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Abstract

This work is motivated by the problem of improving the accuracy of indoor ultra-wideband

(UWB) position tracking through the study of the environment noise that affects such a system.

Current systems can provide accuracy in the range of 30-100 cm in a small building, suitable for

applications that require rough room-level precision such as asset tracking and surveillance. Our

long-term goal is to improve the accuracy to 1 cm or better, expanding potential applications to

telepresence, augmented reality, training and entertainment.

This work investigates the possibility of systematically observing the measurement noise

of an UWB position tracking system and building a map of it throughout a facility. In order to

understand the effect of environment noise on UWB indoor positioning and in turn filter out the

effects of this noise, it is important to have an idea of what this measurement noise looks like in a

real world scenario. In this work, an understanding of the measurement noise is gained by taking

many measurements using a commercially-available UWB positioning system installed in a real world

scenario and analyzing these measurements in various ways. To the author’s knowledge, no one has

used such an exhaustive approach to analyze measurement noise in UWB indoor positioning. The

results of this work show that the measurement noise that affects a UWB indoor position tracking

system can be effectively modeled using a weighted sum of Gaussians, is stable over time and is

locally similar. Furthermore, a particle filter augmented with a measurement noise map is proposed

to improve position tracking accuracy. Finally, a metric is proposed that can be used to quantify

expected system performance based on sensor location, sensor orientation and facility floorplan.

Using this metric, a procedure is developed to determine the parameters, i.e. sensor position, sensor

orientation and potentially others, of the physical installation of the UWB tracking system that will

produce minimum measurement error based on sensor geometry and physical facility constraints.
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Chapter 1

Introduction

This work is motivated by the problem of improving the accuracy of indoor ultra-wideband

(UWB) position tracking. Current systems can provide accuracy in the range of 30-100 cm in a small

building [1], suitable for applications that require rough room-level precision such as asset tracking

and surveillance. Our long-term goal is to improve the accuracy to 1 cm or better, expanding

potential applications to telepresence, augmented reality, training and entertainment. This work is

inspired by the methods that have been used to improve global navigation satellite system (GNSS)

tracking accuracy over the past several decades [2]. The accuracy has improved from 100 m to

better than 1 m which has expanded its original ship and airspace navigation applications to include

civilian vehicle navigation and automated farming [3]. The methods used to improve accuracy

include augmentations, such as differential and inertial systems [4], and systematic modeling of

error sources such as atmospheric effects, timing jitter, and satellite constellation [5]. The Kalman

filter and related signal processing approaches are typically used with error models to reduce the

noise and improve the accuracy [4]. UWB indoor position tracking is a much newer technology but

similar in operation a to GNSS, using many of the same principles such as trilateration. However,

the scale of the problem (building-sized versus Earth-sized) affects the potential error sources in

new and interesting ways. In this work, new noise models are developed for sources of error in a

UWB indoor position tracking system and consider new augmentation methods. A variation on the

particle filter is used to implement our ideas. Improved accuracy in position tracking is used to

evaluate performance.

The following sections provide background on GNSS’s, local positioning systems, UWB,

1



−1 0 1 2 3
−1

−0.5

0

0.5

1

1.5

2

X

Y

Figure 1.1: GNSS range calculation in two dimensions.

current UWB positioning work and the particle filter.

1.1 Global Positioning System

The Global Positioning System (GPS) is an active GNSS developed by the U.S. Department

of Defense beginning in the 1970s. It is one of only two truly global satellite navigation systems,

along with the Russian GLONASS system [3]. The basic idea behind a GNSS is that the range or

distance from a transmitter to a receiver can be calculated by measuring the time that it takes for a

radio frequency (RF) signal to propagate from transmitter to receiver and multiplying by the speed

of light. Figure 1.1 shows this concept. A single range measurement places the receiver on a known

circle (sphere in 3D) from the transmitter. Using several transmitters, the position of the receiver

can be calculated by finding the intersection of the circles, a process called trilateration. There

are several variations on this principle including time of arrival (TOA), time difference of arrival

(TDOA) and angle of arrival (AOA). Each of these varies somewhat in how the range is calculated,

but the overall principle is the same.

There are many sources of noise in the GPS, including geometric satellite positions, clock

errors, ephemeris errors, atmospheric distortion and multipath [3]. Each of these affects the accuracy

of range measurements, thus affecting the accuracy of the trilateration. For example, multipath

errors can cause a reflection to be detected instead of the direct path and therefore incorrectly

2



estimate the time of flight. This leads to an increased range estimate which results in errors in

the trilateration calculation. In the modern GPS, these noise sources are modeled and filtered to

improve the accuracy of the calculated position [6].

Several augmentation methods have also been combined with GPS to improve its accuracy.

An augmentation method brings other sources of information into the range calculation. For exam-

ple, differential GPS uses a local (to the receiver), Earthbound tower that has a more expensive,

more precise clock than the receiver, to obtain another distance measurement [6]. It is assumed that

the tower’s position has been carefully surveyed and is known more precisely than its GPS estimate.

Together, these sources of information can be used to improve the position accuracy. The Wide Area

Augmentation System (WAAS) uses a ground-based segment to correct for errors in GPS signals

and transmits that information to capable GPS receivers via geostationary satellites [6]. A simpler

example is in place in modern vehicle navigation systems. These systems incorporate road maps

and positions calculated by pure GPS are filtered or map-matched towards the nearest road location

[7, 8, 9].

1.2 Local Positioning Systems

A local positioning system (LPS) is similar in principle to a GNSS but is intended to

work in a building-sized area. The GPS and other GNSSs do not transmit with enough power to

penetrate inside buildings, so an LPS is intended to provide a similar capability in GPS-denied areas.

One requirement of an LPS system is that it must broadcast a signal that can penetrate through

interior walls, furniture, and the standard clutter of a building in such a way that accurate range

calculations and, in turn, trilateration is possible. Installation of such a system can be a challenge

because sensors must be mounted and cables run taking into consideration security, convenience of

placement, coverage area and precise determination of sensor positions. This task can be especially

difficult in older structures.

Several different technologies have been explored for LPSs including augmented GPS, RFID,

cellular-based systems, UWB, wireless local area networks (WLAN), Bluetooth, proprietary ultra

high frequency solutions and infrared [10]. Other methods include camera-based systems, ultrasound

and laser-based systems [11]. Inertial navigation systems are also used in LPSs [12]. Although GPS

is the predominant positioning technology today, this work is focused on systems that function

3



indoors. Regular GPS signals do not penetrate external walls well and are therefore unsuitable

for this type of application. Also, technologies such as RFID, Bluetooth, infrared, ultrasound and

laser-based systems do not have the range required to cover an entire building or even an entire floor

of a building. Therefore, this work does not focus on these types of systems.

1.3 Ultra-Wideband

Our work makes use of an ultra-wideband (UWB) LPS. This technology has shown the most

promise towards meeting the challenges of indoor position tracking, including ease of installation,

functional range and potential accuracy.

UWB generally refers to a very short RF pulse which distributes signal power across a wide

range of frequencies. The United States Federal Communications Commission began permitting

the use of UWB systems in 2002 [13]. Their rules require that UWB systems not disrupt other

wireless systems and therefore a strict power limit is in place. UWB has been researched or is being

developed for several applications including communications, RADAR, imaging and sensor network

systems [14]. This work is only concerned with the application of UWB to indoor position tracking.

UWB is ideally suited to indoor position tracking because of its wide bandwidth and short duration.

Compared to a traditional narrowband RF signal, it is more likely that some portion of a UWB

signal’s transmitted spectrum will pass through all obstacles between the transmitter and receiver

with minimum attenuation and delay [15]. Furthermore, the short duration of a UWB pulse provides

good time resolution which minimizes the effects of multipath interference [16] and allows for high-

resolution ranging [15]. Once a signal is detected, the receiver is challenged with processing the

received pulse in order to measure precise signal time-of-flight. An accurate range estimate to the

transmitter can be determined by multiplying the time-of-flight by the speed of light. With multiple

range estimates to the transmitter, trilateration calculations can be made in a manner similar to

those performed by GPS.

1.4 UWB Indoor Position Tracking Systems

Since accuracy is our motivating factor, this section overviews related work in terms of

position tracking accuracy and evaluation. Additional technical aspects of the works are discussed
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Table 1.1: UWB local positioning system comparison table. The abbreviation
“Comm.” denotes commercial systems.

System Test Range Accuracy Measurements Noise
C

o
m

m
. Ubisense [17] - 15 - 30 cm - -

Dart [18] - <30 cm - -
Plus [19] - <1 m - -
Thales [20] - <1 m - -

R
es

ea
rc

h

Mahfouz, et al. [21] <1 m ? 1 - 43 mm - 2,3,4,5,6

Zhang, et al. [22] 7 x 4 x 1 cm 2 - 6 mm 5,000 - 6,000 2,3,4,5,6

Yang, et al. [23] <1 m ? <30 mm ∼ 2,000 2,3,4,5

Low, et al. [24] 4 - 24 m 1 - 4 cm 167 2,3,5

Yan, et al. [25] 2 - 15 m 2 - 18 cm 400 2,3,4,5

Fontana, et al. [26] ∼ 30 x 13 m <31 cm 7,883 All
Guoping and Rao [27] 5 × 6 m >30 cm ∼ 40,000 2,3,4,5,6

Waldmann, et al. [28, 29] <2.5 m 3 cm - 2,3,4,5,6

Correal, et al. [30] 20 x 20 x 6 m 2 - 38 cm 3,000 2,3,4,5

Zetik, et al. [31] 0.02 cm - 4 m 0.4 - 0.8 mm 200 - 300 2,3,4,5

Meier, et al. [32] 2 x 2 x 2 m <1 mm - 2,3,4,5

Oh, et al. [33] ∼ 8 × 8 m <30 cm 300 - 400 2,3,4,5

MacGougan, et al. [34] 35 x 43 m <10 cm - 3,4,5

Steiner and Wittneben [35] 7 x 15 m 43 - 93 cm ∼ 14,000 2,4

S
im

u
la

ti
o
n

Denis, et al. [36] 16 x 16 m 27 - 74 cm - 1,2,3,5

Jing, et al. [37] - <4 cm - 1,5

Chung and Ha [38] 10 m <6 m - 2,5

Shen, et al. [39] 300 x 300 cm 2 - 300 cm - 1,3,6

Morelli, et al. [40] 40 x 30 m - - 1,5

Yu and Oppermann [41] 40 x 30 x 5 m <3 m - 3,5,6

1 non-line-of-sight (NLOS)
2 multipath
3 synchronization
4 antenna effects
5 peak detection
6 sensor placement

here and in subsequent chapters in this dissertation. The goal of this section is to give the reader

an overview of the current state of the art.

The current state of UWB indoor position tracking works is summarized in Table 1.1.

Reported system accuracies range from less than 1 mm to greater than 5 m, a span of more than

three orders of magnitude. Obviously, these evaluations were performed under different conditions,

but the plethora of results is not easily interpreted. For many works, numerical accuracy is reported

but the testing conditions are vague or unreported. Details such as the size of the test area or the

environmental conditions are sometimes absent. In some cases, repeatability metrics are reported

instead of accuracies, which adds to the complexity in the literature.

For commercial systems, reported accuracies range from 15 cm to 1 m by the companies

selling them [20, 19, 17, 18]. The methods by which these numbers were measured are unavailable.

Since the motivating factor is sales, a simple estimate of performance (e.g., a single number) is
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generally all that is given. Perhaps recognizing the ambiguity of the issue, many performance

estimates use a qualifying phrase such as “better than 30 cm” (denoted by the < symbol). However,

it is not clear if this provides a maximum bound on error, or if it is an estimate of average error, or

has some other meaning.

Research systems are often constructed in order to test the effect of a particular condition

or noise source upon accuracy. For example, Mahfouz, et al. [21] studied the effects of sampling rate

limitations, iterative receiver-side peak detection, component timing synchronization, antenna phase-

center variation, and base station configuration. Tests were performed using a custom system over a

small (1 - 2 m) unobstructed area in order to isolate the impact of each condition. Precise (less than 1

mm) ground truth positions were established using a commercial optical tracking system. Depending

on the conditions, average errors as low as 1 mm were obtained. Further research, reported in [22],

decreased system complexity and focused on a noise source referred to as the “shoulder” effect.

RMS errors between 2 and 6 mm were reported for three-dimensional tracking. Related research in

[23] reported errors less than 30 mm using a selective correlation algorithm. While these tests are

encouraging and show the ultimate accuracy that may be obtainable with UWB tracking, they are

not indicative of the actual accuracies obtainable for building-wide applications today.

Low, et al. [24] developed an algorithm to improve the calculation of the time-of-flight

using a combination match filtering and peak search technique. This algorithm reduces the impact

of inter-symbol interference and multipath on the range calculation. The technique was tested in

line-of-sight (LOS) conditions across six different environments including large, open spaces and

small, dense office spaces. In each environment, measurements were made at 20 - 36 locations and

mean errors from 0.5 to 4 cm were reported. This evaluation considers realistic environments to

encourage multipath errors, but ignores NLOS errors which can create large positive biases in the

range measurements.

Many research works focus on developing a proof-of-concept system, such as to meet some

specification. Fontana, et al. [26] presented an FCC approved, UWB position tracking system. The

system was evaluated in both indoor and outdoor environments with the bulk of the evaluation

being performed in a 30 × 15 m laboratory area including NLOS and multipath error sources.

The outdoor experiment tested operating range only and reported a range as far as 183 m. In

the reported indoor experiment, 7,883 position estimates were collected over 2.2 hours at a single

tag location. The authors reported an accuracy of less than 30 cm. This evaluation shows that a
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position tracking system can be developed that meets FCC requirements for UWB signals. While

this proof-of-concept evaluation was performed in a realistic environment, the reported results do

not acknowledge the vast differences in tracking accuracy that occur in different locations across a

typical indoor facility.

Another FCC compliant UWB localization system was described in [27]. The goal of this

work is to develop a low-cost UWB localization system by performing parallel edge detection, using a

1-bit sampler and determining position from time-difference of arrival (TDOA) values using simpler

calculations. The evaluation considered stationary and moving tags within a 5 × 6 m facility in

multipath conditions. LOS/NLOS conditions are not reported. The authors report approximately

30 cm two-dimensional error for certain locations within the facility but much greater error when

further from the UWB sensors. Only three sensors are employed in the evaluation.

An UWB localization system was developed based on short pulses of frequency modulated

continuous wave (FMCW) signals in [28] and a short multipath mitigation technique is added to

the system in [29]. The system has a maximum operating range of 20 m. The evaluation took

place in a 5 × 3.5 m laboratory under LOS conditions. One-dimensional measurements were taken

by the system in 5 cm increments over a 2.5 m range. An average ranging error of about 3 cm

is reported. This evaluation is quite small, does not consider NLOS conditions and only considers

one-dimensional positioning. Short multipath is mitigated using a feed-forward neural network, but

only simulation results are reported for this technique.

Correal, et al. [30] developed and evaluated a system for performing UWB positioning

based on relative location. This system uses pair-wise range measurements to add information

from neighboring transmitters with unknown location to the classical positioning problem. The

experimental evaluation was performed in an office area (10 x 11 m) in LOS conditions. 500 point-

to-point range measurements were collected at 6 locations within the facility. The authors report

errors in the 2 - 38 cm range. This measurement campaign, while somewhat realistic, is small and

does not take into account the significant effects of NLOS conditions.

Using a UWB system that transmits long spreading sequences instead of short pulses, Zetik,

et al. [31] examined one-dimensional range resolution as well as two and three dimensional position-

ing accuracy. The range resolution was tested under ideal conditions by connecting the transmitter

and receiver to a mechanical delay line. The two dimensional positioning experiment was performed

over a 2 × 4 m area without any obstacles, e.g. walls, people, etc. Furthermore, the transmitter
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and receiver elements were synchronized avoiding most synchronization error. The tag traversed a

specific path and position estimates were made along the way. While no true error measurement

is reported, the experiments are reported to be repeatable with a standard deviation of just 1.5

cm in both directions. Although multipath conditions likely existed in the test environment, NLOS

conditions were not considered. Also, the coverage area of the system was limited when compared

to real-world applications.

Another system employing spreading sequences was developed by Meier, et al. [32]. This

prototype system contains three receivers and a single transmitter and was evaluated in a laboratory

under LOS conditions. The evaluation is mainly proof-of-concept for three-dimensional positioning.

A Kalman filter is used to improve the performance and achieve errors in the sub-millimeter range.

The IEEE released the 802.15.4a IR-UWB physical layer specification in March of 2007. This

specification describes a low data rate communication and ranging/positioning system. Oh, et al. in

[33] developed a coherent IR-UWB system that meets this specification. The system was evaluated

for one-dimensional positioning in a hallway at ten distances from 1 to 19 m. Average ranging

errors from 1 to 20 cm were reported for 5000 measurements at each distance. Two-dimensional

positioning results were also evaluated. 300 measurements were recorded by four reference nodes

with the mobile node (tag) in a single location. Position error of less than 30 cm was reported for

this experiment.

MacGougan, et al. [34] combined GPS with a UWB positioning system to demonstrate

improvements in GPS positioning accuracy when in urban canyons or deep mines with degraded

satellite coverage. An extended Kalman filter was used to track a number of GPS and UWB

parameters including bias and scale factors for each UWB receiver. The UWB system was placed

in an outdoor environment covering an area approximately 35 × 43 m with LOS conditions. Both

static and dynamic tests were performed. In the static test, the GPS+UWB system was placed at

a specific known location within the area covered by three UWB receivers and data was collected

for four minutes with both good and artificially degraded satellite coverage. The authors reported

horizontal RMS errors between 14 and 24 mm and vertical RMS errors between 25 and 279 mm. In

the dynamic test, the system traverses a path in both good and artificially degraded GPS conditions.

The good GPS condition portion of the test is used to determine UWB and bias scale conditions.

The authors report errors better than 10 cm for most of the kinematic testing with the GPS+UWB

system under degraded GPS conditions. The GPS-only system was unable to produce a solution
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under these conditions.

Yan, et al. in [25] propose a framework for determining location using a least-squares tech-

nique. They transform the three-dimensional localization problem into a one-dimensional problem

and solve it iteratively. The experimental data used in this work is a set of 400 UWB range measure-

ments collected under LOS conditions at distances from 2 to 15 m. The ground truth information

for the positions was determined using a laser tool. RMS errors between 2 and 18 cm are reported.

The authors achieved a reduction in computations of approximately 67% using their method when

compared to classical non-linear least squares methods.

Position estimation based on location fingerprinting is an area of research that has received

significant attention. This positioning method assumes that each location within a facility has a

unique set of observable values that can be used to determine the location of a sensor based on

these observed values. Steiner and Wittneben consider this type of indoor positioning method in

[35] using an UWB energy detection receiver. The evaluation covered 22, 27 × 56 cm regions within

a 7 × 15 m indoor environment. The positioning accuracy is determined through simulation using

real UWB channel measurements. The evaluation considered position accuracy based on number of

training vectors, sampling frequency and number of regions included. This method is quite different

from previous positioning methods considered. However, such methods would benefit from a larger

measurement campaign than was reported in [35].

Bayesian filtering techniques, such as the Kalman or particle filter, have been used exten-

sively for UWB tracking in indoor environments. Denis, et al. [36] applied two different Bayesian

filters to simulated data based on a deterministic UWB propagation model. The goal of this work was

to track time-of-arrival (TOA) biases created by NLOS conditions and use these biases to improve

tracking accuracy. The model was able to achieve error less than 0.5 m in a two-dimensional tracking

simulation. These techniques show promise but have not been proven in real-world scenarios.

Jing, et al. [37] considered waveform distortion caused by UWB signals passing through

various materials. The goal was to focus on the bias error caused by incorrect peak detection

due to the distortion cause by NLOS conditions. They evaluated the effects of this type of noise

by simulating the effects of different materials and material thicknesses. These simulations isolate

NLOS noise sources, but similar experimental work is needed.

Chung, et al. [38] developed and reported results from another simulated ranging, i.e. one-

dimensional positioning, system. This simulation focused on improving TOA estimation using a train
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of UWB pulses instead of just one. The UWB system itself was modeled using a known indoor UWB

channel model, transmitter and receiver. The authors performed ten experiments containing 1000

pulses for averaging over a 10 m distance and reported errors less than 6 m. Again, this evaluation

focuses on improving a single error source and does not address the real-world positioning problem.

A method for determining whether a measurement from a receiver is LOS or NLOS is

proposed in [39]. The simulated results are based on randomly placing receivers or reference nodes

in a simulated facility 1000 times and determining the RMS location errors. The authors report

errors between 2 and 300 cm. This evaluation focuses on the detection of NLOS nodes, but simulates

its results. Real-world scenarios would likely provide different results.

Another method for tracking LOS and NLOS conditions as well as determining tag loca-

tion was developed in [40]. This work uses hidden Markov models to estimate both position and

LOS/NLOS condition. Simulations are run considering ranging only as well as a two-dimensional

real-world positioning scenario. The authors included NLOS conditions due to walls and multipath

effects into the simulations. Specific error values are not reported, but maps are shown that give an

idea of the distribution of errors for comparison between positioning techniques.

A comparison of two position calculation methods is considered in [41]. The first method

directly calculates the tag position using TDOA measurements which produces two possible solu-

tions, one of which is typically unreasonable. The second method minimizes an objective function of

squared range errors to produce an optimal position estimate. This method iteratively produces a

single solution. The authors simulated the placement of four and five sensors within a 40 × 30 × 5 m

facility. Zero mean, Gaussian distributed noise is added to TOA values to evaluate the performance

of the two methods. Error values between 0.25 and 3 m are reported.

Based on the preceding summaries, it can be seen that the literature regarding UWB po-

sitioning contains a wide array of systems, evaluation techniques and reported accuracies. Each

work contains an evaluation of system accuracy under specific conditions. Some focus on isolating

and mitigating a single noise source while others are more proof-of-concept oriented. In general,

this work is different from others in that it is motivated by how the error sources can be modeled

and filtered in practice. The natural clutter of an indoor environment is not avoided, and NLOS

distortions and multipath errors are expected. Overall measurement noise is an aggregate of all of

the sources of error that affect a system. In the case of positioning systems, it is the noise that

affects the final position estimate generated by the system. This is different from noise on a single
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range measurement because that noise has now been propagated through to position estimation.

1.5 Filtering

Filtering is the process of estimating the unknown state of a system from a set of noisy

measurements or observations and the system’s dynamic model. A system’s state and dynamic

model can be made up of any number of variables and is in no way limited to position and velocity

information. It can be used to estimate the past, present and future states of a dynamic system [42].

The following sections describe the various components of filtering along with the Kalman filter,

recursive Bayesian estimation and the particle filter.

1.5.1 State Space Approach

The state space approach to filtering estimates variables of interest along with their covari-

ances. For example, if one were tracking two-dimensional position and velocity, the state vector xt

gives the best estimate of position and velocity at time t and is written as shown in Equation 1.1

where xt and yt represent the objects position and ẋt and ẏt represent the objects velocity at time

t. Note that state variables are traditionally represented as a vector.

xt =



xt

ẋt

yt

ẏt


(1.1)

In the state space approach, the variables of interest are always assumed to lie on a distri-

bution, rather than at a specific value. This allows for the representation of uncertainty about their

values. This uncertainty is represented by covariance matrices which will be described later.

1.5.2 State Transition Equations

State transition equations describe the expected behavior of the system over a period of time

from t to t + 1. These equations must be first order Markovian, i.e. the set of next possible states

must be dependent only upon the current state. For example, Equation 1.2 gives the function f(·)

that governs state transitions for a two-dimensional constant velocity model where T is the sensing
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interval and w is a normally distributed random vector with zero mean and covariance matrix Q

shown in Equation 1.3 where σ2
x and σ2

y are the variances in x and y and σ2
xy is the cross correlation.

f(xt,wt) =



xt+1 = xt + T · ẋt

ẋt+1 = ẋt + wx,t

yt+1 = yt + T · ẏt

ẏt+1 = ẏt + wy,t


(1.2)

Q =



0 0 0 0

0 σ2
x 0 σ2

xy

0 0 0 0

0 σ2
xy 0 σ2

y


(1.3)

These equations can also be represented in matrix notation as shown in Equation 1.4 where

A is the state transition matrix shown in Equation 1.5 and wt is as shown in Equation 1.6.

f(xt,wt) =
[
xt+1 = Axt + wt

]
(1.4)

A =



1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1


(1.5)

wt =



0

wx,t

0

wy,t


(1.6)

Dynamic noise allows for changes to the dynamics of the system. In the case of a constant

velocity model, the dynamic noise acts upon the velocity creating non-zero acceleration.
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1.5.3 Observation Equations

The observation equations are used to describe the portion of the state that can be observed.

Let’s say that two-dimensional position is the only portion of the state that the system can observe,

then the observation equations would be described by the function g(·) shown in Equation 1.7 where

zt is the 2× 1 observation vector and νt is the 2× 1 observation noise vector.

g(xt,νt) =

 zx,t+1 = xt + νx,t

zy,t+1 = yt + νy,t

 (1.7)

These equations can also be represented in matrix notation as shown in Equation 1.8 where

H is the observation matrix shown in Equation 1.9 and νt is the vector shown by Equation 1.10.

g(xt,νt) =
[
zt+1 = Hxt + νt

]
(1.8)

H =

1 0 0 0

0 0 1 0

 (1.9)

νt =

νx,t
νy,t

 (1.10)

In this example, the observation noise corrupts the true position (xt, yt) additively. The

observation noise vector νt is a sample from a two-dimensional Gaussian random variable with

covariance matrix R as shown in Equation 1.11.

R =

 σ2
νx σ2

νxy

σ2
νxy σ2

νy

 (1.11)

1.5.4 Kalman Filter

Applying the Kalman filter [43] to a set of measurement data is an iterative process. An

iteration occurs for each piece of measurement data available and each iteration has five steps.

First, the Kalman gain matrix is calculated using Equation 1.12, where P−t is the predicted state

covariance matrix from the previous iteration, H is the observation matrix and R is the observation
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noise covariance matrix.

Kt = P−t H
T (HP−t H

T +R)−1 (1.12)

Next, the outputs are calculated as part of the update phase. The outputs include the

current state at time t, x̂t, and the predictor covariance, Pt. Equation 1.13 shows the update

equation for the current state, where zt is the newest measurement and x̂−t is the predicted state

from the previous iteration.

x̂t = x̂−t +Kt(zt −Htx̂−t ) (1.13)

The state update equation gives an idea of how the Kalman filter behaves in practice.

(zt −Htx̂−t ) is the measurement innovation or the residual. This gives the difference between the

estimated measurement and the actual measurement. Therefore, the Kalman gain Kt weights the

residual. As the measurement error covariance R goes to zero, Kt goes towards H−1 and the filter

trusts the measurement more. On the other hand, as the a priori predictor covariance P−t goes to

zero, Kt also goes to zero and the filter trusts the state estimate more [44]. The predictor covariance

is updated using Equation 1.14, where I is the identity matrix.

Pt = (I −KtH)P−t (1.14)

Finally, the predictions for the next measurement are calculated. These matrices will be

used to calculate the gain, state and predictor covariances in the next iteration. The next predicted

state, x̂−t , is calculated using Equation 1.15, where A is the state transition matrix based on the

state transition equations f(·) of the dynamic model.

x̂−t = Ax̂t−1 (1.15)

The next predictor covariance is calculated using Equation 1.16, where Q is the dynamic

noise matrix.

P−t = APt−1A
T +Q (1.16)
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These equations comprise one iteration through the Kalman filtering process. After these

calculations, all of the time variables are incremented by one and the process is repeated.

The Kalman filter calculates the optimal state only when the state transition and observation

equations are linear and the dynamic and measurement noise is normally distributed. The extended

Kalman filter (EKF) allows for non-linear state transition and observation by linearizing the problem

using Jacobian matrices [42]. The Jacobians are calculated at each time step.

The unscented transform [45] is an improvement on the EKF that calculates sigma points

from the state and covariance matrices, transforming them through the state transition equations

and then rebuilding the state and covariance matrices.

The Kalman filter is only intended for linear systems. The EKF and unscented transform

work on non-linear systems. However, all three assume Gaussian state and observation distributions.

These methods all break down if the distributions are not Gaussian or if they are intractable. In

these cases, a more general theory that applies to generic distributions is necessary.

1.5.5 Recursive Bayesian Estimation

Recursive Bayesian estimation can be written using Bayes rule as shown in Equation 1.17.

p(x0:t|z0:t) =
p(xt|xt−1)p(zt|xt)

p(zt|z0:t−1)
p(x0:t−1|z0:t−1) (1.17)

This equation is applicable for any distribution but is easily handled for the case of Gaussian

distributions due to the multiplications of exponentials. It is also worth noting that recursive

Bayesian estimation defaults to the Kalman filter for Gaussian distributions.

1.5.6 Particle Filter

The particle filter [46] is a Monte Carlo approximation to Equation 1.17. Approximation

is necessary because often the distributions are intractable or difficult to deal with analytically.

Therefore, the distributions are instead modeled using a set of weighted states referred to as particles.

The weight of each particle describes the accuracy of the “guess.”
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1.5.7 Basic Particle Filter Algorithm

The basic particle filter (BPF) approximates complex distributions using a set of particles.

A set of particles is a collection of M state space variables with a weight assigned to each. A

distribution is approximated by a set of particles χ, shown in Equation 1.18, where M is the number

of particles, xmt is the state of particle m and wmt is the weight assigned to particle m, both at time

t.

χ = {xmt , wmt }Mm=1 (1.18)

The particle states are updated according to the state transition equation f as shown in

Equation 1.2. Sequential importance sampling is used with the prior importance function [46] which

gives the weight update function shown in Equation 1.19 where wmt−1 is the weight of particle m at

time t − 1 and p(zt|xmt ) is the probability of the measurement zt given the state of particle m, all

at time t.

wmt = wmt−1 · p(zt|xmt ) (1.19)

A two-dimensional normal distribution with mean at xt and covariance matrix, Σn, is used

as the measurement noise model and is calculated as shown in Equation 1.20.

p(zt|xmt ) =
1

2π
√
|Σn|

e
− 1

2 (zt−µxm
t

)TΣ−1
n (zt−µxm

t
) (1.20)

Next, the particle weights are normalized and the expected value is computed using Equa-

tions 1.21 and 1.22 respectively. Finally, the coefficient of variation (CV) and effective sample size

(ESS) are computed [47] and resampling is performed if necessary. The sampling method that has

been chosen is referred to as “select with replacement” by Rekleitis in [48].

wmt =
wmt∑M
m̂=1 w

m̂
t

(1.21)

E(xt) =
M∑
m=1

wmt · xmt (1.22)

The CV and ESS are calculated according to Equations 1.23 and 1.24. Throughout this
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work, resampling is performed when the ESS is determined to be less than 0.5×M , i.e. half of the

particles’ weights have gone to zero.

ESS =
M

1 + CV
(1.23)

CV =
1
M

M∑
m=1

(M · wmt − 1)2 (1.24)

The particle filter is applicable to problems with linear or non-linear state and observation

equations, as well as any dynamic and observation noise distributions.

1.5.8 Particle Filter Example

This section describes a simulated system where the one-dimensional position of a magnet

is to be estimated from a noisy magnetic field strength sensor.

1.5.8.1 Simulated System

The simulated system consists of two magnets of equal strength, a field strength sensor and

a clothesline. The sensor is attached to the clothesline and can be moved in the x direction from

−xmax to xmax. The magnets, m1 and m2, are fixed at xm1 and xm2 respectively. The layout of

each of the elements of the system is shown in Figure 1.2.

-xmax xmax
m1 m2

sensor

Figure 1.2: Diagram of the simulated system.

The sensor moves along the clothesline over time according to the dynamic model shown

in Equations 1.25 and 1.26 where xt is the position of the sensor, ẋt is the sensor velocity, T is the

time between measurements, U(−ẋmax, ẋmax) is a uniformly distributed random variable between

−ẋmax and ẋmax, tl is the low threshold and th is the high threshold. The low threshold is used to

slow the sensor down as it approaches |xmax| and the high threshold reverses the direction of the
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velocity when the sensor is very close to |xmax|.

xt = xt−1 + ẋtT (1.25)

ẋt+1 =


ẋt + U(−ẋmax, ẋmax) |xt| < tl

0.9 · ẋt tl ≤ |xt| < th

−ẋt |xt| ≥ th

(1.26)

The output of the simulated system is a set of sensor location values, xt, for t = 0 : 199. A

plot of these values can be seen in Figure 1.3. In this plot, x0 = 0, ẋ0 = 0 and xmax = 200. The

time between measurements, T , is considered to be 1 s. The maximum velocity allowed, ẋmax, is set

to 5 and tl and th are 0.5 · xmax = 100 and 0.9 · xmax = 180 respectively. The magnets are located

at xm1 = −100 and xm2 = 100.

0 50 100 150 200
−200

−100

0

100

200

Time

X

 

 

Sensor Position

Magnet 1

Magnet 2

Figure 1.3: Plot of the sensor location over time.

1.5.8.2 Simulated Sensor

A simulated sensor was developed to take measurements of the field strength present at

the current location of the sensor. The field strength is determined by summing the values of two

different Gaussian probability density functions (PDFs) each associated with a particular magnet.

Equation 1.27 shows the PDFs used to calculate the field strength where xmi is the location of the
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Figure 1.4: Plot of the measurements returned by the field strength sensor based on the sensor
trajectory shown in Figure 1.3 without measurement noise.

magnet and σm is the standard deviation.

f(xt|µi, σm) =
1√

2πσ2
m

e
−(xt−xmi )

2

2σ2
m , i = 1, 2 (1.27)

Using Equation 1.27, each sensor measurement, yt, is calculated according to Equation 1.28,

where N(0, σs) is a zero-mean Gaussian distributed random variable with standard deviation σs.

The multiplier of 5000 is used to increase the size of the measurements to avoid values that are

too close to zero and the random variable is added to simulate measurement noise generated by the

sensor.

yt = 5000 · [f(xt|µ1, σm) + f(xt|µ2, σm)] +N(0, σs) (1.28)

Figure 1.4 shows the measurements generated by the simulated sensor for the sensor path

shown in Figure 1.3 without measurement noise. This plot shows eight obvious peaks that correspond

with the eight times that the sensor passed over or approached a magnet in Figure 1.3. Also, the

extreme minimums of Figure 1.4 can be seen to correspond to the points in time where the sensor

passed well beyond m2 in Figure 1.3.

In Figure 1.5, the same measurements are plotted, but this time with measurement noise

added to the sensor. The measurement noise effects the sensor as described in Section 1.5.8.2. The
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Figure 1.5: Plot of the measurements returned by the field strength sensor based on the sensor
trajectory shown in Figure 1.3 with measurement noise.

noise added is Gaussian distributed with a mean of 0 and a standard deviation, σs, of 0.75. It can

be seen from Figure 1.5 that the addition of noise affects the field strength peaks. The particle filter

can be used to mitigate the effect of the measurement noise, balanced against the expected range of

dynamic noise.

1.5.9 Particle Filter Results

The particle filter is used to filter the output of the simulated field strength sensor described

in Section 1.5.8.2 with the goal of being able to track the location of the sensor based on the dynamic

model and the field strength measurement provided by the sensor. M = 1000 particles are initialized

with a state of xm0 = 0 ∀ m and a weight of wm0 = 1
1000 ∀ m. Resampling using the select with

replacement algorithm is performed when the ESS drops below 0.9 ·M = 900. Figure 1.6 shows

a plot of the true sensor position along with the filtered position output of the particle filter. It is

important to note that this is the output of a single run. Additional runs would produce different

outputs due to the random nature of the particle filter. The filtered position closely tracks the true

position throughout much of the plot. However, in a number of locations the filtered position is

a mirror image of the true position. This is due to the ambiguity in the system. It is difficult to

determine based only on the dynamic model and measurements which magnet the sensor is located

near due to the symmetry of the problem.
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Figure 1.6: Plot of the true sensor location along with the filtered location estimate.

21



Chapter 2

Environment Noise

UWB indoor positioning works by measuring range and/or angle estimates from a set of

fixed points to a moving terminal (MT) [49]. The set of measurements is then used to calculate

position through multilateration or multiangulation [50]. Error sources for a single UWB range

measurement include multipath, NLOS, clock drift and interference [51]. Range estimates can be

improved by several techniques, for example, through averaging multiple measurements [38], im-

proved peak detection [52], and signal pulsing [29]. Instead of solving for a unique range estimate,

the RSS profile can be tracked over time to detect LOS to NLOS transitions [40, 53]. Statistics

concerning the error sources, such as NLOS bias, can be included in the state matrix for each range

estimate used in positioning [36, 54, 55]. A similar approach has been shown to help reduce the effect

of multipath in GPS tracking [56]. Errors in timing synchronization can be refined simultaneously

with position estimation [57]. Multipath interference, sampling rate limitations, tag synchronization

and antenna phase-center variation are addressed in [21]; further work in [22] combined carrier-based

and energy detection-based UWB signals.

Figure 2.1 show three diagrams that describe what the author means by the term mea-

surement noise. In Figure 2.1a, the actual motion or ground truth information for a path traversed

through this hypothetical facility is indicated by the thick line. Figure 2.1b shows the same hypothet-

ical facility with a flow field plotted in each room. The flow field describes how a raw measurement

is corrupted by noise sources in the measurement system and the actual environment. A raw mea-

surement is a measurement that comes directly from the UWB positioning system without any type

of filtering applied. Measurements in the room on the top left are pushed predominantly up and
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(a) Actual motion (b) Environment noise (c) Raw measurements

Figure 2.1: Graphical depiction of environment noise. Thicker lines represent the actual motion
(left) and raw measurements (right).

to the right. Measurements in the bottom room are pushed predominantly down and to the right

or left depending on the area of the room. Measurements in the room on the top right are pushed

predominantly down and to the right. The particular flow field can be caused by NLOS conditions,

multipath, sensor geometry and/or sensor orientation. Environment noise is different from the noise

that corrupts individual range measurements although noise on range measurements contributes to

environment noise. Environment noise aggregates all of the sources of error together after position

estimation is performed from a set of range measurements. Up until now, it has been unknown what

this type of noise looks like throughout a real world installation of a UWB positioning system. The

noise could be single or multi-modal, Gaussian or Rayleigh. It may change frequently over time or

it may be stable. It may vary wildly with small changes in position or be locally similar.

While all of the methods just discussed can improve UWB tracking accuracy, it is reasonable

to assume that some amount of error will still occur, especially in challenging indoor environments

where multipath and NLOS are the rule rather than the exception [58]. This work investigates the

possibility of systematically observing the measurement noise and building a map of it throughout the

area of interest. In order to understand the effect of environment noise on UWB indoor positioning

and in turn filter out the effects of this noise, it is important to have an idea of what this measurement

noise looks like in a real world scenario. In this work, an understanding of the measurement noise

is gained by taking many measurements using a commercially-available UWB positioning system

installed in a real world scenario and analyzing these measurements in various ways. To the author’s

knowledge, no one has used such an exhaustive approach to analyze measurement noise in UWB

indoor positioning. Overall, it is desired to determine the degree and quality of measurement noise

in a typical room-to-building sized environment; if the noise is stable over time; and if the noise is
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locally similar.

2.1 Test Facilities

This work consists of measurements made throughout two different test facilities. The

Shoothouse test facility, referred to as the Shoothouse facility, was closed part way through this

work. The UWB tracking system portion of the facility was then relocated. The second location is

referred to as the Riggs facility. The following sections describe each of these facilities.

2.1.1 Shoothouse Facility

The Shoothouse facility is an approximately 13 × 10 m indoor facility that was built as part

of the Military Operations in Urban Terrain (MOUT) project at Clemson University [59, 60]. It

consists of a painted concrete slab floor, a number of polyvinyl chloride (PVC) walls, and an exposed

steel roof. Ten UWB receivers are distributed throughout the test area. A two-dimensional floor

plan of the area is shown in Figure 2.2. Figures 2.3 and 2.4 are photos of the Shoothouse facility.

The facility is configured into six different test rooms and two hallways as labeled on Figure 2.2.

Table 2.1 gives the dimensions and area of each room, hallway and the full facility.

Table 2.1: Dimensions and areas of the Shoothouse facility.

Room X (m) Y (m) Area (m2)
1 3.67 3.58 13.14
2 3.73 3.58 13.35
3 3.68 3.58 13.17
4 3.24 3.62 11.73
5 3.32 3.54 11.75
6 3.28 3.54 11.61

Hallway 1 7.27 1.17 8.51
Hallway 2 1.17 9.72 11.37

All 12.49 9.72 121.90

2.1.2 Riggs Facility

The second test facility, used for a majority of this work, encompasses part of a hallway and

an open lab space. The installation was designed so that the measurement noise would be similar to
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Figure 2.2: Floorplan of the Shoothouse test facility. Solid lines indicate walls. Circles indicate
metal poles.

Figure 2.3: Overhead photo of Shoothouse facility.
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Figure 2.4: Photo of the Shoothouse facility’s main hallway.
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Figure 2.5: Floor plan of the Riggs facility. Walls are indicated by the solid lines and large objects
by the dashed lines.

that of a standard office environment. It is an approximately 8 × 10 m area of Clemson University’s

Riggs Hall. This facility will be referred to as the Riggs facility. Eight UWB receivers are distributed

throughout the test area. A two-dimensional floor plan of the area is shown in Figure 2.5. It can be

seen from this figure that a block wall runs through the area dividing the lab (upper section) from

the hallway (lower section). Also, there are a number of obstructions indicated by dashed lines.

These obstructions include: wooden and metal cabinets, metal mailboxes and a vending machine.

Figure 2.6 is a photo of the Riggs facility. The floor in the lab is carpet over concrete and the floor

in the hallway is linoleum tile over concrete. The sensors are all installed above a dropped ceiling

with standard mineral fiber tiles. Therefore, this installation is entirely non-line-of-sight (NLOS)

but the dropped ceiling will affect each sensor equally. Table 2.2 gives the dimensions and area of

each room, hallway and the full facility.
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Figure 2.6: Photo of the Riggs facility.

Table 2.2: Dimensions and areas of the Riggs facility.

Room X (m) Y (m) Area (m2)
Lab 7.90 6.51 51.43

Hallway 8.18 3.06 25.03
All 8.04 9.71 78.07
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Figure 2.7: Floorplan of the Shoothouse test facility. Filled squares indicate sensor locations. Solid
lines indicate walls. Circles indicate metal poles.

2.2 Ubisense System

Ubisense, Inc. is a U.K.-based company that produces UWB positioning systems marketed

towards indoor asset and people tracking applications. They have 400 customers worldwide, many

of which are researchers, as of 2010 [61]. Their UWB real-time location system is used to gener-

ate data for this work, although our methods could be applied to any geolocation system. Mobile

Ubisense tags transmit UWB pulses which are detected by the fixed sensors. Range estimates to

the tags are determined using angle of arrival (AOA) and time-difference of arrival (TDOA) tech-

niques which allows the system to calculate position estimates with as few as two sensors reporting

measurements [62, 63].

The sensor locations are fixed at known locations. These locations are based on relative

coordinate systems defined within the test facilities. Figures 2.7 and 2.8 show floorplans of the two

test facilities along with squares indicating Ubisense sensor locations. The relative location of each

sensor was determined using tape measures, laser squares and laser distance measurement tools.

These ground truth sensor locations are used by the Ubisense system to calculate tag location.
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Figure 2.8: Floor plan of the Riggs facility. The sensor locations are indicated by the filled squares.
Walls are indicated by the solid lines and large objects by the dashed lines.

Ubisense Series 7000 IP sensors were installed in each facility using C-clamps and cable

ties. Figure 2.9 shows the installation of a sensor in the Shoothouse facility. Figure 2.10 shows the

installation of a sensor in the Riggs facility. It is worth noting again that the sensors are installed

above a dropped ceiling that contains wiring and other building infrastructure components. Ubisense

UWB transmitter tags are the mobile portion of the system. Figure 2.11 is a photo of a Ubisense

Series 7000 compact tag. This tag model was used throughout this work.

An example of a four-sensor Ubisense system installation is shown in Figure 2.12. The

Ubisense UWB transmitter tag is shown as the circle labeled “Tx”. The sensors are the squares

labeled as “Rx”. Measurement and configuration information is communicated via the Ethernet

network which consists of a gigabit switch (labeled as “Switch”) and category 5 cabling. Sensors

maintain accurate timing information through the use of the separate timing network. The timing

network maintains high accuracy through the use of category 6 cabling and the timing calibration

process which determines propagation delay between sensors. The Ubisense Location Engine soft-

ware is executed and data is stored for offline analysis on the personal computer (labeled as “PC”).
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Figure 2.9: Photo of a sensor installed in the Shoothouse facility.

Figure 2.10: Photo of a sensor installed in the Riggs facility.
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Figure 2.11: Photo of a Ubisense UWB transmitter tag.

Further information regarding the Ubisense system and its installation and calibration process can

be found in [17, 63].

2.3 Measurement Collection

To gain knowledge of the overall measurement noise affecting these installations, measure-

ments were taken at ground truth locations in a dense grid throughout each test facility. The ground

truth positions were determined relative to the coordinate system and in the same manner as dis-

cussed for the sensors in Section 2.2. A stand, shown in Figure 2.13, was built to accurately place

the tags at known locations. It was placed on the coordinate system defined on the floors of the test

facilities to ensure accurate ground truth. Based on the methods used to determine these ground

truth locations, the coordinate systems are believed to be accurate to within 1 cm. Figures 2.14 and

2.15 show the ground truth locations where measurements were taken with unfilled squares. In the

Shoothouse facility, measurements were taken at 7,931 locations. In the basement facility, measure-

ments were taken at 3,272 locations. A space of 10 cm separates each collection location and 500

measurements were collected at each location. This results in over 5.6 million total measurements

being taken. A number of gaps can be seen in the measurement locations shown in Figure 2.15.
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Figure 2.12: Example four-sensor installation of the Ubisense system.

These are locations where the tracking system does not regularly report measurements due to the

installation.

2.4 Observed Measurement Noise

Figure 2.16 shows an example set of 500 measurements collected at (480, 540) cm within

the Riggs facility. It is worth noting that this measurement data forms a distinct cluster and is

largely shifted down and to the left from the ground truth location indicated by the large cross

symbol. Figure 2.17 shows another set of 500 measurements collected at (620, 430) cm within the

test facility. This measurement data is different from that of Figure 2.16 because it clearly forms

multiple clusters. Figures 2.16 and 2.17 are representative of the types of noise seen throughout the

test facilities.

In our 5 million observations, the majority of locations showed measurement noise similar

in quality to that shown in Figures 2.16 and 2.17, with a number of distinct clusters varying from 1

to as many as 6.
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Figure 2.13: Stand with tags positioned in the corridor during collection of model data.
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Figure 2.14: Floor plan of the Shoothouse test facility. Filled squares indicate sensor locations.
Unfilled squares indicate locations surveyed. Solid lines indicate walls.
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Figure 2.15: Floor plan of the test area. The sensor locations are indicated by the filled squares.
The locations surveyed to generate the measurement noise model are the smaller, unfilled squares.
Walls are indicated by the solid lines and large objects by the dashed lines.
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Figure 2.16: Measurements taken at location (480, 540) cm.
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Figure 2.17: Measurements taken at location (620, 430) cm.

2.5 Measurement Model

The measurement model assumes that all measurements generated by the UWB positioning

system are corrupted by some type of measurement noise. It is assumed that this measurement noise

is sampled from a 2× 1 random vector ν, given by Equation 2.1.

ν =

 νx

νy

 (2.1)

This assumption leads to the set of measurement equations shown in Equation 2.2 where xt

and yt are the location components of the current state xt, described in Section 3.2.

zt = g(xt,νt) =

 zx,t = xt + νx,t

zy,t = yt + νy,t

 (2.2)

2.6 Measurement Noise Model

Based on 5.6 million observations, it was determined that a multi-modal Gaussian distri-

bution could sufficiently model the observed measurement noise. Therefore, a weighted mixture
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of Gaussians is adopted for the measurement noise model similar to that described in [64]. The

measurement noise ν is assumed to be a bivariate, multi-modal Gaussian random variable (RV).

The probability density function (PDF) of this type of RV is made up of weighted PDFs of multiple

uni-modal, bivariate Gaussian RVs and described by Equation 2.3. This PDF is often referred to

as a mixture of Gaussians and has been previously used to model measurement noise for frequency

demodulation as well as joint channel estimation and symbol detection [65]. This equation has five

parameters for each mode: the means, µx,i and µy,i, the standard deviations, σx,i and σy,i, and the

correlation coefficient, ρx,y,i.

pi(zx, zy|x, y) =
1

2πσx,iσy,i
√

1− ρ2
x,y,i

exp

(
−1

2(1− ρ2
x,y,i)[

(zx − µx,i)2

σ2
x,i

+
(zy − µy,i)2

σ2
y,i

−2ρx,y,i(zx − µx,i)(zy − µy,i)
σx,iσy,i

])
(2.3)

By defining a 2 × 1 measurement vector z as shown in Equation 2.4, Equation 2.3 can be

written in matrix notation as shown in Equation 2.5 where µx,i is the 2× 1 mean vector and Σx,i is

the 2× 2 covariance matrix shown in Equation 2.6. Note that the symbol | · | represents the matrix

determinant.

z =

zx
zy

 (2.4)

pi(z|x) =
1

2π
√
|Σx,i|

e−
1
2 (z−µx,i)

TΣ−1
x,i

(z−µx,i) (2.5)

Σx,i =

 σ2
x,i ρx,iσx,iσy,i

ρx,iσx,iσy,i σ2
y,i

 (2.6)

Using Equation 2.3, the PDF of ν can be defined as shown in Equation 2.7 where Ix,y is the

number of modes and ωx,y,i is the weight value associated with the ith mode. The ωx,y,i values must

sum to one for pν(zx, zy|x, y) to be a valid PDF. Figure 2.18 shows an example of a two-dimensional,
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Figure 2.18: Contour plot of a two-dimensional, tri-modal Gaussian PDF with µx,i = µy,i = {2, 5, 8},
σx,i = σy,i = 0.5 and ρx,y,i = 0 for i = 1, 2, 3.

tri-modal Gaussian PDF with means µx,i = µy,i = {2, 5, 8}, σx,i = σy,i = 0.5 and ρx,y,i = 0 for

i = 1, 2, 3. The contour lines are at one, two and three standard deviations from the mean.

pν(zx, zy|x, y) =
Ix,y∑
i=1

ωx,y,i · pi(zx, zy|x, y) (2.7)

Equation 2.7 can be written in matrix notation as shown in Equation 2.8 where ωx,i is the

weight and Ix is the number of modes.

pν(z|x) =
Ix∑
i=1

ωx,i · pi(z|x) (2.8)

2.7 Generating The Measurement Noise Map

It is assumed that there exists a PDF, pν(z|x), described by Equation 2.8, for each possible

location within the trackable area of the test facility. Since it would be impossible to collect the

infinite number of measurements that this model requires, measurements have been collected at

discrete locations as described in Section 2.3. Local similarity of the measurement noise is assumed

between discrete locations. The model parameters that are calculated for each location make up the
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Figure 2.19: Measurements from (480, 540) cm clustered using DBSCAN with ε = 30 and k = 10.
Cluster mean indicated by the gray circle.

measurement noise map.

Equation 2.8 requires that four parameters be calculated from the collected measurements:

Ix, µx,i, Σx,i and ωx,i. The first, Ix, is the number of clusters present in the data at the location

given by x. It is determined using the density-based spatial clustering for applications with noise

(DBSCAN) algorithm developed by Ester, et al. in [66]. This algorithm was selected because it

does not require the number of clusters to be specified a priori as is the case for other common data

clustering algorithms, such as K-means. DBSCAN requires two parameters: ε, the neighborhood

size and k, the minimum number of points necessary to be considered a cluster. Clustered versions

of the example set of measurements shown in Figures 2.16 and 2.17 are shown in Figures 2.19 and

2.20 respectively. It can be seen that a single cluster, whose mean is indicated by the gray circle is

found in Figure 2.19. However, three cluster means are shown in Figure 2.20.

The cluster mean vector, µx,i is calculated for each cluster i = 1, 2, . . . , Ix found by DBSCAN

using Equation 2.9 where x and y are the location components of the state space variable x, zni is

the nth 2× 1 measurement vector assigned to cluster i from the measurements taken at location (x,

y) cm. Nx,i denotes the number of measurements collected at location (x, y) cm that are assigned
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Figure 2.20: Measurements from (620, 430) cm clustered using DBSCAN with ε = 30 and k = 10.
Cluster means indicated by the gray circles.

to cluster i.

µx,i =

µx,i
µy,i

 =
1

Nx,i

Nx,i∑
n=1

zni

−
x
y

 (2.9)

Σx,i is the 2 × 2 unbiased covariance matrix for cluster i at the location given by x and is

calculated as shown in Equation 2.10.

Σx,i =
1

Nx,i − 1

Nx,i∑
n=1

(zni − µx,i)(z
n
i − µx,i)

T (2.10)

The final parameter, ωx,i, is a weight value associated with cluster i at the location given

by x. It is calculated by dividing the number of measurements assigned to the cluster by the total

number of measurements taken at that location, N , which is 500 throughout this work. Equation 2.11

shows this calculation.

ωx,i =
Nx,i

N
(2.11)

These four parameters are used in conjunction with Equation 2.8 to determine the prob-
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Figure 2.21: Model generated from example measurements collected at (480, 540) cm. The ellipses
show one, two and three standard deviations from the mean for each cluster.

ability that a measurement was generated by a tag at a specific location. Contour plots of the

measurement noise model generated for the example set of measurements shown previously in Fig-

ures 2.19 and 2.20 are shown in Figures 2.21 and 2.22 respectively. The contour lines are at one,

two and three standard deviations from the mean.

2.8 Measurement Noise Map

Figures 2.23 and 2.24 show maps of the number of clusters determined by the DBSCAN

algorithm at all measurement locations within each test facility. It can be seen from these figures

that the measurement noise typically contains only one cluster but that multiple clusters occur near

walls and the boundaries of the trackable area. More specifically, 83% of the locations surveyed

in the Shoothouse facility and 68% of the locations surveyed in the basement facility have a single

cluster. It is believed that the difference in the percentage of uni-modal locations is due to the

large number of locations within the Riggs facility that exhibit high measurement noise. These

locations are primarily located within the hallway. The poor measurement quality is likely caused

by the NLOS conditions created by the block wall that separates locations in the hallway from the
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Figure 2.22: Model generated from example measurements collected at (620, 430) cm. The ellipses
show one, two and three standard deviations from the mean for each cluster.

bulk of the sensors. This type of measurement noise behavior is taken into account by the use of a

multi-modal Gaussian model.

Figures 2.25 and 2.26 show the average error vector for every fourth collection location in

each facility. It can be seen that measurements taken at different areas within each facility are

biased away from the ground truth location in different directions and with different magnitudes.

The proposed map–based measurement noise model accounts for this location-dependent bias.

2.9 Stability Over Time

The validity of the measurement noise model developed in this work depends on the as-

sumption that the measurement noise remains relatively constant over time. If the noise changes

significantly from hour to hour or day to day, the model calculated from measurements collected at

a specific time will no longer be valid at a later date. To test for stability over time, measurements

were taken in a subset of the trackable area of the basement facility over two months to compare the

measurement noise models over time. Measurements were collected in 10 cm intervals as described

in Section 2.3 in the range of (310 - 470, 540 - 630) cm on three consecutive days and then again
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Figure 2.23: Contour plot of the number of clusters determined by the DBSCAN algorithm at each
measurement location within the Shoothouse facility, ε = 30 cm and k = 10. The large gray area
indicates one cluster.

Figure 2.24: Contour plot of the number of clusters determined by the DBSCAN algorithm at each
measurement location within the test facility, ε = 30 cm and k = 10. The large gray area indicates
one cluster.
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Figure 2.25: Plot of error vectors in the Shoothouse facility.

Figure 2.26: Plot of error vectors in the Riggs facility.
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Figure 2.27: Plot of subset of locations collected over two months to test for stability over time.

two months later. Figure 2.27 is a plot of the locations that were surveyed.

Figure 2.28 is a plot of the model generated for measurements collected at (470, 590) cm on

these four days. It can be seen from this figure that all cluster means (+, *, x and diamond symbols)

are south and west of the ground truth location, denoted by the large cross symbol in the upper

right. The ellipses shown are each three standard deviations from the respective mean according to

the sample covariance matrices and can be seen to significantly overlap one another. Figure 2.28

is representative of the type of change in model that is seen across the area surveyed. One way of

quantifying the change in cluster mean over time is to consider the average. The average change in

cluster mean over time is 3.7 cm with a standard deviation of 3.1 cm. This is small compared to the

average error, which is approximately 20 cm.

2.10 Local Similarity

Local similarity refers to the differences in measurement noise from one position to another

within a small area. It is assumed that the measurement noise does not change significantly from
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Figure 2.28: Zoomed in plot of model data collected on three consecutive days and then again two
months later. The cluster means are indicated by the +, *, x and diamond symbols.

one measurement location to the next, i.e. within 10 cm. Therefore, the model for the measurement

location closest to the state is used as the model for that state because it is not possible to have

model data for all states. To test this assumption, measurements were taken at 1 cm intervals in a

subset of the trackable area and now compare them to determine the validity of the local similarity

assumption. Figure 2.29 is a plot of four sets of model data. The model indicated by the small

cross symbol is the one measured at the given location. The model indicated by the asterisk is the

model from the nearest measurement location on the measurement noise map. It can be seen that

the means from all four locations are close to each other and that there is significant overlap of the

ellipses. While this is a limited test, it does provide some confidence in the assumption of local

similarity.

2.11 Environment Noise Conclusions

Based on the results of the previous sections, it can be concluded that the environment noise

present in a UWB local positioning system shows evidence of stability over time and local similarity.
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Figure 2.29: Zoomed in plot of the measured model (small cross) and adjusted model (asterisk) at
(381, 610), (399, 610), (390, 609), (390, 611) cm in the top left, top right, bottom left and bottom
right respectively.
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Furthermore, the noise is shown to be single or multi-modal with a single mode being present in

approximately 70% of the locations surveyed within two facilities. It has also been shown that

the environment noise can be modeled using a weighted sum of two-dimensional Gaussian random

variables. The presence of multi-modal environment noise is an unexpected result. Because the

noise has been found to be non-Gaussian, the Kalman filter and extended Kalman filters are no

longer optimal because they work on the assumption that measurement and process noise are both

Gaussian. Therefore, the particle filter is an ideally-suited method for filtering measurements from

this type of system.
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Chapter 3

Augmented Particle Filter

The previous chapter describes two measurement campaigns undertaken to analyze environ-

ment noise throughout a test facility. As part of this analysis, a map of facility-wide measurement

noise was created. In this chapter, a particle filter augmented with this measurement noise map is

proposed to improve position tracking accuracy. The particle filter is a technique for implementing

recursive Bayesian estimation through Monte Carlo approximation [67, 68]. It has become a popu-

lar alternative to the Kalman and extended Kalman filters for applications with non-Gaussian noise

[46] and is ideally suited to filter the multi-modal measurement noise observed during the analysis

described in the previous chapter.

3.1 Related Work

Improved tracking accuracy through map augmentation has been studied in a number of

previous works. In [69], two map augmented particle filters are proposed. The first uses street maps

to improve vehicle positioning accuracy with wheel speed sensor measurements. The second uses

digital terrain elevation maps to improve aircraft positioning accuracy with an inertial navigation

system. Similarly, Karlsson and Gustafsson augmented a particle filter with a map of distance

measurements to determine the location of surface and underwater marine vessels [70]. This method

is proposed as an alternative to GPS navigation. In [71], Davidson, et al. augmented a particle

filter with building floor plan data to improve the accuracy of indoor pedestrian navigation using

gyroscopes and accelerometers.
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Maps of measurements have also been used in location fingerprinting methods. For example,

in UWB indoor positioning, a map of pre-observed received signal strength (RSS) values has been

used to match against current measurements to estimate position [35]. A similar technique is shown

in [72] that estimates position based on features of wideband channel impulse responses in a mine.

These methods use pattern matching to determine position. In this chapter, the idea of using a

particle filter framework that incorporates a map of pre-observed measurement noise is introduced.

This allows the filter to adapt to local variations in measurement noise.

3.2 Dynamic Model

For tracking purposes, a two-dimensional constant velocity dynamic model is used. Equa-

tion 3.1 shows the state space variable xt for this type of model. It has four components: the

two-dimensional position at time t, xt and yt, and the two-dimensional velocity at time t, ẋt and ẏt.

xt =



xt

ẋt

yt

ẏt


(3.1)

Equation 3.2 gives the function f that governs state transitions for this model where δt is the

sensing interval and σd is the standard deviation of the zero mean, normally distributed dynamic

noise. Throughout this work, the sensing interval is assumed to be 1. From f , the state space

equations for this model can be written as shown in Equation 3.3.

f =



xt = xt−1 + δt · ẋt−1

ẋt = ẋt−1 +N (0, σd)

yt = yt−1 + δt · ẏt−1

ẏt = ẏt−1 +N (0, σd)


(3.2)

xt = f(xt−1, σd) (3.3)
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3.3 Measurement Noise Map Augmented Particle Filter

This work proposes the use of a measurement noise map, described in Section 2.7, within the

weight update phase of the BPF. This will be referred to as the measurement noise map augmented

particle filter (MNMAPF). The use of weighted sums of Gaussians to approximate multi-modal noise

distributions in a particle filter was previously considered in [65], where examples were shown for both

dynamic and measurement noise. Our filter is similar to this approach in that it uses weighted sums

of Gaussians to approximate multi-modal measurement noise distributions. However, our approach

uses a facility-wide map to account for location-dependent differences in measurement noise. It is

important to note that our map-based method can be used with measurement noise models other

than sums of Gaussians. Furthermore, our method could be applied to problems other than UWB

position tracking. The key is to capture location-dependent differences in measurement noise in the

map prior to filtering and then apply it as shown here.

Similar to the BPF described in Section 1.5.7, the MNMAPF approximates complex distri-

butions using a set of particles. A set of particles is a collection of M state space variables with

a weight assigned to each [67]. A distribution is approximated by a set of particles χ, shown in

Equation 3.4, where M is the number of particles, xmt is the state of particle m and wmt is the

weight assigned to particle m, both at time t.

χ = {xmt , wmt }Mm=1 (3.4)

The particle states are updated according to the state transition equations f as shown in

Equation 3.2. This is a two-dimensional, constant velocity dynamic model. The prior importance

function is chosen to simplify the sequential importance sampling weight update equation to that

shown in Equation 3.5 where wmt−1 is the weight of particle m at time t − 1 and p(zt|xmt ) is the

probability of the measurement zt given the state of particle m, all at time t.

wmt = wmt−1 · p(zt|xmt ) (3.5)

The measurement noise model used in the weight update step of the MNMAPF is selected

from the measurement noise map based on the location components of the mth particle’s state.

More simply stated, the model parameters for the map position nearest the particle location are
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used in the weight update step. Equations 3.6 and 3.7 show analytically how p(zt|xmt ) is generated

using our map-based measurement noise model where pi(zt|xmt ) is the unimodal Gaussian PDF for

each cluster at the map location nearest xmt .

p(zt|xmt ) = pν(zt|xmt ) =
Ix∑
i=1

ωxmt ,i
· pi(zt|xmt ) (3.6)

pi(zt|xmt ) =
1

2π
√
|Σxmt ,i

|
e
− 1

2 (zt−µxm
t
,i)
TΣ−1

xm
t
,i

(zt−µxm
t
,i) (3.7)

Next, the particle weights are normalized and the expected value is computed using Equa-

tions 3.8 and 3.9 respectively. Finally, the coefficient of variation (CV) and effective sample size

(ESS) are computed [47] and resampling is performed if necessary. The sampling method that we

have chosen is referred to as “select with replacement” by Rekleitis in [48].

wmt =
wmt∑M
m̂=1 w

m̂
t

(3.8)

E(xt) =
M∑
m=1

wmt · xmt (3.9)

The CV and ESS are calculated according to Equations 3.10 and 3.11. Throughout this

work, resampling is performed when the ESS is determined to be less than 0.5×M , i.e. half of the

particle weights have gone to zero.

ESS =
M

1 + CV
(3.10)

CV =
1
M

M∑
m=1

(M · wmt − 1)2 (3.11)

The MNMAPF was implemented in both the MATLAB and C languages. In MATLAB,

the measurement noise model data is stored in a number of matrices including a two-dimensional

matrix indicating the number of clusters found at each location, a two-dimensional matrix indicating

the weight value for each cluster at all locations, two three-dimensional matrices storing the x and

y mean values for each cluster at all locations, and a four-dimensional matrix storing the 2 × 2
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Table 3.1: Ground truth range covered by the recordings and corresponding velocities in cm/s.

Trial Range Velocity
1 (480, 570) - (480, 710) cm 20 cm/s
2 (460, 630) - (320, 630) cm 16 cm/s
3 (600, 390) - (390, 630) cm 76 cm/s
4 (390, 600) - (630, 390) cm 70 cm/s

covariance matrix for each cluster at all locations. In the C implementation, this data is stored in

a number of text files. At this time, the basic particle filter algorithm is much more efficient that

the MNMAPF partially due to the method used to search for the nearest location. However, the

MNMAPF will always be somewhat slower than the BPF due to the increased complexity that a

multi-modal measurement noise model requires.

3.4 Error Metric

The metric that will be used to compare filter performance throughout this work is referred

to as the average error e and is calculated using the Euclidean distance between a ground truth

location and its corresponding filter output. The calculation is performed as shown in Equation 3.12

where xn and yn are the nth filter output and x̂n and ŷn are the corresponding ground truth location.

e =
1
N

N∑
n=1

√
(xn − x̂n)2 + (yn − ŷn)2 (3.12)

3.5 Dynamic Track Collection

Four tracks are defined within the trackable area of the Riggs facility. Table 3.1 gives the

ground truth coordinates of the tracks and the average velocity of the tag while traversing the track.

Figure 3.1 shows a plot of each track within the test facility. Five recordings are made of tracks 1,

2 and 4 and four of track 3. Tracks 3 and 4 cover the same ground truth coordinates; track 3 runs

northwest and track 4 runs southeast.

Tracks 1 and 2 are collected by dragging the UWB tag across the top of the tag stand shown

in Figure 2.13. The tag stand is placed at a known ground truth location within the trackable area in

the same manner as described for model data collection in Section 2.3. Tracks 3 and 4 are collected
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Figure 3.1: Plot of the ranges covered by tracks 1 - 4.
Experiments recorded in the Riggs facility.

by placing the UWB tag on a cart. This cart is then moved along a known ground truth path. The

UWB tags are left in place for a period of time at the beginning and end of the path to allow for

starting and stopping of measurement recording. Figure 3.2 shows the raw measurement data in

the Y direction collected for Track 1. The measurements corresponding to times when the tag is

stationary are shown in ellipses 1 and 3. The measurements corresponding to times when the tag is

in motion in the y direction are shown in ellipse 2.

To ensure accurate error calculation for measurement and particle filter outputs, the ground

truth for the dynamic tracks must also be accurate. Therefore, the stationary periods within each

recording must be removed (those within ellipses 1 and 3 of Figure 3.2). This is done by fitting

three lines to the measurements. First, a line is fit to the first few points of the recording which

are always stationary. Second, a line is fit to the last few points of the recording which should also

always be stationary. Third, a line is fit to the middle few points which should correspond to tag

motion. Finally, points between the intersection of the first and middle lines and the intersection

of the middle and last lines are stored as the portion of the recording that is in motion. Figure 3.3

shows these lines for a set of measurements from Track 1.
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Figure 3.2: Raw measurement data in the y direction collected over Track 1. Ellipse 2 shows the
measurements taken while the tag is in motion. Ellipses 1 and 3 show the measurements taken while
the tag is stationary.
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Figure 3.3: Plot of the line fitting for removal of measurements before and after the dynamic motion
of the tag over Track 1.
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The intersections of the lines are visually identified and the measurements closest to the

intersections are selected as the start and end measurements of the recording. Because the tag is

moved at constant velocity (as close as manually possible), each measurement is associated with a

ground truth location by dividing the path traversed evenly by the number of measurements.

3.6 Dynamic and Measurement Noise

As discussed in Section 3.2, a two-dimensional constant velocity dynamic model is used in

this work. This model requires a dynamic noise value as input. The dynamic noise is a sample

from a zero mean, normally distributed random variable with standard deviation σd. It is added to

the velocity component of the state space variable and is, therefore, noise on acceleration. Because

the velocity of the tag is not known a priori, the particle states are initialized with zero velocity.

The σd value affects how quickly the filter can react to changes in tag motion. A larger value of

σd allows the dynamic model to react quickly to changes in velocity, while a lower value makes the

model react more slowly. Figure 3.4 shows the effect that increasing σd has on the output of a basic

particle filter. When σd is small, the filter output does not move much from the initial location. As

σd increases, more particles reach the true velocity of the system quicker and the filter output moves

more with each measurement. Large σd values will force the filter output to closely match the raw

measurements.

The measurement noise covariance matrix Σn used throughout this work is shown in Equa-

tion 3.13. The value 49 was chosen for both variance values because that is the average variance of

the clusters found in the portion of the test area where the tracks were taken. This results in σd

values of 7. This matrix is used in the basic particle filter as shown in Equation 1.20.

Σn =

49 0

0 49

 (3.13)

3.7 Filtering Results

Figure 3.5 shows the average output for ten iterations of the BPF and MNMAPF for one

recording of Track 1. The MNMAPF has an average error 3 cm less than the BPF output.

Figure 3.6 shows the average output for ten iterations of the BPF and MNMAPF for one
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Figure 3.4: Plot of raw measurements (top left) and plots of BPF output with varying dynamic
noise values, 0.1 (top right), 2.0 (bottom left), and 5.0 (bottom right). Ground truth indicated by
thick line. BPF output indicated by thin line.
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Figure 3.5: Plot of BPF (σd = 0.7) and MNMAPF (σd = 0.4) outputs for Track 1 with 9.3 cm and
6.4 cm average error respectively.
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Figure 3.6: Plot of BPF (σd = 1.3) and MNMAPF (σd = 1.1) outputs for Track 2 with 11.0 cm and
6.8 cm average error respectively.

recording of Track 2. This example shows one benefit of the map-based measurement noise model.

It can correct for overall biases in the measurements at a certain location. This can be seen by the

overall shift that is seen in the left half of the filter output. The MNMAPF output tracks much

closer than the BPF in this area. The average error is over 5 cm lower for this example.

Figures 3.7 and 3.8 again show the average output for ten iterations of the BPF and MN-

MAPF for one recording each of Tracks 3 and 4 respectively. The MNMAPF’s ability to adjust to

measurement biases can again be seen in the large reduction in error in the southeast portion of both

examples. The MNMAPF tracks much closer to the ground truth in these locations. The average

error improvement is 6 cm and 11 cm respectively.

3.8 Performance Summary

Figure 3.9 shows the average error over all recordings of the four tracks after 300 iterations

of the BPF and MNMAPF over a range of σd values along with the raw measurement error. The plot

shows that the MNMAPF achieves a lower average error value than the BPF and also a lower average

error than the raw measurements. The average minimum MNMAPF error over the 19 recordings is

approximately 17 cm which is a 3 cm, or 15%, improvement on the average raw measurement error
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Figure 3.7: Plot of BPF (σd = 8.0) and MNMAPF (σd = 8.5) outputs for Track 3 with 34.8 cm and
28.8 cm average error respectively.
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Figure 3.8: Plot of BPF (σd = 7.6) and MNMAPF (σd = 7.5) outputs for Track 4 with 28.9 cm and
17.5 cm average error respectively.
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Figure 3.9: Plot of average error for varying σd.

of 20 cm. The low average raw measurement error value is a product of the fact that the portion

of the test area where recordings were taken has the lowest average raw measurement error of the

entire facility.

3.9 Particle Filter Conclusions

This chapter has presented a method for integrating a map of UWB measurement noise

into a particle filter framework to improve indoor position tracking accuracy. A 15% reduction in

tracking error is shown through the use of the measurement noise map in the context of a particle

filter.

A limitation of our method is the requirement that the measurement noise map be re-

calculated after a significant change to the positioning system installation or environment occurs.

Because of this, it is expected that this type of map would be generated for a system once and used

for a long period of time. Furthermore, the author acknowledges that a significant time commitment

is required to generate the measurement noise map. The development of more automated methods

to generate the measurement noise map could significantly reduce this time commitment and allow

for the measurement noise model to be recalculated on a more frequent basis if necessary. It may be
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that floorplan and sensor geometry information could be used to semi-automate this process similar

to the techniques shown in [53, 73]. The next chapter looks at improving indoor position tracking

accuracy by optimizing system configuration using floorplan and sensor geometry information.
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Chapter 4

Configuration Optimization

As described previously in Chapter 2, a number of possible sources of noise effect the perfor-

mance of UWB indoor position tracking systems including NLOS, multipath and synchronization.

In Chapter 3, the measurement noise map augmented particle filter (MNMAPF) was presented

which uses a map of environment noise to improve overall system tracking performance without

considering the underlying causes of measurement error. In this chapter, a metric is proposed that

can be used to quantify expected system performance based on sensor location, sensor orientation

and facility floorplan. This metric can also be used to identify areas within an installation that are

more susceptible to error. Using this metric, a procedure is developed to determine the parameters,

i.e. sensor position, sensor orientation and potentially others, of the physical installation of the

UWB tracking system that will produce minimum measurement error based on sensor geometry and

physical facility constraints.

4.1 Related Work

A number of other works have considered optimal sensor placement to minimize position

error. A bound on localization performance for a single location is derived by Jourdan, et al. in

[74]. This bound is referred to as the position error bound (PEB). The PEB takes into account

the distance from the sensor to the location of the object being tracked as well as the LOS/NLOS

conditions. Range measurements are modeled as the true distance plus a bias term plus a sample

from a zero-mean Gaussian random variable. The bias term is added to account for NLOS conditions
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between the transmitter and receiver. In LOS conditions, this bias term goes to zero. Furthermore,

the variance of the Gaussian random variable increases as distance increases. This effectively weights

range measurements that are used for localization according to their quality. In [75], the PEB is

extended to multiple locations in a facility through the concept of localization accuracy outage.

Localization accuracy outage is a threshold on PEB values that gives an idea of the quality of

localization throughout an area. PEB and localization accuracy outage are also presented in [76].

Optimization of sensor placement using the PEB is considered by Jourdan and Roy in [77]. An

iterative coordinate-descent algorithm, referred to as RELOCATE, is developed that determines the

optimal sensor locations to minimize the average PEB at multiple locations. Similar to the PEB-

based work, Mart́ınez and Bullo develop a method for determining optimal sensor placement using

the Fisher information matrix in [78]. Sinha, et al. [79] use Newton-Raphson method in combination

with a genetic algorithm to find the global maximum of their objective function obtained from the

Fisher information measure. Hegazy and Vachtsevanos [80] present a method for determining the

minimum number of sensors required for localization and an optimal sensor placement for a single

location. The placement is optimal in the sense that it minimizes the localization error bound by

minimizing the condition number of the matrix of sensor positions. This work performs localization

using received signal strength measurements in simulation only. Similar work has been performed

for GPS by McKay and Pachter in [81].

All of the related work is performed in simulation and no comparisons have been made

to the performance of any real positioning systems. Furthermore, none of the methods take into

account sensor orientation relative to the object being tracked, which is an important element of a

real world localization system, especially one using angle-of-arrival techniques.

4.2 Facility-Wide Error

Using the data collected to generate the measurement noise map described in Section 2.7,

a plot of the normalized average Euclidean error, eavg, was generated as shown in Figure 4.1. Error

was calculated as the Euclidean distance from the measurement to the known ground truth location,

as shown in Equation 3.12, and averaged over 500 measurements at each location. The average error

found across the facility is approximately 60 cm. The minimum average error is 4 cm and the

maximum average error is 1922 cm. For ease of visualization, average error at each location is
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capped at 100 cm, i.e. everything greater than 100 cm is truncated to 100 cm. Normalization is

performed by first subtracting the minimum facility-wide average error from each location and then

dividing by the 100 cm error cap leaving the values ranging between 0 and 1. Darker areas of Figure

4.1 indicate more error. From Figure 4.1, it can be seen that some areas of the facility are prone to

larger error magnitudes than others. The eight UWB receiver positions are indicated by the filled

squares and the orientation of each receiver is indicated by the line projecting from the square.
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Figure 4.1: Normalized average error across the facility.

Figure 4.2 is a visually segmented version of Figure 4.1 based on average error with numbered

segments. Each of these segments identifies an area that contains a certain quality of measurements

denoted as either poor, average or good in terms of average error. Table 4.1 indicates the quality

of measurement identified in each segment of Figure 4.2. The measurement error clearly varies in

quality across the facility.

Because the measurement error varies significantly depending on the location of the trans-

mitter tag within the facility, it is believed that features of the test facility itself, as well as the

UWB tracking system’s physical installation, are major contributing factors to measurement error.

Therefore, the author seeks to find facility and environment-based metrics that account for this
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Table 4.1: Quality of measurements based on average error for each segment identified in Figure 4.2.

Segment
1 2 3 4 5 6 7 8 9 10

Good X
Average X X X
Poor X X X X X X
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variance in measurement error.

4.3 Sensor Set Selection

The UWB localization system used in this work estimates the location of transmitter tags

by determining the angle-of-arrival (AOA) and time-difference-of-arrival (TDOA) of an UWB pulse

at a number of fixed receivers. Using these values, multiangulation or multilateration is performed to

estimate the transmitter tag’s position. Therefore, as few as two receivers can be used to calculate the

position estimate [82]. A set of eight receivers or sensors, S = {si}, i = 1, . . . , 8, is installed within

the test facility. The position estimation procedure can be performed using more than the minimum

number of receivers and, in many cases, position estimation is improved when more measurements

are used to estimate position. Due to computational time requirements, the system limits the

number of measurements to only five sensors. The five sensors that will be used are selected based

on the received signal strength measurement at each receiver. More specifically, the five receivers

that measure the greatest received signal strength value are used to estimate transmitter position.

Because of this, all metric calculations performed in this section include information from only the

five “best” sensors relative to the current transmitter position. This best set of five sensors will be

denoted as Sb.

For the experiments reported in this chapter, we simulate the process of selecting Sb as

follows. The best set of five sensors, Sb, is determined by calculating the Euclidean distance from

all eight sensors to the current transmitter location and adding to it a penalty for the portion of

transmission that is through a wall or other obstacle. This value will be referred to as radio frequency

(RF) range, r̃. The Euclidean distance dc,i between the current transmitter location, (xc, yc, zc) cm,

and each sensor’s location, (xi, yi, zi) cm, is calculated as shown in Equation 4.1.

dc,i =
√

(xc − xi)2 + (yc − yi)2 + (zc − zi)2 (4.1)

The RF range is an estimate of the range measurement that the system would generate

between a tag location and a fixed sensor. This estimate takes into account non-line-of-sight (NLOS)

conditions. It is calculated as shown in Equation 4.2 where δ is the through-wall distance (explained

in more detail in Section 4.4.2), V is the speed of light in concrete, and C is the speed of light in

air. Therefore, the best five sensors at location (xc, yc, zc) cm are those that produce the five lowest
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values of r̃.

r̃c,i = dc,i +
(
δc,i
V
− δc,i

C

)
C (4.2)

The value of the speed of light in air C used in this work is 299, 792, 458 m/s. The value

of the speed of light in concrete is calculated from C using the real portion of the refractive index,

2.55, reported by Sato, et al. in [83]. This yields a value of V = 117, 565, 670 m/s for the speed

of light through concrete. This value is simply an estimate used for metric calculation. It is not

intended to be an exact representation of the NLOS range measurement.

4.4 Metrics

It is widely known that sensor geometry [76] and NLOS conditions [58, 40, 54, 51] affect

radio frequency position estimation. Therefore, a number of metrics have been identified that can

be calculated based on facility floorplan and sensor location information. These metrics are linked

with measurement error and account for sensor geometry and NLOS conditions.

4.4.1 RF Range

Gezici, et al. [84] have shown that the variance of radio frequency range estimates increases

with distance using the Cramer-Rao lower bound (CRLB). In turn, the bound on position estimation

error will also increase as the distance to the sensors used to estimate position increases. Therefore,

the RF range r̃c,i to the sensors in set Sb used in calculating the position estimate will affect

the position estimation error. The total RF range metric at the current transmitter location r̃c

is calculated as shown in Equation 4.3 where r̃c,Sb(i) is the distance from the current transmitter

location to the ith sensor of set Sb and is calculated as shown in Equation 4.2. Figure 4.3 gives

plots of the RF range for each sensor at all of the locations within the Riggs facility. Notice that

this metric takes into account not only distance from each sensor but also NLOS conditions.

r̃c =
5∑
i=1

r̃c,Sb(i) (4.3)

Figure 4.4 is a map of the total RF range to the best five sensors for locations within the

test facility. The darker areas indicate locations with the greatest total RF range. It can be seen
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(a) Sensor 1
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(b) Sensor 2
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(c) Sensor 3
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(d) Sensor 4
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(e) Sensor 5
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(f) Sensor 6
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(g) Sensor 7
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(h) Sensor 8

Figure 4.3: The total RF range for each sensor individually.
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that, similar to the average error plot shown in Figure 4.1, the areas with the greatest RF range to

all sensors are concentrated around the edge of the facility. Specifically, the total RF range metric

has low values in areas corresponding to segments 2 and 5 of Figure 4.2.

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

900

1000

X (cm)

Y
 (
c
m

)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 2 3

4

567

8

Figure 4.4: Total RF range for the best five sensors at each position.

4.4.2 Through-Wall Distance Metric

NLOS propagation has been shown to generate positive range biases in UWB systems due

to the slower rate of RF propagation through mediums other than air [54]. These range biases

produce position estimation errors after multilateration or multiangulation. Sensors with a clear

line-of-sight (LOS) path to the transmitter tag will generate more accurate range estimates than

obstructed sensors, all other things being equal. NLOS conditions within the test facility are quan-

tified by calculating the total obstructed distance between a transmitter and each of the best five

receivers. This metric is referred to as through-wall distance, dtw,c. First, the number of ob-

structions, Wi, that the line between the current transmitter location, (xc, yc, zc), and a particular

sensor, i in Sb, passes through is determined geometrically. Then, the point where the line en-

ters obstruction j, (xSb(i),j,e, ySb(i),j,e, zSb(i),j,e) and the point where the line leaves obstruction j,

(xSb(i),j,l, ySb(i),j,l, zSb(i),j,l), is determined. The distance between the entering and leaving points is
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calculated and summed for each obstruction j and sensor i in Sb according to Equation 4.4.

dtw,c =
5∑
i=1

Wi∑
j=1

√
(xSb(i),j,e − xSb(i),j,l)2 + (ySb(i),j,e − ySb(i),j,l)2 + (zSb(i),j,e − zSb(i),j,l)2 (4.4)

Obstructions include walls and furniture. Figure 4.1 denotes walls with solid lines and

other obstructions with dashed lines. Figure 4.5 shows the total through-wall distance to locations

within the Riggs facility for each of the eight installed sensors. Locations with higher through-wall

distances are shown darker. It can be seen from these figures that sensors on the other side of a wall

or obstruction produce a higher value of through-wall distance, as expected.

A more complete picture of the through-wall distance metric can be seen by summing the

through-wall distance of the best five sensors for each location and displaying in a similar manner.

Figure 4.6 shows a plot of the total through-wall distance metric across the test facility for the best

five sensors. It can be seen from this figure that a large portion of the test area has zero through-wall

distance. However, other areas, such as between 300 and 400 cm in the x direction and 100 and

250 cm in the y direction, have much higher through-wall distance values. The area corresponding

to segment 7 of Figure 4.2 clearly suffers from severe NLOS conditions based on the high values of

dtw,c shown.

4.4.3 Position Dilution of Precision (PDOP) Metric

Geometric dilution of precision (GDOP) is a measure of observation geometry that has

been used extensively to quantify position error in the Global Positioning System (GPS) [85]. More

specifically, GDOP describes amount of change that occurs in the position estimate due to a small

change in measured range data [86]. A small value of GDOP means that a small change in a range

measurement yields a small change in the position estimate. A large value of GDOP means that

a small change in a range measurement yields a large change in the position estimate. GDOP can

take into account more variables than position, e.g. time. Position dilution of precision (PDOP)

is limited to the position only. The lower the value of PDOP the better the sensor geometry. The

PDOP metric for each transmitter location c used in this work is calculated according to Equations

4.5 - 4.7 where (xSb(i), ySb(i), zSb(i)) is the position of sensor i, (xc, yc, zc) is the current position of

the transmitter, RSb(i),c is the distance between the current transmitter location and sensor i of Sb
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(a) Sensor 1
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(b) Sensor 2
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(c) Sensor 3
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(d) Sensor 4
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(e) Sensor 5
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(f) Sensor 6
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(g) Sensor 7
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(h) Sensor 8

Figure 4.5: The total through-wall distance for each sensor individually.
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Figure 4.6: Total through-wall distance for the best five sensors at each position.

and trace3(·) indicates only the first three elements of the trace [87]. There are five rows in matrix

Hc of Equation 4.6 due to the five sensors in Sb. As can be seen from these equations, the PDOP

metric is solely based on the position of the sensor in reference to the transmitter.

RSb(i),c =
√

(xSb(i) − xc)2 + (ySb(i) − yc)2 + (zSb(i) − zc)2 (4.5)

Hc =



(xSb(1)−xc)
RSb(1),c

(ySb(1)−yc)
RSb(1),c

(zSb(1)−zc)
RSb(1),c

1
(xSb(2)−xc)
RSb(2),c

(ySb(2)−yc)
RSb(2),c

(zSb(2)−zc)
RSb(2),c

1
(xSb(3)−xc)
RSb(3),c

(ySb(3)−yc)
RSb(3),c

(zSb(3)−zc)
RSb(3),c

1
(xSb(4)−xc)
RSb(4),c

(ySb(4)−yc)
RSb(4),c

(zSb(4)−zc)
RSb(4),c

1
(xSb(5)−xc)
RSb(5),c

(ySb(5)−yc)
RSb(5),c

(zSb(5)−zc)
RSb(5),c

1


(4.6)

PDOPc =
√
trace3((HT

c Hc)−1) (4.7)

Figure 4.7 is a map of the PDOP for the best five sensors for each location within the Riggs

facility. The darker areas indicate locations with the greatest PDOP. It can be seen from this figure

that the greatest PDOP values are found in the area corresponding to segment 4 of Figure 4.2.

72



0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

900

1000

X (cm)

Y
 (
c
m

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 2 3

4

567

8

Figure 4.7: PDOP for the best five sensors at each position.

4.4.4 Sensor Orientation

The UWB position tracking system used in this work estimates transmitter tag position

using a combination of AOA and TDOA measurements [82]. The AOA measurements are performed

using an antenna array located within the receiver. Therefore, sensor orientation affects measurement

error. Each sensor has three orientation angles referred to as yaw θ, pitch γ and roll. Yaw is the

angle of rotation around the vertical or z axis as shown in Figure 4.8a. Pitch is the angle of rotation

around the horizontal axis as shown in Figure 4.8b. In this case, zero degrees in pitch lies within

a plane parallel to the floor of the test facility. Roll is held constant at zero degrees for all sensors

as required by the system installation instructions. The following sections describe the calculation

of pitch and yaw angle metrics that are based on the absolute angle between the sensor orientation

and the location of the UWB transmitter tag.

4.4.5 Yaw Metric

Yaw angle is a component of the sensor orientation. However, the yaw metric that is used

in this work is based on the absolute angle between the sensor yaw and the line connecting the

transmitter to receiver. Figure 4.8a denotes the yaw metric as Υ. For each location within the test
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Figure 4.8: Diagrams showing definitions of sensor yaw and pitch.

facility, the total yaw metric is calculated by summing the yaw metric for each of the five best sensors

as shown in Equation 4.8 where Υc,Sb(i) is the angle between the current transmitter location and

the yaw angle of each of the best five sensors. Figure 4.9 shows the total yaw metric calculated at

each location within the test facility. It can be seen from this figure that the area with the minimum

total yaw is located near the center of the main room and corresponds with segments 2 and 5 of

Figure 4.2. Furthermore, the highest values of the yaw metric correspond to segment 9. Much of

the rest of the test facility shows average values of the yaw metric.

Υc =
5∑
i=1

Υc,Sb(i) (4.8)

4.4.6 Pitch Metric

Pitch angle is another component of the sensor orientation. Again, the pitch metric that is

used in this work is based on the absolute angle between the sensor pitch and the line connecting

the transmitter to receiver. Figure 4.8b denotes the pitch metric as ρ. For each location within the

test facility, the total pitch metric is calculated by summing the pitch metric for each of the five

best sensors as shown in Equation 4.9 where ρc,Sb(i) is the angle between the current transmitter

location and the pitch angle of each of the best five sensors. Figure 4.10 shows the total pitch metric

calculated across the test facility. It can be seen from this figure that the areas with the highest

values of the total pitch metric are located within the hallway and correspond to segments 6, 8, 9
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Figure 4.9: Total yaw metric for the best five sensors at each position.

and 10 from Figure 4.2.

ρc =
5∑
i=1

ρc,Sb(i) (4.9)

4.5 Metric Combination

The five metrics described in the previous sections have been shown to correspond with

segments of the average error figure. Table 4.2 summarizes which metrics best explain the segments

shown in Figure 4.2. None of the metrics identified specifically correspond to segment 1 of Figure

4.2. However, segment 1 is of average quality and the PDOP, total yaw, and total pitch metrics all

have average values in the area corresponding to segment 1. Figure 4.11 brings together the plots of

each of the five metrics along with the segmented normalized average measurement error plot shown

previously.

Although PDOP helps explain Segment 4, it was found that a calibration error accounted

for the increased measurement error in this area. The calibration error affected the position and

orientation angles stored in the system for sensor 1. After discovering the calibration error, data

was recollected in the area of segment 4 and the old data was replaced. Figure 4.12 shows the
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Figure 4.10: Total pitch metric for the best five sensors at each location.

Table 4.2: Metrics considered to minimize system error and the affected segments.

Metric Affected Segments
RF Range 2, 5
Through-Wall Distance 7
PDOP 4
Yaw Angle 2, 5, 9
Pitch Angle 6, 8, 9, 10
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(a) Segmented normalized average error
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(b) RF Range

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

900

1000

X (cm)

Y
 (
c
m

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 2 3

4

567

8

(c) Through-wall distance
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(d) PDOP
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(e) Yaw angle
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(f) Pitch angle

Figure 4.11: Summary plots of all metrics considered in this work along with the the segmented plot
of normalized average measurement error.
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(a) Original normalized average error plot
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(b) New normalized average error plot

Figure 4.12: Plots of normalized average measurement error before and after correcting for a sensor
calibration error.

normalized average error plot at each location within the test facility before and after correcting for

the calibration error. It can be seen from this figure that the measurement error of segment 4 has

been lowered although it is still of average quality.

Because each of the metrics appears to contribute to variance in measurement error in some

part of the test facility, a combined metric, mc, is desired to take advantage of the information that

each metric provides. This metric is calculated using a weighted sum of each of the metrics as shown

in Equation 4.10.

mc = k1r̃c + k2dtw,c + k3PDOPc + k4Υc + k5ρc (4.10)

The set of optimal weight values, {k1, k2, k3, k4, k5}, was selected using Equation 4.11

where eavg is the average error at location (x, y) cm. This gives the optimal set of weights to

minimize the difference between the normalized average error and the combined metric. Using

a brute force approach to searching the space, the optimal set of weights was found to be ki =

{0.40, 0.85, 0.70, 0.05, 0.20}. The search space was a range from 0 to 1 in increments of 0.05 for all

of {k1, k2, k3, k4, k5}. Figure 4.13b shows the combined metric using the optimal weight values. It

can be seen from this figure and the optimal weight values that each of the metrics is represented

in the final combined metric. As can be seen by comparing Figures 4.12a and 4.12b, the combined
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(a) New normalized average error plot
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(b) Normalized combined error metric

Figure 4.13: Plots of the new normalized average measurement error and the normalized combined
metric for the Riggs facility.

metric matches favorably with the actual observed measurement error.

argmin
{k1,k2,k3,k4,k5}

∑
x

∑
y

|eavg −mc| (4.11)

4.6 Parameter Optimization

Using the combined metric discussed in Section 4.5 and detailed in Equation 4.10, an optimal

set of system configuration parameters can be determined. The parameters will be optimal in terms

of producing a minimum total value for the combined metric at all locations of interest within the

Riggs facility. The system configuration parameters that impact the combined metric are based on

sensor placement, sensor orientation and facility floorplan, i.e. NLOS conditions. In this case, the

Riggs facility floorplan is fixed and cannot be optimized. Furthermore, sensor location is restricted

due to physical mounting limitations. Therefore, the only system configuration parameters that will

be varied are the sensor pitch and yaw angles. It is important to note that this process could be

used to determine optimal sensor placement as well as orientation.

By varying only the sensor yaw and pitch angles, the problem of determining the optimal

system configuration parameters becomes a search of a 16 dimensional space including the yaw and

pitch angles for all eight sensors installed within the facility. The goal of the search is to find the

set of sensor yaw and pitch angles that produces the minimum value of the combined metric. This
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problem is computationally restrictive to complete via a brute force approach for even a coarse

resolution of angles. Therefore, a genetic algorithm has been implemented to determine the best

sensor orientation parameters. Genetic algorithms take cues from evolution to solve problems on a

computer [88]. Our problem is function optimization which requires minimizing the combined metric

over a set of 16 sensor orientation input parameters. A genetic algorithm begins by specifying a set

of C parameters referred to collectively as a chromosome. In our problem there are 16 elements in

each chromosome. Then, an initial set of N chromosomes is generated in some manner, typically

randomly. Our implementation generates 10,000 chromosomes and initializes each element randomly

with a uniformly distributed random variable. Table 4.3 gives the range of acceptable values used

for each element of a chromosome.

Table 4.3: Range of acceptable values for pitch and yaw (degrees).

Sensor
1 2 3 4 5 6 7 8

Minimum Yaw -90 -180 -180 90 0 0 0 -90
Maximum Yaw 0 0 0 270 180 180 90 90
Minimum Pitch -90 -90 -90 -90 -90 -90 -90 -90
Maximum Pitch 0 0 0 0 0 0 0 0

A set of chromosomes is referred to as a population. A measure of fitness is then calculated

for each chromosome. The appropriate fitness measure is highly problem-specific. In our genetic

algorithm implementation, the combined metric described in Section 4.5 is used as the fitness mea-

sure. In this case, the most fit members of the population will have the lowest fitness score. The

terms “most fit” and “optimal” will be used interchangeably.

At this point, the next generation population is created through the use of two evolutionary

mechanisms: selection (crossover) and mutation. Selection requires choosing two members of the

population to mate and produce offspring. Analogous to “natural selection” the most fit members

of the population will reproduce more often [89]. Although each chromosome has the possibility

of reproducing, chromosomes with higher fitness scores are selected more frequently. This is often

referred to as roulette-wheel or fitness proportionate selection. Crossover is part of the reproduction

process where elements of the chromosomes of two parents are swapped creating two new child

chromosomes [89]. In our implementation, crossover occurs in 70% of reproductions, i.e. a crossover

rate of 0.7, and crossover occurs at a randomly selected element within the parent chromosomes.
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Also a part of reproduction is chromosome mutation. Mutation is an evolutionary mechanism that

maintains diversity by randomly changing an element of a chromosome. However, this process

occurs infrequently. In our implementation, the mutation rate is 0.001. Mutation is performed by

randomly re-initializing selected chromosomes with a uniformly distributed random variable, again

according to the limits shown in Table 4.3. The selection (crossover) and mutation processes are

repeated until a new population of size N is created. A new generation has now been created. The

entire process is repeated with the new generation starting with calculation of the fitness measure.

Many different methods exist to determine when the iteration process should complete, i.e. the

algorithm has converged. In our implementation, the process is simply run for 200 generations.

The C implementation of this algorithm developed for this work took approximately 250 minutes to

evolve through 200 generations of chromosomes. The chromosome with the lowest fitness score in

the final generation is chosen as the optimal solution. Figure 4.14 shows the evolution of the average

and minimum fitness scores for our genetic algorithm implementation. It can be seen that both the

mean and minimum fitness scores steadily decrease. Table 4.4 shows the values of yaw and pitch

angle found to be optimal by the genetic algorithm.

0 20 40 60 80 100 120 140 160 180 200
1000

1500

2000

2500

3000

3500

4000

4500

Generation

F
it
n

e
s
s
 S

c
o

re

 

 

Average Fitnes Score

Minimum Fitness Score

Figure 4.14: Trajectory of the genetic algorithm fitness score for 200 generations. The number of
chromosomes is set to 10,000 with a crossover rate of 0.7 and a mutation rate of 0.001. Mutation is
performed using uniform mutation. The chromosomes are randomly initialized.
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Table 4.4: Pitch and yaw angles found to be optimal by the genetic algorithm (degrees).

Sensor 1 2 3 4 5 6 7 8
Proposed Yaw -46.6 -87.1 -123.0 146.8 101.1 49.9 14.3 39.5
Proposed Pitch -22.6 -30.9 -26.8 -28.0 -29.0 -25.9 -21.8 -25.0

Using the optimal parameters found by the genetic algorithm, the combined metric can

be recalculated across the test facility. Figure 4.15 shows the combined, total yaw and total pitch

metrics for the current system configuration on the left side and the same metrics for the optimal

parameters on the right. It can be seen from these figures that the minimum area for the combined

metric has shifted more towards the center of the facility. Furthermore, the sum of the combined

metric has been reduced from 2250 to 1519 or by more than 30%. The total yaw metric figures

show how the area with minimum total yaw has been significantly increased in size. The total pitch

metric figures show a significant overall reduction in the total pitch metric across the facility as well

as shift in the minimum value area towards the center of the facility.

4.7 Verification

The output of the genetic algorithm is a set of sensor orientation angles that gives a minimum

value for the combined metric that has been developed. In order to verify that an overall reduction

in the combined metric across the test facility will result in reduced measurement error in a real

world installation of the UWB positioning system, the physical sensor orientations of the system

installed in the test facility need to be changed to match as closely as possible the sensor orientation

angles that were output from the genetic algorithm. Table 4.5 gives the sensor orientation angles

for the current system configuration, the sensor orientation angles output by the genetic algorithm

(proposed) and the sensor orientation angles for the new system configuration. The angles do not

match exactly due to physical constraints of the system install. However, great care was taken to

get the angles as close as possible to the optimal result.

After adjusting the sensor orientation angles, new data was collected in locations spread

throughout the test facility. Data was re-collected at 90 locations within the test facility. Figure

4.16 shows the locations where data was re-collected. The average error for these locations in the

original data collection was found to be 47 cm. The average error for these locations in the new
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(a) Current combined metric
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(c) Current total yaw
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(d) Proposed total yaw
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(e) Current total pitch
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(f) Proposed total pitch

Figure 4.15: Combined metric, total yaw and total pitch for current system setup (left) and proposed
configuration (right).
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Table 4.5: Pitch and yaw angles for current and proposed system configuration (degrees).

Sensor 1 2 3 4 5 6 7 8
Current Yaw -50.4 -71.5 -126.6 151.9 134.7 87.0 54.1 42.4
Proposed Yaw -46.6 -87.1 -123.0 146.8 101.1 49.9 14.3 39.5
New Yaw -44.6 -86.8 -123.6 138.9 94.3 53.9 21.2 42.1
Current Pitch -28.7 -53.0 -36.7 -17.8 -14.4 -24.8 -27.7 -16.3
Proposed Pitch -22.6 -30.9 -26.8 -28.0 -29.0 -25.9 -21.8 -25.0
New Pitch -18.1 -29.5 -30.7 -23.2 -23.2 -28.2 -20.7 -21.0

data collection after sensor orientation adjustment was found to be 21 cm. This is a reduction in

measurement error of approximately 55%. Of the 90 locations re-surveyed, 75 were found to have a

lower average error than in the initial system configuration. Figure 4.17 is a histogram of the change

in average error from the original configuration to the optimized configuration, i.e. original error

value - new error value. It can be seen from this figure that most of the locations, specifically 60

out of the 90, have a positive change in error between 0 and 50 cm which corresponds to a decrease

in average error after sensor orientation optimization.
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Figure 4.16: Locations of data re-collection for comparison to previous system configuration.
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Figure 4.17: Histogram of the change in error from the original system configuration to the optimized
configuration.

4.8 Optimization Conclusions

In this chapter, a combined metric was developed using a weighted sum of a set of five

individual metrics. These metrics are calculated based on sensor location, sensor orientation and

facility floorplan. The combined metric was designed to match the average measurement error that

was found in the initial data collection. A genetic algorithm was then implemented to determine the

optimum sensor orientation angles to reduce the combined metric value. To verify that the combined

metric corresponds to measurement error, the physical installation of the UWB positioning system

within the Riggs facility was adjusted to closely match the output angles of the genetic algorithm.

The average measurement error was then recalculated at a sampling of locations throughout the test

facility and a 55% reduction was found.

It is important to note that, although the genetic algorithm presented in this chapter was

used to optimize only the orientation angles, the algorithm could be expanded to search for optimal

sensor placement as well. This would increase the search space of the algorithm significantly but

the algorithm should still be able to achieve an optimal sensor configuration without a significant

increase in run time of the algorithm. Furthermore, it is mentioned that this algorithm is set up such

that it optimizes sensor orientation for the specific locations that are considered. An extension of
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this would be using the algorithm to prioritize areas within a facility that the system must perform

as accurately as possible. In this case, sensor placement and orientation would be geared towards

minimizing the combined error metric in the high priority areas at the expense of other areas within

the facility.
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Chapter 5

Conclusions

This work presents a study of the environment noise in a real world installation of an UWB

indoor position tracking system. Through two measurement campaigns, measurement noise in such

a system has been shown to be location dependent and multi-modal. To account for this multi-

modality, noise at a specific location is modeled using a sum of Gaussians. Evidence has been shown

that the measurement noise is stable over time and locally similar.

Using data from the Riggs facility, a method is presented for integrating a map of UWB

measurement noise into a particle filter framework to improve indoor position tracking accuracy.

A 15% reduction in tracking error is shown through the use of the measurement noise map in the

context of a particle filter.

Finally, a metric for measurement accuracy based on sensor location, sensor orientation

and facility floorplan was developed. The metric was designed to reflect the expected quality of

measurements that will be found at locations within a facility. It was found that the metric produced

a map that matched well against the manual observation of measurement noise throughout the Riggs

facility. A genetic algorithm was then implemented to improve the system configuration. Specifically,

the genetic algorithm determined the optimum sensor orientation angles by minimizing the overall

metric value. Finally, the utility of the metric was verified by adjusting the sensor orientation angles

to closely match the output angles of the genetic algorithm and re-collecting data in a smaller subset

across the facility. The average measurement error was found to have been reduced by 55%.
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5.1 Recommendations for Future Work

This research leaves many open questions related to the improvement of UWB indoor po-

sition tracking. The author believes that augmentation of UWB local positioning systems is a

fertile area of future research. For example, data from devices such as laser detection and ranging

(LADAR) systems could be used to create a sort of differential local positioning system analogous

to differential GPS systems that are currently in use.

A limitation of our map aided particle filtering method is the requirement that the mea-

surement noise map be re-calculated after a significant change to the positioning system installation

or environment occurs. Because of this, it is expected that this type of map would be generated

for a system once and used for a long period of time. Furthermore, the author acknowledges that a

significant time commitment is required to generate the measurement noise map. The development

of more automated methods to generate the measurement noise map could significantly reduce this

time commitment and allow for the measurement noise model to be recalculated on a more frequent

basis if necessary. It may be that floor plan and sensor geometry information could be used to

semi-automate this process similar to the techniques shown in [53, 73].

It would be valuable to expand the genetic algorithm to search for the most fit sensor

locations along with sensor orientation. In this work, the sensor locations were limited due to

facility constraints. Optimizing not only sensor orientation but also position will lead to the best

possible facility-wide install. It is worth noting that the combined metric used can be tailored such

that areas that are of high priority can be can be configured to have the lowest possible metric value

in that area which will lead to lower values of average error in that area. However, other areas will

likely suffer from higher measurement error.

The applications of local positioning systems specifically those intended to function indoors

are increasing with increases in system accuracies. Highly accurate systems (< 1mm accuracy) have

already been developed that function in controlled situations and are used in surgical applications

[90]. This system is highly accurate but also functions in a highly controlled environment. More

robust systems, such as the one used in this work, have yet to achieve such high accuracy. Other

applications include telepresence and entertainment systems. A number of entertainment systems

such as Microsoft’s Kinect, the Nintendo WiiTM have been developed that use motion to perform

actions within a virtual world. With increased accuracy, UWB indoor positing tracking systems
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could be used in a similar manner.

NLOS and multipath conditions will continue to impact the performance of indoor position-

ing systems. More sophisticated methods that counteract these situations will be needed to make

systems more robust to these types of errors and to improve general system accuracies to the 1 cm

level. Further work into modeling the effects of various building materials on UWB signals such as

that presented in [15] could lead to higher indoor accuracy indoor.
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