 2, we describe the construction of a table that uses an embedded grid of load cells

to sense the weights and positions of objects. The main challenge is aligning the tops of adjacent

load cells to within a few micrometer tolerance, which we accomplish using a novel inversion process

during construction. Experimental tests found that object weights distributed across 4 to 16 load

cells could be measured with 99.97±0.1% accuracy. Testing the surface for flatness at 58 points

showed that we achieved approximately 4.2±0.5 um deviation among adjacent 2x2 grid of tiles.

Through empirical measurements we determined that the table has a 40.2 signal-to-noise ratio when

detecting the smallest expected intake amount (0.5 g) from a normal meal (approximate total weight

is 560 g), indicating that a tiny amount of intake can be detected well above the noise level of the

sensors.

In chapter 3, we describe a pilot experiment that tests the capability of the table to monitor

eating. Eleven human subjects were video recorded for ground truth while eating a meal on the

table using a plate, bowl, and cup. To detect consumption events, we describe an algorithm that

analyzes the grid of weight measurements in the format of an image. The algorithm segments the
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image into multiple objects, tracks them over time, and uses a set of rules to detect and measure

individual bites of food and drinks of liquid. On average, each meal consisted of 62 consumption

events. Event detection accuracy was very high, with an F1-score per subject of 0.91 to 1.0, and

an F1 score per container of 0.97 for the plate and bowl, and 0.99 for the cup. The experiment

demonstrates that our device is capable of detecting and measuring individual consumption events

during a meal.

Chapter 4 compares the capability of our new tool to monitor eating against previous works

that have also monitored table surfaces. We completed a literature search and identified the three

state-of-the-art methods to be used for comparison. The main limitation of all previous methods is

that they used only one load cell for monitoring, so only the total surface weight can be analyzed.

To simulate their operations, the weights of our grid of load cells were summed up to use the 2D

data as 1D. Data were prepared according to the requirements of each method. Four metrics were

used to evaluate the comparison: precision, recall, accuracy, and F1-score. Our method scored the

highest in recall, accuracy, and F1-score; compared to all other methods, our method scored 13-21%

higher for recall, 8-28% higher for accuracy, and 10-18% higher for F1-score. For precision, our

method scored 97% that is just 1% lower than the highest precision, which was 98%.

In summary, this dissertation describes novel hardware, a pilot experiment, and a compar-

ison against current state-of-the-art tools. We also believe our methods could be used to build a

similar surface for other applications besides monitoring consumption.
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Chapter 1

Introduction

This dissertation describes a new method for automatic monitoring of eating activities taking

place on a dining table. The motivating problem is obesity, which is a growing global health problem

[4]. In the United States, obesity is a national epidemic and associated with some of the leading

causes of death [5, 6]. After the Americas, Europe comes next in the prevalence of obesity, where

59% of adults and almost 1 in 3 children are overweight or obese. The study and treatment of

obesity involves acquiring information about daily eating habits. Classic tools used to acquire this

information, such as a 24-hour dietary recall (24HR), can be inaccurate and biased; patients tend

to forget or might report false information [21,34]. New tools are being developed to overcome this

problem by automatic the monitoring of eating behaviors to provide more objective and accurate

information [96]. Some examples include wearable sensors, cameras, and smart utensils. This

dissertation considers a new method for automatic monitoring of eating taking place on a dining

table. This tool is ideal for monitoring behaviors in a home or other fixed setting where a lot of

eating may occur.

In this work, we describe the construction of a 2D grid of load cells in the form of a dining

table. The instrument is constructed using a grid of load cells to produce an image of weight

measurements giving weights and positions of objects resting on the grid surface. Processing a

stream of these frames enables continuous tracking of changes in weight and position of the objects.

The load cells are mounted on a metal sheet which is placed on a wooden box that encloses an

electronic system. Signals produced by the load cells are digitized by the electronic system and sent

to a computer for image processing and tracking of objects, and hence eating events are detected.
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Performance of the instrument was evaluated for accurate weight measurements and for correct

spatial representation of footprints of objects placed on the grid surface. After getting an approval

from the Institution Review Board (IRB) of Clemson University, a pilot study was conducted to

collect data of 11 human subjects eating on the dining table. Using the data collected from this pilot

study, an algorithm was developed to process the data. The algorithm consists of two parts: image

segmentation using geometric information of the objects placed on the table surface, and a rule based

algorithm, which analyzes the sequence of weight changes in the weight profile of each object, to

detect intake events. More human subjects — total of 32 — were recorded to compare the developed

algorithm against other state-of-the-art methods in related prior studies. Similar instruments have

been developed that use far less load cells per unit area and provide less information. The work done

by Mattfeld et al., for example, uses only 1D measurements produced by one load cell, representing

total weight of a food tray on which food and beverage were placed [127]. For this case, the 2D

measurements produced by the grid of load cells were summed up into 1D weight profile that was

fed to Mattfeld’s algorithm.

The rest of this chapter provides background on the medical problems associated with

obesity, classic tools for the measurement of eating behaviors, and related research on new tools for

automating the eating monitoring process. We also provide background on load cell sensors. Finally,

the chapter concludes with a statement of novelty and specific questions that this work endeavors

to answer.

1.1 Obesity

Overweight and obesity is alarmingly increasing worldwide and has grown to epidemic pro-

portions. In 2019, the Global Burden of Disease Study identified dietary habits among the top five

risks for global deaths (second for females, third for males) [136,200]. According to the World Health

Organization (WHO), overweight and obesity are defined as abnormal or excessive fat accumulation

that may impair health [4]. An adult person (18 years of age and older) is classified to have obesity

or overweight by using the body mass index (BMI). The BMI is defined as a person’s weight in

kilograms divided by the square of their height in meters (kg/m2). An adult with BMI from 25 to

30 is classified to have overweight. Obesity is a BMI larger than 30. In 2016, 39% of the world’s

adult population were over weight and 13% were obese. The problem of obesity and overweight is
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Figure 1.1: Trend of increasing obesity over the last two decades for a sample size of 4,989±582
people with age-adjustment [66]. Y axis is the percentage of the population. X axis is the time
period.

affecting even children, and is not limited to high-income countries but even low and middle-income

countries. The number of deaths as a result of obesity and overweight is larger than that of under-

weight. Overweight and obesity are responsible of the death of at least 4 million people every year.

The National Health and Nutrition Examination Survey (NHANES) shows an age-adjusted trends

of increasing obesity and severe obesity (BMI at or above 40.0) of American adults 20–74 years old

from the years 1960–1962 through 2017–2018 [66]. Fig.1.1 illustrates the increasing trend of obesity

over the last two decades for a sample size of 4,989±582 people with age-adjustment.

Obesity has a direct and indirect economic burden to patients, their families, and nations

[25, 43, 175, 196]. For direct economic burden, several studies agree that higher BMI translates
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to a higher medical expenditure [209]. It was found that, for example, there was 1.9% higher in

median medical spending for each one-unit increase of BMI during 18-months period when studying

a stratified random sample of 5,689 people [158]. Obese and overweight people are charged higher

for healthcare and health-insurance premiums [175]. Increases in body weight due to obesity would

likely imply more costs for transportation; vehicles consume more fuel when loaded with heavier

weights, and people having larger bodies would likely need bigger vehicles. Several studies have

investigated the increased costs due to obesity and overweight for commercial and non-commercial

passengers [50, 90]. A study, for example, found that each additional one pound increase in the

average passenger weight in the United States results in over 39 million gallons of annual fuel

consumption in passenger vehicles for noncommercial purposes [91].

Indirect costs include, but are not limited to, unproductivity and human capital. In the

United States, the national productivity losses as a result of absenteeism due to morbid obesity

range from $13.4 to $26.8 billion in 2016 [39]. Several studies used different measures, methods,

and approaches, however, they agree that absenteeism and obesity have positive correlations with

statistical significance [101, 162]. Attending workplace while suffering morbid obesity that lowers

productivity is known as presenteeism, which was found to have a higher cost than absenteeism [61].

Premature mortality caused by obesity-related health problems is a loss of investment on professional

training and skill developments that employers provide to their employees [74, 79]. Obesity hinders

education outcomes as observed by several studies investigating the effect of obesity on human capital

in childhood [174]. Educational attainment of both males and females are negatively affected by

obesity but the impact is stronger on females [152, 167]. The same negative impact of obesity was

also observed on cognitive performance for children [19,28]. Obesity is associated with higher hazard

ratios for unemployment than that of people with normal BMI [33].

Comorbidities associated with obesity contribute to high mortality rates especially at higher

levels of BMI [4, 7, 13]. Cardiovascular diseases (CVD), Type 2 Diabetes Mellitus (T2DM), hyper-

tension, and cancer are major comorbidities of obesity. Tha vast majority of epidemiological studies

consider obesity as an independent CVD predictor [75, 89, 100, 107, 123, 126, 159, 198]. Obesity is

associated with a spectrum of cardiovascular diseases including coronary artery disease, congestive

heart failure, hypertension, stroke, arrhythmias, and sudden cardiac death [40, 67, 80, 100, 100, 109,

123,130,153,155,159,169,203]. Obesity was classified by the American Heart Association as major

risk factor for coronary heart disease [56].
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Obesity is associated with alterations in immune function [138]. Observational studies have

linked obesity to 13 types of cancer [8]. It was shown that absence of body fatness lowers cancer

risk of different types of cancer [115]. Obesity suppresses anti-tumor immunity through impairing

function of CD8+ T cells, which are vital for killing cancerous or virally infected cells, thereby

accelerating tumor growth [165, 215]. In humans and animals, numerous studies have shown that

obesity alters T cells steady-state number, function, and maintenance [99, 149, 182]. Obese people

were at risk to suffer severe COVID-19 disease and obesity was found to be a strong and independent

determinant of increased risk of mortality in COVID-19 infected patients [186].

The prevalence of T2DM is projected to reach 25% to 28% by 2050 in the US adult popula-

tion [32]. Obesity is associated with the development of T2DM [9]. Independently of family history

of diabetes, BMI was found to be the dominant predictor of risk for T2DM for adult women and

men [41, 47, 48, 106]. Risk for T2DM increased with BMI > 23 [41, 47]. In an observational study

of 22,171 male health professionals, who were observed for 12 years, weight gain was monotonically

related to risk for T2DM, and the risk increased by 7.3% for every kilogram of weight gained [106].

There is no clear understanding of causal relationships [214]. Moreover, there is no consensus for a

clear understanding of the complex relationship between obesity and metabolic diseases or what first

triggers the other [14, 95, 122, 214]. Nevertheless, accumulating evidence suggests that even small

weight loss improves several diabetes risk parameters [17,20,210].

1.1.1 Obesity Treatment and Prevention

The prevalence of obesity is driven by adoption of modern lifestyles, in which many people

follow sedentary habits and eat high calorie foods. Treatment of obesity includes losing weight

through eating healthy foods, more physical activities, and adopting changes in lifestyle [10]. Energy

imbalance between the intake and expenditure of calories can be measured as a cause of overweight

and obesity [4]. Cheap, energy-dense, low nutritional value foods contribute to more energy intake

and to gaining more weight. Engagement in multidisciplinary weight loss programs and increasing

daily physical activities helps to reverse and prevent the development of obesity. A doctor may

consider adding other treatments for the cases when some patients cannot lose weight through

the aforementioned ways. These treatments including weight-loss medicines, weight-loss devices, or

bariatric surgery [10,191]. Although bariatric surgery can improve obesity related comorbidities [18],

it is associated with higher complication rates such as abdominal pain, gastroduodenal ulcers, and
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iron deficiency [92].

1.2 Classic Dietary Assessment Tools

Monitoring of eating behavior and energy intake helps people to gain awareness and adopt

healthy eating practices and improve their diet [35, 36]. Dietitians and researchers also use dietary

assessment tools to keep records of eating behavior for individuals or populations. Currently, the

most widely used dietary assessment tools are classical such as dietary records, 24-hour dietary

recall, and food frequency questionnaire (FFQ) [193,194]. An overview of each of the classical tools

is presented in this section.

With dietary records, respondents record the types and amounts, and timings of the foods

and beverages consumed over one or more days on open-ended or close-ended forms [141] Respon-

dents are supposed to record the information concurrently when they eat their meals. They need to

be trained to provide detailed information about what they eat such as names of foods, preparation

methods, recipes, and portion sizes. In some cases, an investigator contacts the respondents to

review the records. At the end of the recording period a reviewer checks with the respondents to

clarify the records.

Collected information using dietary records decreases over more recording days due to for-

getfulness or fatigue [71]. This method might fail to measure the actual energy intake as it could

alert the respondents while they measure and record their foods and beverages. As a result, this

process could alter their actual dietary behavior, which is meant to be monitored and measured

accurately. Although numerous smartphone apps are being used as a convenient way for data entry,

respondents still need to manually log their dietary information into such mobile apps. This method

might be burdensome and is subject to biases and inaccuracy. Several studies reported that dietary

records underestimate energy intake in the range of 4% to 37% compared to energy intake measured

using doubly labeled water [72,195]. The doubly labeled water (DLW) is the gold standard, unbiased

reference technique for assessing total energy expenditure in free-living individuals [27,37,38,184].

In a 24-Hour dietary recall, the respondents are asked to remember and record what they ate

and drank in the past 24 hours. A well-trained reviewer is usually involved to probe the respondents

with questions to help them remember forgotten consumed foods, beverages, and snacks with portion

sizes, preparation methods, and any other related information. Currently, the U.S. National Health
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(a)

(b)

Figure 1.2: Automated, self-administered 24-hour dietary recall (ASA24) [1,2]. (a) A demonstration
site for the ASA24 system. (b) The user is reminded to record detailed information about what they
ate the last day.
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(a)

(b)

Figure 1.3: Automated, self-administered 24-hour dietary recall (ASA24) [1,2]. (a) The user selects
a meal type and then adds details. (b) The ASA24 alerts the user to make sure that they entered
all meals and snacks with all details.
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and Nutrition Examination Survey (NHANES) uses a five-pass 24-hour dietary recall. In this method

respondents first fill out an initial quick list to record consumed foods and beverages. Second,

they go through a list of usually forgotten to report foods to help them remember. Third, they

provide time and occasion at which foods were consumed. Fourth, they are asked for more details

including portions sizes and time among eating occasions. Fifth, they are again asked to provide

any other information that was not already reported. A duration of 30 to 45 minutes is typically

used to complete this process. An Internet-based, automated, self-administered 24-hour dietary

recall (ASA24) was developed in an effort to automate the 24-hours recall process. The system was

developed by the National Cancer Institute under contract with Westat, a social science research

company [1, 2, 189]. Fig. 1.2 and 1.3 show snapshots of the ASA24 user interface.

Evaluation of data validity of the 24-hour dietary recalls for energy and protein intake

generally reveal under-reporting in the range of 3% to 34% when compared to the recovery bio-

markers of DLW and urinary nitrogen [110]. Urinary nitrogen is a bio-marker for measuring protein

intake for weight stable individuals [26, 78]. Dietary recall and diary systems tend to use databases

for easier, faster, and more accurate retrieval of nutritional and caloric information about the foods

and beverages entered by respondents. They may also offer low-cost, low-burden alternatives to the

traditional interviewer-led 24-h recalls. However, under-reporting for energy was still found to be

around 25% when using the online system compared to that measured by DLW [65]. Moreover,

respondents still need basic skills of using this technology and need to spend time answering online

questions; this might not fit the needs of some populations such as the elderly and children [58,102].

A food frequency questionnaire (FFQ) consists of a defined list of foods and beverages

ranging from a simple list (e.g., 20 items) to a comprehensive list (e.g., 200 items) [51]. An FFQ

captures habitual dietary intake by asking respondents about their usual frequency of consumption

of each food or beverage item over a specified time period in the past, over the last year, for example.

Respondents answer all questions depending on their memories. The questions also ask about the

portion size of each item to estimate an average intake over time. It is common to customize this

tool to fit the needs of specific patient categories such as FFQ for children [188], old women [134],

or elderly [180]. Fig. 1.4 and 1.5 show an example of an FFQ form that is available online on [3].

The aforementioned classical dietary assessment tools are burdensome and lack objectivity

and accuracy [34]. Manual self-monitoring of eating events and quantities leads to the loss of re-

spondents’ interest in keeping up with recording their eating behavior. Even the recent approach of
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(a)

(b)

Figure 1.4: FFQ example available online on [3]. Respondents are asked to give detailed answers
about vitamin supplements (a), fruits and vegetables consumption (b).
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(a)

(b)

Figure 1.5: FFQ example available online on [3]. Respondents are asked to give detailed answers
about meat, sweets and baked goods (a), beverages and other miscellaneous dietary questions (b).
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using online websites or apps on smartphones still depends on memory and respondents’ commit-

ment. Process automation for food intake monitoring is required for data accuracy and long-term

usage. Real-time feedback of food consumption creates awareness so that users can stop or limit

their eating when alerted by smart automatic dietary monitoring tools.

1.3 Automatic Dietary Assessment Tools

Researchers are investigating different technical modalities to automatically track patients’

foods and behaviors to aid dietitians in their treatment. The automation of dietary assessment tools

can increase objectivity and accuracy and can promote long-term usage. These methods involve

instrumenting people with sensors and miniature electronic devices enabled for in-situ real-time

monitoring of activities and signals that indicate the health status of the body. Such data can be

used to estimate energy intake and expenditure to help a patient maintain or lose weight.

Information a dietitian would want to obtain include food items, meal type (breakfast, lunch,

dinner, snack), time (start/end), nutrition facts (calorie, carbohydrate, fat, sugar, sodium, fiber),

portion size, and location (homemade, store-bought, restaurant) [121]. In addition, a dietitian might

also want to obtain details about patient’s meal microstructure habits such as bite size, eating rate,

and chews per swallow [57, 119, 148, 187]. It is hard to obtain microstructure information of eating

behavior using classical dietary assessment tools. Such detailed information is valuable, for example,

smaller bite size in addition to longer oral processing time was found to significantly decrease food

intake [220]. More time spent on oral processing before swallowing could contribute to higher

fullness/satiety compared to the same meal and calories when eaten with less oral processing [64].

More oral processing per bite was shown to have a direct effect on reducing energy intake rate and

the desired food intake [31,111,181]. Several studies showed that faster eating rate is associated with

higher energy intake [166,199]. Some of these dietary information can be automatically detected or

classified with various technological modalities that tracks signals generated by the eating action.

When a person eats, chewing and swallowing produces sounds and muscular activity that in turn also

produces mechanical motion and electrical signals, i.e., electromyography (EMG). Body activities

are also involved when a person picks up food and puts it in mouth. For tracking these eating-

associated signals, various technological modalities have been developed in the literature including

acoustic-based, camera-based, motion-based, or smart environment methods. This section gives an
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overview of various automatic dietary assessment tools [21,157,161].

1.3.1 Acoustic-Based

The acoustic-based techniques use microphones attached to human subjects to listen to

sounds produced during eating, i.e., chews and swallows. Analyzing these sounds can provide valu-

able information such as food texture, oral processing time, eating rate, and intake occasions. Mi-

crophones are usually positioned in the ears or on the neck. Fig. 1.6a shows the locations for

acoustic-based ADM applications as suggested by [170]. In-ear or behind the ear microphones are

usually used to assess chewing sounds as in Fig. 1.6b [143,197,217]. It was found that chews can be

best detected when a microphone is positioned on the mastoid bone behind the ear [22]. Fig. 1.6c

shows an example of using a microphone positioned on the throat to listen to swallows [170,201]. One

study to analyze chewing and swallowing sounds was in AutoDietary [23], which used on the neck

microphone and achieved 84.9% in food-type recognition. Multiple microphones placed at different

locations have been used to detect different eating sounds [137]. In addition to microphones, some

studies used different sensors such as an electromyography sensor placed on the throat to detect

swallowing activities [15], or pairs of ultrasonic transmitters and receivers to make an ultrasonic

doppler sensor that is attached to the neck of a subject as a food recognition wearable sensor [116].

The biggest challenge in the acoustic-based approach is the interference of background environment

noise. To overcome this problem, several studies used two microphones: one is for the eating sounds

and the other is for the background environment noise cancellation as shown in Fig. 1.6d [147].

Several microphone types were used in the literature for acoustic-based ADM acoustic-based

systems such as:

1. piezoelectric bone-conduction microphone EM-L (Temco Inc.),

2. piezoelectric noise-canceling microphone model N4530 (Challenge Electronics),

3. a modified throat microphone XTM70V (iXradio),

4. throat microphone IASUS NT (IASUS Concepts Ltd).

Sazonov et al. [170] compared the aforementioned microphone types and concluded that the throat

microphone IASUS NT performed the best among the others because of its higher sensitivity to

swallowing sounds and its lower susceptibility to ambient noise. Off-the-shelf Bluetooth headsets
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(a) (b)

(c) (d)

Figure 1.6: Acoustic-based techniques use wearable microphones for ADM. (a) Microphone locations
for ADM applications as suggested by [170]. (b) In-ear microphone for eating detection from [197].
(c) A microphone positioned on the throat to listen to swallows [170]. (d) Two microphones: one is
for recording eating sounds and the other is for noise cancellation [147].
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have been used to unobtrusively monitor and detect a subject’s eating episodes by analyzing the

chewing sound [69]. The built-in microphone of a smartwatch was also used to detect ingestion of

food and liquid, and to classify among apples, chips, water, speaking, and ambient noise [97].

One of the drawbacks of using acoustic-based techniques for ADM applications is power

management. In order to sufficiently preserve important characteristics of the eating sounds, some

studies used a sampling frequency of 16 kHz, as per Nyquist–Shannon sampling theorem [140]. This

sampling rate creates power management problems for battery powered wearable sensors especially

when more microphone channels are used simultaneously as in [137]. It might be bothersome to

some users if they have to recharge them more frequently. To solve this problem, Bi et al. added a

wake-up circuit to their acoustic-based system which stays in sleep state until the wake-up circuit

detects a sound that is higher than a preset threshold after which the microcontroller is triggered

to wake up and start analyzing the eating sounds [22].

1.3.2 Motion-Based

Motion-based techniques track the mechanical activities associated with eating. These tech-

niques either track the actual mechanical movements or electrical signals produced by the muscular

activities. They are mostly implemented in the form of wearable sensors.

1.3.2.1 Chewing

Chewing is the activity of oral processing and breaking down of food into smaller pieces.

Muscular activities in the face and skull can be tracked to detect chewing. Frequency of chewing

activity is mainly in the range of 0.94 to 2.17 Hz [154] making the sampling rate required for digitizing

this signal much lower than that of the acoustic-based systems. Piezoelectric, electromyography

(EMG), and accelerometers are the most common used sensors for chewing detection. Produced

signals by such sensors can be analyzed to provide useful information such as daily eating schedule,

chewing speed, and food type, e.g., liquid or solid [176].

Piezoelectric sensors are attached to skin with medical adhesive or medical tape to detect

skin curvature that changes due to chewing activities. Piezoelectric systems generally feature low

power consumption, privacy-preserving, and non-intrusive wearable devices. A small piezoelectric

strain gauge can be attached to skin below the outer ear closer to the masseter muscle to predict

mass and energy intake [212]. However, such application could make a discomfort to users due to
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Figure 1.7: Dietary detection systems using signals generated due to chewing activity. (a) A piezo-
electric film strain gauge sensor attached below the outer ear [171]. (b) Positions where EMG
electrodes can detect a reliable signal [216]. (c) A device containing an accelerometer and an EMG
sensor was embedded into a headband [204,205]. (d) A side view of a proximity sensor on a subject
for measuring the distance between a necklace-like wearable sensor and the subject’s chin to detect
eating episodes [44].
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the way they are attached to skin, and it is hard to use these sensors for the detection of liquid

consumption [176].

Chung et al. embedded two miniature button compression load cells at the hinges of a pair

of eyeglasses to measure the cyclic movement of the temporomandibular joint during mastication to

classify chewing, talking, and other head movements [45]. Power consumption of foil thin-film strain

gauges limits their use in wearable systems due to their low resistance. Alternatively, as shown in

Fig. 1.7a, Sazonov and Fontana used a piezoelectric film strain gauge sensor below the outer ear as

a low power sensor [171].

Electromyography can be used to measure electrical activity in response to contractions of

muscles such as temporalis and masseter muscles. Electrodes of the EMG sensors are either directly

attached to skin with a medial adhesive/tape or embedded onto contact points of eyeglasses. To

detect eating, Blechert et al. attached signal electrodes of EMG sensors behind the right ear on a

line between the mastoid and the masseter muscle while positioning the ground electrode on the

neck—close to the cervical spine [29]. A diet-aware eyeglasses was designed so that, EMG sensors

were embedded onto the eyeglasses temples which are supposed to touch the temporalis muscles for

the tracking of chewing activities [84]. When paired with a smartphone via a Bluetooth connection,

the glasses can detect intake-related events such as the number of chewing cycles and broad food

category. Zhang et al. used EMG sensors with small fabric electrodes attached to a 3D printed

eyeglasses [218]. Three fabric electrodes were affixed onto elastic suspension to assure electrodes

to skull contact. The ground electrode was positioned at the nose and the two signal ones were

positioned around the ear. Data were processed off-line to detect the number of chewing cycles

and to classify food category (biscuit, banana, jelly baby, toast, and carrot). Later, Zhang and

Oliver improved the eyeglasses design by personalization a 3D printed eyeglasses frame to provide

enhanced electrodes to skin contact and to reduce noise that is occasionally produced when head

moves resulting in detaching the nose pad electrode; electrodes of two EMG sensors were positioned

at the temple ends behind ears to monitor activity of temporalis muscles [216]. Fig. 1.7b shows

their enhanced 3-D design.

Accelerometers have been used to detect chewing activities as they measure acceleration of

movement of a carrying body or structure. An advantage of using accelerometers is that they can

be used for the detection of both eating behavior and physical activities at the same time [59, 98].

According to the observation that mastication causes muscles to bulge during chewing, Wang et
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al. used a single axis accelerometer attached on the temporalis to detect chewing activities and

frequency [204]. A Shimmer 2r sensor — an off the shelf device — was embedded into a headband.

This device has a triaxial accelerometer and an EMG sensor, which was used as ground truth. The

EMG electrodes were attached on skin over the mastication muscle with a medical tape as shown in

Fig. 1.7c. Wang et al., in 2018, improved the system with using three axes of the accelerometer data

to further detect and classify the chewing activities and other non-eating activities such as speaking,

walking, etc. [205]. Farooq and Sazonov developed a system that encloses 3-axis accelerometer, a

Bluetooth module, and a push-button for manual ground truth annotation [60]. The system was

attached with heat-shrink tube to the right temple of eyeglasses to address two issues associated

with other types of sensors: incorrect sensor placement, which affects signal amplitude, and the

discomfort due to direct positioning of sensors on skin.

Chewing can also be detected by different sensors such as a proximity sensor attached to a

necklace for tracking the distance from the sensor and a user’s chin as shown in Fig. 1.7d [44].

1.3.2.2 Gestures

For dietary related gesture recognition, Amft and Tröster used 9-axis IMU sensor attached

to upper and lower jacket arms in addition to other modalities as shown in Fig. 1.8a [16]. They

tried different European and American eating-related gestures and their results showed that all those

gestures could be recognized using only an IMU located at the lower arm. Dong et al. (2009) used

an off-the-shelf IMU sensor, namely, InertiaCube3, to track wrist motion relative to the startup

orientation based on the gyroscope data, i.e., angular roll, pitch, and yaw [53]. The idea is that

a person’s wrist rotates and moves in a specific sequence during eating with a hand as illustrated

in Fig. 1.8c. Later, Dong et al. (2012) built a low cost and smaller prototype of a wrist worn

device enclosing a MEMS gyroscope as shown in Fig. 1.8b [54]. The same device was used by

Ramos-Garcia et al. to recognize five different types of gestures: rest, utensiling, bite, drink, or

other, using hidden Markov models that achieved up to 96.5% accuracy [163, 164]. Motivated by

the work in [164], Kyritsis et al. used a commercially available wristband to detect hand movements

associated to eating such as pick up food, upwards, downwards, or no movement [112–114]. Thomaz

et al. captured continuous data of a 3-axis accelerometer of an off-the-self device (Pebble Watch)

to identify arm-to-mouth food intake gestures [192]. Data were being transmitted to a companion

smartphone for data storage and retrieval.
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(c)

Figure 1.8: Gestures can be used for automatic detection of dietary monitoring. (a) Four 9-axis IMU
sensors were attached to upper and lower jacket arms in addition to two other modalities [16]. (b)
A wrist worn prototype enclosing an MEMS gyroscope was presented in [54]. (c) The bite counter
uses an inertial measurement units (IMU) to detect wrist rotation which is expected to occur more
frequently during eating occasions [54].
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Smartphones were used for ADM via tracking of gestures. In the previously mentioned work

by Dong et al. (2012), users needed to switch ON the device before every meal [54]. Nevertheless,

to automate the detection of eating periods in a free-living situations, Dong et al. (2013) used an

iPhone 4 worn in a watch like configuration to track the wrist motion through continuous recording

of the built-in IMU sensors (an accelerometer and gyroscope) and hence track the wrist motion [55].

In addition to automatic tracking of physical activity using built-in IMU, smartphones were used to

track other contextual data including GPS for location tracking, and manually recorded information

such as food photos, emotion, and food environment [24,179]

Recently, smartwatches come with variety of built-in sensors that can be used for tracking

of physical activities and several body health related signals. Such devices can be used for the

monitoring and estimation of both energy intake and expenditure helping users to maintaining

healthy lifestyle. Using built-in IMU sensors, smartwatches have been used in the literature for

hand gesture tracking for the purpose of ADM. Weiss et al. used a smartwatch (accelerometer

and gyroscope) and smartphone (accelerometer) to recognize 18 physical activities: six non-hand

oriented general activities, seven hand oriented general activities, and five hand oriented eating

activities [207]. After comparing different algorithms, the data of smartwatch accelerometer were

found to provide the highest accuracy in activity recognition. Stankoski et al. used data recorded

from smartwatch accelerometer and gyroscope built-in sensors, and implemented deep and classical

machine learning algorithms for the detection of eating segments [185]. Their algorithm achieved

F1 score 82% in the detection of eating segments.

1.3.3 Image-Based

Image-based techniques use visual information to automatically or manually provide dietary

information. Image-based systems can be stationary, portable, or wearable. The main advantage

in image-based techniques is that they have been used to detect portion size and food content.

Images are taken either actively, where the user needs to manually start photos or video recording,

or passively, in which other low power sensors are used to detect eating events/episodes and to

automatically trigger the camera functionality [70]. There are common requirements among image-

based systems [157]: first, images should be captured at specified angles, second, images of food

before eating and the leftover are required for quantifying consumed amount of food, and third,

images should include a visual scale reference such as a finger [156], ruler [49], or printed pattern
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[125] for quantifying portion size. Image-based techniques can also be affected by other parameters

including illumination and the camera itself [156].

Pouladzadeh et al. used a smartphone camera to compare recorded photos of food before

and after eating to estimate consumption of calorie with the use of nutritional fact tables [156].

Sun et al. developed a wearable camera called eButton that can be used for several applications

including evaluating diet and physical activity, studying sedentary behavior, assisting the blind

and visually impaired people, and other applications [190]. Fig. 1.9a shows how it could be used

for diet monitoring. Jia et al. developed artificial intelligence (AI)-based algorithm using images

collected by free-living individuals with the wearable eButton camera to automatically detect food

items in images [93]. They used a convolutional neural network (CNN) classifier, i.e., Clarifai

[11], to automatically tag images collected in two data sets. Next, they constructed a dictionary

containing possible words that the Clarifai CNN could produce. Using the generated dictionary,

their algorithm achieved 86.4% overall testing accuracy for the data set-1 and 74.0% sensitivity and

87.0% specificity for data set-2 when considering food and drink detection. O’Loughlin et al. used

SenseCam—a wearable camera by Microsoft—to increase the accuracy of manual self-reported 1-day

food diary [139]. Each participant wore the camera for one day on the neck and attached it onto the

chest with a velcro strap as shown in Fig. 1.9b. They concluded that the camera increased the diary

accuracy. A similar study was done to improve dietary assessment accuracy using a micro-camera

worn over the ear as shown in Fig. 1.9c [151]. Rachakonda et al. developed iLog which is a wearable

camera based system attached to eyeglasses [160]. It continuously captures images that are sent to

a platform for image processing and automatic classification of food type, and hence estimating how

much is too much. The system, moreover, classifies the emotional state and the eating behavior,

i.e., normal-eating or stress-eating.

The major problems of using cameras for dietary assessment are power consumption, privacy,

storage capacity. Schiboni et al. fixed a camera on a cap’s visor pointing downwards in an attempt

to address the problem of privacy-sensitive image content [172]. A common approach is to let users

review all recorded images and keep what they accept to be seen by researchers, or to use an on/off

switch to manually control what the camera can record. Signals from a smartwatch built-in sensors

such as IMU (accelerometer and gyroscope ) were used to classify gestures into either eating or

non-eating activities and to trigger the camera on the smartwatch [178]. Controlling the camera

functionality in this way manages power consumption and reduces the storage use by recording most
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Figure 1.9: Image-based systems for ADM. (a) eButton wearable camera used for [190]. (b) Sense-
Cam (a wearable camera by Microsoft) worn on chest [81]. (c) A micro-camera worn over the ear
to improve dietary assessment accuracy [151]. (d) A work around for the privacy problem proposed
by [172] who fixed a camera on a cap’s visor pointing downwards.
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likely food related photos. They developed an improved system, called Annapurna, in which the

collected images are transferred into a paired smartphone for further image filtration so that only

useful images are kept [177]. They used algorithms for face recognition to remove images containing

human faces, color histogram-based to remove solid background images, and edge detector to remove

blurry images. The remaining images are transferred to a server that implements AI algorithms for

further image filtration and recognition of food containing images. Their process achieved 95%

overall recall of meals consumed by participants.

1.3.4 Smart Instruments

Smart home technologies can be used for unobtrusive tracking and monitoring of dietary

behavior through instrumenting surrounding environment such as furniture, utensils, or food con-

tainers.

The cumulative food intake (CFI) curve has been used to classify the eating behavior of

patients [105]. The CFI curve is the weight of food consumed over time modeled in the following

quadratic curve

wq(t) = αt2 + βt, (1.1)

where β is the initial rate of intake weight at time t = 0 sec, and α is the intake weight acceleration

that can be used to classify eating rate. A linear eater eats at a constant rate (α = 0 ) while a

decelerated eater slows down their eating rate over the course of a meal (α < 0) [208,213]. Healthy

people eat at a decelerated CFI curve and hence obese patients and those with an eating disorder

are trained to eat at a decelerated rate with the help of modeling their CFI curves [63,208,213].

Papapanagiotou et al. used a plate scale—called Mandometer—to calculate the cumulative

food intake (CFI) curve of a user’s eating behavior [144]. Fig. 1.10a shows a plate, which was

developed by Mertes et al., embedded with three load cells for measuring picked up food bites and

locating which compartment the bite was picked up from to detect type of food [129]. Consumption

of beverage, however, is not usually monitored by a plate scale or a smart plate. Mattfeld et al. used

food trays that carry solid food and beverage containers and four scales embedded into a dining table

to detect and measure weight of bites consumed during unrestricted eating; one tray was placed on

a scale as shown in Fig. 1.10b [127].

Smart utensils were developed for ADM. Kadomura et al. developed a sensor-embedded fork
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(c) (d)

Figure 1.10: Examples of smart instruments. (a) A three compartment plate embedded with three
load cells for measuring bite weight and detecting food type [129]. (b) Food trays placed on scales
which are embedded under a dining table [127]. (c) A smart fork embedded with an accelerometer,
electrodes, color sensor, and an LED [94]. (d) A smart water bottle embedded with IMU developed
by [73].
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to study eating behavior of children as shown in Fig. 1.10c [94]. The system uses an accelerometer

for motion detection, three electrodes to detect holding, poking, and biting, and a four-channel color

sensor and an LED to detect food. Huang et al. embedded LEDs as light source and a photodiode

as a light detector into a transparent spoon to detect food type [85].

Fluid containers such as water bottles, glass, or cups, have been instrumented with sensors

for monitoring fluid intake. Such application can be used for preventing dehydration or overhydration

[46]. Sensors used in the literature include IMU to track orientation and movements of a liquid

container [52,73], capacitive or conductive electrodes for sensing liquid level in a container [30,108],

strain gauge to measure container weight [221], and thin metal antennas attached on a plastic bottle

to disturb ambient WiFi channel when touched by fingers [68]. An example is shown in Fig. 1.10d.

1.3.5 Multi-Modality Approach

Multi-modality systems were developed to exploit the advantages of some types of sensors

and to overcome the drawbacks of others. A practical use of such systems, for example, is the use of

an accelerometer and a camera; the accelerometer is used as a low power sensor for the detection of

eating events after which the camera is triggered to capture only eating-related images [178]. This

practice can conserve power consumption, reduce storage usage by saving only useful images, and

preserve privacy. For the detection of chewing, Sazonov et al. used a bone conduction microphone

placed over the mastoid bone and a foil strain gauge attached with a medical tape on the jaw right

below the ear [170]. These two sensors can detect chewing while eating food but are not suitable

for the detection of liquid intake. For this reason, they added a throat microphone located over the

laryngopharynx as shown in Fig. 1.6a. Fontana et al. wirelessly interfaced three different modalities

to a smartphone: a piezoresistive jaw motion sensor, an RF transmitter and receiver for hand gesture

recognition, and an accelerometer for capturing body acceleration [62]. For physical activity and

food intake recognition, Farooq and Sazonov developed a logging system that was attached on the

temple of eyeglasses [59]. The system uses a piezoelectric film sensor attached with a medical tape

on the skin for chewing detection, and a three axis accelerometer for monitoring body acceleration.

A Bluetooth module was used to send data to a smartphone for logging then data were processed

off-line on MATLAB. Mirtchouk et al. used multi-modality system for eating recognition [131];

they used an earbud with an internal and external microphones to record chewing and to cancel

out background ambient noise. In addition, motions were monitored with two smartwatches— one
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worn on each wrist—and a Google Glass; each of these smart devices has a built-in 9-axis Inertial

Measurement Units (IMU).

1.4 Smart Surfaces

One of the challenges in monitoring eating is building instruments that people will wear every

day. They have to be comfortable, daily charged, and be able to sense eating-related behaviors. An

alternative is to instrument settings where eating occurs, such as a dining table. In this section we

discuss technologies that have been explored to build a smart surface.

For this application, a smart surface needs to be able to sense position and weight with

enough accuracy to measure intake events, i.e., where, when, and how much food and beverage was

lifted from the surface and consumed. Fig. 1.11 graphically illustrates the trend in the literature

towards higher accuracy in the detection of weight and position of objects resting on a surface. Some

technologies such as touchscreen provide high position resolution but they do not measure weight.

On the other hand, the use of a single load cell can provide high weight accuracy but not position of

objects resting on a surface. Smart textile technologies can provide good position resolution but not

as high weight accuracy as load cells do. The use of a grid of load cells can provide high accuracy

of weight measurements and high resolution for accurate detection of position.
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Figure 1.11: Trend in the literature towards higher accuracy for the detection of weight and position
of objects resting on a surface.
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Table 1.1 lists technologies that were used in the literature for the detection of weight

and position of objects resting on a surface. The first technology is a touchscreen built using an

infrared camera that is used for locating objects or fingers touching the screen surface [124]. Its

high resolution in positioning touching objects is its main strength. A limitation of this technology

is that, however, it is not meant to measure weight. The second technology is flexible pressure

mapping sensors that consists of a matrix of sensing elements manufactured into a flexible substrate.

The material flexibility is the main strength of this technology, but it has a poor accuracy for

weight measurements [82, 219]. The third technology is load cells. Load cells provide excellent

precision in weight measurements, and are commonly used in body scales, table scales, and similar

devices. However, a single load cell (which is how most applications are build) provides no position

estimates [127, 144]. The rest of the entries in Table 1.1 describe methods that tried to improve

the position estimates provided by load cells. Compared to other methods, the work presented in

this dissertation pushes the envelop towards higher accuracy for both position detection of multiple

objects resting on a surface and the weight of each object.
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Table 1.1: Summary of explored methods that were used for the detection of position and weight of
objects when placed on a surface

Ref. Technology Position

resolution

Weight accuracy Application

[124] touchscreen < 1 mm Cannot measure

weight

eating monitoring

[82] smart textile 1.27 cm ±6.8 g user interface

[219] smart textile,

force sensors

1 cm not reported eating monitoring

[42] load cells,

RFID

30 cm not reported eating monitoring

[173] load cells 2-4 cm (one

object only)

±100 g user interface

[135] load cells 6.8 cm (one

object only)

±39 g user interface

[77] load cells 9.4 cm ±3.6 g eating monitoring

this work load cells 5 cm ±57 mg eating monitoring

Textile or fabric pressure mapping sensors are used to find pressure distribution when a force

is imposed over area. Thus visualize the data in a heat map images to identify points with relatively

higher pressure compared to neighboring spots. Practical applications of pressure mapping sensors

include, for example, electronic skin, plantar pressure imaging, tangible user interface (TUI), and

pressure ulcer prevention [76, 117, 118, 150, 219]. These sensors are not meant to measure accurate

weights. The reason is that a flexible pressure mapping sensor consists of a grid of sensing elements

(sensels) equally spaced from each other. They are embedded into a flexible material such as a

fabric, paper, or polymer. When an object is placed on the pressure mapping surface, the force

applied by the object footprint is distributed onto some sensels and onto other spots where there are

no sensels. This results in an inaccurate weight measurements as the weight can just be partially

measured. This problem was reported by Zhou et al. who used a textile pressure mapping sensor

with 1 cm2 spatial resolution on a flipped over food tray for dining monitoring application as shown

in Fig. 1.13c [219]. In addition, four resistive force sensors were used under corners of the tray to
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increase the overall weight measurements accuracy. Food weight approximation, however, was far

from accurate; it was estimated with an RMS error of 16.62% of the signal span. Flexible pressure

sensors lack the repeatability required for accurate weight measurements and is prone to sudden

changes as was reported in their study; replacing a glass or cutting on a plate produced random

offset [219]. Moreover, some technologies used in flexible pressure sensors exhibit sensitivity that is

dependent on applied pressure; starts with high sensitivity at no load and dramatically decreases

at larger applied pressures [87, 142]. The sensitivity characteristics S of tactile sensors is generally

defined as

S =
4X/X0

4F
, (1.2)

where X is the change in the output signal due to a change in the imposed stimuli or force F [202].

X0 denotes to the initial output signal at no imposed stimuli or force.

Figure 1.12: Tactile sensors exhibit different sensitivity characteristics for different imposed force;
the sensitivity starts high at low applied force and exponentially decreases at under high applied
forces [168].

Fig. 1.12 illustrates the sensitivity curve of tactile sensors [168]. This makes a problem in

the case of eating monitoring such as when a small bite, e.g., 0.5 g, is picked up from a plate that

rests on a flexible pressure mapping surface with the sensitivity characteristics as the one shown in

Fig. 1.12. If the pressure imposed by the plate puts the sensels, on which the plate footprint rests, in

the low sensitivity region then the weight change made by the pickup of the small bite might likely

not be detected. Although new technologies have been developed towards more linear sensitivity
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behavior, the use of a flexible mapping sensor that uses such technology is still an open research

problem for the eating monitoring application [86,183,211].

Load cells, in contrast to flexible force sensors, provide better repeatability, accuracy, and

linearity, and show almost consistent sensitivity throughout their working range. These properties

allow a load cell to reliably and accurately detect a weight change of a thousandth of its rated

capacity even when loaded at its full capacity. Load cells are suitable for eating monitoring if

they are selected properly with specifications that fit electrically for the range of bite sizes and

mechanically for the spatial resolution of the force mapping surface. This will be discussed in more

details later in Section 2.2.1.1.

Unrelated to eating monitoring, several related studies tried to track weight and position of

objects on a table for several applications. Schmidt et al. embedded four load cells under corners of

a dining and coffee tables surface to add a user interface feature to the tables to be used as pointing

devices [173]. See Fig. 1.13a. This method can be used to estimate the position of a single object

on the surface. For position estimate, they reported about an accuracy of about 2% of the surface

side lengths, i.e., 135 × 75 cm2. Similarly, Murao et al. used four load cells at the corners of a table,

either under tabletop surface or under legs to recognize the actions of adding and removing objects

to and from the table, and of four specific activities on the table: typing, moving a computer mouse,

writing, and wiping [135]. It was assumed that multiple objects can neither be added nor removed

at the same time, but only one object can. Their study revealed that weight error was 39 g and the

position error was 6.8 cm.

For dietary monitoring, Chang et al. constructed a diet-aware dining table with a tabletop

surface that has nine 30x30 cm squares as shown in Fig. 1.13b [42]. A weighing scale and an

RFID scanner were embedded under each square to measure weight of food consumed and to detect

food item via an RFID manually labeled food containers. This work was an extension of the

universal eating monitor by Kissileff et al. [103] who used only one weight scale on a dining table.

Aforementioned designs that used load cells do not provide footprint information needed for object

identification.

In a recent work, a Sensor Interactive Table (SIT), which uses load cells, was developed by

Haarman et al. [77] for eating monitoring. They built a 1.45 m diameter round-shaped dining table.

The table surface consists of 199 hexagon-shaped modules; each module has 76 cm2 surface area as

illustrated in Fig. 1.14. A load cell with 5.0 Kg capacity was embedded under each module. A panel
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(c)

Figure 1.13: Dining tables that can detect weight and position of objects on a surface. (a) Load cells
embedded at the bottom corners of the tabletop of a dining table [173]. (b) Nine scales embedded
under a dining table [42]. (c) A flipped over food tray covered with a textile pressure mapping
sensor [219].
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Figure 1.14: The Sensor Interactive Table (SIT), which consists of 199 hexagon-shaped modules
each containing a load cell and an RGB LED [77].
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of LEDs covered with opaque plexiglass was used on each module to allow interaction with users

and possibly to provide feedback about a detected behavior. It was assumed that the minimum bite

size is 5 g. Their study, however, show that a single module has weight measurement error of 0.3 to

3.6 g depending on applied load. For dietary monitoring, however, a force mapping surface needs

to have more spatial resolution and to be more sensitive than the SIT. That is to correctly capture

footprints of food containers to be distinctly classified; footprint area of a cup of water is most likely

smaller than that of a single module in the SIT. The minimum bite size, moreover, could be as small

as one gram [103]. Therefore, a force mapping surface for dietary monitoring needs to be sensitive

enough to accurately measure a fraction of one gram. This dissertation will show how challenging

it is to use load cells for a 2D weight sensing surface.

Last, explain that we want to push this envelope further, extending resolution and position

accuracy while maintaining weight measurement precision. To do this, we use a much larger number

of load cells that most previous works, and manufacture a dense array of load cells. This has a lot

of challenges which need to be overcome.

This work aims to push the envelope summarized in Table 1.1 further towards higher spatial

resolution while maintaining weight measurement precision. To do this, we use a larger number

of sensel density than most previous works, and manufacture a dense array of load cells (384.5

load cells/m2) that have lower rating capacity (100 g), which allows for higher weight measurement

sensitivity (50 mg). This has a number of challenges which need to be overcome. The manufacturing

process to be presented in this work paves the way towards even higher sensel density.

1.5 Strain Gauge Load Cells

A strain gauge load cell is a transducer that converts mechanical force into a measurable

electrical signal. Each load cell has two main components: frame and an electrical circuit. The frame,

which is also called the spring element, is meant to elastically deform due to an applied mechanical

force. The frame returns to its normal shape once the force is removed. Strain gauges are firmly

bonded to the frame surface to translate that deformation into a change of electrical resistance. A

strain gauge, which was invented by Edward E. Simmons and Arthur C. Ruge in 1938, consists of

a resistive foil covered with an insulating flexible material. The electrical resistance of this thin foil

depends on the deformation curvature. The resistance increases if the frame deformation stretches
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the strain gauge, and decreases if the deformation compresses the strain gauge.

Load cells are designed in different shapes to fit different applications and weight ranges

such as single point beam, ring, S-type, shear beam, bending beam, and many others [133]. Al-

though common shapes of load cells are meant to measure force on one axis, there are other more

sophisticated types that measure forces and detect moments in two or three different axes. For each

axis, one or more strain gauges are bonded at strategical locations of the load cell frame. Fig. 1.15

shows some examples of load cells used in common scales.

Strain gauges are connected in a Wheatstone bridge circuit to measure small changes in

resistance resulting from changes in applied force. Fig. 1.16 shows an excitation voltage is connected

across the outer terminals of the Wheatstone bridge. The signal is measured across the middle

terminals. One of the Wheatstone bridge resistors is replaced with a strain gauge to form a quarter-

bridge. Although this configuration provides strain measurements, it is susceptible to temperature

changes; a common problem strain gauges have. Another strain gauge is added to the Wheatstone

bridge to cancel out the temperature effect. In this case, the configuration is called half-bridge.

Either the resistors R2 and R3 or R1 and R4 are replaced with strain gauges so that the ratio

of R2/R3 or R1/R4 stays almost constant regardless of any changes in the temperature. That is

because the temperature affects the strain gauges the same way assuming they are the same model

and/or have the same characteristics. This configuration does not only alleviate the temperature

affect but it could also increase the load cell sensitivity. The sensitivity increases if the two strain

gauges are positioned strategically on the load cell frame in such a way that one of them stretches

due to the applied force and the other contracts. A full-bridge load cell replaces the four resistors

with four strain gauges to get even higher sensitivity and to alleviate temperature effect.

Strain gauge based, single point load cell is a popular type for precision weighing scales. An

aperture is cut in the load cell frame with two holes wider than the aperture as shown in Fig. 1.17.

The load cell is mounted from one end to a rigid structure and the force to measure is applied onto

the other end. The aperture along with the two holes control the deformation caused by the applied

force so that the deformation of the body concentrates at the tops and bottoms of the two holes

where four strain gauges are bonded. This design helps the single point load cell to gear off-center

loading into its measuring axis. In addition, concentrating the deformation at four points increases

its sensitivity to detecting small changes in the applied force, which is also amplified by the long

beam. The strain gauges are connected in a full-bridge configuration. When a force is applied two
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Figure 1.15: Examples of load cells used for weighing applications. (a) A 100 g capacity single point
load cells. (b) Kitchen scale. (c) Pocket scale. (d) Body scale.
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Figure 1.16: Wheatstone bridge is used to measure electrical resistance. An excitation voltage is
applied across the outer points of a Wheatstone bridge. Output signal is measured across the internal
middle points.

Fixed Point
SG

(R1)

SG
(R4)

SG
(R2)

SG
(R3)

inner aperture

Figure 1.17: A side view of a single point load cell showing four starin gauges R1-R4, and two holes
at the end of its inner aperture.
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Figure 1.18: When a force is applied on a single point load cell the deformation concentrates at the
four points where the strain gauges SG (R1) to SG (R4) are bonded. The strain gauges SG (R1)
and SG (R3) measure tension while SG (R2) and SG (R4) measure compression.
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resistors — R2 and R4 — measure compression, and the two others — R1 and R3 — measure

tension as depicted in Fig. 1.18.

The output signal is in millivolts range. A typical load cell would produce 2mV/V out-

put signal at full capacity. This means when it is fully loaded at its rated capacity and the load

cell is excited with 10V, for example, the output signal would be 20mV. This small signal needs

amplification.

A load cell can be calibrated using a known calibration weight (calibration weight) that is

equal to the rated capacity of the load cell. The calibration is required to provide meaningful values in

units of weights such as grams or pounds. A raw measurement is taken from the amplifier or the ADC

when no load is applied to the load cell. This measurement is the zero-offset (zero offset) or the tare

value. Next, the calibration weight is placed on the load cell and another raw measurement is taken.

This raw measurement is called full-load (full load). The calibration value (calibration value) is

hence computed as follows

calibration value =
full load− zero offset
calibration weight

. (1.3)

Having the calibration value, a raw measurement (raw) can be converted into a meaningful

measurement (weight) in grams as follows

weight =
raw − zero offset
calibration value

. (1.4)

1.6 Novelty

The novelty of the research presented in this work lies in the construction and testing of a

new table instrument to monitor eating. Compared to other research on table instruments, the new

table has much higher spatial resolution and thus is capable of better spatial localization and weight

measurements of objects on its surface. Compared to wearable sensors, which need recharging and

wearing, instrumented house furniture can be always left plugged into the power mains and to the

Internet. A mature version of this instrument would automatically differentiate eating episodes from

other uses and activities that are usually taking place on dining tables, enabling for more accurate

detection of eating events.

Chapter 2 describes the challenges in hardware design. It explains the problem of vertical
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deviation among tops of the surface tiles of a grid of load cells and the technique that was used

to overcome this problem. It describes the electronic circuits used for reading load cells and the

mechanical design of the 2D weight sensing surface along with the enclosing wooden box. System

performance is evaluated for weight accuracy and repeatability, and the overall performance of the

2D weight surface to provide spatial information of objects resting on the surface.

Chapter 3 describes pilot experiments that involves recording 11 human subjects eating a

meal on the custom-built dining table. Each subject ate individually and was video recorded for

ground truth. Data generated by the dining table were synced with videos and labeled manually.

These data were used for developing and evaluating a rule-based algorithm. Results are presented

in this chapter.

Chapter 4 compares the tool developed in this work against other ones developed in related

previous works. Data was collected for a total of 32 subjects on our tool for comparative evaluation.

Because our instrument produces image of weights, i.e., 2D data, while other methods use 1D weight

measurements, we prepared the dataset according to the requirements of the other methods. For

example, the summation of all grid cells was used as the input of the algorithm developed by Mattfeld

et al. [127] who used 1D weighing scale on which a food tray was placed. We used four metrics to

evaluate bite detection performance: precision, recall, accuracy, and F1-score.
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Chapter 2

Hardware Development

This chapter shows a technique to construct a 2D weight sensing surface with a grid of load

cells for eating monitoring application. Nevertheless, this technique can be used to build such surface

for different applications as well. It starts by stating the problem description and the challenge in

using a grid of load cells to make a 2D weight sensing surface. Next it describes the design of a

single grid cell. This is followed by a description of the modifications required to construct the grid.

Afterward, it describes the inversion process used to achieve vertical alignment among tops of tiles.

Evaluation method of the grid performance and accuracy is then explained. Finally, results are

presented and discussed.

2.1 The Problem of Deviation Among Tops of Tiles

The purpose of the 2D weight sensing surface surface is to detect location and to measure

weight of an object setting on the surface. An accurate spatial information of an object footprint

provides location and weight, and could help distinguish multiple objects from each other when

having objects with different footprints. The main challenge is that an object needs to distribute

its weight across all cells on which it rests. However, a single load cell deflects only a fraction of

a millimeter across its entire range (from no load to rated capacity). Thus, the tops of load cells

must be precisely aligned across the entire grid. Fig. 2.1 illustrates this challenge. If one cell is

higher than its neighbors, then the object footprint would rest on only that high cell. Additionally,

each single load cell uses an overload protector that prevents physical deflection beyond a maximum
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Figure 2.1: Problem of vertical deviation among cells. (a) Horizontal view of a grid of cells. Unlike
object X which is measured by one cell (1,3), object Y should rest on nine cells. Due to deviations
among the tops of the cells, object Y rests only on the highest three cells. (b) Cross-sectional view
of object Y resting on only three cells {(0,2), (1,0), and (2,2)}, which are vertically higher than
their neighbors. This problem prevents obtaining correct spatial information. It can also cause
inaccurate weight measurements if at least one load cell of the highest three was stopped by its
overload protector, which would transfer some amount of the weight to the structure on which the
load cell is mounted.
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Figure 2.2: Design for one cell. A tile is attached to the top of a load cell that is affixed on a metal
base. A stopper screw is used to protect the load cell against over loading. Wires of the load cell
are connected to a PCB that provides power, reads data, and sends them to a computer.

range to prevent damage to the load cell. Since the entire deflection range is only a fraction of a

millimeter, it is possible for an object to transfer some amount of its weight onto the structure on

which the load cell is mounted, preventing weight from being shared amongst neighboring cells, and

thus yielding inaccurate weight measurements.

2.2 Methods

This section describes the design of a single cell, which includes components to help with

vertical alignment with neighboring cells. Next, it describes the structure and electronics holding a

7 × 11 grid of cells. This is followed by a description of the inversion process used to achieve vertical

alignment.

2.2.1 A Single Grid Cell

One grid cell consists of mechanical and electronic parts. Fig. 2.2 shows a tile mounted on

a single point load cell that is mounted on a base. A washer is used between the base and the load

cell to provide space for the load cell to flex. Another washer is placed between the tile and the load

cell. A stopper screw is used to protect the load cell against overloading. The load cell is connected

to a circuit that has an analog to digital converter (ADC). A microcontroller (MCU) reads data

from the ADC and sends them to a computer. A square piece of standard glass is used as a tile with

2.28 mm thickness and 47±1 mm side length. We chose glass for its flatness and stiffness.

For a load cell we selected the QL-56 mini (Hanzhong Quanyuan Electronic Co., Ltd, China).

It has 100 g loading capacity, 47 × 12 × 6 mm dimensions, and costs less than $5 USD. The load

cell has a rated capacity of 100 g and can safely handle up to 150 g without causing permanent
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deformation to its frame. Its rated output is 0.7±0.1 mV/V. It comes with four 10 cm long wires

which are connected to a PCB that supplies a regulated five volts excitation voltage. We used an

HX711 24-bit sigma-delta ADC (Avia Semiconductor, Xiamen, Ltd., Xiamen, China). It has an

on-chip oscillator and accepts an external oscillator clock that allows multiple HX711 chips to be

synced to each other. The ADC is used with the following configuration: 10 samples per second,

128 gain, and 5 V reference.

2.2.1.1 More Details About Load Cell Selection

This section is just a documentation of lessons learned during the selection of a load cell.

Readers who intend to replicate this work for a different application may find this section helpful as

it shows the assumptions based on which the design decisions were made.

A force mapping sensor for dietary monitoring application is expected to detect the range

of weight changes due to individual intake events, both food and liquid bites. Previous studies give

us an idea about this range. Mattfeld et al. recorded 20,542 food bites with 8.9 g average weight

and 3.3 g standard deviation [127]. The same study recorded 3,559 liquid bites with 30.7 g average

weight and 13.7 g standard deviation. It is also possible for a bite to be as small as one gram [103].

It is assumed that three flat-bottomed food containers will be used on the 2D weight sensing

surface: a cup, plate, and bowl. Diameter of these container footprints are 6.5 cm, 19 cm, and 10

cm, respectively. Based on the food content and the footprint area, the cup of beverage is expected

to apply the highest force per unit area, while the plate is expected to apply the lowest. Based on

the assumed footprints of the food containers and the range of their total weights, a load cell can

be selected.

To select a load cell for a 2D weight sensing surface, three factors need to be specified:

the minimum change of weight a grid cell needs to detect, dimension of the grid cell (spatial res-

olution), and the maximum possible load applied per grid cell. For our application case, we used

the aforementioned order of the three factors to be from highest priority to lowest. This order can

change from an application case to another. That is because selection of a suitable load cell for an

application is a trade off process. A trade off has to be made between a load cell sensitivity and its

maximum loading capacity; a load cell with a rated capacity usually has less sensitivity compared

to another load cell with substantially lower rated capacity. A weight of ten grams, for example, is

likely considered noise and hard to detect with a 200 kg rated capacity load cell. Another trade off
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might exist between the spatial resolution and the sensitivity; low profile single point load cells are

usually long so that the force applied by a small weight is multiplied by the load cell length to cause

a mechanical deflection that can be detected by its strain gauges.

The load cell QL-56 mini (Hanzhong Quanyuan Electronic Co.,Ltd, China) was selected

based on our aforementioned priorities after testing different load cells. This load cell has 100 g

loading capacity, 47L x 12W x 6H mm dimensions, and costs less than 5 USD. Based on its length,

we chose a grid cell dimension of 51 x 51 mm including one millimeter spacing among grid cells.

These specifications work well for the other two factors. Because weight of a food container is shared

among all load cells on which it rests, the minimum weight a load cell needs to detect is the weight of

the smallest bite (i.e., one gram) divided by the maximum number of load cells under the container

with the largest footprint area (i.e., the plate). The plate can be placed on 20 tiles maximum.

Therefore, the minimum weight a load cell needs to detect is 1/20 g, which can be detected by this

load cell. The maximum possible load applied per grid cell is the maximum weight of the container

that is expected to apply the highest force per unit area divided by the minimum number of load

cells on which the container rests. The cup of beverage is expected to be that container, and is

assumed to contain 300 g maximum total weight. Its flat-bottomed footprint can rest on as few as

four load cells. Therefore, the maximum possible load applied per grid cell is 75 g, which is lower

than the capacity of our selected load cell.

For building the 2D weight sensing surface with an individual grid cell size of 51 x 51 mm,

which is slightly larger than the longest dimension of an individual load cell, we decided to build

seven rows by 11 columns grid that makes a surface area almost similar to a dining tray.

For performance evaluation and to check the detection ability of the load cell, we used the

signal to noise ratio

SNR =
∆w

σ
, (2.1)

where ∆w is the change of weight of interest to be detected in grams. The noise σ is the standard

deviation of a window of stable measurements while the load cell is under load. Using the signal

shown in Fig. 2.3, for example, the SNR is 22.7; the weight of interest to be detected is the 50 mg

calibration weight, and the standard deviation is 0.0022 g for the measurements in the time window

206 to 208 seconds excluding the measurements during the transition due to the pick up of the 50

mg weight. Such high SNR indicates that the assumed minimum weight reduction per grid cell (i.e.,
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Figure 2.3: Response of the QL-56 mini load cell when a 50 mg calibration weight is placed and
then picked up while the load cell is loaded with full capacity (100 g).

1/20 g) can be detected by the QL-56 mini load cell.

2.2.2 Grid Design

Based on the size of our load cell, we chose a grid cell dimension of 51 × 51 mm to allow

1 mm spacing between adjacent cells. The electronic system layout, shown in Fig. 2.4, consists of

77 cell boards (7× 11 grid), a central control unit, and seven row distribution boards that connect

all cell boards to the central control unit. Cell boards need to be located close to their load cells

because the signal generated by the load cell is small; a change of 50 mg weight would result in

about 1.75 uV change in the output signal of the QL-56 mini load cell when excited at 5 V. A sync

clock is used to sync all the ADC chips together so data are read simultaneously in parallel. A

distribution board for each of the seven rows provides boosted sync clock signal, and power to 11

cell boards. The central control unit generates the sync clock and reads all the ADCs in parallel.

We used the development board EK-TM4C1294XL (Texas Instruments) to read data and send them

to a computer over an Ethernet connection.

A metal sheet was used to provide a stiff base on which the load cells are mounted. The base

is 6061 Aluminum alloy with dimensions of 700 mm length, 500 mm width, and 6.4 mm thickness.
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Figure 2.4: Electronic scanning system. (a) A central control unit provides power and synchroniza-
tion signal to seven distribution boards that boost and distribute this signal along with power to
77 cell boards. The central control unit reads the 77 cell boards in parallel. (b) PCBs attached to
pine wood structure which will be placed under the base of the grid of load cells. Seven distribution
boards are attached on the sides. (c) Cell boards are attached on horizontal ribs so that each board
is aligned under its load cell.
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Figure 2.5: A cross sectional view of an inverted metal base on which load cells are mounted. The
base vertically rests on a granite surface. Gaps with different heights appear between load cells and
their tiles, which are placed on the granite surface. While inverted, these gaps are filled with epoxy
to cancel out the height deviations. The surface formed by the tiles should take the flatness of the
granite surface after the epoxy is cured and the base is flipped back to normal.

There are four holes on the base for each load cell: one threaded hole for the overloading protection

stopper screw, one through-hole for wires to be connected into a cell board under the base, and two

through-holes for mounting the load cell. The base and the washers were manufactured with a CNC

machine.

2.2.3 The Inversion Process

After all load cells are mounted on the base, we used inversion to attach the tiles to the upper

washers using epoxy. The total deflection (from no load to full capacity) of the QL-56 mini load cell

is 75.5±9.5 um. Hence, vertical alignment of less than 0.1 mm is required. Fig. 2.5 illustrates our

inversion technique. There are four steps: prepare a flat surface reference, make a stencil, prepare

tiles, dispense epoxy.

A laboratory grade granite surface was used as a reference for high accuracy flatness. Alu-

minum angle corners were affixed at edges of two sides of the granite surface to create a corner

for retaining the base orientation and position during the inversion. A stencil for maintaining tile

orientation during the inversion was made using a laser cutter. We used a 1.87 mm thickness acrylic

and cut a grid of 7× 11 squares with 49 mm side length for each square, and 2 mm spacing among

squares. Next, the stencil was placed on the granite and the base is flipped over the stencil and

pushed toward the aluminum angles. At this point the base was resting on the granite surface such

that the distance between the granite surface and the upper washers allowed the stencil to move

freely; the base has six level adjusting screws (shown in Fig. 2.5) near its long edges to control its

vertical level and its distance to the granite surface. The stencil was aligned under the base so that

the center of each square is under its corresponding upper washer. Next, the base was removed, and

the stencil was taped on the granite surface as shown in Figure 2.6a.
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(a) (b)

Figure 2.6: The inversion process. (a) An acrylic stencil is placed on a granite surface to keep
orientation and position of tiles. Aluminum corners are affixed at the granite edges to save orientation
and position of the base so that upper washers of load cells will align to the center of their tiles,
which will be held by the acrylic stencil, during the inversion. (b) The base is flipped over and left
resting on the granite surface. Upper washers are dipped into epoxy blobs, which were dispensed at
the centers of the tiles.

The squares of glass tiles were cleaned with glass cleaner and put in the stencil square

openings. It is important to make sure there is a small gap around each glass tile, so it moves freely

without getting stuck in the stencil. After all glass squares were put in the stencil openings, the

base was flipped over again on the granite surface and pushed to its aligned position. Next, the

level adjusting screws were adjusted such that the gaps among glass tiles and their corresponding

upper washers were all about 1 mm. All the six level adjusting screws were used to reduce the effect

of the base deflection due to its weight and the weight of its assembled components. The base was

removed again for the epoxy to be applied on the glass tiles.

DEVCON 14260, dual-cartridge, 50 ml epoxy adhesive was used with a manual dispenser

and a mixing nozzle tip. This epoxy has eight minutes working time which was sufficient to put

a blob of the epoxy on the center of each tile before it sets. The size of the blob was small but

sufficient to surround the upper washer and make a strong tile to washer bond. Once epoxy was

dispensed on all tiles, the base was flipped over and pushed in an angle towards the aluminum angle

corners then was left to rest on the granite surface so that each upper washer dips into an epoxy

blob as shown in Fig. 2.6b. The base was left overnight for the epoxy to cure.
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Figure 2.7: The table. (a) Side view shows strips of window seal foam used as a compliant material
to form a cushion under the base for protection against any curvature the plywood might have. (b)
The final sensor grid.

2.2.4 The Table

Plywood was added on top of the structure that contains the electronic scanning system

shown in Fig. 2.4. Holes were drilled on the plywood for wires of load cells and for the overload

protection stopper screws so they could be accessed for tuning. Strips of window seal foam were

used on top of the plywood as a compliant material to form a cushion for the base to protect it

against any curvature the plywood might have, as shown on Fig. 2.7a. The base was affixed on the

plywood with four screws located at the base corners such that screws were only halfway fastened

to keep the horizontal position and orientation of the base. The mounting screws were not fully

fastened to avoid causing any force that would otherwise make the base to bend and hence change

the grid flatness after the inversion. Next, wires of the load cells were soldered to the cell boards.

Then the instrument was turned on, and overloading protection stopper screws were tuned using

calibration weights to keep load cells under the maximum safe rating. The structure was completed

in a box shape with pine wood boards on the sides, and a plywood board at the bottom. Finally,

empty space around the grid was filled with pine wood which was made with a wood planer to make

the table surface about one millimeter higher than the active sensing area. Fig. 2.7b shows the final

appearance of the device.

The table surface was covered with a laminate to hide the surface and to protect it from

food spills. The laminate is made of two layers of plastic foil separated by a paper towel, which
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Figure 2.8: (a) A laminate made of paper towel sandwiched in plastic foil was used to protect
and hide the active area. Magnetic tape holds the laminate in place. (b) Example dishware with
calibration weights. (c) Sensed footprints of objects, where the total weights are 164.3, 349.3, and
119.9 g for bowl, plate, and cup, respectfully.
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alleviates friction between the two plastic foil layers to reduce the cross talk among adjacent tiles.

The laminate was kept in place with magnet tapes around the active sensing area as shown in Fig.

2.8a. All cells were calibrated with a 100 g weight before collecting data. Fig. 2.8b shows a photo

of three pieces of dishware (plate, bowl, cup) placed on the device, with known calibration weights.

Fig. 2.8c shows the sensed footprints of these objects. Note the weight of each object is shared

among multiple neighboring cells.

2.2.5 Summary of Challenges

Table 2.1 lists a number of design and manufacturing challenges and the workaround we

used to overcome each challenge.

The clock distribution problem could be inspired by CCD (camera) and monitor (display)

synchronization of thousands to millions of elements. The purpose is to sync all ADCs so that

they all provide data at the same time. This helps in obtaining a fixed frame rate and insures new

measurements for every frame.

Table 2.1: Summary of challenges and solutions.

Step Challenge Solution

ADC very small signal

from load cells

put sensel boards as close as possible to their load

cells, and use parallel topology for the distribution

of the sync and data clock signals.

clock distribution ringing and ground

loops

use four layer PCBs, use terminating resistors, and

match the characteristic impedance of routes and

cables.

load cells overload protection use of stopper screws and manually tune each

screw using a calibration weight

surface tiles vertical deviation

among adjacent

tiles

the inversion method
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2.2.6 System Validation

Hardware performance was evaluated by testing single grid cells and multiple grid cells.

Table 2.2 summarizes all the tests performed along with the purpose of each test, the number of

different positions across the surface grid, and the number of times the test was repeated at each

position.

The first group of tests were performed to evaluate performance of single cells. All grid

cells were,first, tested for weight measurement accuracy when loaded with five different calibration

weights: 1 g, 5 g, 20 g, 50 g, and 100 g. Next, repeatability was evaluated on ten randomly selected

cells for detecting a weight change of 50 mg while each cell is loaded with 100 g calibration weight.

This test was repeated 30 times on each of the ten cells. This test was followed by testing the time

each of the ten cells take to converge to stable measurements.

The second group of tests were conducted on multiple cells. The first test was done by placing

a flat-bottomed object at the middle of a 2×2 tiles (10×10 cm2 area) to evaluate the outcome of the

inversion process at reducing the vertical deviation among the tops of adjacent tiles. This test was

done at 58 different positions across the grid surface. The second test was meant to evaluate the

accuracy of weight measurements when the weight of a flat-bottomed object is distributed among

4×4 tiles (20×20 cm2 area). This test was repeated at 28 different positions. Finally, the grid was

evaluated for the reliability at detecting the minimum expected bite size, i.e., 0.5 g, when picked up

form a plate containing a total weight of 560 g.
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Table 2.2: Summary of measurement tests.

Area tested Purpose of testing Positions Repetitions

single cell accuracy across different weights 76 1

single cell repeatability for detecting 50 mg while loaded with

100 g

10 30

single cell convergence to stable measurements 10 2

2×2 cells deviation among tile tops 58 1

4×4 cells accuracy in weight measurement when distributed

across multiple tiles

28 1

≥ 4×4 cells Ability to detect a weight change of 0.5 g on a

plate containing 560 g of total weight

6 25

2.3 Results

In this section, we show results of a number of tests that were conducted to evaluate the

design performance. All sensels were calibrated with 100 g calibration weight before collecting data.

Table 2.2 summarizes the tests performed. The first three tests evaluated measurement accuracy

on single cells, in terms of accuracy, repeatability, and time to converge. The second three tests

evaluated measurement accuracy across multiple cells, to evaluate height deviations amongst the

tops of adjacent tiles, uniformity of weight distribution across cells, and efficacy to measure small

weight changes resembling intake events. The following sections provide more details on each of

these tests.

2.3.1 Single Cells

The first group of tests were conducted on single grid cells. For the first test, different

calibration weights (1 g, 5 g, 20 g, 50 g, and 100 g) were placed on each sensel to evaluate the

accuracy at different loads. Fig. 2.9 shows a plot of reference weights vs residuals, where the

standard error increases with applied load. Most of the sensels, however, have less than 0.1 g of

standard error when loaded with a 100 g calibration weight. This load is actually more than the
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Figure 2.9: Residual plot shows that the standard error increases with applied load. Different
calibration weights were used for this test: 1 g, 5 g, 20 g, 50 g, and 100 g.

rated capacity when including the weights of the tile and the upper washer.

For repeatability and reproducibility test, 10 sensels were randomly selected. For each sensel,

a calibration weight of 50 mg was placed on and picked up for 30 times while the sensel is loaded

with 100 g calibration weight to set the load cell at its rated capacity as shown in Fig. 2.3. Weights

were computed as the difference between medians of two windows with size of five samples each

before and after the removal of the 50 mg weight. Measurements in the two windows were checked

for stability such that the standard deviation of the five samples was less than or equal to 0.05 g.

The result is illustrated in Fig. 2.10a, which shows most of the sensels have good repeatability and

reproducibility. About 17% of the total number of sensels show less accuracy. We noticed that the

sensels with less accuracy have slower settling time than those with good accuracy as shown in Fig

2.10c.

2.3.2 Objects on Multiple Tiles

Two tests were conducted to evaluate the ability of our inversion technique to vertically

align the grid of cells. For the first test, a weight of 100 g was placed on the center of a square 50

mm side length piece of standard glass which was placed in the middle of a 2x2 grid of tiles as shown
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Figure 2.10: (a) Reproducibility test shows most of the sensels have good accuracy and repeatability
for detection of 50 mg of weight change while loaded with 100 g. About 17% of the total number of
sensels show less accuracy. (b) An example of a sensel with fast settling time. (c) An example of a
sensel with slow settling time.
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Figure 2.11: A 100 g calibration weight is placed on a 50 x 50 mm square piece of glass which is
placed in the middle of a 2x2 grid of tiles. The glass weighs 12.85 g, so total weight is 112.85 g.

in Fig. 2.11. The square piece of glass weighs 12.85 g, so the expected total weight measured by

the 2x2 grid is 112.85 g. If weight is distributed perfectly, then each of the four tiles would measure

28.21 g.

To measure the uniformity of distribution, we calculate the standard deviation from the

mean (28.21 g) measured at each tile. This test was repeated 58 times all at different positions.

Fig. 2.12 illustrates the measured values at one position where the measured total weight is 112.88

g which is 0.03 g in excess. The average distributed weight per tile is 28.22 g with 3.93 g standard

deviation. The average total weight at the 58 different positions was 112.81 g with a standard

deviation of 0.15 g. At each of the 58 positions, we calculated the standard deviation from the local

average distributed weight per tile. The average standard deviation for all 58 positions is 5.5 g. From

the perspective of flatness of the grid surface, we found that there is an approximately 4.2±0.5 um

deviation observed in this test assuming that 75.5±9.5 um is the average full mechanical deflection

of the QL-56 mini load cell — from no load to full load at the rated capacity. See Appendix A.1 for

more details of how the deflection distance of the QL-56 mini load cell was measured.

For the second test, a circular piece of standard glass resembling a plate contour was placed

as carefully as possible in the center of a 4x4 grid of tiles. The glass was glued to bottom of a paper

plate. Together the plate and glass weigh 260 g. To obtain weight measurements, the entire table

surface was scanned, and every tile measuring ≥ 0.5 g was included, all other tiles were excluded.

The total weight was then calculated as the sum of included tiles. The standard deviation of weight
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Figure 2.12: A 100 g calibration weight was manually placed in the center of a 50 mm side length
piece of glass (weighing an additional 12.85 g) which was placed in the middle of a 2X2 grid. The
total measured weight is 112.88 g and the standard deviation among the footprint tiles is 3.93 g.

was also calculated across the included tiles. The reason for this is that with a circular object, not

all tiles in the 4x4 grid necessarily measured any weight, depending on exactly where the plate was

positioned. This test was repeated 28 times each at a different position on the table surface. Fig.

2.13 shows an example. One factor that is different between this test and the previous 2x2 grid test

is that not every one of the 28 tests measured the exact same number of tiles. We found that the

average total weight was 259.92±0.22 g. This weight was distributed among tiles under the plate

footprint with 12.44 g on average standard deviation. These numbers indicate 99.97±0.1% accuracy

in weight estimate (259.92/260 ± 0.22/260).

To evaluate the ability of detection of small weight changes, a 0.5 g calibration weight was

repeatedly placed on and picked up from the paper plate that was attached to the circle-shaped
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Figure 2.13: A flat-bottomed plate placed on 4x4 grid. The plate consists of a paper plate affixed
on a circle-shaped piece of glass with 19 cm diameter. The actual total weight is 260 g while the
measured total weight is 259.6 g and the standard deviation among the footprint tiles is 12.44 g.
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Figure 2.14: A 0.5 g calibration weight is dropped on and picked up from a plate that has a total
weight of 560 g.

piece of glass. The 0.5 g calibration weight is smaller than the assumed minimum weight to be

detected (i.e., one gram). Another calibration weight of 300 g was put on the paper plate to mimic

an amount of food. The total weight was around 560 g. Fig. 2.14 shows the signal produced when

the 0.5 g calibration weight was placed on the plate and picked up from it. The SNR was 40.2,

which indicates the ability of this design to detect if a peanut was removed from the plate.

2.4 Discussion

This chapter described a novel method to build a force mapping surface using a grid of

load cells. Tiles were attached to the tops of load cells to form a 2D weight sensing surface surface

that can measure the weights and locations of objects placed upon it. The challenge in building

this device is that load cells deflect only a fraction of a millimeter from zero to full load, and thus

the tops of surface tiles must be precisely aligned vertically. This chapter described an inversion

technique to minimize the deviations among the tops of tiles. Although a dining table application

was presented for eating monitoring applications, this technique could be used to build this type of
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surface for other applications as well.

The results show high accuracy for weight detection, i.e., 99.97±0.1%. Such excellent accu-

racy agrees with the conclusion in [219] that rigid force sensors should be used to produce accurate

weight measurements. Unlike the work in [135], which used four load cells at the corners of a table,

this work has an accurate detection of position and weight because of the grid design that can be

customized by using more load cells per unit area.

Even weight distribution among multiple tiles is difficult to achieve for a number of reasons:

first, tops of tiles need to be perfectly flat, and aligned vertically; second, bottom of an object needs

to be solid and perfectly flat; third, object center of mass needs to exactly be at the center; fourth,

all load cells in a grid need to translate a change in mechanical deflection into an identical change

in their output electrical voltage signal. The fourth point implies two conditions: mechanical and

electrical. Mechanically, all load cells need to have exactly the same deflection distance from no

load to the full load at the rated capacity. If an object is placed on the force mapping surface, the

resulting mechanical deflection must be perfectly consistent among all load cells on which the object

rests. Electrically, all load cells must produce the exact same voltage signal as a response to a specific

change in the applied load. For these reasons, sensels under footprints show different measurements

as shown in Fig. 2.8c. Nevertheless, the inversion technique helped in producing spatial information

that represents shapes of object footprints. If higher resolution for spatial information is required

for an application then smaller dimension load cells with higher sensitivity should be used.

The cost of the hardware system is dependent to the size of the active sensing area. The

hardware presented in this dissertation is for 7×11 grid of load cells. While the total cost of building

the hardware was about $5,000, the cost is expected to decrease if the design is mass-produced.
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Chapter 3

Pilot Experiment

This chapter describes a pilot experiment after building the hardware and obtaining results

showing that the instrument is capable of the detection of small weight changes on the dishware

placed on it. This chapter describes an algorithm to track weight profiles of three food containers

placed on the dining table. It also describes data collection of a pilot study that involved recruiting

11 human subjects who were video recorded during eating a meal on the custom-built dining table.

3.1 Consumption Event Detection

The detection process starts by computing the zero offset (tare) value for each cell. Then

for each frame, all measurements are converted into meaningful values in grams to produce an image

of weights. Each image frame is processed to segment food containers using geometric information

of their footprints. The sum of weights under each food container is saved in a weight profile array.

The weight profile for each food container is fed into an algorithm to detect eating events.

3.1.1 Geometrical Descriptor Segmentation

Each frame of load cell measurements is segmented to identify the locations of food con-

tainers using geometric knowledge of their footprints. For the pilot experiment, we used the plate,

bowl and cup shown in Fig. 2.8b. Each was modeled by a template containing a circular shape of

the expected size. The plate is searched for first, followed by the bowl, with the cup last. The group

of cells identified for each object are combined to obtain the current total weight of the container.
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The weight of each container over time is analyzed for consumption events. Note that this analysis

occurs in parallel and thus actions involving consumption from multiple containers can be detected

simultaneously.

The output of this segmentation are three groups of cells representing footprints of food

containers. The sum of each group is the weight of the corresponding container. Each container

has a weight profile array that represents the total weight of that container at every sampled frame.

This signal is fed into a bite detection algorithm.

3.1.1.1 Detailed Segmentation Algorithm

For every frame, the image of weights is converted into a binary image using 0.5 g as a

threshold. The binary image is searched for cells surrounded by true-valued neighbors. A true-

valued cell with eight true-valued neighbors is likely to be under the plate. This cell is considered

for sub-cell resolution search. The center of the plate is moved inside this cell with 10 cm sub-cell

resolution step size. At every move, the complete grid is searched for any whole or partial cell exists

inside the diameter of the plate. The search stops at the position at which a maximum number of

cells touching the plate footprint was found. This number is expected to be in the range between

the minimum and maximum possible number of cells that can fit inside circle area of the plate. If

this criteria is not met then another true-valued cell with eight true-valued neighbors is searched

for again and the sub-cell resolution search is repeated. The process is repeated for the bowl and

cup after finding the position of the plate considering lower numbers of true-valued neighbors of a

true-valued cell.

A number of steps are followed to test if a true-valued cell is touching container footprint.

First, cells are excluded if the distance between their centers and the center of container (CC) is

greater than the container radius (CR) plus half the cell diagonal (CD), which is 36.06 mm for the

size of our grid tile. Second, a cell is considered inside the container footprint area if the distance

between CC and the cell center or any of its four corners is less than CR+CD. Third, if a cell was

not excluded by the first step and was not included by the second step then it might be touching

the container footprint from a side of the cell tile. The cell side is determined by the angle value

between CC and the cell center using arc tangent. If the angle is, for example, between 45◦ and

135◦ from the perspective of the cell then it is likely touching the container footprint from the upper

side of the cell tile. In this case, the upper side is searched with a sub-cell resolution. The cell is
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included if any point on the side makes a distance that is less than CR+ CD.

3.1.2 Bite Detection Algorithm

Consumption events are detected by identifying periods of time before and after food or

beverage is removed from the table and calculating the respective change in weight of the container.

At each time step, the stability of container weight is calculated by analyzing a window of the

most recent five total weight measurements. If the standard deviation of these weights is above

0.5 g, it is assumed the subject is interacting with the table or container and thus a stable weight

is not available. A basic event can be detected as the difference in weight between two successive

stable periods. If the weight decrease is > 0.5 g and < 40 g, then a consumption event is detected

(threshold values selected based upon 20,542 bites analyzed in [127]). The type of consumption

(food or beverage) is determined based upon which container was used (e.g., the cup is assumed

to contain beverage). If the weight increases, i.e., something has been added to a container, then

the previous three stable weights are analyzed as a sequence. For example, this can happen when a

subject picks up a mass of food, ingests a portion of it, and returns the remainder to the container.

If the difference between the first and third stable periods is >0.5 g and <40 g, then a consumption

event is detected. If the decrease is between 1 g and 6 g and can be associated with an increase in

the same range, it is assumed that a utensil was lifted from the container and then returned to it.

Filtering these events helps reduce false positive detections of consumption.

The bite detection algorithm (Algorithm 1) uses two main inputs: Weight Profile array (WP)

and Frame Number (FN). Other input variables are also output that hold states and historical

statistics of previous frames. These variables are Moving STandard Deviation (MSTD), CHange

OCcurred (CHOC), Utensil PLaced (UPL), Mass Bite Picked Up (MBPU), and DeTected WeighT

(DTWT). At every frame, the algorithm is executed for every food container.

The algorithm extracts two quantities from the WP; the moving standard deviation (MSTD),

and the WeighT DiFference (WTDF). The MSTD is compared against two hard-coded thresholds

to detect whether or not measurements are stable. While the measurements of the current container

are unstable, i.e., MSTD is greater than a threshold for change (STD TH4Ch), the variable CHOC

is updated with the latest frame number. Once measurements are stable, i.e., MSTD is less than a

threshold for stability (STD TH4Stb) and if CHOC holds a non-zero value, WTDF is computed as

the Last Stable Weight (LSW) subtracted from the Weight After CHange (WACH). The LSW is the
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Algorithm 1: Bite Detection

Input: WP, FN, MSTD, CHOC, UPL, MBPU, DTWT
Output: MSTD, CHOC, UPL, MBPU, DTWT

1 MSTD[FN] = std({WP[FN-0], ... ,WP[FN-4]})
2 if MSTD[FN] > STD TH4Ch then
3 CHOC = FN
4 end
5 if CHOC > 0 and MSTD[FN] < STD TH4Stb then
6 if UPL > 0 and MSUPD() then
7 WTDF = WACH() - LSW()
8 if WTDF < -MWD then
9 if UPL-MWU<=|WTDF|<=UPL+MWU then

10 UPL = false
11 CHOC = 0
12 return

13 end

14 end

15 end
16 if MSBPD() then
17 WTDF = WACH() - LSW()
18 CHOC = 0
19 if -MWD < WTDF < MWD then
20 return
21 end
22 if WTDF > 0 then
23 if WTDF >= MBT then
24 if MBPU > 0 then
25 MFC = DTWT[MBPU] + WTDF
26 if MFC < -MWD then
27 DTWT[MBPU] = MFC
28 MBPU = 0

29 else
30 MBPU = 0
31 end

32 end

33 else
34 if minWoU < WTDF < maxWoU then
35 UPL = WTDF
36 end

37 end

38 else
39 DTWT[FN] = WTDF
40 UPL = false
41 if WTDF <= -MBT then
42 MBPU = FN
43 end

44 end

45 end

46 end
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median of the last stable window that is searched for backwards in the WP. The WACH is either

median or average of a stable window that takes place after measurements stabilize. If WTDF is

considered noise if it is smaller than Minimum Weight to be Detected (MWD). The WTDF is then

used in two main conditional tests.

In the first conditional test, the algorithm checks for utensil pick up if previously placed

on the current food container (i.e., UPL > 0) and if Measurements are Stable for Utensil Pick up

Detection (MSUPD). UPL is cleared if WTDF is similar to that of the utensil previously placed

(stored in UPL) on the current container within a Margin of Weight of Utensil (±MWU). This test

reduces false positives.

The second conditional test classifies events based on whether WTDF is an addition or

reduction after the Measurements become Stable for Bite Pick up Detection (MSBPD). If MBPU was

previously detected and WTDF is a weight addition that is greater than Mass Bite Threshold (MBT)

then DTWT—indexed by MBPU—is updated with the actual amount of Mass Food Consumed

(MFC), otherwise this event is ignored. If DTWT is a weight reduction then it is a bite detection;

FN is saved in MBPU if DTWT was a mass bite (i.e., WTDF>MBT).

3.1.3 Parameters Tuning

The threshold for change (STD TH4Ch) and the threshold for stability (STD TH4Stb) are

dependent on the characteristics of the load cells used; they were set to 0.5 g and 0.15 g, respectively,

based on the load cell used in this work. The window size was set to two samples when computing

MSUPD and WACH for utensil pick up detection. For all other computations, window size was set

to five samples. MBT was set to 40 g. MWD and MWU were set to 0.5 g. Minimum and maximum

weights of utensils, i.e., minWoU and maxWoU, are dependent on the type of utensils used. They

were set to one and six grams, respectively. Fig. 3.1 shows a zoomed in signal when a bite was

detected.

3.2 Eating experiment

Eleven human subjects were video recorded for ground truth while eating a meal on this

dining table. This study was approved by the Institutional Review Board (IRB) at Clemson Uni-

versity (Clemson IRB number: IRB2021-0462) and all subjects signed a written informed consent.
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Figure 3.1: A moving window with size of five samples on the weight profile signal is used to detect
stable periods. When a user interacts with a food container sitting on the grid surface, the standard
deviation of the moving window goes higher than 0.5 g, e.g., t=211.2, indicating instability and an
end of a stable period. After a bite is picked up, the standard deviation starts to decrease until
it goes below 0.15 g, e.g., t=114.4, indicating the beginning of a stable period. If this stability
continues for five samples, e.g., t=114.8, the algorithm computes the weight difference between the
medians of this stable period and the previous one. The algorithm issues a detection moment if the
weight difference is larger than 0.5 g.
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(a) (b)

Figure 3.2: The laboratory where the experiments were conducted. (a) A front room where each
participant first sign consents and where the researcher waits until the participant is done eating
their meal. (b) A back room has the custom-built dining table and a desk on which the participant
prepares and heat their food using the microwave shown.

(a) (b)

Figure 3.3: The laboratory where the experiments were conducted. (a) The custom-built dining
table is sitting on a bench. Three webcams are mounted to video record participants at different
angles. A router connects the dining table to computers. (b) This is how it looks like to participants
when they sit for eating a meal.
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IRB permission, consent forms, and recruitment fliers are shown in Appendix B.1. All recordings

took place in laboratory conditions. Subjects were 20 to 30 years old of age, and their average body

mass index (BMI) was 25±5 kg/m2.

Each subject was given a new disposable paper plate, paper bowl, plastic cup, and plastic

utensils (fork, knife, and spoon). The paper plate and bowl, and the plastic cup were placed on

flat-bottomed bases. Subjects were instructed not to remove the plate and the bowl but can move

them away or closer to them. Food options consisted of frozen meals and refrigerated salad sold

in sealed boxes commercially available in grocery stores and supermarkets. This was easier for

laboratory conditions, supply, and COVID-19 conditions. Subjects chose to eat Alfredo pasta with

chicken and broccoli, chicken fried rice, Caesar salad with chicken, and Santa Fe style salad with

chicken. Subjects prepared their own salads and heated food in a microwave oven in the lab. Water

was given to all subjects as a beverage.

Fig. 3.2 and 3.3 show the laboratory environment where the participants were recorded.

When a participant arrives, they get into a from room where they sit on a desk to read and sign

consents. The researcher waits in this room while the participant eats. Another room in the back

has the custom-built dining table and a desk on which the participant prepares and heat food

using a microwave. Three webcams are mounted at different positions and angles to video record

participants.

Accuracy in the detection of consumption events was measured using methods adapted

from [54]. The actual time of consumption (ground truth) was defined as the moment when food

(solid food or drink) was put in mouth. Therefore, for the evaluation of consumption event detection,

data were labeled using the recorded videos. A true positive occurs whenever our algorithm detects

an event in the window from the previous ground truth to the next ground truth event. This window

is necessary because food pickup occurs before ingestion; thus, the table detects the event prior to

actual consumption. A false positive occurs whenever our algorithm detects an event not associated

with a ground truth event within the window of time from the previous detection.

3.3 Procedures to Follow by Researcher and Subjects

Here are the steps followed while recording participants to eating on the dining table. The

aim of documenting these steps is to make it easier for future researchers to conduct the same
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experiments for data collection. See Appendix A.3 for how videos and data were recorded on a

Linux machine.

Lab needs to be prepared for cleaned for healthy eating environment. Supplies provided

for these experiments include paper plate and bowl, plastic cup, wrapped plastic utensils, napkins,

plastic foil to cover the dining table, and velcro fasteners for the plastic cup. Water was purchased

in bulk and kept refrigerated in the lab. Foods were ordered based on participants’ preferences. For

the experiments conducted in this research, food options consisted of frozen meals and refrigerated

salad sold in sealed boxes commercially available in grocery stores and supermarkets. This was

easier for laboratory conditions, supply, and COVID-19 conditions. A microwave was provided in

the lab for preparing frozen foods.

3.3.1 For the Researcher

3.3.1.1 Planning for an Experiment

• When a participant emails the researcher informing an interest to participating in the study,

they should be replied back to set an appointment for the experiment and to ask them what

type of frozen food and refrigerated salad they would like to eat.

• The foods requested by participants need to be ready before experiments and must be kept in

an appropriate storage either in a freezer for frozen foods or a refrigerator for fresh salad.

3.3.1.2 Before a participant comes

• Make sure face mask and gloves are on.

• Sanitize all surfaces and touchable objects.

• Make laptops ready for recording.

• Check functionality and readiness of the dining table.

• Make sure cameras have correct numbers on computers. This is for consistency in numbering

cameras which are mounted at different angles and positions.

• Prepare Velcro for the cup base.

• Frozen food is in a freezer and salad is in a refrigerator.
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• Place plate, cup, and bowl bases on the dining table surface to explain to participants how

food containers are assumed to be placed on the surface. Food containers need to be removed

before starting the actual meal recording and replaced to the surface after at least 5 sec of the

beginning of recording. This beginning of the data with no objects placed on the surface are

used to set a zero reference for each grid cell.

3.3.1.3 After a participant arrives

• Take consents.

• Ask participant for their weight and height.

• Show participant how to eat on the table and what to avoid doing while eating (avoid touching

sensing area, researcher will refill the water cup, do not lean on the sensing area)

• Tell participants to not take food containers off the dining table surface during or after eating.

3.3.1.4 After a participant leaves

• Throw away used dishware.

• Sanitize surfaces and all touchable objects.

• Change the table plastic foil cover.

• Check calibration.

• Prepare for next participants by checking supplies, e.g., water, dishware, cups, napkins, and

wrapped utensils, etc.

3.3.2 For the Participant

3.3.2.1 Once a participant arrives

• Sign consent.

• Provide weight and height.

• Reheat food using the in-lab microwave.

• Go through steps of how to empty food into dishware.
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• See how to grab the plastic cup.

• Stick a Velcro to the center of outer bottom of a new plastic cup. Place this cup into its base

and gently twist it to make sure velcro fasteners stick to each other.

• Use a new pack of plastic utensils.

• Empty food into new food containers (a plate and a bowl) while these new containers are on

a different table. This is done to avoid spillage on the smart dining table.

• Inform the researcher that food is ready so that the researcher can start recording data and

video.

• When informed, take food containers one at a time and place them into their bases on the

smart dining table.

• Ask the researcher to fill in the water cup.

• Inform the researcher before start eating.

• Start eating.

3.3.2.2 During eating

• Ask the researcher for water refill.

• Put unused utensils on the side outside the sensitive area. Do not place utensils on the active

area.

3.3.2.3 After eating

• Inform the researcher that you are done.

• Do not take dishware off the smart dining table until the researcher tells you to do so.

3.4 Results

Fig. 3.4b shows a plate, cup, and bowl resting on the table surface. Fig. 3.4b shows a

visualization of the segmentation output for a single frame. The total weight of sensel measurements
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(a)

(b)

Figure 3.4: Visualization of weights of food containers setting on the grid. (a) Food containers
sitting on the table surface. (b) A visualization of the total weight measurements produced by the
segmentation algorithm.
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under each food container is summed up for each frame. The image of weights shows 532.41 g on the

plate, 232.08 g on the cup, and 306.08 g on the bowl. The total of weights for each food container is

tracked over time to form a weight profile that is analyzed to detect eating events, to measure food

consumption in unit of weight, and to find multiple statistics of interest such as eating rate, average

bite size, and meal duration.

Fig. 3.5a shows the weight profiles of the meal shown in Fig. 3.4. During this meal, a subject

ate 259 g of chicken fried rice (Lean Cuisine), 211 g of deluxe caesar salad with chicken (Simply

Fresh Salads) and drank 350 ml of water. The complete meal duration was about 16.5 minutes.

The top window shows plots of weights of the three containers over time; the plots are colored in

blue, magenta, and green for the plate, cup, and bowl, respectively. The weight profiles can be seen

decreasing as foods and beverage are being consumed. The bottom window shows the detection

events and their weights for each food container. Negative values refer to the weight reduction in

the weight profiles. The Y-axes shows weight in grams and the X-axes shows time in seconds for

both windows. The bottom window shows 67 detected bites whereas there were 64 actual bites.

Thus, the F1 score for this meal was 0.977. An interesting information shown in the top window is

the mixing of food intakes; subject 4 switched between the entree food and salad and drank water

over nine bites. Unlike subject 4, subject 6, shown in Fig. 3.5b, liked to finish the salad first then

switched to eating the entree food , and consumed water over four bites which were less in counts

but larger in size than those consumed by subject 4. The cup was refilled with water only once at

time 1300 sec for subject 4 and twice at 360 sec and 610 sec for subject 6.

Fig. 3.6 shows examples of a short and long meals. Fig. 3.6a is a short meal in which 34

total actual bites were consumed over 7.2 minutes. In this meal, subject 8 ate larger bites with

average bite size of 17 gpb (grams per bite) than subject 9 whose average bite size was 5.4 gpb.

Weight profile of subject 9 is shown in Fig. 3.6b. As illustrated by the blue weight profiles, subject 8

has a steeper slope compared to that of subject 9. The meal duration for the latter was 18.3 minutes

and the number of actual bites were 103 out of which 99 were correctly detected.

Table 3.1 shows the results of the consumption detection algorithm. Subjects consumed a

range of 13-48 bites from the plate, 11-43 bites from the bowl, and 3-11 drinks from the cup. The

total number of ground truth intake events was 685 across the 11 subjects. F1-score for per subject

was 0.91 to 1.0, and for per container was 0.97 for the plate and bowl, and 0.99 for the cup. The

Average F1-score for the 11 subjects is 0.967%. The experiment demonstrates that this instrument
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Figure 3.5: Examples of complete recording of meals. The upper plots depicts the weight profiles
of the three food containers: plate, cup, and bowl. The lower plots show the times and weights of
detected consumption events where the negative numbers refer to reduction in weight measurements.
(a) Subject number 4. (b) Subject number 6. See Table B.1 in Appendix B.2 for food options each
subject ate.
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Figure 3.6: More examples of complete recording of meals. The upper plots depicts the weight
profiles of the three food containers: plate, cup, and bowl. The lower plots show the times and
weights of detected consumption events where the negative numbers refer to reduction in weight
measurements. (a) Subject number 8. (b) Subject number 9. See Table B.1 in Appendix B.2 for
food options each subject ate.
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Table 3.1: System performance for bite detection of 11 human subjects eating on the dining table,

Subject Plate Cup Bowl F1-Score

1
TP 19 10 27

0.991FP 0 0 1
FN 0 0 0

2
TP 19 5 41

1.0FP 0 0 0
FN 0 0 0

3
TP 20 9 19

0.990FP 1 0 0
FN 0 0 0

4
TP 22 9 33

0.977FP 2 0 1
FN 0 0 0

5
TP 35 3 38

0.993FP 1 0 0
FN 0 0 0

6
TP 17 4 31

0.912FP 6 0 2
FN 0 0 2

7
TP 29 6 31

0.957FP 2 1 1
FN 1 0 1

8
TP 13 7 11

0.912FP 1 0 2
FN 1 0 2

9
TP 48 9 43

0.971FP 1 0 2
FN 0 0 3

11
TP 21 11 28

0.984FP 1 0 1
FN 0 0 0

13
TP 23 7 26

0.974FP 2 0 0
FN 0 0 1
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Figure 3.7: Snapshot of a subject during meal recording.

is capable of detecting and measuring individual consumption events during a meal.

The algorithm can, moreover, compute other interesting dietary assessments for the same

11 subjects as listed in Table 3.2. The data produced by the 2D grid of load cells can be used to find

the eating rate for each food container. The table shows the eating rates which are computed as the

number of seconds used for consuming food from a specific container divided by the number of bites

picked up from the same container. Higher values of this measure, i.e., slow eating rate, can help

reaching satiation with a reduced amount of energy intake as suggested by multiple studies [181].

Another useful measure our method can find is the bite size; smaller bite size and longer oral

processing were found to help reduce energy intake [220]. The table shows the total consumption

and the average bite size in grams for the food consumed from each container. Moreover, for each

subject, the table shows the meal duration in minutes and the food to drink ratio, where the food

is the sum of foods from the plate and bowl.
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Table 3.2: Other dietary assessments computed by the smart dining table. Subjects 1-9, 11, 13

Subject Eating rate
(spb)

total con-
sumption
(g)

Average bite
size (g)

Food to drink
ratio

Duration
(min)

1
Plate 38.6 245.6 12.9

0.94 12.7Cup 75.6 491.8 49.2
Bowl 16.1 214.4 7.7

2
Plate 18.3 243.7 12.8

2.15 10.4Cup 124.4 223.7 44.7
Bowl 14.2 236.2 5.8

3
Plate 24.3 291.8 13.9

1.20 12.3Cup 79.1 372.5 41.4
Bowl 37.8 154.7 8.1

4
Plate 40.2 258.5 10.8

1.34 16.5Cup 107.6 350.3 38.9
Bowl 24 210.7 6.2

5
Plate 9.6 289.2 8

2.17 13.5Cup 135 224.4 74.8
Bowl 12.2 196.9 5.2

6
Plate 21.7 293 12.7

0.99 8.6Cup 93.8 515.9 129
Bowl 9.1 218.6 6.6

7
Plate 22.4 272.7 8.8

2.62 11.5Cup 92.1 157.1 22.4
Bowl 20 139.2 4.3

8
Plate 29.6 268.6 19.2

1.26 7.2Cup 45.9 370.5 52.9
Bowl 17.3 199.3 15.3

9
Plate 19.9 278.1 5.7

1.48 18.3Cup 116.2 327.6 36.4
Bowl 21.1 205.6 4.6

11
Plate 20.7 306.3 13.9

0.87 10.2Cup 56.7 582.6 53
Bowl 20 201.6 7

13
Plate 18.5 262.5 10.5

0.86 8.1Cup 67.3 508.9 72.7
Bowl 15.7 173.8 6.7
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Fig. 3.7 shows a snapshot from a video recording of a subject eating a meal. The subject

ate a cheese sandwich (220g) and green salad (217.9g). The subject picked up the sandwich from

the plate at multiple moments. At some of these moments, there were partial bites. A partial bite

is the consumption of part of a mass food such as a pizza, burger, or sandwich. During partial

bites, a subject consumes multiple bites before returning the remaining of a mass food into the food

container and hence there is no interaction of the table. As a result, the F1 score of the detection

algorithm for the whole meal was 90%. The ground truth moments of the sandwich consumption

were 17 out of which only 10 were correctly detected. On the other hand, all the ground truth

moments of the salad (44 GT bites) and water (3 GT bites) consumption were detected correctly

because there were interactions with the table for every salad or drink bite event.

3.5 Discussion

This chapter described pilot experiments involving 11 human subjects eating on the custom

-built dining table. Each frame was segmented using geometric information of the food container

footprints. The sum of cells under the segmented footprints was tracked over time to analyze

weight profiles of each food container. A rule-based algorithm was developed to automatically

detect consumption events using the weight profile of each food container.

The results agree with the suggestion in [127] for the use of 2D images of weights for better

tracking of food containers placed on a dining table for eating monitoring. In that study, a tray hold-

ing multiple food containers was placed on a 1D weighing scale. When a person picked up food from

one container then switched to another container or interacted with the tray, weight measurements

could not stabilize. This problem significantly decreased accuracy in detecting consumption events.

Mertes et al. reported the same problem when a plate with three compartments was embedded with

three load cells to measure the weights of bites and to predict the compartment from which they

were taken [129]. They found that measurements did not stabilize quickly enough when a subject

picked up food from one compartment then took the next bite from a different compartment. Our

novel 2D device overcomes these limitations.

There are a number of reasons for FNs. The algorithm fails to detect bites smaller than

0.5 g which is the defined threshold to filter out noise. Small bites are common at the end of meals

when subjects try to pick up small food residues from food containers. The algorithm also fails in
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detecting bite pickups when a subject eats too fast preventing food containers to stabilize between

bite pickup events although these cases are rare because the sampling rate is fast enough to capture

most of the bite events. Such case of a FN happens due to the window size of the moving standard

deviation. Reducing this size increases FPs, and increasing it slows down the detection and increase

FNs. FPs can be triggered when moving food containers over the surface; this happens when the

weight difference of a food container at different locations is larger than 0.5 g. FPs can also be

triggered on a food container When food containers touch each other while a subject eats from one

of them, a FP can be triggered on the other container.

This device can provide the following statistics for studying eating behavior: total amount

consumed (grams), duration of eating episode (minutes), eating rate (grams or bites per second),

bite size (grams per bolus), food-to-beverage ratio (percentage), and behavior count (food intake

and beverage intake counts). These types of measurements can assist with the study of anorectic

drugs by quantifying their impact [104]. They can also objectively quantify the effect of behavior

manipulations such as slowing eating [88,208] or taking smaller sized bites. The measurements can

be made with no extra effort on the part of the user other than they eat at the instrumented table,

thus promoting regular daily use [83,157]. The automation provided by the device reduces cognitive

load for tracking eating behavior which is also important for promoting regular daily use [206].
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Chapter 4

Comparison of Detection Methods

This chapter compares the performance of the new tool developed in this study against

others in the literature. Methods are briefly reviewed along with the hardware used to collect the

data. An objective process for comparing these tools will be described. The goal of this chapter is

to evaluate the improvement on the detection of eating events afforded by our new tool.

4.1 Related works

Several previous works have experimented on the detection of individual consumption events

using table scales. A table scale contains one load cell and measures all the weight placed on top of

it. Typically, the table scale is set on top of a table surface, and then a tray is placed on top of the

table scale to hold dishware. Foods and beverages are placed into the dishware. The weight on the

table scale is measured over time and can be analyzed to detect when individual consumption events

occur. Table 4.1 lists three state-of-the-art methods described in the literature that have achieved

the best performance on this problem. The following provides a brief description of each method.

80



Table 4.1: List of bite-detection methods to be compared

Author Algorithm Instrument

Mattfeld et al. 2016

[127]

rule-based a dining table embedded with weighing scales

Mertes et al. 2019

[129]

random forest clas-

sifier

a three compartment smart plate embedded

with three load cells

Papapanagiotou et

al. 2018 [144]

context-free gram-

mar (CFG)

the Mandometer, version 5

This work rule-based 7× 11 grid of load cells embedded under the

surface of a custom-built dining table

Mattfeld et al. embedded a weighing scale onto a dining table to continuously measure the

weight of a food tray that carries food and beverage [127]. They developed a rule based algorithm

to detect bite events and size. Because there is only one weight profile for the whole tray, they

used defined thresholds to differentiate among different types of bite events. They defined that a

single bite — shown in Fig. 4.1a— needs to be in the range 3σnoise to 30 g, where σnoise is the scale

noise (0.29 g) and was experimentally determined. It is also required that a single bite must not be

followed by an increase beyond the scale noise, i.e., wb − wc ≤ 3 ∗ σnoise g, in weight profile after a

preceding unstable period; this was considered to reduce FPs that would result when a subject picks

up a napkin or utensil and returns it back to the tray. Fig. 4.1b shows a mass bite which is defined

to be a reduction in the range 100 to 300 g followed by an increase where the difference in weight

before and after this sequence must be in the range 3σnoise to 30 g. A decease in the weight profile

in the range of 80 to 550 g followed by an increase is assumed to be a bite of drink which needs to

be in the range of 3σnoise to 80 g as the resulting difference between before and after this sequence.

A bite of drink is depicted in Fig. 4.1c. Fig. 4.1d shows an example of a meal that has the tree

types of bites: a drink bite at A-B, mass bites at C-D and E-F, and single bites at G, L, and M.
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(a) (b)

(c) (d)

Figure 4.1: Rule-based algorithm developed by [127]. (a) A single bite needs to be in the range
3 ∗ σnoise ≤ wa − wb ≤ 30 g, where σnoise is the scale noise (0.29 g). This single bite event must not
be followed by an increase beyond the scale noise, i.e., wb−wc ≤ 3∗σnoise g. (b) and (c) A sequence
of weight decrease followed by an increase indicates either a mass or a drink bite. A mass bite is
assumed to have a reduction in the range 100 to 300 g whereas a drink bite is assumed to have a
reduction in the range 80 to 550 g. A resulting difference Wa −Wc is expected to be in the range
3∗σnoise to 30 g for a mass bite, and in the range 3σnoise to 80 g to a drink bite. (d) A weight profile
for a meal showing the three bite types: A-B is a drink bite; C-D and E-F are mass bites; and single
bites at G, L, and M.

82



Figure 4.2: The detection pipeline by [129]. Stable periods are identified by processing the weight
signal to make feature vectors that combines information of three consecutive stable periods. Iden-
tification of compartments from which a bite was picked up, is detected after a positive classification
of a bite event by the random forest model.

Mertes et al. used three load cells embedded under a three compartments plate to detect

bite size and what compartment a bite was picked up from [128,129]. Measurements from the three

load cells are summed up in a weight profile for bite detection. Bite detection is centered around the

weight difference between two consecutive stable periods. Stability is detected when the standard

deviation of a moving window goes below 3 g. One second window size was used. A random forest

classifier was trained with feature vectors Xi which combine information about three consecutive

stable regions

Xi = [(Wi −Wi+1), (Wi −Wi+2), (T2i − T1i+1), (T2i − T1i+2)] (4.1)

where Wi is the mean weight value of a stable period, and T1i and T2i are the respective start and

stop moments of a stable period, respectively. Thus, feature vectors give the model ability to look

ahead to detect single bites or partial bites that involves returning remaining of a mass bite. Fig.

4.2 shows the detection pipeline in their study.

Papapanagiotou et al. used context-free grammar (CFG) to model meals as strings [144].

They used a plate scale—called the Mandometer— to calculate the cumulative food intake (CFI)

curve of a user’s eating behavior [145, 146]. The actual weight profile signal of the plate is pre-

processed to remove jitter, i.e., any sudden, non-persisting change that is ≤ 1 g. Next, plate

weight is subtracted from the total weight, and negative values are set to zero. This is followed by

characterizing regions as either stable or unstable using the weighing scale margin of error. After

pre-processing, the signal is segmented into three types of intervals as terminal symbols for the CFG:

rising (r), decreasing (d), and bite (b) intervals. The amount of weight decrease makes the difference

between the d and b intervals; b-interval is assigned to regions with 20 g weight reduction whereas
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Figure 4.3: An artificial weight profile for eating a meal on on a weighing scale [144]. Weight reduc-
tions that are ≤ 20g are plotted with dashed blue line marked with (x) whereas weight reductions
of > 20g are plotted in orange dashed lines marked with (+). Dashed light green line marked with
(O) shows the moments of risings in weight.
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d-intervals are assigned to regions with higher weight reductions. Fig. 4.3 shows an artificial weight

profile for eating a meal on a weighing scale.

4.2 Dataset

More data were collected for more validation of the algorithm developed in this work and

for the performance comparison of the algorithms discussed above which are summarized in Table

4.1. Table 4.2 describes the dataset. The total number of human subjects recorded is 32; nine

females and 23 males. The total number of ground truth (GT) moments is 1,836, and the total meal

duration is 376 minutes.

Table 4.2: Dataset description

minimum average (±STD) maximum

BMI (kg/m2) 16.5 25.6 (±6) 47.8

age (years) 20 25.9 (±5.5) 40

meal duration (minutes) 5.2 11.7 (±4.2) 23.6

ground truth moments 29 57.4 (±19.4) 103

4.3 Data Preparation

Measurements for all grid cells were converted into grams and were summed up for every

frame to make one dimension weight measurements because other methods run on only one dimension

weight profiles. Ground truth moments were aggregated for all food containers. This was done to

evaluate the algorithms developed by Mattfeld et al. [127] and Papapanagiotou et al. [144]. We are

thankful to the first authors of these two works who agreed to help in the evaluation process for the

comparison. The author of [127] provided source code which we ran with one modification, namely

the sampling rate was set to 10 Hz. The author of [144] was contacted and agreed to run our data

through their code; they provided back to us the results of when intake events were detected.

The algorithm of [144] was evaluated by the first author. Their algorithm requires ground

truth labels for bite size, artifacts, and weight and moments of food additions. Because this infor-

mation is not available in our dataset, the evaluation was done using the best training values from
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their dataset. The following pre-processing steps were applied on each recording before applying the

algorithm: application of morphological image opening operator on the graph of the signal, using

a structure element of 21 samples (about 2 seconds); application of morphological image closing

operator on the graph of the signal, using a structure element of 21 samples (about 2 seconds); re-

sampling from 10 to 1 Hz (using MATLAB’s resample()); lastly, weight measurements were rounded

to nearest integers to get to 1 g of weight measurement accuracy.

We re-implemented the method proposed in [129] to evaluate its performance for bite detec-

tion on our dataset. Data preparation was done by converting all recordings into feature vectors Xi

as in Equation 4.1. Every feature vector is constructed using three consecutive stable weight periods,

and it consists of four values: the difference in average weight measurements between the first and

the second stable periods (Wi −Wi+1); the difference in average weight measurements between the

first and the third stable periods (Wi −Wi+2); the difference in time between the end of the first

stable period and the beginning of the second stable period (T2i−T1i+1); and the difference in time

between the end of the first stable period and the beginning of the third stable period (T2i−T1i+2).

One second moving window was used to compute the moving standard deviation. A stable period

starts when the standard deviation of the moving window goes below a threshold of 0.5 g, and it

ends when the standard deviation goes above this threshold. This threshold was found to give better

results on our dataset than the threshold value used in [129], i.e., 3 g. There were 3,151 feature

vectors in our dataset. Feature vectors Xi were labeled with actual eating events; a vector is labeled

with a true bite if an actual bite was consumed at any moment in the time window T2i to T2i+1.

The random forest was implemented with the same settings used by [129]. We used the random

forest classifier from the python library scikit-learn. Leave one subject out cross validation method

was used for training and evaluation.

4.4 Results

This section shows the results of comparing the different state-of-the-art methods for bite

detection. In addition, it shows further evaluation for the method developed in this work. The bite

detection results were evaluated using the same method explained in Section 3.2.
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4.4.1 Comparison

For the evaluation purpose, detection of eating events are categorized into true positives

(TP), false positives (FP), and false negatives (FN). A true positive occurs whenever an algorithm

under test detects an eating event that is associated to a ground truth in the evaluation period.

An evaluation period is defined as the time window that has a labeled ground truth event and

is bounded by a previous and a next ground truth events. Note that the first evaluation period

starts ten seconds before the first ground truth event and ends at the second ground truth event.

The last evaluation period ends ten seconds after the last ground truth event and starts from the

second last ground truth event. A false positive occurs whenever an algorithm detects an event not

associated with a ground truth event within an evaluation period. A false negative occurs whenever

an algorithm fails to detect an actual eating event within an evaluation period.

In classification context and to compare our detection method against the three other state-

of-the-art methods, we use four metrics: precision, recall, accuracy, and F1-score. Precision is the

fraction of the number of correctly detected events (TP) divided by the total number of all detected

events (TP + FP). Therefore, precision is computed as

Precision =
TP

TP + FP
. (4.2)

Recall is the fraction of the number of correctly detected events (TP) divided by the total number

of all actual true events (TP + FN). Recall is computed as

Recall =
TP

TP + FN
. (4.3)

Accuracy is the fraction of the number of correctly detected events (TP) divided by the total number

of all detected and undetected events (TP + FP + FN). Therefore, accuracy is computed as

Accuracy =
TP

TP + FP + FN
. (4.4)

F1-score is the harmonic mean of precision and recall. F1-score is computed as

F1-score = 2 · precision · recall
precision+ recall

=
2 · TP

2 · TP + FP + FN
. (4.5)
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Table 4.3 summarizes the results of the comparison. All numbers are averages with the

standard deviation being enclosed inside parenthesis. The highest numbers are in bold. The F1-

score of our method was considerably higher than all other methods, by 10-18%. Recall was 13-21%

higher, and accuracy was 8-28% higher. The only metric where one of the other methods performed

better was that the precision of [127] was 1% higher than ours (98% vs 97%). However, that

method had much lower recall and accuracy. This combination indicates their method was far too

conservative triggering event detections; most detections triggered were correct, but many actual

events were missed. Overall, these results demonstrate that the use of a grid of load cells as a 2D

weighing surface improves the detection performance.

Table 4.3: Results of comparing bite-detection methods.

Author Precision Recall Accuracy F1-Score

Mattfeld et al. 2016

[127]

0.98 (±0.03) 0.78 (±0.43) 0.77 (±0.38) 0.86 (±0.01)

Mertes et al. 2019

[129]

0.84 (±0.05) 0.84 (±0.05) 0.84 (±0.05) 0.84 (±0.05)

Papapanagiotou et

al. 2018 [144]

0.83 (±0.25) 0.76 (±0.49) 0.64 (±0.23) 0.78 (±0.01)

This work 0.97 (±0.04) 0.97 (±0.03) 0.92 (±0.06) 0.96 (±0.03)

4.4.2 Further Evaluation of the Method Developed in this Work

In addition to the results shown in Table 3.1, Tables 4.4 and 4.5 show the results of bite

detection of the rest of 32 recorded subjects. The overall average F1-score is 0.96. Subjects 10 and

12 ate cheese sandwich and biscuit, respectively. The algorithm failed to detect partial bites because

there were no interaction with the table after each partial bite. When a subject picks up a food

mass such as a burger or a piece of pizza, the food might be consumed over multiple partial bites

before returning the food to its food container. As a result, there might be no interaction with the

table, and hence the algorithm fails to detect actually consumed bites.

The use of 1D data — as the case of other methods we are comparing against — cannot

provide accurate information for each food container resting on a weighing surface. Our instrument,
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on the other hand, can accurately provide such information on dietary assessments as shown in

Tables 4.6 and 4.7 that show other detailed dietary assessments for subjects 10, 12, 14-32. Dietary

assessments for subjects 1-9, 11, and 13 are shown in Chapter 3 in Table 3.2. Dietary information

shown in these two tables include: eating rate in average number of seconds between consecutive

bites for each food container; cumulative total weight of food consumed from each food container;

average bite size picked up from each food container; ratio of weight of consumed food (plate and

bowl) to the weight of consumed drink (cup); and the duration of complete meal.

4.5 Discussion

In this chapter we conducted a performance comparison of our method against the three

state-of-the-art methods for bite detection using weight measurements of food containers [127, 129,

144]. A brief background explanation was provided for each of the three methods. More human

subjects, total of 32, were recorded for the purpose of this comparison and for more evaluation of

the method developed in this dissertation. While our method uses 2D data produced by our tool,

the other methods use only 1D data. As a result, the 2D data were converted into 1D by summing

up all measurements of the grid of load cells for every frame or sample moment into one weight

measurement. This value represents the weight of all food containers. Tracking this value for all

frames over the course of a meal makes up a weight profile for every human subject. The dataset

was prepared based on the requirements of each method.

Using four metrics, the results show that our method scored the highest for recall, accuracy,

and F1-score. This result suggests that the 2D instrument has better accuracy detecting intake

events than 1D instruments. In addition, a 2D instrument can provide dietary assessments and

eating behavior statistics that other methods cannot provide when using 1D data.

A future work might try more complex algorithms or implement the methods, which we

compare against, using the 2D data. Specifically, we use the output of the segmentation such that

weight profile of each food container is fed into different algorithms for another way of comparison.

A limitation of the work discussed in this chapter is the restricted eating. In an unrestricted

eating, more activities are expected, and subjects might behave in an unexpected way; subjects can

eat, for example, with utensils then suddenly use hands. They remove containers from the table

surface making the signal disappear. They might remove food from one container to mix it with
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Table 4.4: Evaluation of bite detection of the method developed in this work for subjects 10, 12,
14-21.

Subject Plate Cup Bowl F1-Score
10 TP 7 3 44

0.90FP 1 0 1
FN 10 0 0

12 TP 10 5 47
0.96FP 0 0 0

FN 4 0 1
14 TP 15 5 28

0.92FP 5 0 1
FN 0 0 2

15 TP 20 7 19
0.90FP 5 0 1

FN 0 0 4
16 TP 12 2 17

0.97FP 2 0 0
FN 0 0 0

17 TP 27 4 22
0.99FP 0 0 1

FN 0 0 0
18 TP 10 5 14

0.94FP 4 0 0
FN 0 0 0

19 TP 43 7 41
0.99FP 0 0 0

FN 0 0 2
20 TP 12 7 16

0.95FP 2 0 2
FN 0 0 0

21 TP 18 5 14
0.99FP 0 0 0

FN 0 0 1
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Table 4.5: Evaluation of bite detection of the method developed in this work for subjects 22-32.

Subject Plate Cup Bowl F1-Score
22 TP 18 6 22

0.97FP 1 0 0
FN 0 0 2

23 TP 30 1 58
0.97FP 3 0 1

FN 0 0 1
24 TP 9 4 23

0.92FP 5 0 1
FN 0 0 0

25 TP 20 5 33
0.89FP 12 0 0

FN 0 0 2
26 TP 20 11 47

0.98FP 1 0 0
FN 0 0 2

27 TP 15 6 11
0.97FP 0 1 0

FN 0 1 0
28 TP 51 3 37

0.99FP 1 0 0
FN 1 0 2

29 TP 29 2 21
0.99FP 1 0 0

FN 0 0 0
30 TP 29 3 20

0.97FP 1 0 2
FN 0 0 0

31 TP 34 5 15
0.97FP 2 0 0

FN 1 0 0
32 TP 19 2 20

0.96FP 3 0 0
FN 0 0 0
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Table 4.6: Other dietary assessments computed by the smart dining table for subjects 10, 12, 14-21

Subject Eating rate
(spb)

total con-
sumption
(g)

Average bite
size (g)

Food to drink
ratio

Duration
(min)

10
Plate 109 220.8 27.6

1.37 15.9Cup 297.3 320.6 106.9
Bowl 18.8 217.9 4.8

12
Plate 130 272.7 27.3

1.01 23.6Cup 173.6 472.4 94.5
Bowl 25.6 206 4.4

14
Plate 33.4 248.8 12.4

1.80 12.2Cup 150.2 238.8 47.8
Bowl 23.1 180.7 6.2

15
Plate 25.5 394.8 15.8

1.38 10.4Cup 84 359.5 51.4
Bowl 26.1 100 5

16
Plate 45.3 225.7 16.1

2.87 11.1Cup 119 119.5 99.8
Bowl 15.3 117.5 6.9

17
Plate 6 203.3 7.5

0.96 8.4Cup 90.8 344 86
Bowl 20.7 127.7 5.6

18
Plate 40.3 347.2 24.8

1.27 9.7Cup 86.4 345.3 69.1
Bowl 24.3 92.3 6.6

19
Plate 13.7 342.8 8

0.43 19.8Cup 157.4 201.8 28.8
Bowl 14.5 179.3 4.4

20
Plate 39.1 212 15.1

1.07 9.6Cup 84.6 360.4 51.5
Bowl 20.1 171.9 9.6

21
Plate 32.1 306.6 17

2.83 9.8Cup 109.8 141.2 28.2
Bowl 41 92.3 6.6
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Table 4.7: Other dietary assessments computed by the smart dining table for subjects 22-32

Subject Eating rate
(spb)

total con-
sumption
(g)

Average bite
size (g)

Food to drink
ratio

Duration
(min)

22
Plate 17.4 234 12.3

1.70 5.2Cup 53.7 198.4 33.1
Bowl 9.9 102.3 4.6

23
Plate 21.2 313.6 9.5

10.62 11.6Cup 20 78.4 78.4
Bowl 11.7 519 8.8

24
Plate 29.9 215.9 15.4

2.00 6.8Cup 48.2 192.7 48.2
Bowl 7.1 170.1 7.1

25
Plate 19.6 355.2 11.1

1.43 10.3Cup 121.8 396.5 79.3
Bowl 12.8 212.9 6.5

26
Plate 11.3 314.2 15

1.93 15.4Cup 84.1 360.2 32.7
Bowl 17.4 379.6 8.1

27
Plate 50.7 235.8 15.7

0.97 15.9Cup 121.9 381.2 54.5
Bowl 49.3 132.9 12.1

28
Plate 19.6 423.6 8.1

2.81 16.8Cup 226.7 238.9 79.6
Bowl 11.5 248.1 6.7

29
Plate 7 329.6 8.3

2.68 7.3Cup 163 205.3 102.7
Bowl 21.4 221.1 10.5

30
Plate 14.7 277.7 9.3

3.46 7.4Cup 116.3 118.5 116.3
Bowl 20.2 132.3 20.2

31
Plate 16.9 310.5 8.6

2.53 9.9Cup 117.6 188.8 37.8
Bowl 39.3 168 11.2

32
Plate 25 182 8.3

1.64 9.4Cup 63 174.6 87.3
Bowl 13.3 103.8 5.2
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other food in another container. The dataset used in the work of Mattfeld et al. was collected in

an unrestricted eating. Their method was able to correctly detect 39% and failed to detect 47% of

24,101 ground truth bites labeled in their dataset [127]. Compared to their dataset, their method

achieved 78% recall on our dataset. The restricted eating in a laboratory environment, which is the

case in our study, seems to be the reason for this improvement. However, it is also possible that the

improvement in other algorithms is a result of using the 2D weighing surface that helps in getting

stable measurements and a segmented area for each food container. It is expected to have less stable

weight measurements when placing multiple food containers on a food tray that is placed on only

one scale; subjects can frequently and quickly pick up two bites by switching from a container to

another resulting in continuous unstable weight measurements for multiple bites. Further collection

of data in a free living environment is required to test the improvement that could be obtained when

using a 2D weighing surface.

Mass bites were also limited in our dataset. we have only two subjects (10 and 12) who ate

sandwiches. This is a small sample of partial bites compared to the dataset of [127] in which 14%

of 24,101 ground truth bites were partial bites. Detection of partial bites eaten from a mass bite is

beyond the capabilities of weighing sensors. Tracking of weight measurements alone is not sufficient

for the detection of partial bites and another modality is required to address this problem such as

using a bite counter or chewing monitoring device. Multi-modality systems have been used in the

literature to take advantage of the strengths of different sensors to complement each other [120,132].

Similarly, a weighing scale can be used to provide accurate weight measurements in addition to a

chewing or swallowing sensor to detect when a bite was actually consumed.
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Chapter 5

Conclusion

This dissertation presented a custom-built dining table that automatically monitors eating

and can report statistics including the amount of consumed bites per unit time, bite size in grams,

and total weight consumed over the course of a meal. The work was motivated by the problem of

obesity which is a globally growing health problem. To approach the problem of obesity, dietitians

need to assess and monitor patient eating behavior. Classic eating dietary tools are subject to bias,

depend on patient memory, and lack accuracy. Various automatic eating dietary tools have been

developed by researchers for objective, accurate, low cost, and in-situ monitoring.

This work shows a method to embed a grid of load cells under the surface of a dining table

that can detect the locations and weights of food containers sitting on the table surface. These

containers need to distribute their weights among the load cells on which they rest. The challenge

is that a typical load cell deflects for less than 0.1 mm from zero to full load. Thus, the tops of load

cells need to be vertically aligned within a few micrometers across the grid to allow for correct spatial

information and weight distribution to be measured. To obtain a low vertical deviation among the

tops of load cells, we developed a manufacturing technique in which the grid of load cells are inverted

or flipped over on a reference flat granite surface. The finished surface was mounted on a wooden

box that contains the scanning electronics of the load cells.

The design was tested for accuracy of weight measurements and weight distribution. The

results shows that weight measurements were 99.97±0.1% accurate. The average measured standard

deviation of weight distribution among 2x2 grid cells was 5.5 g. This is equivalent to approximately

4.2±0.5 um deviation from the perspective of surface flatness.
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We conducted an initial pilot study that involves recruiting 11 human subjects to voluntary

participate and eat on the dining table after we received an IRB approval. Data were labeled for

ground truth using synced videos. Foods include fresh salads and frozen meals for solid foods and

water for beverage. We developed an algorithm that, first, segments the images of weights produced

by the grid of load cells, second, detects bites picked up from the food containers. Per-subject

F1-score ranged from 0.91 to 1.00 for the detection of bite consumption.

More human subjects were recorded for further evaluation of our method which was also

compared against three state-of-the-art methods that we found in the literature for bite detection

using weight measurements. The dataset contains a total of 32 subjects, 1,836 ground truth moments

of labeled eating events, and a total meal duration of 376 minutes. Our method scored 96% F1-score

for bite detection. The other methods we compared our method against use 1D weight measurements

while our instrument produce 2D data. As a result, we prepared the data based on the requirements

of each method. Four metrics were used to evaluate the comparison: precision, recall, accuracy, and

F1-score. Our method achieved the highest for recall, accuracy, and F1-score. This result shows that

the use of 2D weighing instrument significantly improves the bite detection capability in addition

to providing other dietary assessments that are likely impossible to accurately quantify using 1D of

weight measurements. The dietary assessments include food to drink ratio, bite rate, and bite size

picked up from each food container.

5.1 Future Work and Open Problems

A higher resolution grid can be built using a smaller load cell. Thus, larger weights can be

distributed among more load cells and a more representative spatial information of object footprints

can be obtained. For eating monitoring application, more sensitive load cells are required when

smaller in size load cells are used so that weight reductions due to pick up of small bites can still be

sensed when distributed among more load cells.

Adding a smart textile sensor to the top of the surface would complement the high accuracy

of weight measurements provided by the load cells with high position resolution provided by the

smart textile. It would also be interesting to try a new smart textile technology that has more linear

sensitivity behavior [86]. The use of this technology for eating monitoring is still an open question

for a research.
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(a) (b)

Figure 5.1: Square pieces of spongy fabric are attached on a plastic foil to enable for the use of
regular dishware which have poor bottom flatness. After testing this idea, cross talk was observed
on the grid cells surrounding the footprint of a regular flat-bottomed plate.

Another idea that might wroth trying is the use of a spongy laminate to enable the use of

regular dishware. Unlike the custom-built, flat-bottomed dishware used in this study, regular and

commercially available plates and bowls do not have high flatness bottoms. Thus, a spongy laminate

is required to help distribute the weight of objects among all grid cells on which they rest. Moreover,

the laminate needs to be flexible enough to prevent any cross talk between adjacent grid cells. In an

attempt to use such regular dishware with our dining table, we tried to make a spongy and flexible

laminate. Square pieces of a spongy fabric — each was cut with dimension of about 4x4 cm just

smaller than the size of our tiles — were used between two layers of flexible plastic foil. The center

of each fabric square was aligned to the center of a grid tile. All of these square pieces of fabric were

attached with a two-sided tape on one of the flexible plastic foil as shown in Fig. 5.1. We tested

this laminate with a regular, commercially available, flat-bottomed plate. The results showed that

the laminate helped distribute the weight of the plate on the grid cells on which it rests. However,

cross talk was noticed; the laminate was not flexible enough and the weight of the plate was also

distributed on adjacent grid cells surrounding the footprint size of the plate. More improvements

and modifications on this laminate might be required to make it work.

The algorithm can still be improved to detect and track regular dishware with various

footprints. The current image segmentation algorithm expects to see a full area of a circle shaped

footprints representing food containers. However, for regular dishware, the image segmentation

should expect to see different shapes; regular dishware usually have edges footprints such as the
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circumference of a circle.

It would be interesting to try carbon fiber for the grid tiles and other mechanical parts to

make the structure lighter and more stiff and rigid. Doing so could make the instrument lighter and

hence mobile.

Our algorithm can be improved in multiple ways. Even though false footprint segmentation

was rarely noticed, i.e., approximately less than ten frames in the whole data set, segmentation can

be improved to be smarter and able to track footprints when food containers are removed for some

time and then replaced at a different location on the grid. The segmentation algorithm can also

be improved to work with more variety of object footprints and sizes for more flexibility. The bite

detection algorithm might need to be tested and improved to work with a broader variety of food

options and to handle non-eating gestures such as the use of utensils in a way that is smarter than

using their weights. Resting and removal of utensils on and from the plate or bowl were sources of

FPs and FNs. When a utensil, for example, is left on a plate before the plate is placed on the dining

table surface, a FP is detected when the utensil is picked up. An example of a FN is the case when

part of a picked up food falls back into a food container making a weight addition that is in the range

of the hard-coded weights of the used utensil, i.e., minWoU and maxWoU, as explained in Section

3.1.3. In this case, the algorithm considers this weight addition as if a utensil was rested into the

food container. If another utensil was used to pick up a bite that has a weight close to the weight

of the utensil then this bite will be ignored. Another source of FNs is the case when eating mass

bites (a large amount of food, for example a sandwich, is picked up and a bite is ingested from it).

For this case, an integration of other modalities that automatically detect food consumption could

complement our approach. One more important improvement of the algorithm is to add the ability

for automatic detection of eating episodes to make it an unobtrusive instrument. The dining table

should automatically detect when someone is eating on it to start the automatic dietary assessment

and to ignore non-eating gestures.
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Appendix A Instructions of Instrument Usage

A.1 Measuring Deflection Distance of Load Cells

The deflection distance of a single point load cell is defined as the displacement of the

point of axial load application in the primary axis between no load and the rated capacity load

conditions [12]. Datasheets of some load cells like the one used in this research do not show the

deflection distance. In this case, the following procedure can be used to measure the deflection

distance. This procedure should be done with a statistically acceptable sample size to generalize for

a set of similar load cells. For each load cell:

1. Load cell is mounted firmly on a rigid base. There needs to be a stopper tuning screw right

under the force application end.

2. Calibrate the load cell using a calibration weight that is equal to the rated capacity.

3. After calibration is done, place a calibration weight that is a few grams heavier than the rated

capacity on the load cell.

4. Using an L-shaped screw driver fasten the stopper screw until the weight measurements start

to change then stop and mark the weight measurement and mark the point at which the

L-shaped screw driver is pointing.

5. Continue fastening the stopper screw until the weight measurements have reduced the same

amount of the rated capacity then stop and mark the spot at which the L-shaped screw drier

is pointing.

6. Use an angle ruler to measure the angle between the two points θ.

Assuming the load cell weight measurements is linearly proportional to the deflection distance and

the stopper screws are pointed at their contact with the load cells, we can calculate the deflection

distance using the measured value θ and the pitch size of the stopper screw α. For example, if

θ = 55◦ and α = 0.5mm then the deflection distance is

deflection distance = α ∗ θ

360
= 0.5 ∗ 55

360
= 76.38um
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(a) (b) (c)

(d) (e) (f)

Figure A.1: Flat-bottomed bases of food containers. (a) and (b) A plastic cup cut in half and
attached to a circle-shaped piece of regular glass with diameter of 6.5 cm. A velcro fastener was
attached to the internal bottom of the base of half cup so that it holds to another fastener that is
attached to the external bottom of a new plastic cup. (c) and (d) A paper plate attached to a a
circle-shaped piece of regular glass with diameter of 19 cm. (e) and (f) A paper bowl attached to a
a circle-shaped piece of regular glass with diameter of 10 cm.

A.2 Food Container Bases

Fig. A.1 shows the flat-bottomed bases used during the data recording to meet the the

design assumptions that food containers have flat footprints. A paper plate and bowl were attached

to circle-shaped pieces of regular glass with diameters of 19 cm, and 10 cm, respectively. A plastic

cup was cut in half and attached to a circle-shaped piece of regular glass with diameter of 6.5 cm. A

velcro fastener was used to attach a new plastic cup to the flat-bottomed base so that it is used as

one piece; this is required because a user is expected to pick up the cup and drink water frequently

during a meal.
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A.3 Recording Data

Data are sent from the instrument in ASCII format over Ethernet connection using a UDP

protocol to port 44335 on the receiving side. Data can be recorded on a Linux system using the

following command

nc −u − l −k 44335 > data . txt

Video files were recorded using ffmpeg as follows

ffmpeg −f v4 l2 −s 640 x480 −input format mjpeg − i ${camera} −g 5 ${videoName}

where ${camera} is a USB webcam located at, for example, /dev/video2, and ${videoName}

is a file name with an extension such as video.mp4.

The two commands were included into a bash script file that runs from a terminal on Linux

so that the two files can be synchronized with a negligible time difference. This makes the data

visualization easier for study and annotation.

A.4 Cleaning

A drop of glass cleaner is dispensed on each tile. Gently rub each tile with a finger. Then

wipe each tile with a clean paper towel.

Appendix B Data Collection

B.1 IRB Permission and Consent Forms

The following pages show the IRB permission to conduct experiments by recruiting human

subjects and the consent forms which were signed by each subject. Emails and fliers — shown in

Fig. B.1 — were used to recruit subjects. Only a free meal was offered for subjects as an incentive.
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Research Compliance  |    Division of Research    |    Clemson University  
391 College Avenue, Suite 406 |    Clemson, SC 29634 

 
 
 

 
 
 

To: Adam Hoover 

Re: Clemson IRB number:  IRB2021-0462 

 Expedited Category:  6 & 7 

 Determination Date:  June 21, 2021 

 Completion Date:  May 31, 2021 

 Funding Sponsor:  N/A 

 Project Title:  Smart Dining Table 
 

 
 
The Clemson University Institutional Review Board (IRB) determined that the proposed activities involving 
human participants meet the criteria for expedited review under 45 CFR 46.110.  
 
Principal Investigator (PI) Responsibilities: The PI assumes the responsibilities for the protection of human 
subjects as outlined in the Principal Investigator’s Responsibilities guidance.  
 
Non-Clemson Affiliated Collaborators: This determination only covers Clemson affiliated researchers on the 
study. External collaborators will have to consult with their respective institution’s IRB office to determine 
what is required for their role on the project. An IRB Authorization Agreement is required for Clemson’s IRB 
to be the IRB record for the study.  
 
Informed Consent: Study personnel are required to use the approved informed consent document(s) for the 
study, unless a waiver of consent is granted. 
 

Waiver(s) granted for this study: 
 None 

 
 The IRB granted a waiver of signed consent pursuant to 45 CFR 46.117(c)(1) 

 (i): That the only record linking the subject and the research would be the informed 
consent form and the principal risk would be potential harm resulting from a breach of 
confidentiality. Each subject (or legally authorized representative) will be asked whether the 
subject wants documentation linking the subject with the research, and the subject's wishes 
will govern. 

 (ii): That the research presents no more than minimal risk of harm to subjects and involves 
no procedures for which written consent is normally required outside of the research context. 

 (iii): If the subjects or legally authorized representatives are members of a distinct cultural 
group or community in which signing forms is not the norm, that the research presents no 
more than minimal risk of harm to subjects and provided there is an appropriate alternative 
mechanism for documenting that informed consent was obtained. 

 
 The IRB granted a waiver of some elements of informed consent pursuant to 45 CFR 46.116(f) 

because the research involves no more than minimal risk to the subject, the waiver will not adversely 
affect the rights and welfare of the subjects, and the research could not be practicably carried out 
without the waiver. 
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 The IRB granted a waiver of consent pursuant to 45 CFR 46.116(f) and 45 CFR 46.408(c)-waiver 
for parents- because the research involves no more than minimal risk to the subject, the waiver will 
not adversely affect the rights and welfare of the subjects, and the research could not be practicably 
carried out without the waiver. 

 
Progress Report: A progress report is required at least 30 days before the scheduled expiration date to extend 
the approval period.  
 
Modifications: The PI is required to submit all proposed changes (i.e., increase in enrollment; modifications to 
research methods/instruments, recruitment procedures/documents, incentives, informed consent 
process/document, data, etc.) to the IRB office using the amendment request form. All changes must be 
reviewed and approved prior to implementation; except when an immediate change is necessary to eliminate a 
hazard to the participants, or to provide participants with new information on adverse event or research results 
considered essential to a participant's decision whether to continue participation. 
 
New Funding: Notify the IRB office If new funding is received for an active study. IRB review of the new 
award must be completed before new funds can be spent on human research activities, as the new funding 
source may have additional or different requirements. 
 
Reportable Events: Notify the IRB office immediately if there are any unanticipated problems involving risk 
to subjects, complications , adverse events and/or any complaints from research participants that may change 
the level of review from expedited to full board review. Additional information available at 
https://www.clemson.edu/research/compliance/irb/forms.html.  
 
Study Personnel Changes: An amendment request form is required for all personnel changes. Use the team 
member form to report changes to the study team. CITI training documentation is required for all team 
members, including the PI.  
 
CITI Training: All study personnel are required to complete the CITI human subjects training course.  
 
Non-Clemson Affiliated Sites: A site letter is required for all off-campus sites. Refer to the guidance on 
research site/permission letters for more information. An amendment request form is required to add additional 
sites to the study. 
 
International Research: Clemson’s IRB approval is based on U.S. human subjects protections regulations 
and Clemson University human subjects protection policies. Researchers should become familiar with all 
pertinent information about local human subjects protection regulations and requirements when conducting 
research in countries other than the United States. We encourage you to discuss with your local contacts any 
possible human subjects research requirements that are specific to your research site, to comply with those 
requirements and to inform Clemson’s IRB office of those requirements so we can better help other 
researchers prepare for international research in the future. 
 
New IRB Application: A new application is required if the study remains open for more than 5 years after the 
initial determination.  
 
Closure: Notify the IRB office when the study can be closed or if the PI leaves the university. Closure 
indicates that research activities with human subjects are no longer ongoing, have stopped and are complete. 
Human research activities are complete when investigators are no longer obtaining information or 
biospecimens about a living person through interaction or intervention with the individual, obtaining 
identifiable private information or identifiable biospecimens about a living person and/or generating 
identifiable private information or identifiable biospecimens about a living person. 
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Contact Information: Please contact the IRB office at IRB@clemson.edu or visit our webpage if you have 
questions.  
 
Clemson University’s IRB is committed to facilitating ethical research and protecting the rights of human 
subjects. All research involving human participants must maintain an ethically appropriate standard, which 
serves to protect the rights and welfare of the participants. This involves obtaining informed consent 
and maintaining confidentiality of data.  
 
 
Institutional Review Board 
Office of Research Compliance 
Clemson University 
https://www.clemson.edu/research/compliance/irb/  
 
IRB Number: IRB00000481 
FWA Number: FWA00004497 
 
 



Information about Being in a Research Study 

Clemson University 

 

 

Tracking Eating Behavior Using a Smart Dining Table 
 

KEY INFORMATION ABOUT THE RESEARCH STUDY  

 

Voluntary Consent: Adam Hoover is inviting you to volunteer for a research study. Dr. Hoover 

is a Professor in the Department of Electrical and Computer Engineering at Clemson University. 

 

You may choose not to take part and you may choose to stop taking part at any time. You will 

not be punished in any way if you decide not to be in the study or to stop taking part in the study. 

If you choose to stop taking part in this study, the information you have already provided will be 

used in a confidential manner. 

 

Study Purpose: The purpose of this research is to study eating behavior using a smart dining 

table. The table uses sensors embedded in the table surface to detect dishware and measure its 

weight.  These measurements are used to detect individual bites of food and drinks of liquid to 

quantify eating behaviors.  None of this data is displayed to the person while eating so that it will 

not affect their natural behaviors. If you participate in this study, you will be asked to eat a meal 

on the smart dining table. 

 

Activities and Procedures: Your participation in the study will include: 

• Self-reporting your height and weight. 

• Eating a meal on the smart dining table. The meal will be ordered from an on campus 

restaurant or cafeteria and will be provided to you at no cost. Please notify the research 

team of any allergy concerns. 

• Being video recorded while eating the meal. This will be used to transcode the times of 

ingestion events that took place on the dining table. 

 

Participation Time: It will take you about 15 to 30 minutes to be in this study. 

 

Risks and Discomforts: If you have any food allergies or history of an eating disorder that could 

affect your comfort in eating a meal, please notify the research team. If you experience 

discomfort during the experiment at any time, please notify the research team and the experiment 

will be halted. 

 

Possible Benefits: You may not benefit directly for taking part in this study, however the data 

collected in this study will be used to develop algorithms and validate the accuracy of the smart 

dining table for future research in eating behaviors. 

 

EXCLUSION/INCLUSION REQUIREMENTS: You must be 18 years or older to participate 

in this study. 

 

AUDIO/VIDEO RECORDING AND PHOTOGRAPHS: You will be video recorded during 

eating the meal. This will be used to mark the times of actual ingestion. Videos will be retained 

indefinitely for potentially updating the manually marked times of actual ingestion. You will be 

asked to sign a media release form so that the recordings may be shared publicly to further 

facilitate this research and disseminate its results.  

 



EQUIPMENT AND DEVICES THAT WILL BE USED IN THE RESEARCH STUDY: 

You will eat on a dining table that was developed for this research. 

 

PROTECTION OF PRIVACY AND CONFIDENTIALITY 

 

The results of this study may be published in scientific journals, professional publications, or 

educational presentations. 

 

All sensor data will be deidentified during recording using a unique ID number for each 

participant. Sensor data recorded by the smart dining table will consist of a grid of weight 

measurements over time of objects on the table surface. Video will be recorded synchronously 

and will generally show the head and upper limbs of a participant so that ingestion events (intake 

of food and beverage) can be seen.  The video will be used to mark the actual times of ingestion 

events in the sensor data (known as “ground truth”).  These times will be used to evaluate the 

accuracy of the smart dining table for automatically detecting ingestion events. 

 

Identifiable information collected during the study could be used for future research studies or 

distributed to another investigator for future research studies without additional informed consent 

from the participants or legally authorized representative.  

 

We might be required to share the information we collect from you with the Clemson University 

Office of Research Compliance and the federal Office for Human Research Protections. If this 

happens, the information would only be used to find out if we ran this study properly and 

protected your rights in the study. 

 

CONTACT INFORMATION 

 

If you have any questions or concerns about your rights in this research study, please contact the 

Clemson University Office of Research Compliance (ORC) at 864-656-0636 or 

irb@clemson.edu. If you are outside of the Upstate South Carolina area, please use the ORC’s 

toll-free number, 866-297-3071. The Clemson IRB will not be able to answer some study-

specific questions. However, you may contact the Clemson IRB if the research staff cannot be 

reached or if you wish to speak with someone other than the research staff. 

 

If you have any study related questions or if any problems arise, please contact Adam Hoover at 

Clemson University at 864-656-3377, ahoover@clemson.edu 

 

CONSENT 

 

By signing this consent form, you indicate that you have read the information written above, are 

at least 18 years of age, have been allowed to ask any questions, and you are voluntarily 

choosing to take part in this research.  

 

Participant’s signature: ____________________________________ Date: __________ 

 

Print name: _____________________________________________ 

 

A copy of this form will be given to you. 

 



 

  

Electrical and Computer Engineering
 

 

 

PHOTO/VIDEO PUBLICATION RELEASE FORM 
 

Smart Dining Table for Automatic Detection of Eating Events 
 

 
Researcher(s): Prof. Adam Hoover 

Contact Information: ahoover@clemson.edu 

 

All persons taking still photographs or videos for Clemson University-related research publications 

must obtain a signed release form from anyone who is visibly recognizable in the photograph or video. 

Crowd scenes where no single person is the dominant feature are exempt.  This form is intended for use 

with Clemson University IRB approved research under the above noted IRB protocol.    

 

Participant Consent: 
I am 18 years of age or older and hereby grant the researcher designated above from Clemson 

University permission to photograph, audio record, and/or videotape my voice and likeness and to use 

my voice and likeness in photograph(s), audio recordings, and/or videotaping as part of the above titled 

IRB approved research study.   

 

I give permission for the researcher to distribute and/or use any photograph(s), audio recording(s), 

and/or videotape(s) made as part of this research project in research presentations, publications, for 

educational uses, or through any other venue as long as my name is not used. All media will become the 

property of Clemson University.  I will make no monetary claim against Clemson University for the use 

of the photograph(s), audio recording(s), and/or video recording(s).   

 
 

Printed Name:                                 Date:       

 

 

Signature:  __________________________________________________________________________________ 

 

 

Clemson University Researcher: 
 

Name:           Date:       

 

 

Signature: ___________________________________________________________________________________  



Spring 2022  Please participate 

 Free Meal  
 

We are looking for volunteers to participate in eating a free meal in Fluor Daniel EIB room 345. 
 

Description of the project: The purpose of this research is to develop hardware and algorithms to 

detect eating events taking place on a dining table. Your participation will require 15 minutes of 

your time in a visit to our lab, where you will eat a meal on a custom-built dining table. Food will 

be ordered from Publix and will be provided to you. You will be video recorded during eating the 

meal. The QR code below shows an explanation of the research. 
 

To participate: You must be an adult between 18 and 100 years of age. People having anorexia, 

bulimia or any other eating disorders will be excluded from the study. 
 

If you like to participate you can choose any fresh salad and frozen food that can be found in the 

local Publix store and that needs to be eaten with standard utensils: a fork, spoon, and knife. Cold, 

bottled water will be provided as a beverage. Here are examples of the food we previously 

provided but you can choose different ones. 
 

   

 
 

This research is conducted under the direction of Adam W. Hoover, Department of Engineering, 

Computing, and Applied Sciences, and has been reviewed and approved by the Institutional 

Review Board of Clemson University (IRB2021-0462). 
 

To learn more or to participate, please contact 

Mohammad Mayyan at mmayyan@g.clemson.edu 

Figure B.1: The flier used to recruit human subjects to voluntary participate in the study.
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B.2 Food Options Subjects Chose to Eat

Table B.1 lists the food and salad each subject ate on the dining table. All foods listed

in the second column, i.e., Food , were frozen except for subjects 10 and 12 who ate sandwiches.

All salads were refrigerated and ordered from grocery stores. Fig. B.2 shows examples of the fresh

salads and frozen foods eaten by participants. Subjects 10 and 12 were excluded from the results

shown in Table 3.1.

Table B.1: List of food options participating subjects chose to eat.

Subject Food Salad

1 Lean Cuisine Chicken Fried Rice Simply Fresh Salads Salad, Deluxe Caesar,

with Chicken

2 Lean Cuisine Chicken Fried Rice Simply Fresh Salads Salad, Deluxe Caesar,

with Chicken

3 Lean Cuisine Chicken Fried Rice Simply Fresh Salads Salad, Deluxe Caesar,

with Chicken

4 Lean Cuisine Chicken Fried Rice Simply Fresh Salads Salad, Deluxe Caesar,

with Chicken

5 Lean Cuisine Alfredo Pasta, with Chicken

& Broccoli

Simply Fresh Salads Salad, Deluxe Caesar,

with Chicken

6 Lean Cuisine Alfredo Pasta, with Chicken

& Broccoli

Simply Fresh Salads Salad, Deluxe Caesar,

with Chicken

7 Lean Cuisine Alfredo Pasta, with Chicken

& Broccoli

Simply Fresh Salads Salad, Deluxe Caesar,

with Chicken

8 Lean Cuisine Alfredo Pasta, with Chicken

& Broccoli

Simply Fresh Salads Salad, Deluxe Caesar,

with Chicken

9 Lean Cuisine Alfredo Pasta, with Chicken

& Broccoli

Simply Fresh Salads Salad, Deluxe Caesar,

with Chicken

10 Cheese sandwich Green salad

11 Lean Cuisine Alfredo Pasta, with Chicken

& Broccoli

Simply Fresh Salads Salad, Deluxe Caesar,

with Chicken
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Table B.1 Continued: List of Food Options Participating Subjects Chose to Eat

Subject Food Salad

12 Chick-fil-A® Chicken Biscuit Simply Fresh Salads Salad with Chicken,

Santa Fe Style

13 Lean Cuisine Alfredo Pasta, with Chicken

& Broccoli

Simply Fresh Salads Salad, Deluxe Caesar,

with Chicken

14 Stouffer’s Lasagna with meat and Souce Publix Deli Grilled Chicken Caesar Salad

15 Amy’s Enchilada, Cheese Publix Deli Turkey Cobb Salad

16 Amy’s Enchilada, Roasted Poblano Publix Deli Turkey Cobb Salad

17 Stouffer’s Lasagna with meat and Souce Publix Deli Turkey Cobb Salad

18 Lean Cuisine Orange Chicken Publix Deli Grilled Chicken Caesar Salad

19 Lean Cuisine Chicken Fried Rice Simply Fresh Salads Salad with Fresh Moz-

zarella, Gourmet Caprese, Loaded with

Toppings

20 Amy’s Enchilada, Roasted Poblano Simply Fresh Salads Salad with Fresh Moz-

zarella, Gourmet Caprese, Loaded with

Toppings

21 Lean Cuisine Favorites Fettuccini Alfredo Publix Deli Grilled Chicken Caesar Salad

22 Amy’s Enchilada, Roasted Poblano Publix Deli Grilled Chicken Caesar Salad

23 Lean Cuisine Favorites FAVORITES

Chicken Fettuccini

Boar’s Head Bold Chef Salad

24 Amy’s Enchilada, Cheese Simply Fresh Salads Salad with Fresh Moz-

zarella, Gourmet Caprese, Loaded with

Toppings

25 Stouffer’s Chicken A La King Simply Fresh Salads Salad, Deluxe Caesar,

with Chicken

26 Stouffer’s Escalloped Chicken & Noodles Publix Deli Grab & Go Salad, Strawberry

& Glazed Pecan
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Table B.1 Continued: List of Food Options Participating Subjects Chose to Eat

Subject Food Salad

27 Lean Cuisine Favorites FAVORITES

Chicken Fettuccini

Publix Deli Grilled Chicken Caesar Salad

28 Boston Market Beef Steak & Pasta Publix Deli Turkey Cobb Salad

29 Lean Cuisine Favorites Five Cheese Riga-

toni

Publix Deli Chef Salad

30 Home made Frittata Home made green salad

31 Home made rice and chicken Home made green salad

32 Healthy Choice Simply Steamers Meatball

Marinara

Publix Deli Traditional Greek Style Salad
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure B.2: Examples of food options participants ate on the dining table. (a)-(f) are fresh salads.
(g)-(l) are frozen foods.
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Figure C.7: Main board part 1.
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