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Abstract

This thesis considers the problem of detecting eating episodes such as meals and snacks,

by tracking wrist motion using smartwatch device. Previous work by our group has trained a wrist

motion classifier using a large data set collected from 351 people to learn general eating behaviors.

We call this a group model. This thesis investigates training the classifier with the same model

architecture on new data collected by 8 people, and training the individualized classifier separately

for each person. We call these individual models. The main goal in this work is to determine if

individual models provide higher accuracy in detecting eating episodes, with fewer false positives,

compared to the group model. By comparing their performance, we can also know if the improvement

from individual models varies for each individual.

In data collection, two data sets were used. One is the individual data set, which was

collected from 8 participants and each participant has at least 10 days of wrist motion 6-axis time-

series data. There are 115 days, 1,064.5 hours and 246 meals collected in total in this data set.

The second one is the group data set, called Clemson All-day Data set (CAD), collected in previous

work [27]. This group data set collected from 351 participants contains 354 days, 1,133 meals, 250

eating hours and 4,680 hours in total. Two data sets were first processed using smoothing and

normalization techniques and then cut along time by a sliding window to generate training and

testing samples for training models.

In model training and evaluation, all models used the same convolution neural network ar-

chitecture. Only one group model was trained on CAD group data set and this group model was

used to compare with all other individual models. We used 5-fold cross validation to train and

evaluate 5 individual models per individual. In model evaluation, we selected weighted accuracy

(WAcc) as time metric to measure the models’ ability of classifying each window sample as eating or

non-eating. We also selected true positive rate (TPR) and ratio of false positive over true positive
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(FP/TP) as episode metrics to measure model’s ability of detecting each meal episode. TPR mea-

sures how many true eating episode are detected correctly and FP/TP measures the ratio of wrong

detection amount over true detection amount. Hence when TPR is larger and FP/TP is smaller,

model performs better. WAcc, TPR and FP/TP were measured by cross validation.

When measuring the time metric, we found that over 8 participants, the average WAcc on

all individual models is 0.819 and the average WAcc on the group model is 0.780. On average, the

individual models outperform the group model. Moreover, the improvement of individual models

over the group model can vary per individual. For example, in one individual data set, individual

models with WAcc of 0.897 have obvious improvement compared to the group model with WAcc of

0.774. In another individual data set, WAcc of 0.958 from individual models is very close to WAcc

of 0.956 from the group model.

In the measurement of episode metrics, we found that before tuning hyper-parameters Ts and

Te, compared to the group model, individual models have the average improvement of 8.6% on TPR,

but -14.4% on FP/TP. After tuning Ts and Te, individual models have the average improvement of

10.1% on TPR and 33.2 % on FP/TP. Tuning Ts and Te can improve the individual models’ episode

metrics.
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Chapter 1

Introduction

1.1 Overview

This thesis considers the problem of detecting eating episodes (meals, snacks) by tracking

wrist motion using sensors embedded in a smartwatch. Previous work by our group has trained

a wrist motion classifier using data collected by 351 people. We call this a group model. This

thesis investigates training the same classifier on new data collected by 8 people, and training the

classifier separately for each person. We call these individual models. The main goal is to determine

if individual models provide higher accuracy in detecting eating episodes, and fewer false positives,

compared to the group model.

The motivating idea for this work is that different people may move their wrists differently

during eating episodes and other daily activities. For example, one person may habitually eat with

utensils while another tends to use their hands. One person may tend to eat faster while another

tends to eat slower. Typical food selections by different people may require different types of wrist

motions. A group model must learn all these motion patterns which increases the complexity of

differentiating eating activities from non-eating activities. An individual model can learn fewer

patterns which may improve classification accuracy.

As people may have different wrist motions during eating, they may also have different wrist

motion patterns caused by their other typical daily activities. For example, one person may wear

glasses and frequently adjust them. These wrist motion patterns can resemble eating gestures and

cause confusion in our classifier. However, another person may not wear glasses, and in this case
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the classifier may benefit from the lack of this confound. Another difference between individuals is

proclivity for facial and hair grooming. Daily work and hobby tasks may also cause a wide variety

of wrist motion differences between individuals. Our classifier outputs two classes, eating and non-

eating, which means that its challenge is to differentiate wrist motions caused by eating episodes

from all other wrist motions observed throughout the day.

The data previously collected by our group consists of appx 1 day of wrist motion for each of

351 people. One participant recorded for three days, another participant recorded for two days and

the others recorded for 1 day. For the experiments in this thesis, we collected new data consisting of

appx 10 days for each of 8 people. We used the previous data set to train the group model, and the

new data to train individual models. We also compared the accuracy of detecting eating episodes

on the new data using the group model and individual models.

The rest of this chapter provides background for our methods and experiments. Section

1.2.1 discusses the obesity epidemic which is the motivating health problem for this research. Section

1.2.2 discusses the field of mobile health (mHealth) tools, which empower individuals to track data

related to their individual health. Section 1.3 discusses previous work using mHealth tools for

detecting eating episodes. Section 1.4 describes the wrist motion tracking device we use to collect

data, including the physics of how accelerometers and gyroscope sensors work. Section 1.5 provides

background in deep learning and neural networks, which is the type of classifier we use to analyze

wrist motion. Finally, section 1.6 outlines the novelty of this work and lists the main questions

examined in our experiments.

1.2 Background

1.2.1 Obesity

Obesity is a challenging healthcare problem. It is a medical problem that can increase

the risk of diseases and health problems, such as heart disease, diabetes, high blood pressure and

certain cancers. For example, diseases like liver cancer, kidney cancer and gastric cardia cancer are

usually developed in people who are overweight or obese much easier than normal-weight people.

As reported by National Cancer Institution, people who are overweight or obese are up to twice as

likely as normal-weight people to develop liver cancer. The association between overweight/obesity

and liver cancer is stronger in men than women [5, 17, 32]. According to a report from CDC in 2017,
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obesity was prevalent in 39.8 % of the population and affected about 93.3 million of US adults in

2015-2016 [6]. China has the largest number of affected people worldwide, with about 46%of adults

and 15 % of children being obese or overweight [36]. As the obesity problem is prevalent making

people exposed to high risk of disease, it is necessary to figure out the causes of obesity and ways to

lose weight.

According to previous researches, the factors contributing to obesity are genetics, lack of

physical activity and poor diet. Although genetic factor could be a cause, the current epidemic of

obesity is caused largely by an environment that promotes excessive food intake and discourages

physical activity and the imbalance in Energy intake (EI) and energy expenditure (EE) [25]. Humans

have evolved excellent physiological mechanisms to defend against body weight loss, but they have

only weak physiological mechanisms to defend against body weight gain when food is abundant [18].

There are many methods to lose weight, such as trying intermittent fasting, eating mindfully,

cutting back on sugar and refined carbohydrates, tracking diet and exercise [15, 19]. For example, in

intermittent fasting (IF), it involves regular short-term fasts and consuming meals within a shorter

time period during the day, like fast on 2 days out of 7 days in a week. There are some researches

indicating that short-term intermittent fasting up to 24 weeks in duration, can lead to weight loss in

overweight individuals [8]. The second easy method to lose weight is to eat mindfully. For example,

people can eat slowly to take time to chew and savor the food. This technique helps with weight

loss, as it gives a person’s brain enough time to recognize the signals that they are full, which

can help prevent over-eating and pay attention to select food and avoid picking food that contains

high calories [15]. In addition to controlling the in-take of food, tracking the diet and exercise and

encouraging people to take more exercise after eating is usually a useful way to lose weight. There

is a study revealing that a positive correlation between weight loss and the frequency of monitoring

food intake and exercise. Even a device as simple as a pedometer can be a useful weight-loss tool

for monitoring the diet and exercise in daily life [4].

While the approaches mentioned above are easy and natural ways to lose weight, they require

people to keep track of their diet and daily life mindfully. However, it is usually hard to let people

record how they eat or do exercise every day for a long time. Especially when people are busy due

to their job or study, they are likely to give up recording gradually. In this case, some devices like

smart phone, smart watch can provide convenient and powerful ways for them to do that and this

leads to a field of mobile health (mHealth), which is introduced in the next section.
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1.2.2 mHealth

Healthcare is one of the significant demands in human life to improve life quality. In the last

decade, healthcare spending in the OECD has increased from an average of 7.8 percent to 9.7 percent

of the region’s GDP [1]. Unfortunately, in emerging markets, inadequate health infrastructure limits

the rural and the urban poor to the most basic care. Healthcare in hospital can be expensive and

need patients to wait for a long time to get diagnoses and treatments. Observations from patients

prior to a hospital visit are often anecdotal, which need doctors to guess details. It is usually

inconvenient for patient to record the observations manually for a long period. Accurate tools for

self-monitoring are necessary to help people monitor their daily life and diet and these tools should

be easy to use and impose a minimal burden on the user [10]. Consequently, healthcare providers

move their insights to cheaper and faster ways for healthcare diagnoses and pay more attention to

develop mobile health service.

Figure 1.1: Example of iPhone smart watch and its application in mobile health

Mobile health, also called mHealth, is a term used for the practice of medicine and public

health supported by mobile devices, which is an important part of healthcare. Mobile heath largely

emerges as a mean of providing greater access to larger segments of a population in developing

countries, as well as improving the capacity of health systems in such countries to provide quality

healthcare [31]. With benefit from the rapid growth of computation techniques and big data pe-

riod, mHealth techniques have growth rapidly. self-monitoring devices or software applications, like

smartphone, smart-watch, become prevalent and powerful to monitor user’s health and diet. For

example, in figure 1.1, Apple combines iPhone and Apple smart watch to collect user activity data

and applies machine learning in healthcare software to detect the exercise user takes and measure
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how user’s cholesterol or blood pressure has changed over the years. Another example is that using

data collected from wrist-worn devices, we are capable of finding the number of bites taken from food

by user, since the pattern of taking food usually consists of picking up food, rotating and moving

hand to mouth and eat. By recognizing such kind of patterns, we can recognize if user is eating or

not and how many meal events user has in daily life.

1.3 Related Work

In order to fight against obesity, measurements of energy intake are commonly used for

the study and treatment of obesity. While the most widely used tools rely upon self-report and

require a considerable manual effort, leading to under-reporting of consumption, non-compliance,

self-monitoring devices provide powerful ways to detect eating period of users automatically. One

of self-monitoring devices is watch-like device, tracking the wrist motion of user to detect eating

activities.

In the past, Dong et. al proposed to use InertiaCube3 wearable device to track the wrist

motion and segment the data based on task logs manually. The authors also developed a rule-based

algorithm to classify the task of wrist motion [33]. The authors performed two experiments, in the

first rule-based algorithm, it reported 91% accuracy in assigning these classes to a total of 125 tasks.

In a second experiment, the authors applied a state machine method to categorize time into one of

four categories: start of eating, end of eating, not-eating and inside or outside eating, which achieved

a sensitivity of 82%.

Later, they also described an algorithm that segmented and classified such periods as eating

or non-eating activities and also evaluated this method on a large data set (43subjects, 449 total

hours of data, containing 116 periods of eating) collected during free-living that wrist based tracking

could be used to count the number of bites of food consumed during a meal [34]. The authors

reported that an accuracy of 81% for detecting eating at 1 second resolution in comparison to

manually marked event logs of periods eating. The authors concluded that vigorous wrist motion is

a useful indicator for identifying the boundaries of eating activities [34].

After Dong’s work, Shen et. al collected data from 276 participants with a total of 44,873

gestures in data set and labelled the gesture using video synchronized with wrist motion tracking

device. The authors examined if foreknowledge of the gender, age, and utensil used for eating could
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improve recognition accuracy by using a machine learning method, called Hidden Markov Model

(HMM). They reported that Age HMMs provided a 4.3% increase in accuracy and utensil HMMs

provided a 6.2% increase in accuracy [35].

As mentioned in the paper [24], ”Deep learning (DL) methods receive increasing attention

within the field of human activity recognition (HAR) due to their success in other machine learning

domains. Nonetheless, a direct transfer of these methods is often not possible due to domain specific

challenges (e.g. handling of multi-modal sensor data, lack of large labeled data sets)”, in recent

years, more and more researchers start applying deep learning methods, like CNN, to human activity

recognition field.

In recent years, our research group has utilized deep learning to build models to track and

classify the wrist motion for gesture recognition and eating detection. Luktuke et. al applied a

deep learning model called U-Net to segment 1D gestures in the same way of 2D image region

segmentation, by treating each inertial measurement unit (IMU) datum like a pixel. A data set

called Clemson Cafeteria Data set, collected from 276 participants with 1 - 4 courses in each meal,

was used. The authors reported their neural network classifier recognized an average of 79.7% of

‘bite’ and 84.7% of ‘drink’ gestures correctly per meal. Overall 77.7% of all gestures were recognized

correctly in average per meal [13].

In the research of eating activity detection, Sharma collected a data set called Clemson

All-day Data set (CAD), a freeliving eating activity data set containing 354 days and 4,680 hours

of wrist motion collected from 351 participants. One participant recorded for three days, another

participant recorded for two days and the others recorded for 1 day. Then the author proposed to

use a convolution neural network with a much longer window (0.5-15 min) that can contain other

gestures related to eating, such as manipulating food, preparing foods for consumption, and resting.

The final results reported in that work showed that the context of these other gestures can improve

the detection of periods of eating, and that accuracy at detecting eating increased by 15% in longer

windows compared to shorter windows as the overall results on CAD were 89% detection of meals

with 1.7 false positives for every true positive (FP/TP), and a time weighted accuracy of 80% [27].
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Figure 1.2: Shimmer3 device with x, y, z axes shown

1.4 Shimmer3 Device

In order to collect wrist motion, data, a wearable device for data collection is necessary. Usu-

ally wearable device contains inertial measurement unit (IMU) sensor, which combines accelerometer

sensor and gyroscope sensor to measure and record the acceleration and angular velocity data from

wrist motion. Shimmer3 is one of such type of sensors. Shimmer is a small wireless sensor platform

well suited for wearable applications. The integrated kinematic sensors, large storage and low-power

standards based communication capabilities enable emerging applications in motion capture, long-

term data acquisition and real-time monitoring. Shimmer3 wearable device provides a convenient

way to collect wrist motion time series data [21].

Shimmer wearable device contains 3-axis accelerometer (x, y, z axes shown in figure 1.2)

and 3-axis gyroscopes (angular rate sensors), allowing us to keep track of wrist motion and record

time series data for training our models. The collected data is loaded from the device to local laptop

by using a software system called ConsenSys, which exports the time series data into a CSV file

that contains acceleration data from internal 3-axis accelerometer and angular velocity data from

internal gyroscope sensor. In this work, data was collected by using Shimmer3 devices. Section 1.4.1

and section 1.4.2 introduce how accelerometer and gyroscope work.

1.4.1 Accelerometer

Accelerometer is a microelectromechanical device, which measures the acceleration on the

device due to external force. The principle of measuring the acceleration behind accelerometer is
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based on Hooke’s Law and Newton’s Second Law.

Figure 1.3: Example of the structure of accelerometer. The blue rectangel is the shuttle associated
with two springs. When the shuttle moves, it changes the capacitance on the left and leads to a
change of voltage.

According to Hooke’s law, as shown in figure 1.3, when a movable shuttle with mass M

attached to a fixed end with a flexible spring is displaced, the force from the spring is proportional

to the spring constant K and the actual displacement x experienced by the body. This formula is

F = −K × x (1.1)

where x is the displacement of shuttle and K is the spring constant and F is the force exerted on

the spring. According to Newton’s Second Law, we have the formula

F = M × a (1.2)

where M is the mass of shuttle and a is the acceleration of that mass. By combining equations 1.1

and 1.2 Then the acceleration estimated in accelerometer is given by

a = −K × x
M

(1.3)

The force that displaces the mass, causes capacitance change between the moving plate

and the fixed plates. This change is measured to a voltage which can be converted to units like

meters/second2 or typically as a proportion of acceleration due to gravity g = 9.81m/s2.
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1.4.2 Gyroscope

Gyroscope is a sensor that measures angular velocity, the rate at which a device is being

rotated. In figure 1.4, there is a sensor called MPU-6050, which contains gyroscope sensor inside it.

Gyroscope typically has 3 axes: roll, pitch and yaw. By utilizing the data from gyroscope, we can

measure how fast the object rotates at different axes. These data can help us explore the patterns

from wrist motion. For example, when eating, if we rotate our hand, the angular velocity along roll

axis can be greater than the angular velocities in other axes. This helps us explore the patterns of

our wrist motion.

Figure 1.4: Example of 6 axes of gyroscope in MPU sensor: x, y, z for accelerometer and roll, pitch,
yaw for gyroscope

The sensing principle behind gyroscope is based on the Coriolis effect for a vibrating body

that experiences angular motion [30]. In figure 1.6, we can see when the platform is accelerated to

the right, the mass moves to the outer edges due to the Coriolis effect. This compresses the outer

springs, which causes capacitance changes in the sensing teeth. The displacement of the frame can

be sensed through capacitive transduction in response to the force exerted by the mass. Typically

this sensor output needs to be converted to unit of degree /sec.
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Figure 1.5: Schematic of the gyroscope’s mechanical structure.

Figure 1.6: Example Coriolis effect in gyroscope. The blue circle is a rotating platform. Inside the
circle, the square shows the mechanical structure of gyroscope

1.5 Machine Learning

Machine Learning is a sub-field of artificial intelligent, its goal is to learn specific patterns

and mine interesting features from data so that people can utilize machine learning models to solve

the real world problems. In traditional computing, algorithms are sets of explicitly programmed

instructions used by computers to calculate or problem solve. Machine learning algorithms instead

allow for computers to train on data inputs and use statistical analysis in order to output values

that fall within a specific range. Because of this, machine learning facilitates computers in building

models from sample data in order to automate decision-making processes based on data inputs [28].

According to the learning method, machine learning can be generally categorized into three types:

supervised learning, unsupervised learning and semi-supervised learning.

In supervised Learning, machine learning model is given a data set of tuples (xi, yi), where

xi represents the ith sample and yi represents the corresponding label of the ith sample. For example,

if there is an image of cat, then this image is an sample xi and the label ”cat” is yi. The task of

detecting periods of eating belongs to a task of supervised learning as well, which is often formulated
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as a classification problem, since it requires training samples x as well as the ground truth labels y,

”eating” and ”not eating”.

Unsupervised learning utilizes data without labels, while supervised learning requires labels

of training samples. The unsupervised learning algorithm is left to find commonalities among its

input data. For example, in movie recommendation system application, it is usually necessary to

cluster users into different groups based on their similarity on their interests of movie genres, their

hobbies, countries and other features so that the system can better do recommendation based on the

group’s interests. In this case, there is no label used, but it needs to find similarity among people

based on their information. Clustering task in Movie recommendation is an example of unsupervised

learning.

Semi-supervised learning falls between supervised learning and unsupervised learning, it

usually combines small amount of data with large amount of unlabeled data to train machine learning

model [37]. In semi-supervised learning, it considers the problem of expensive label in supervised

learning and permits harnessing the large amounts of unlabelled data available in many use cases in

combination with typically smaller sets of labeled data. It is commonly used when there is a lack of

labels for data set [29].

1.5.1 Deep Learning

Deep learning is a subset of machine learning, which is inspired by our human brain structure

and utilizes a hierarchical level of artificial neural networks to carry out the process of machine learn-

ing. Artificial neural network simulates human brain and constructs a network using multiple layers

of neurons in hierarchical style. There are many different deep learning architectures, such as deep

neural networks, deep belief networks, recurrent neural networks and convolution neural networks,

which have been applied to fields including computer vision, machine vision, speech recognition,

natural language processing, audio recognition, social network filtering, machine translation, bioin-

formatics, drug design, medical image analysis, material inspection and board game programs. Deep

learning methods have produced results comparable to and in some cases surpassing human expert

performance.
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1.5.1.1 Neural Network

Neural network model is the core concept in deep learning. It was first inspired by the

biological structure in human brain. A biological neuron contains dendrites, cell body, nucleus, axon

and synapse. Similar to biological neuron, neuron in artificial neural network contains weights in

the input branch, simulating the dendrites and synapse to have excitatory or inhibitory effect on

input signal, activation function, simulating the cell body and nucleus. Neuron works as a non-linear

function to sum up and filter the input and output the results.

Figure 1.7: Comparison between biological neuron and neuron in neural network

Neural network works as a non-linear model, which takes the data feature vector as input

and outputs the prediction in output layer. In classification problem, the output from neural network

can be possibility that input feature belongs to a class. For example, when we build a network to

classify if an animal in an image is a cat or not, then the network output is the possibility of being

a cat, with value in the range from 0 to 1. In regression problem, for example, if we want to predict

the housing price based on the input features like location of housing, longitude and so on, then the

prediction from neural network becomes the estimated housing price in the range of [0,∞). Hence
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the output from neural network can be various and it depends on the task. If we formulate the

neuron, we can have the following expression:

a = σ(wTx+ b) (1.4)

where wT is a learnable row vector of weights, wT = [w1, w2...wN ] and x is an input column vector

[x1, x2...xN ]T . b is a scalar learnable bias term, b ∈ R. σ(.) is usually a non-linear activation

function, which is used to filter out the features and retain the most important features. There are

many choices for the activation function and one of the most popular activation functions is rectified

linear unit (ReLu) activation function, its formula is as follows:

σ(z) =

 z z ≥ 0

0 otherwise
(1.5)

This function outputs the scalar input value z directly when the input value is greater than 0, and

outputs 0 when input is smaller than or equal to 0. This enables the network to filter out the values

smaller than 0.

Figure 1.8: Example of neural network structure with fully-connected layers

Each layer of neural network is formed by multiple neurons and a neural network is con-

structed by multiple connected layers. When feeding the network with input data, the input feature
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vector becomes the input layer in the neural network and this input feeds the next hidden layer

inside the network. Then the output from one hidden layer becomes the input of the next hidden

layer. This process is called feed-forward. Note that in figure 1.8, the layers, whose neurons have

full connections to all neurons in the previous layer, as seen in regular neural networks, are called

fully-connected layer. Their outputs can hence be computed with matrix multiplication.

When training the neural network, a technique called back-propagation, is used to update

the parameters, like weights and bias terms in network [22]. In back-propagation, loss between

prediction and target is first calculated and then used to compute the gradient of the parameters

using chain rule method. After obtaining gradient values of parameters, gradient descent algorithm

is applied to update the parameters in neural network so that neural network can learn from data.

1.5.1.2 Convolution Neural Network

Convolution neural network is a network that utilizes convolution layer in neural network.

Convolution layer works as a function to detect and extract features from input by using adjustable

masks, called kernel or filter, to perform convolution operation over the input feature matrix. The

parameters in the kernels are the weights in the layer of neural network, which can be adjusted

during training process to better fit data.

Convolution layer can be applied to either 1D feature, like time series data, or 2D features,

like image. In 2D convolution, the input feature typically has width, height and channel. For

example, in figure 1.9, the input is an image with width equal to 6 and height equal to 6 and channel

equal to 1. It uses a 3-by-3 learnable kernel to do convolution on the upper left image patch by using

element-wise multiplication and then summing up the result to get a new pixel in output matrix.

After that, it slides the kernel by one pixel either rightward or downward and do the same thing to

get the new output matrix. Hence the output matrix becomes 4-by-4 matrix.

1D convolution is the same process as a 2D convolution, except that the convolution kernel

slides in a single dimension. Whereas we see the 2D convolution slide the kernel in both the horizontal

and vertical orientation across the image, with our 1D convolution, we only see our kernel slide across

the time domain [12]. In figure 1.10, we can see an example of 1D dimensional convolution, which

uses a 1-by-3 kernel to do convolution on 1D data. The left figure shows the convolution with

stride = 1 when moving kernel to the right while the right figure use a stride of 2. In addition,

compared with fully-connected layer, convolution layer takes fewer learnable parameters by sharing
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Figure 1.9: Example of 2D convolution on image feature in convolution layer with 3x3 kernel and
6x6 input image

Figure 1.10: Example of 1D convolution on image feature in convolution layer with kernel size of 3

the parameters with different features and hence can be trained faster. As fully-connected layer

considers the combination of all input features, convolution layer considers the features in a small

local region only.

1.6 Novelty

The main novelty of this work is that it is the first to compare the performance of detecting

eating activities of a CNN group model trained on a data set of a large group of people, Clemson

All-day Data set (CAD) with the performance of individual CNN models that are trained on much

smaller data set from different individual data sets, by testing the group model and individual models

on the same individual data. The second novelty is that we attempted to find the thresholds Ts

and Te values for each individual data set using three different methods and improved the TPR

and FP/TP performances of individual data sets. This work assumes that eating behaviors from a

group of people share similar patterns with personal eating behaviors. The group model works as a

more general model that requires a large amount of training data, while individual models work as
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customized models for specific person, trained on fewer but specific data.

By comparing performance between general model and customized models, we can determine

if the similarity of eating behavior between group of people and specific individual exists. This work

can also make sure if customized individual models can work better than a more general model,

group model. More specifically, this thesis aims to answer the following questions:

1) Do individual models trained on small individual data set perform better than the group model

trained on large data from a group of people, when testing them on the same individual data?

2) How much improvement do individual models get, compared with group model? Does it vary

depending on each individual?

3) Does changing individual hyper-parameters help improve performance of individual models?
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Chapter 2

Methods

2.1 Data Collection

2.1.1 Data Collection Process

Two data sets used in this work were collected by Shimmer3 wrist motion tracking device,

shown in figure 1.2. Participants were taught to use such device to collect the wrist motion of the

hands they use to eat in their daily life.

Figure 2.1: Explanation of using Shimmer device. The button on the left side is a power button to
control power on/off state. The big orange button is a record button. Pressing this button about 5
second can start/stop recording. The recording state is indicated by LED lights

After collecting the data from one day, each participant used a software called ConsenSys,
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to load the data from Shimmer3 embedding device into local laptop and export the data as a CSV

file, which contains the date time of the signal data points, raw data from accelerometer sensor and

gyroscope sensor. The wrist motion time series data sets were recorded in 15Hz frequency. In other

words, there were 15 data points recorded in each second by Shimmer3. Figures 2.2 and 2.3 show

the process of extracting raw data from device and convert data into CSV format.

Figure 2.2: Example of loading data from Shimmer3 device to local laptop using ConsenSys Software

After exporting data into a CSV file, we used a software called MarkerParser to load the

CSV file and label the eating episodes on time series data. When using the MarkerParse software,

participants needed to memorize the eating episodes in that day in order to label the start time and

end time of eating of each eating episode. The input information of a time series data includes meal

names, the labels indicating if that period contains a meal or not, start time and end time of each

eating episode, items consumed by user during eating period and location of eating. However, in

this thesis, the information used includes labels of eating, start time and end time of eating period

only, since the task in this thesis is to predict if participant is eating or not eating only. After the

data collection and labelling steps, a C program software, called EatMon, was used to visualize the

data set to check if data was recorded successfully without corrupted due to broken devices.
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Figure 2.3: Example of exporting data from ConsenSys Software into a CSV file

Figure 2.4: Example of software MarkerParser. User needs to fill the start time, end time, meal
name and other information for each meal into the blank areas to label each meal
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2.1.2 Data Description

In this work, there were two data sets utilized. One data set, called Clemson All-day Data

set (CAD), was collected by our group previously [27]. As reported by the author, 408 participants

were recruited in total to collect data and data was recorded on all seven days of the week. There

were 351 participants completing the data collection providing a total of 354 days of usable data.

One participant recorded for three days, another participant recorded for two days and the other

participants recorded for 1 day. 4,680 hours of data was collected in total, containing 265 hours

of eating activity across 1,133 separate eating activities. The average amount of data recorded per

participant was 13.2 hours. The average start time for a recording was 8:50 am, while the average

end time for recordings was 22:06 pm. The balance ratio of non-eating hours divided by eating hours

is 20 in CAD data set [27].

The second data set from this work was collected from 8 participants. Each individual

provides at least 10 days of data recorded successfully and hence there are 8 different individual

data sets. There are 115 days, 1064.5 hours and 246 meal events recorded in total. A total of 57.5

of eating hours and 1007 non-eating hours were recorded in total. Balance ratio is the amount of

non-eating hours over the amount of eating hours. For each individual, the balance ratio is computed

by equation 2.1. A total balance ratio for the whole individual data set of 8 participants is 17.5.

balance ratio =
no eating hours of an individual

eating hours of an individual
(2.1)

In table 2.1, each row, with data set id range from 1 to 8 in the first column, shows the

information of a data set collected from one individual. For each individual, the features, including

the number of days recorded, total hours recorded, meal count, average meal count per day, average

hour per meal, eating hours, no eating hours and the balance ratio are computed. After that, the

row, called ”total”, sums up the information over 8 individual data sets, to get total hours, total

eating hours and total non-eating hours. The balance ratio in the row of ”total” is equal to total

non-eating hours divided by total eating hours. We also calculate the average records over the

8 individual data sets in ”average” row. In this work, there is an average of 14.4 days over all

individuals recorded. The average value of total hours of each individual data set is 133.1 and the

average value of meal count over all participants is 30.8. The average balance ratio is 17.5, equal to

the value of average non-eating hours divided by average eating hours.
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dataset Days
Total
Hours

Meal
Cnt

Avg Meal
Cnt Per
Day

Avg Hour
Per Meal

Eating
Hours

No
Eating
Hours

Ratio:
noeat/eat

1 17.0 129.2 32.0 1.9 0.2 7.7 121.5 15.8
2 14.0 125.6 26.0 1.9 0.1 3.3 122.3 37.1
3 23.0 167.2 60.0 2.6 0.1 7.6 159.6 21.0
4 13.0 134.0 38.0 2.9 0.2 9.3 124.7 13.4
5 14.0 127.8 20.0 1.4 0.3 5.9 121.9 20.7
6 12.0 144.8 26.0 2.2 0.3 7.0 137.8 19.7
7 10.0 120.4 22.0 2.2 0.3 5.9 114.5 19.4
8 12.0 115.5 22.0 1.8 0.5 10.8 104.7 9.7

total 115.0 1064.5 246.0 - - 57.5 1007.0 17.5
average 14.4 133.1 30.8 2.1 0.2 7.2 125.9 17.5

Table 2.1: There are 8 individual data sets collected from 8 participants respectively. The first
column is the id of each individual data set. Total Hours: the amount of hours recorded in each
individual data set. Meal Cnt: meal count of each individual. Avg Meal Cnt Per Day: average meal
count per day of each individual. Ratio: the balance ratio computed by no eating hours over eating
hours.

Data collected from Shimmer3 devices used contains 6 axes of features: linear acceleration

x, y, z, from accelerometer and yaw, pitch, roll from gyroscope. Figure 1.4 and figure 1.2 show the

axes of linear accelerometer (x, y, z) and the axes of gyroscope (roll, pitch, yaw) in Shimmer3 device.

The acceleration data x, y, z output from accelerometer is in unit of m/s2 while the angular velocity

data from gyroscope, yaw, pitch and roll has unit of degree/second.

2.2 Data Pre-Processing

In this section, we discuss the common techniques used in processing the noisy time series

data and the way used to extract the training and testing samples for training our deep learning

models.

2.2.1 Smoothing

Usually raw time series data from sensors, like accelerometer and gyroscope, is noisy. Espe-

cially when collecting wrist motion data, user’s hand may be shaking when they are eating, which

generates unexpected noise to the wrist motion data. In order to diminish the noise effect and

extract the main patterns that we are interested in, smoothing the time series data before usage is

necessary.
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One of the useful ways to smooth data is to use a Gaussian filter, which is to first generate

a Gaussian kernel mask based on Gaussian distribution and then apply the kernel to do convolution

over the time series data set. In this work, a Gaussian kernel with window size of 15 data points

and variance σ = 10 is applied to each axis of data, which is as same as the previous work [27] and

the convolution equation in smoothing is given by:

xsmooth
j =

p∑
k=−p

xj−kwk (2.2)

where xj−k is the (j−k)th data point in window and wk is the kth value in Gaussian filter [23]. The

convolution operation from a software package, called Numpy, is applied. In figure 2.5, one example

of comparing the smoothed data and data without smoothing is shown. This example shows a time

series pattern with 900 data points from the x axis of accelerometer data. X axis in this figure

represents the index of data point and Y axis represents the signal value. The blue curve is the data

before smoothing, which is noisy especially around the x =200 and x = 800. After applying the

Gaussian filter (the orange curve), noise is diminished obviously and the main pattern (a peak) still

remains.

Figure 2.5: An example of comparison between smoothed data and non-smoothed data. Blue curve
represents the signal before smoothing. Orange curve represents the signal after smoothing using
moving average
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2.2.2 Feature Scaling

In addition to smoothing, feature scaling is also a significant data pre-processing technique,

which is to re-scale or regularize the range of data to reduce the bias effect on machine learning

model due to different ranges of different features. Usually, model that depends on distance between

features or uses gradient method to update hyper-parameters can be sensitive to the scale of feature.

The convergence rate of such kind of models is usually affected by the range of feature. By apply-

ing feature scaling to data, it can speed up the model training and sometimes improve prediction

performance [3].

In this work, z-normalization, also called standardization, one of the feature scaling methods,

was applied to transform data. Rather than directly re-scale the range of features, z-normalization

can convert data into data with zero-mean and unit-variance. The equation of z-normalization is

given by:

xnormalized =
x− x̄
σ

(2.3)

where x̄ and σ are the mean and the variance of time series data respectively. By subtracting the

mean of the whole time series data and dividing by variance, it can shift the data to a zero center

and then re-scale its variance to 1. According to the previous work , z-normalization method is

better than other normalization methods, hence z-normalization was applied to transform data after

smoothing the data using Gaussian filter in this work.

2.2.3 Sliding Window

As time series data is a kind of unstructural data, it can not be used to train model directly.

This leads to a transformation method called sliding window, which extracts the training, testing

samples from time series data by using a window with fixed size.

In sliding window method, a window with fixed size is moved along the axis of time in time

series data. One sample is extracted from the region covered by the window in time series data.

Then the window is moved forward and skip some data points to extract the next sample. The size

of data pointed skipped by the window is called stride. For example, in figure 2.6, a window (blue

box) with size of 3 is used to extract a 1-axis time series data. After that, the window moves forward

by 1 data point (stride=1) to sample the next data frame. Note that when the stride is greater than

1, sometimes the window can fall outside the range of time series data and the extracted window
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sample is incomplete and invalid, when the window moves to the end of time series data. In this

case, we can simply drop the last invalid sample.

In this work, since the time series data contains 6 axes of data: x, y, z and roll, pitch, yaw,

a sliding window extracts the 6-axis data to create a data frame with 6 axes. The window size used

is 6 minute with sampling frequency of 15 Hz. That is, a window has the length of 6 × 60 × 15 =

5400 data points. The stride used in CAD group data set is 15 seconds (15seconds × 15Hz = 225

data points). However, as for each individual data set, since the individual data contains fewer data

than CAD data, in order to reduce under-fitting effect during model training due to small data set,

we use a stride of 5 seconds to extract more training samples. The amount of extracted samples can

be calculated by:

N =
T −W
stride

+ 1 (2.4)

where N is the amount of 6-axis data samples extracted from time series data. T is the length of

time series data in time axis. W is the window size.

When generating labels for samples, label ”1” represents eating and label ”0” represents no

eating. In data collection step, each meal period has been self-reported by user. Then each window

is labelled as yi = 1 (eating) if more than 50% of the window overlaps with a self-reported meal,

otherwise yi = 0 (non-eating). This is as same as the method in previous work [27].

Figure 2.6: An example of sliding window with size of 3 data points to extract sample from 1-axis
time series data of 10 data points. The stride in this example is equal to 1, so sliding window moves
forward by 1 data point to extract the next sample
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2.3 Neural Network Architecture

This section introduces the model architecture, convolution neural network, used in this

thesis as well as the parameter settings used to train our models.

2.3.1 Objective Function

As the task in this work is to detect meal events in wrist motion data, which can be converted

to a classification problem to classify if the window sample at a moment is 1 (eating) or 0 (non-

eating). In classification problem, cross entropy loss is a common loss function used to train a

classifier. Cross-entropy is a measure from the field of information theory, building upon entropy

and calculating the difference between two probability distributions. When using cross entropy loss

to train classifier, the output distribution from classifier is getting close to the distribution of ground

truth in data set.

Binary cross entropy is a case of cross entropy. It considers that data set has two classes

only. Two classes are mutual exclusive. Consider the definition of the binary cross entropy [9]. The

feature space is denoted as X ⊂ Rd×W . The label space is denoted as Y = {0, 1}. There is a set

of data tuples with size of N . The data set is denoted as D = {(xi, yi)}Ni=1. xi represents the ith

sample, xi ∈ X. yi is the label corresponding to xi and yi ∈ Y. A binary classifier model outputs

a scalar value with the meaning of possibility and it is denoted as f : Rd×W → R. θ is the set of

parameters of the classifier model. Then the binary cross entropy has the following formula:

CELoss = − 1

N

N∑
i=1

(yilog(f(xi; θ)) + (1− yi)log(1− f(xi; θ))) (2.5)

Eating detection task in this work is a binary classification problem and there are only two

classes. Eating is labelled as ”1” and non-eating is labelled as ”0”. Sliding window with length of

5400 data points is used to extract sample xi from 6-axis time series data. Hence dimension d=6 and

W = 5400 and xi ∈ R6×5400. The the neural network model with a set of parameters θ can output

a scalar value, representing the possibility of eating. If this possibility is higher than a threshold,

prediction becomes ”1”, otherwise, ”0”.
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2.3.2 Model Architecture

The deep learning model architecture in this work is as same as previous work [27]. The

convolution neural network used in this work consists of 3 different kinds of layers: convolution

layer, 1D global average pooling layer and dense layer. Figure 2.7 shows the architecture of this

convolution neural network as well as the output shape and the amount of trainable parameters used

in each layer. In the column of ”Output Shape”, each 1D Convolution layers (Conv1D) has output

shape tuple: (higher dimension, size, depth), and other layers have output shape tuple: (higher

dimension, size). For all layers, higher dimension is None. For layers ”G1” and ”Dense”, they

output 1-dimensional vectors and hence their output shapes have size only, without the dimension

of depth. Each sample input to this neural network has the size of 5400 data points (6minutes × 60

sec/minute × 15Hz ) and depth of 6 (6 axes: x, y, z, roll, pitch, yaw). Hence each sample is a matrix

with 6 columns and 5400 rows. The output from the neural network is a scalar value between 0 and

1, representing the possibility that the input sample belongs to the class of eating. In the later of

this section, the function and principle of each layer are discussed.

Figure 2.7: CNN architecture information printed by tensorflow
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2.3.2.1 Convolution Layer

Convolution layer is a significant layer in neural network, which usually works as a feature

extractor to extract the main important patterns from the input by using filters and convolution

operation. Convolution layer consists of a set of filters with learnable weights and biases. Each filter is

repeatedly convolved throughout the entire length of the data for generating a useful representation.

Since the weights in filter are shared to do convolution along the length of data , convolution layer

has the property of parameter sharing, which can control the number of parameters and boost the

training speed by using fewer parameters.

The convolution operation can be 1-dimension or 2-dimension. 1D convolution layer is

usually applied in time series data. Consider 1D convolution layer here. The input has the shape

of (size, depth). The number of data point along the time axis is called the size. The number

of channels, or axes of sensors in input feature is called the depth. In 1D convolution layer, each

filter, also called kernel, is a matrix and has the shape of (k, depth), where k is called kernel size

and it is the length of convolution filter. Depth of the filter is equal to the depth of input sample.

During convolution, some additional data points can be added to the boundary of the input matrix

to avoid filter moves outside the region of the sample. Such method of adding additional data points

is called padding. In a convolution layer, it can contain multiple filters. The number of filters in

the convolution layer is equal to the depth of the output feature map after convolution. During

convolution, the stride of the kernel is denoted as s, which plays an important role in the feature

generation part as it determines the shift of convolution filter, as it runs over the length of the

sequence. It can be used to control the size of the output.

In 1D convolution layer, we can compute the size of its output based on the shape of input

and shape of the filter. The size/length of the output feature can be calculated by the formula:

Output size =
input size− k

stride
+ 1 (2.6)

As mentioned before, k is the size or length of the kernel. The depth of the output is equal to the

number of filters in this convolution layer, since each filter applied to the input sample can generate

one channel of feature. Additionally, the amount of trainable parameters in one convolution layer is

given by:

N = k × d×m+m (2.7)
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where N is the amount of trainable parameters. k is the kernel size. d is the depth of input. m is

the number of filter in the convolution layer, or the depth of output. The total amount of weights

in all filter is equal to k × d ×m. Each filter contains one bias value and hence there are m bias

values needed to be added.

Figure 2.8: Example of convolution layer with 1 filter on 1D time series data with depth of 6 (6
rows) and size of 5 (5 columns), stride of 1. The orange matrix represents a filter in 1D convolution
layer.The grey cell is a bias term in convolution layer

There is one example of 1D convolution in figure 2.8. In this example of convolution layer,

the input sample is a time series data with size of 5 and depth of 6 (6 axes/channels: x,y,z,roll,

pitch, yaw). There is only one filter (the orange array) in this convolution layer. The filter has

kernel size of 3 and depth of 6 and stride of 1. According to equation 2.6, the output size is equal

to 5−3
1 + 1 = 3. Each output value in each channel in convolution is given by:

yc,i =

k−1∑
j=0

wc,jxc,i+j + b (2.8)

where c is the index of channel/row and i is the index of position of column which starts from

0. wc,j is the weight at cth row and jth column of filter. b is the bias term. After convolution is
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applied to each channel, all vectors are added up together to get the final output from this filter.

For example, in the convolution of channel x, based on equation 2.8, the first output value is equal

to 1× 1 + 2× 2 + 3× 3− 1 = 13. This process is as same as 2D convolution layer in [7].

In this work, three different convolution layers without using padding are used to transform

the feature. The first convolution layer has the shape of (k = 44, depth = 10, stride = 2), the second

convolution layer has the shape of (k = 20, depth = 10, stride = 2), while the third convolution layer

has the shape of (k = 4, depth = 10, stride = 2). Input sample has size of 5400 data points and

depth of 6. Hence by using equation 2.6, output from the first convolution layer has size of (5400

- 44)/2 + 1= 2679 and depth of 10. According to equation 2.7, the first convolution layer has

44 × 6 × 10 + 10 = 2650 parameters. Similarly, the output shape and parameter amount can be

computed in the same way. All three convolution layers in the model use L1 norm regularization

to reduce the effect of over-fitting [27, 20]. After each 1D convolution layer, a element-wise ReLu

(rectified linear unit) activation function is used to filter the output values.

2.3.2.2 Global Average Pooling Layer

1D global average pooling layer is a layer that extracts the features and reduces the size

of input by replacing each channel with the mean value of this channel, so that the dimension of

the feature can be reduced. In figure 2.7, after applying the global average pooling1d layer, the

dimension of input (None, 664, 10) is reduced to (None, 10) and only 10 scalar values are remained.

The layer doesn’t require any parameters, so the amount of parameters in this layer is 0.

Figure 2.9: Example of 1D global average pooling. It averages the vector to get a scalar value as
output and reduce the dimension of feature
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2.3.2.3 Fully Connected Layer and Logistic Regression

After the global average pooling layer, a fully connected layer with 200 neurons. Fully

connected layer, also called dense layer, can be viewed as a function that performs feature selection

by tuning learnable weights and biases. In a fully-connected layer, each neuron takes the weighted

sum of all output values from the previous layer as input and then an element-wise activation function

is applied. Hence, it can be expressed by equation:

Y = σ(WX + b) (2.9)

where X is an input vector, X ∈ Rm and W is a weight matrix, W ∈ Rn×m and b is a bias vector,

b ∈ Rn and Y is the output vector from fully connected layer, Y ∈ Rn and σ(.) is an element-wise

activation function. Hence the amount of parameters in fully connected layer is:

N = n×m+ n (2.10)

where n is the length of output vector and m is the length of input vector. In the model architecture,

there are 200 × 10 + 200 = 2200 trainable parameters in the first dense layer, whose dense layer

use a ReLu activation function. In the second dense layer ”dense 1”, it projects the feature vector

into a scalar value and then apply a logistic function to project the range of value into [0, 1] as the

possibility of eating. The logistic activation function, also called sigmoid function has the form:

f(x) =
1

1 + e−x
(2.11)

In the dense layer with sigmoid activation function, there are 201 trainable parameters with 200

weights and 1 bias.

2.3.2.4 Summary of CNN architecture

Figure 2.10 summarizes the architecture of our CNN model, it is as same as the architecture

in figure 2.7. The input to the network is a window of 6 minutes with 6 axes. Hence each input has

size of 5400 (6minutes × 60 sec/minute × 15Hz) with depth of 6. In each convolution network, k is

the kernel size or the length of kernel. The 1D global average layer converts the output from the last
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Figure 2.10: Figure of summary of CNN architecture used in this work. W is the size/length of
input and axes is the amount of axes/channels. k is the kernel size. n is the size of 1D input vector
and m is the size of 1D output vector.

CNN layer to a vector with size of 10. In dense layer/fully connected layer, m is the size of input

vector and n is the size of output vector. The last dense layer uses a sigmoid activation function

while other layers use ReLu activation functions. The output from the network is the possibility of

eating.

2.3.2.5 Other Settings

1) Training Epoch: One training epoch is defined as one pass to the whole training data set.

This parameter control the times that the model is trained on the training set in order to

reduce the loss of model. The maximum training epoch for the group model is 150 to replicate

the setting in previous work [27]. The training epoch for individual models is set to be 20

for all experiments, since the losses in all training experiments can already converge without

obvious changes within 20 epochs due to the small size of data set.

2) Batch size: During training, the whole training data set is divided into multiple batches

with equal size. A model is trained on one batch and then updates its parameters based on

the loss on that batch. If the batch size is too large, for example, when batch size equal to the

size of training data set, then the update of model parameters is too slow and can also lead

to software out of memory due to loading a very large data to memory from disk. However,
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if the batch size is too small, like only one sample in one batch, then the update in model

parameter can be noisy and hard to converge. Hence, when choosing batch size, the common

way is to choose a mini-batch to train the model. The batch size selected in this work is 128

samples, which is suitable in this case without out of memory problem in software and make

model training stable.

3) Optimizer: In order to update parameters in deep learning model, gradient descent based

algorithm is usually utilized to compute the change of parameters and adjust the model’s

parameters. The basic gradient descent has the following equation:

θj = θj − α
∂L(θ)

∂θj
(2.12)

where θ is a set of learnable parameters in deep learning model and θj is the jth parameter

in that set. L(θ) is the loss of prediction from model, when using hyper-parameter θ. α is

the learning rate that control the update rate of parameter. While there are many different

optimization algorithms, the optimizer used in this work is called Adam optimizer, which is

a popular optimizer and is computationally efficient, has little memory requirements,and is

well suited for problems that are large in terms of data and/or parameters. The method is

also appropriate for non-stationary objectives and problems with very noisy and/or sparse

gradients [11]. The default learning rate in Adam optimizer is 0.001.

4) Learning Rate: learning rate controls the step or the size of change in parameter. As shown

in figure 2.11, if the learning rate is too small, then the model need to longer training time in

order to let loss converge to the local minimum. However, if the learning rate is too large, the

step of change in parameter becomes to large, then the parameter will skip the best parameter

corresponding to a local minimum of loss. Hence, a suitable learning rate is required. The

learning rate is left to be default of 0.001 in this work since it already allows our models to

converge quickly.

5) Early Stopping: Early stopping is a technique to avoid over-fitting during model training.

Over-fitting is a phenomenon that a model performs very well on training set but performs

worse on test set that the model has not seen before. During training the group model, early

stopping is used to monitor the accuracy on validation set and save the model with the best
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Figure 2.11: Figures of effect of different learning rates. The figures from left to right shows the
effect of small, suitable and large learning rate on training respectively

validation accuracy so that the group model is not affected by over-fitting, as there is a risk

of over-fitting when training the group model with 150 epochs from previous work [27].

6) Hardware and Software: All CNN models are constructed by using tensorflow2.3 in Python.

The hardware platform used in this thesis is Palmetto Distribution Cluster from Clemson

University with 4 CPUs and 62GB RAM and 2 GPUs of V100 with walltime of 24 hours.

2.4 Post-Processing and Hysteresis Threshold

As the task of eating detection is to detect meal episodes, it is necessary to segment the

time series data in each day of data by finding the start boundary and the end boundary of each

eating episode. There is a segmentation method for finding eating episode from our group’s previous

work [26, 27], called hysteresis threshold.

The basic idea behind hysteresis threshold is that for each day of time series data, it uses

sliding window method to generate continuous samples and then tests CNN models on these samples

to generate a sequence of possibility of eating P (si) continuously. si is the ith sample extracted from

the window. Then when p(si) goes higher than Ts (start threshold), we mark the start of a detected

eating episode. When p(si) goes less than Te (end threshold), we mark the end of an eating episode.

The use of two thresholds serves two purposes. First, eating can be more vigorous at the beginning

of a meal, which can lead to a strong probability of eating. Ts starting threshold helps detect such

vigorous behaviors in a meal and reduce false positive. Second, eating behavior can fade with satiety

and becomes less vigorous. For example, a person usually slows down the eating speed and takes a

rest at the end of a meal, leading to a lower possibility of eating. Hence a lower Te ending threshold
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can help detect the end boundary of a meal. Te determines the length of the detected eating episode.

Usually when Te is higher and it is more likely to meet possibility lower than Te and make the episode

shorter.

Figure 2.12: Example of generating possibility sequence using window with size of 3, stride of 2 on
6-axis data. Note that extending the possibility sequence to get original length is optional, since we
can convert the index in possibility sequence back to time unit to get the segment as well.

For example, in figure 2.12, a sliding window with size of 3 data points and stride S = 2

is used to extracted the samples si and then CNN model generate the possibility that the sample

belongs to eating behavior for such samples. The possibility sequence can be mapped to the same

length as the length of time series data by extending each possibility P (si) to the neighbor positions.

Figure 2.13 shows an example of generated possibility sequence and threshold result. The

sequence of possibility of eating with 54000 data points from day 0 from one individual data is

plotted in the top figure. X axis is about the index of data point along time. The grey curve

represents the sequence of possibility of eating. Ts = 0.8 and Te = 0.4 are used. The green region is

a detected meal segmentation. The blue region is the ground truth label of meal episode reported

by user. To better show the detected segmentation and the ground truth meal episode, the second

figure and third figure are shown. The second figure (green curve) shows the prediction of eating

episode from the model. The third figure (blue curve) displays the ground truth label of eating
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Figure 2.13: Figure of generated possibility sequence and detected segment and ground truth label.
Grey curve is the sequence of possibility of eating from classifier. Green curve is the predicted
segment after using hysteresis threshold. Blue curve is the ground truth label of eating episode. ”1”
means eating and ”0” means non-eating.

episode. If the detected segment and the ground truth episode overlap, it means the model detects

this meal successfully.

In this work, thresholds Ts = 0.8 and Te = 0.4 from the work [27] are used in the group

model. We call them the group thresholds. We first applied the group thresholds to individual

models and the group model and compare their performance in episode metrics. Then we tuned

Ts and Te for individual models of each individual to improve individual models’ performance to

see if tuning individual parameters can improve performance of individual models. Details will be

discussed in section 2.7.

2.5 Metrics Selection

This section discusses the metrics used to compare the performance of individual models

and the group model and the formulas of these metrics.
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2.5.1 Time Metric

Time metric measures the performance at labeling every moment of time or sample extracted

from sliding window correctly as eating or non-eating throughout the day. Time metric is tested on

window samples at some moments. The time metric used in this work is weighted accuracy (WAcc).

In order to understand weighted accuracy, consider the confusion matrix [2] below:

Ground Truth label
Eating Non-Eating

Prediction Eating (Positive) True Positive (TP) False Positive (FP)
Non-Eating(Negative) False Negative(FN) True Negative(TN)

Table 2.2: Confusion Matrix of eating and non-eating

Ground truth label is the actual label reported in the data set while prediction is the

prediction class from classifier. Since in the task of detecting meal, both ground truth and prediction

have eating label ”1” and non-eating label ”0” only. A prediction is counted as a true positive (TP)

when the prediction is eating and the actual label is also eating. A prediction is counted as a

false positive (FP) when the prediction is eating but the actual label is non-eating. A prediction

is counted as a false negative (FN) when prediction is non-eating, but the label is actually eating.

A prediction is counted as true negative (TN) when prediction is non-eating and the label is also

non-eating. Then we can compute the total amount of TP, TN, FP, FN to fill the confusion matrix.

Then weighted accuracy is given by the formula:

WACC =
W × TP + TN

W × (TP + TN) + (FP + FN)
(2.13)

where W is the balance ratio of each individual It can be calculated by equation 2.1. Balance ratio of

each individual can be found in table 2.1. The balance ratio of CAD group data set is 20 according

to previous work [27].

The reason why we use weighted accuracy as time metric is that eating detection data

is usually significantly imbalance and the amount of non-eating samples is much greater than the

amount of eating samples. For example, a person can record one day of data in 11 hours, but

there is only 1 hour for eating and the remaining 10 hours are non-eating, leading to a problem

that negative sample amount in data set is much greater than positive sample amount. Traditional

accuracy in equation 2.14 can not reflect the real performance of classify. For example, if a classifier
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can predict negative samples only and doesn’t recognize positive samples well in imbalance data

set that contains much more negative samples than positive samples, its accuracy is very high, but

doesn’t reflect the classifier’s performance on positive sample. WAcc is a more reliable indicator of

performance across data sets containing different balances.

ACC =
TP + TN

(TP + TN) + (FP + FN)
(2.14)

2.5.2 Episode Metric

Episode metrics measure the performance of detecting meals or snack. The unit is a meal

or snack. Episode metrics need to be calculated in a whole day of time series data rather than

window samples at some moments. In episode metrics for eating detection, a meal with any amount

of overlap with a detected segment is counted as a TP. A meal with no overlap with a detected

segment is counted as a miss, false negative (FN). A detected segment not overlapping any meal is

counted as a FP. In eating detection task, we only care the performance of model in detecting eating

episodes, rather than non-eating periods, TP, FN and FP are considered only. True negative (TN)

is not considered in episode metrics. Then the episode metrics are

TPR =
TP

TP + FN
(2.15)

FP/TP =
FP

TP
(2.16)

where TPR measures how sensitive the model is to the real meal episodes and FP/TP measures

the ratio of false eating prediction over true eating prediction. When TPR is larger and FP/TP is

smaller, the model performs better in detecting meals.

Figure 2.14 shows an example of 5 cases of detection that can happen in a time series

data. The large rectangle frame represents one day of time series data between 8am and 8pm.

The grey boxes are the ground truth labels of meal episodes and the blue boxes are the segments

predicted by model. In case 1 to 3, actual meal episodes are detected by classifier, since those meal

episodes overlap the detected segments from classifier (blue boxes). Hence there are 4 meals detected

successfully and those meal episodes are labelled as TP, TP = 4. As for case 4, the meal is not
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detected and there is one FN. For case 5, the classifier detected a non-eating period as eating episode

and hence it is one FP. In this example, TPR = TP/(TP+FN) = 4/(4+1) = 0.8 and FP/TP = 1/4

= 0.25. Note that for some days of data, it may not contain a meal, leading to TP equal to 0. In

this case, we compute the TP, FN, FP from all days of data of an individual and then sum them up

before computing TPR and FP/TP.

Figure 2.14: Example of episode metrics on detection on one day of time series data. The big
recctangle frame represents time series data from 8am to 8pm. Grey boxes represent the actual meal
episodes and blue boxes represent the segments detected by the classifier and hysteresis threshold

2.6 Model Training and Evaluation

2.6.1 Imbalance Data

Before training our models, we need to consider the imbalance problem in our data sets.

Imbalance problem is a common problem in human activity data, in which some classes contain

much more samples than other classes. In each individual data set, the ratio of non-eating hour over

eating hour is around or above 10, which shows the serious imbalance problem between non-eating

and eating classes. Such imbalance data can lead to a bias classifier that can predict much more

samples as non-eating very easily and fewer samples as eating. This can make the classifier miss

more eating episodes that we are interested in and decrease episode metrics performance (lower TPR

and higher FP/TP).

In order to solve this problem, two simple ways can be considered: under-sampling and

over-sampling. Under-sampling is to simply reduce the amount of the majority class samples by
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randomly sampling part of them and let majority class have the same amount as the minority class.

For example, if there is a data set with 10000 samples of non-eating class and only 2000 samples

of eating class. Then we can randomly sample 2000 data from 10000 samples so that both non-

eating class and eating class have 2000 samples. The second method oversampling has the opposite

idea, which is to repeat sampling data from minority class to increase the amount of minority class

samples. For example, in data set with 10000 samples of non-eating class and only 2000 samples

of eating class, it repeats sampling data randomly with replacement from 2000 samples of eating

class to increase the amount of eating class from 2000 to 10000. However, oversampling makes the

training time longer and is time expensive. There are also another complex ways to balance data by

generating new samples, such as using SMOTE, or generative adversarial network (GAN) [14, 16].

In this work, under-sampling method was used to balance the data set and avoid expensive training

time.

2.6.2 Group Model Training

In group model training step, the CAD group data set was first smoothed by using Gaussian

filter and then normalized by using z-normalization method as mentioned in section 2.2. After data

processing, the CAD data set with 354 days was split into 80% of day (≈ 283 days) as training set

and 20 % of days (≈ 71 days) as testing set, according to day. Then a sliding window with window

size of 6 min (6min *60 sec/min * 15 Hz = 5400 data points) and stride of 15 seconds (15 sec *

15 Hz = 225 data points) was used to extract the window samples from training set and test set

respectively. Window is labelled as eating if 50% of window fall within the reported eating period.

By splitting data by days, it can avoid the data leakage problem that training set data have features

overlap the testing set data. In order to solve the imbalance problem, the training set and testing

set are first balanced by using under-sampling to reduce the amount of non-eating samples so that

both non-eating class and eating class have the same amount.

We trained the group model on balanced training set and used the smaller balanced testing

set as a validation set. Such small validation set is just used to monitor the performance of the

group model and avoid over-fitting during training only. The reason of balancing the test set is that

it can better reflect the model’s ability of classifying eating class and non-eating class without being

affected by the imbalance problem as mentioned in section 2.6.1 and this is equivalent to test the

model on an imbalance data set using weighted accuracy. Early stopping method can monitor the
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accuracy performance of model on this validation set and save the model with the best validation

accuracy so that model is not over-fitting to the training set. Since our goal in this thesis is to

compare the performance of this group model and individual models on individual data set, there is

no final test on the CAD data set and this trained group model is used to compare with individual

models for all experiments later.

2.6.3 K-fold Cross Validation Evaluation for individual models

K-fold cross validation is a model evaluation technique to estimate the performance of

machine learning model. In cross validation, the data set is first divided into K independent subsets

with equal or approximately equal size. Each subset is called one fold, hence there are K folds. Then

one fold is chosen as a test set, called validation set, then remaining k-1 folds are used to train one

model. After this model is trained, it is tested on the validation set to get the performance on this

fold. This train-test process is repeated K iterations. In each iteration, a different fold is chosen as

validation set and the model is re-initialized and re-trained on the remaining folds. Finally, there

are K different models and K different performance results. Finally, these K different results are

averaged to get the overall performance of this model. The process is shown in figure 2.15.

Final Performance =
1

k

k∑
i=1

Performancei (2.17)

where Performancei is the performance result of the model in the ith iteration, it can be accuracy,

weighted accuracy, mean square error and so on. In this work, time metric and episode metrics are

used to compute the performance.

Figure 2.15: Example of 5-fold cross validation. Test set is selected differently in each iteration.
Models are trained on the remaining folds.
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For small data set, cross validation is a good way to estimate the performance of model on

data set. For example, in small data set, like only 10 days of data, when 2 days are used as test

set and 8 days are used as training set, since the test set is small, there is a case that there is 1

or 2 days contain novel eating behaviors that are quite different from eating behaviors from other

days. Such days of data are used to test the model. Then model performance can be under-rated.

Oppositely, there is also a case that there are some days containing eating behaviors that can be

classified much easier than eating behaviors in other days and all these good days of data are used

to train model, leading to overrated model performance. By applying cross validation to evaluate

the small data set, it can reduce the effect of overrating and underrating and provides a more robust

estimated performance on model.

In this work, we applied 5-fold cross validation for data of each individual. Assume one

individual has 10 days of data, then each fold contains 10/5 = 2 days. In each fold, 80% of days (≈

8 days) of data of one individual were used as training set and the remaining 20% of days (≈ 2 days)

were used as test set. A sliding window with window size of 6 minutes and stride of 5 seconds was

used to extract samples from training set and testing set. As mentioned in section 2.2.3, stride of 5

seconds was to create more samples and diminish under-fitting effect, compared with the stride of 15

second used in CAD data set. Then under-sampling was used to balance the amount of non-eating

and eating samples in training set right before training CNN models. In testing step, weighted

accuracy was used as time metric to measure model’s ability in classifying samples as eating or

non-eating in imbalance test set. The overall time metric is the average of weighted accuracy of 5

folds. When measuring episode metrics, CNN model first generates possibility sequence on the time

series data of each day in each testing fold and then hysteresis threshold is applied to generate TP,

FP and FN. Since some days may not contain meals and TP can be 0, making FP/TP invalid and

TPR become 0. To solve this problem, TP, FP and FN of all folds were first measured and then

sum up together to get the TP, FP and FN for the whole data set for one individual. After that,

TPR and FP/TP were calculated.

2.6.4 Performance Comparison

As the goal in this thesis is to compare the performance between the group model and

individual models of each individual on the same individual data set, the group model need to

be tested on the individual data set in the consistent way as how individual models are tested.

41



However, individual models were trained and evaluated in cross validation on individual data set,

but the group model was trained on the CAD data set instead. In order to test the group model in

individual data set in the consistent way, we tested the group model on each testing fold in 5-fold

cross validation and then measured its WAcc and TP, FP, FN in each fold. Then the final WAcc of

the group model is the average of WAcc of all folds and the TPR and FP/TP are computed after

summing up all TP, FP, FN from all folds. The process is shown in figure 2.16. While there are 8

individual data sets, 5-fold cross validation is repeated 8 times, but there is only one group model

trained to compare with all other individual models.

Figure 2.16: Example of performance comparison for the group model and individual models on
data of one individual. The group model is trained on CAD group data set and then tested on each
testing fold in cross validation in individual data of one individual. As for the individual models,
they are trained and evaluated by 5 fold cross-validation

2.7 Hyper-Parameters Tuning

This work also investigates how tuning hyper-parameters can improve individual models’

performance. There are 3 tuning hyper-parameters that can be investigated: window size, threshold

Ts and threshold Te in hysteresis threshold method.

In previous work of our group [26], window size effect was well investigated and the author

42



used cross validation method to validate the window effect and suggested to use a 6 minute window

size in the group model. However, investigating the window size effect on individual models for

each individual can be very time expensive. For example, training a single individual model can

take M minutes and we want to use W different window sizes to investigate window effect. After

applying 5-fold cross validation for N individuals, it can take M × 5×N ×W minutes. If there are

8 participants, M = 15 minutes and W = 10 different window sizes, then it requires 6000 minutes,

around 4 days for testing. As this is very time-consuming, we don’t investigate the effect of window

size here, but leave it to future work.

When investigating the effect of Ts and Te, we first let individual models generate the

sequence of possibility of eating on all days of data. We then applied a grid search method that

loop through all possible combinations between Ts and Te based the set of Ts: [0.85,0.8, 0.75, 0.7,

0.65, 0.6, 0.5] and the set of Te: [0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45]. As mentioned in section

2.4 about hysteresis threshold, Ts is to detect the higher possibility of eating and look for the start

of eating episode while Te looks for the lower possibility of eating and determine the end boundary

of eating episode. Hence values in Ts set are higher than the values in Te set. After looking for all

combinations of Ts and Te, we used three different strategies to search the thresholds that improve

the episode metrics.

Algorithm 1 optimize TPR

input S0 = the set of all Ts,Te combinations with their TPR, FP/TP results
T0 = TPR threshold
find set S1 of all Ts,Te pairs with TPR ≥ T0 from S0

if S1 not empty then
return the Ts,Te pair with minimum FP/TP in S1

else
return the Ts,Te pair with maximum TPR in S0

end if

The first strategy focuses on TPR performance, called TPR method. The logic is that we

first set a threshold T0 for TPR and then find the set of pair of Ts and Te with TPR greater or

equal to T0. Then we find the Ts and Te pair in this set with minimum FP/TP value. If we don’t

find the set of pairs of Ts and Te with TPR greater than or equal to T0, then we simply return

the Ts and Te pair with maximum TPR, as shown in algorithm 1. This algorithm can have good

TPR performance since it either returns TPR above the threshold T0 or returns max TPR when the

threshold condition is not met. TPR performance is given priority higher than FP/TP performance
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in this algorithm. Note that the algorithm may return multiple Ts, Te pairs when multiple Ts, Te

pairs have the same maximum TPR in S0 or minimum FP/TP in S1. In this case, we simply return

the Ts and Te pair with the smallest Ts. If Ts values are same in those results, then we return the

Ts and Te pair with the smallest Te.

The second strategy emphasizes on the FP/TP performance, called FP/TP method. The

logic is that we first set a threshold T1 for FP/TP and then find the set ofTs, Te pairs with FP/TP

smaller than or equal to T1. Then we find the Ts, Te pair with maximum TPR from this set. If the

set is empty, we simply return the pair of Ts and Te with minimum FP/TP directly, as shown in

algorithm 2. This algorithm gives higher priority to FP/TP performance than TPR performance,

since it first considers the Ts, Te pair with FP/TP smaller than the threshold T1. Only when it

finds a set satisfying this condition, it then finds Ts, Te with maximum TPR in this set. Otherwise,

it only considers Ts and Te with the minimum FP/TP performance. If algorithm 2 has multiple Ts,

Te pairs that have the same maximum TPR in S1 or minimum FP/TP in S0, we return the Ts and

Te pair with the smallest Ts. If Ts values are same in those results, we return the Ts and Te pair

with the smallest Te.

Algorithm 2 optimize FP/TP

input S0 = the set of all Ts,Te combinations with their TPR, FP/TP results
T1 = FP/TP threshold
find set S1 of all Ts,Te pairs with FP/TP ≤ T1 from S0

if S1 not empty then
return the Ts,Te pair with maximum TPR in S1

else
return the Ts,Te pair with minimum FP/TP in S0

end if

The third strategy considers both TPR and FP/TP performance, called balance method.

It first computes TP ratio in equation 2.18 for each Ts, Te pair. It then returns the Ts, Te pair with

the maximum TP ratio. When a Ts, Te pair leads to greater TP and smaller FP, FN, the TP ratio

becomes larger and this pair is more likely to be selected. Hence this method finds the thresholds

that balance the performance of TPR and FP/TP. If multiple Ts, Te pairs have the same maximum

TP ratio, the Ts and Te pair with the smallest Ts is returned. If their Ts values are same, then we

return the Ts and Te pair with the smallest Te instead.

TP ratio =
TP

TP + FP + FN
(2.18)
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With three strategies above, we obtained 3 different individual thresholds pairs Ts, Te for

each individual. We compared the episode metrics of using these individual thresholds with the

episode metrics of using the group model threshold Ts = 0.8 and Te = 0.4 from previous work [27].

In this work, we simply used T0 = 0.8 for TPR method and T1 = 1 for FP/TP method.

The final strategy we choose is the third method since it provided the best average improvement in

FP/TP and TPR, which is discussed in the next chapter. The research about the effect of T0 and T1

on TPR and FP/TP performance can be left to the future work. Note that TPR method and FP/TP

method may not be able to improve TPR or FP/TP respectively in some cases when comparing

individual models before and after applying such methods. For example, if individual models of one

individual using the group thresholds Ts and Te have TPR = 0.9 and FP/TP = 1.0. When applying

TPR method of algorithm 1 by using threshold T0 = 0.8, then it could return thresholds Ts and Te

with performance TPR = 0.85 and FP/TP = 0.1 as it returns the thresholds with minimum FP/TP

when TPR ≥ 0.8. In this case, TPR actually decreases after using TPR method. Similarly, after

using FP/TP method with T1 = 1.5, it is also possibility that it returns thresholds with TPR = 0.95

and FP/TP = 1.3, leading to higher TPR but worse FP/TP. This depends on the thresholds T0 and

T1. Hence the TPR method doesn’t always guarantee TPR performance can be improved. FP/TP

method also doesn’t always guarantee FP/TP performance can be improved as well. It depends on

T0 and T1 used. It could be a research question for the future work.
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Chapter 3

Results

This chapter discusses the results about time metric (weighted accuracy) and episode metrics

(TPR and FP/TP) measured from the individual models and the group model and the effect of Ts

and Te on the improvement of episode metrics. This chapters first discusses the distributions of

possibility outputs from individual models and the group model and see how the outputs from

individual models differ from the outputs from the group model in section 3.1. Section 3.2 discusses

the results of time metric as well as the episode metrics measured from individual models and the

group model. In section 3.3, we first illustrates the effect of tuning Ts and Te on TPR and FP/TP

and then discusses three methods of tuning thresholds Ts and Te we used to improve TPR and

FP/TP performance. The improvement results are shown in this section and appendices.

3.1 Distributions of Model Outputs

In 5-fold cross validation mentioned in section 2.6.4, we obtained the possibility sequence

of each day in testing folds generated from individual models and the group model. For each

individual data set, we first used these possibility sequences to visualize the eating class distribution

and non-eating class distribution of the output from the group model and individual models on that

data set. Figures 3.1, 3.2 and 3.3 show the distributions of the output possibilities from the group

model and individual models within eating periods and non-eating periods on 8 individual data sets.

The yellow regions represent the distributions of output possibility within self-reported non-eating

periods. The blue regions represent the distributions of output possibility within self-reported eating
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periods labelled by users. In each figure, X-axis is about the output values from models (possibility

of eating) and Y-axis is about the probability of models’ output values. In the left column of each

figure, each plot shows the distributions of output from the group model trained and tested on each

individual data set. The right column shows the distributions of output from individual models on

the corresponding individual data set.

In figures 3.1, 3.2 and 3.3, we find that individual models trained and tested on individual

data sets 1, 2, 4, 5, 6 and 8 respectively can well classify the eating and non-eating behaviors, since

the eating distributions of these data sets focus on the output value of 1 and non-eating distributions

focusing on the output value of 0, meaning that the models always output high possibilities in eating

period reported by users, and low possibilities in non-eating period. For individual data sets with

identities of 3 and 7, the eating distributions spread out and the probabilities of smaller output values

are greater than the probabilities of the larger output values. For example, in individual models’

prediction on data set 7, the probability of output value of 0.2 is much higher than probability of

output value of 1. This means in the periods labelled as eating, most of output values from individual

models trained on this data set are around 0.2. The individual models can not recognize the eating

period on this data set very well.

In most individual data sets, the eating distribution and non-eating distribution from the

group model overlap obviously. For example, in data set 3 in figure 3.1, the yellow region and the

blue region overlap obviously. Both non-eating distribution and eating distribution focus on the

range of output value around 0.2 to 0.4. This means the group model, when testing on data set 3,

doesn’t classify the eating behavior well, leading to more lower eating possibility in eating period

and higher eating possibility in non-eating period. Compared with the individual models trained on

data set 3, the group model shows worse classification performance. This also implies that the eating

behavior patterns in data set 3 are very likely different from the eating behavior patterns in CAD

group data set. Similarly, in data sets 1, 4, 5, 6 and 8, the performance of the group model may

have worse classification ability than individual models as the eating distributions and non-eating

distributions from the group model overlap more obviously.

In short, there is a trend that compared with the group model, individual models trained

on individual data sets can output higher eating possibilities of eating in eating periods and lower

eating possibilities in non-eating period more easily and better separate distributions of eating and

non-eating. Comparison between models by different metrics will be discussed later.
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Figure 3.1: Figure of distributions of output probabilities on individual data sets 1, 2 and 3. In
the left column, probabilities for the group model were calculated by training on the CAD dataset
and testing on the individual. In the right column, probabilities for the individual models were
calculated using 5-fold cross validation. Yellow histograms are distributions of models’ output in
ground truth non-eating periods. Blue histograms are distributions of models’ output in ground
truth eating periods.
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Figure 3.2: Figure of distributions of output probabilities on individual data sets 4, 5 and 6. In
the left column, probabilities for the group model were calculated by training on the CAD dataset
and testing on the individual. In the right column, probabilities for the individual models were
calculated using 5-fold cross validation. Yellow histograms are distributions of models’ output in
ground truth non-eating periods. Blue histograms are distributions of models’ output in ground
truth eating periods.
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Figure 3.3: Figure of distributions of output probabilities on individual data sets 7 and 8. In the
left column, probabilities for the group model were calculated by training on the CAD dataset and
testing on the individual. In the right column, probabilities for the individual models were calculated
using 5-fold cross validation. Yellow histograms are distributions of models’ output in ground truth
non-eating periods. Blue histograms are distributions of models’ output in ground truth eating
periods.
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3.2 Model Comparison and Performance Analysis

This section discusses and compares the time metric and episode metrics performance of

individual models and the group model.

3.2.1 Time Metric

In this work, weighted accuracy (WAcc) was chosen as the time metric, which is computed

by equation 2.13. Each individual data set used its own balance ratio of non-eat/eat as the weight

W in weighted accuracy. The ratio of non-eat/eat of each individual data set can be found in table

2.1. For each individual data set, 5-fold cross validation was used to train and test individual models

for that data set and then we tested the group model on the same way as mentioned in section 2.6.3.

Table 3.1 shows the weighted accuracy on each individual data set. We calculate the average

values of all WAcc values from the group models and from individual models respectively. We also

calculate the improvement on individual models over the the group model on each individual data

set by the formula:

WAcc improvement(%) =
WAccindividual −WAccgroup

WAccgroup
× 100 (3.1)

where WAccindividual is the weighted accuracy of individual models on one individual data set and

WAccgroup is the weighted accuracy of the group model on the same individual data set. Improvement

is computed in percentage. Figure 3.4 visualizes the improvement on weighted accuracy of individual

models.

In figure 3.4, it shows that compared with the group model, individual models on most data

sets except the individual data set 7. Improvements on individual data sets 1, 3, 8 are more than

5%. It is are much more obvious than the improvements on data sets 4, 5 and 6. When looking

back to the distributions of models’ outputs in figures 3.1, 3.2 and 3.3, we find that in data sets 1, 3

and 8, the eating distributions and non-eating distributions from the group model overlap seriously.

The group model shows less confidence in classifying the eating behaviors and non-eating behaviors,

compared with the individual models. This explains why the group model performs so badly and the

improvements from individual models on these three data sets are so distinct. This also implies that

eating behaviors from those individuals are likely to be different from eating behaviors in CAD data
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set. In addition, for individual data sets 2 and from 4 to 7, the WAcc performance of individual model

are very close to WAcc performance of the group model and have slight or even no improvement.

The group model separates the distributions of eating and non-eating on these data sets well and

this is similar to the behaviors of individual models. This explains why the WAcc performance from

the group model is close to WAcc performance from individual models on these data sets.

On average, individual models with WAcc of 81.9% is better than the group model with 78%

WAcc. There is 5% improvement using individual models shown in figure 3.4. Most of individual

models outperform the group model in weighted accuracy metric.

dataset
WAcc

Group
Model

Individual
Model

1 0.774 0.897
2 0.956 0.958
3 0.611 0.722
4 0.757 0.763
5 0.825 0.837
6 0.786 0.795
7 0.688 0.684
8 0.843 0.893

average 0.780 0.819

Table 3.1: Table of weighted accuracy performance of individual models and the group model. These
results are measured from 5-fold cross validation as mentioned in 2.6.4

Figure 3.4: Improvement in percentage on weighted accuracy of individual models compared with
the group model.
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3.2.2 Episode Metric

We choose TPR and FP/TP as our episode metrics to measure the performance of models

in detecting meal episodes. Table 3.2 shows the TPR and FP/TP performance of the group model

and individual models when both of them using the group thresholds Ts=0.8 and Te = 0.4 from

previous work [27]. Figure 3.5 shows the improvements on TPR and FP/TP of individual models

compared with the group model. The improvement on TPR and FP/TP of each individual data set

are calculated using the following formulas:

TPR improvement(%) =
TPRindividual − TPRgroup

TPRgroup
× 100 (3.2)

FP/TP improvement(%) = −FP/TPindividual − FP/TPgroup

FP/TPgroup
× 100 (3.3)

where TPRindividual and FP/TPindividual mean the TPR and FP/TP performance of individual models.

TPRgroup and FP/TPgroup mean the TPR and FP/TP performance of the group model. Note that

when FP/TP is smaller, model performs better. So we add a negative sign to equation 3.3 when

calculating improvement of FP/TP.

Table 3.2 shows that in average, the TPR performance of individual models of 79.9% is better

than the TPR performance of the group model of 73.6%, but the average FP/TP performance of

individual models is 1.751, worse than average FP/TP performance of the group model 1.531. Figure

3.5 shows that the average improvement of TPR on individual models is around +10 % while the

average improvement of FP/TP on individual models is around -10%. Most of individual models

have better TPR and worse FP/TP than the group model.

The worse FP/TP results in individual models are caused by the setting that both individual

models and the group model use the same group thresholds Ts and Te. From figures 3.1, 3.2 and

3.3, we know that individual models of each individual data set can better separate the distribution

of eating and the distribution of non-eating, leading to possibility output close to 1 in eating period

and close to 0 in non-eating period. So it needs higher Ts value to reduce FP and lower Te to detect

the end of meal episode. However, the group model can not separate distribution of eating and

distribution of non-eating well, leading to the group model’s output values around or less than 0.8

in eating period and higher output values in non-eating period. Then it requires a lower Ts value
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to detect more positive samples to increase TP and a higher Te value to make the meal segment

shorter. Therefore, Ts=0.8 is more suitable for the group model than the individual models. It is

necessary to tune Ts and Te thresholds for each individual data set and this is discussed in section

3.3.

dataset
TPR FP/TP

GroupModel Individual-Models GroupModel Individual-Models
1 0.594 0.969 0.368 0.613
2 0.923 0.923 0.375 0.417
3 0.333 0.667 2.8 1.2
4 0.763 0.763 0.897 1.759
5 0.75 0.6 1.4 2.25
6 0.885 0.923 1.739 2.083
7 0.773 0.636 3.882 4.786
8 0.864 0.909 0.789 0.9

average 0.736 0.799 1.531 1.751

Table 3.2: Episode metrics of individual models and the group model when both of them using
the group thresholds: Ts=0.8, Te=0.4. These results are also measured from 5-fold cross validation
mentioned in 2.6.4.

Figure 3.5: Figure of improvements of individual models on episode metrics compared with the
group model when using Ts = 0.8 and Te=0.4 for both individual models and the group model.

Based on results above, we find that most individual models have better weighted accuracy

than the group model and the improvement of weighted accuracy from individual models can vary

per individual as some of individual models can have improvement more than 10% and others have
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improvements less than or around 5%. The improvement on episode metrics of individual models

varies and it depends on individuals. There is a trade-off between TPR and FP/TP. This answers

the first and the second questions in section 1.6.

3.3 Results of Tuning Hyper-Parameters

3.3.1 Effect of Ts and Te on individual models

This section investigates the effect of Ts and Te on the performance of TPR and FP/TP of

individual models. We used the previously generated possibility sequence of each day during cross

validation to investigate the effect of Ts by using a fixed the Te value for all individual data sets

and varying Ts to see the change of TPR and FP/TP. Similarly, we also fixed Ts for all individual

models and then varied Te to see the effect of Te. Figures 3.6 and 3.7 show the changes of TPR and

FP/TP performance when changing Ts and Te. There are 8 different curves with different colors in

each plot, representing the individual models for 8 participants respectively.

In figure 3.6, when Te is fixed to be 0.1, there is a trend of descending in both TPR and

FP/TP as Ts is increasing from 0.1 to 0.85. This is because when Ts is higher, output values greater

than Ts become less and it decreases positive prediction. Hence TPR can decrease as well. When

the decline rate of FP is faster than the decline rate of TP, FP/TP can decrease and get improved.

Hence higher Ts can improve FP/TP and may decrease TPR. When Ts =0.85 and Te is increasing,

TPR and FP/TP of most individual models remain unchanged, but some of them change. For

example, FP/TP for individual models of data set 7 increases when Te increases in two figures. This

implies that the effect of Te on TPR and FP/TP depends on individual behaviors. Te controls the

end of eating segment. When Te is higher, then it is easier to meet the possibility value smaller than

Te and make the segment end quicker, leading to shorter eating segment. Figure 3.7 resembles figure

3.6. The decrease of TPR and increase of FP/TP in individual data set 7 in figures 3.6 and 3.7

imply that for some individuals, shorter eating segments may be hard to overlap the ground truth

eating episodes. This can decrease TP amount and lead to lower TPR and higher FP/TP.

Therefore, the results implies that higher Ts improves FP/TP but may also decrease TPR

for some individuals. Suitable Ts for each individual is required. For some individuals, higher Te

may lead to higher FP/TP, but for others, Te doesn’t affect performance. In this case, lower Te

could be better.
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Figure 3.6: Effect of Ts and Te on TPR and FP/TP performance of individual models. The two
figures on the top investigate the effect of Ts by fixing Te=0.1. The two figures on the bottom
investigate the effect of Te by fixing Ts=0.85 and varying Te
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Figure 3.7: Effect of Ts and Te on TPR and FP/TP performance of individual models. The two
figures on the top investigate the effect of Ts by fixing Te=0.3. The two figures on the bottom
investigate the effect of Te by fixing Ts=0.7 and varying Te

57



3.3.2 Improvement after Tuning Ts and Te

To find thresholds Ts and Te for each individual data set, we re-used the possibility sequences,

generated by individual models, in testing folds from 5-fold cross validation as mentioned in 2.6.4,

and defined a set of Ts : [0.85,0.8, 0.75, 0.7, 0.65,0.6, 0.5], a set of Te : [0.1, 0.15, 0.2, 0.25, 0.3,

0.35, 0.4, 0.45] and then used grid-search method to find TPR and FP/TP performance for all

combinations of Ts and Te. In those combinations, we tried three different strategies to look for

the Ts, Te that improve TPR and FP/TP. The improvements of TPR and FP/TP before and after

applying these methods are shown in figure 3.8 and table 3.3.

method TPR:improvement(%) FP/TP:improvement(%)
Group Thresholds 8.6 -14.4

TPR Method 18.5 12.0
FP/TP Method 9.6 24.4

Balance Method 10.1 33.2

Table 3.3: Improvement of TPR and FP/TP of individual models compared with the group model
after applying different methods to find Ts and Te for individual models. Group Thresholds mean
all individual models use Ts=0.8 and Te =0.4 as same as the thresholds used in the group model.
”TPR method”, ”FP/TP method” and ”Balance method” means the Ts and Te for models of each
individual are searched by algorithms 1, 2 and equation 2.1 respectively

Figure 3.8: Average improvements of TPR and FP/TP on individual models before and after ap-
plying three different threshold tuning methods. This figure is the visualization of table 3.3

Table 3.3 summarizes the improvements before and after using three strategies for tuning

Ts and Te mentioned in section 2.7. Figure 3.8 visualizes the data in table 3.3 to give a better view

for comparison. In table 3.3, ”Group Thresholds” means both individual models and the group
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model use the group thresholds: Ts =0.8 and Te =0.4. ”TPR Method” represents the algorithm 1

that gives higher priority to optimize TPR first and then optimize FP/TP. ”FP/TP Method” is the

algorithm 2 that gives higher priority to optimize FP/TP first and then optimzie TPR. ”Balance

Method” is the method that first calculates the TP ratio using equation 2.18 and then picks the

Ts, Te pair with the largest TP ratio. Since this method considers TP, FN and FP, it balances

performance of TPR and FP/TP.

Figure 3.8 shows that three strategies provide improvements on both TPR and FP/TP.

Balance method provides the best FP/TP improvement of 33.2% with TPR improvement of 10.1%,

while the TPR methods provides the best TPR improvement of 18.5% and FP/TP improvement of

12%. Compared with TPR method, FP/TP method provides better FP/TP improvement of 24.4%.

We finally choose the balance method to select Ts and Te for our individual models, when

considering both TPR and FP/TP. The following tables and figures show the results from balance

method. Table 3.4 shows the thresholds for each individual data set searched by the balance method.

While most Ts values are equal to 0.85 and most Te values are equal to 0.1, this method indicates

that higher Ts and lower Te are better to segment eating period on individual data sets. Table 3.5

shows the TPR and FP/TP performance of the group model and individual models with customized

thresholds from table 3.4. Since figures of distributions in section 3.1 show that for individual models,

the output possibilities are very high in eating episodes and very low in non-eating episodes, such

high Ts and low Te values from table 3.4 can better separate eating episodes from non-eating periods.

Table 3.5 reveals that the average TPR of all individual models with customized thresholds is 81%,

better than the average TPR of the group model, 73.6%. The average FP/TP of all individual

models using customized thresholds is 1.022 and it is smaller than the average FP/TP of 1.531 from

the group model.

dataset Ts Te
1 0.85 0.10
2 0.85 0.10
3 0.80 0.10
4 0.85 0.10
5 0.85 0.10
6 0.85 0.10
7 0.85 0.10
8 0.85 0.25

Table 3.4: Thresholds found by balance method
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dataset
TPR FP/TP

GroupModel Individual-Models GroupModel Individual-Models
1 0.594 0.969 0.368 0.484
2 0.923 0.923 0.375 0.292
3 0.333 0.65 2.8 1.077
4 0.763 0.737 0.897 1.214
5 0.75 0.6 1.4 1.417
6 0.885 0.923 1.739 1.458
7 0.773 0.773 3.882 1.588
8 0.864 0.909 0.789 0.65

average 0.736 0.81 1.531 1.022

Table 3.5: Episode metrics of individual models using individual thresholds that maximize the ratio
in equation 2.18 and episode metrics of the group model with thresholds Ts=0.8 and Te=0.4

Figure 3.9 shows the improvements of individual models on TPR and FP/TP between

using customized thresholds from balance method and using group threshold, the TPR and FP/TP

performance between individual models using customized thresholds from balance method and the

group model. The improvements of individual models on TPR and FP/TP after using customized

thresholds from the balance method is calculated by formulas:

TPR improvement(%) =
TPRCTH − TPRGTH

TPRGTH
× 100 (3.4)

FP/TP improvement(%) = −FP/TPCTH − FP/TPGTH

FP/TPGTH
× 100 (3.5)

where TPRCTH and FP/TPCTH are the TPR and FP/TP of individual models using customized

thresholds (CTH). TPRGTH and FP/TPGTH are the TPR and FP/TP of individual models using the

group model’s thresholds (GTH), rather than customized thresholds. After applying the customized

thresholds, figure 3.9 shows that the compared with using the group thresholds, improvement on

FP/TP on each individual data set using balance method is around or more than 10% and the

average improvement on FP/TP of all individual data sets is around 40%. TPR of individual data

set 7 is improved by 20%, while the TPR values of individual models on data sets 3 and 4 drop

slightly. Compared with the group model, the average improvement on TPR of all individual data

sets is around 10 %. For completeness, the results of episode metrics of TPR method and FP/TP

method are left in appendices A.1 and A.2.

From the results above, we learn that tuning the hyper-parameters, Ts and Te, can improve
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the average performance of TPR, FP/TP. Different tuning methods have different improvements on

episode metrics. The improvement percentage of TPR and FP/TP can be various for each individual.

Note that there could be a trade-off between improvement on TPR and improvement on FP/TP.

This answers the third question in section 1.6.

Figure 3.9: Figure of improvements on episode metric for individual models after tuning Ts,Te using
balance method with equation 2.1. The top image is the comparison of individual models before and
after tuning Ts and Te using balance method in equation 2.1. The bottom method is to compare
individual models using balance method with the group model using Ts=0.8 and Te=0.4
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

This thesis discusses the methods of training and evaluating the group model and individual

models on the time metric, weighted accuracy, and episode metrics, TPR and FP/TP. We also discuss

three methods of finding thresholds Ts and Te for improving episode metrics of individual models.

Based on the results, we can answers the questions in section 1.6:

1) Do individual models trained on small individual data sets perform better than the group

model trained on large data from a group of people?

2) How much improvement do individual models get, compared with the group model? Do

they vary depending on individual?

3) Does changing individual hyper-parameters help improve performance of individual mod-

els?

As for the first question, the individual models perform better than the group model when

testing on the corresponding individual data set. In sections 3.2.1 and 3.2.2, the results show that

most individual models perform better than the group model in weighted accuracy performance.

Some of them have improvement more than 10% while the others have improvement less than or

around 5%. As for the episode metrics, the average TPR performance of individual models using

the group thresholds has about 10% improvement over the average performance of the group model.

In figure 3.8, it also shows the episode metrics performance of individual models using different

customized thresholds Ts and Te can be better than the performance of the group model. So
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individual models trained on small individual data set can outperform the group model.

The answer to the second question is that the improvement of individual models can vary

per individual. For the weighted accuracy performance in figure 3.4, the improvement of weighted

accuracy for some individual models can be more than 5%, but some of them, like data sets 2, 4,

5 and 6, show improvement less than 2%. In figure 3.5, when using the group thresholds, some

individual models can have more than 50% improvement on TPR, but some of them have around

-10% improvement on TPR. Hence such improvement can vary per individual. In addition, there is

a trade-off between TPR and FP/TP. When individual models improve their TPR, they may have

worse FP/TP performance than before. The main reason why some individual models got much

better than others could be that we probably didn’t have enough data for some of these individuals.

Some people’s eating behaviors may be consistent day to day and need 10 days of data or less to

make individual models perform better, while others may need a lot more than 10 days to truly

capture their individual behaviors. Then the amount of days of each individual data set could be

a factor affecting performance of individual models. This factor can be investigated in the future

work.

For the third question, the answer is that tuning hyper-parameters, Ts and Te, do improve

the performance of TPR and FP/TP. Figure 3.8 shows that using different strategies of tuning Ts and

Te for each individual data set can lead to different improvement on TPR and FP/TP. When using

the balance method, it provides the best average improvement of above 30% on FP/TP. The TPR

method from algorithm 1 provides the best TPR improvement of more than 20%. Moreover, the

balance method of tuning Ts and Te indicates that Ts =0.85 and Te=0.1 provide better performance

for most individual models. The reason why the tuned hyper-parameters Ts =0.85 and Te=0.1

can be more selective is because the individual models better separated the distribution of eating

from non-eating as seen in figures 3.1, 3.2 and 3.3. When individual models better separate the

distribution of eating from non-eating, possibility of eating on eating episodes becomes much higher

and possibility of eating on non-eating episodes becomes much lower. Hence higher Ts is better to

detect TP and reduce FP and lower Te is better to detect the start of non-eating period, which has

very low eating possibility, and end the detected eating segment.
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4.2 Future Work

This work investigates the performance of individual models for each individual data set and

compare them with the group model to see how competitive the individual models are to the group

model when testing on the individual data sets. This work also proposes three different strategies

for looking for thresholds Ts and Te to improve performance of individual models. There are still

some limitations in this work and some interesting topics to explore in the future.

There are several limitations in this work. The collection of individual data sets is one limi-

tation. Since there are only 8 individual data sets used to investigate the performance of individual

models, it may be no enough. More individual data sets, such as 10 or even 20 participants, may

help provide more convincing and robust results on time metrics and episode metrics. The amount

of days of data per individual is also a factor affecting performance of individual models. More days

of data for each individual can help capture the real distribution of individual eating behaviors.

Hence we can also collect more days of data for each individual in the future. Additionally, it is

better to make the amount of days of each individual data set same so that we can exclude the effect

of the amount of days on the performance. In section 2.7, hyper-parameters tuning, we could also

investigate the window size effect on individual models to see if window size can affect performance

of individual models in the future. However, since doing such experiments to test window size effect

on individual models is a very time-consuming process, this thesis doesn’t investigate this, but leaves

it to the future work.

Note that though training individual models can improve performance for detecting eating,

collecting individual data for a new user requires the user to spend time in recording eating episode

for each meal. This may bring some burdens to user. Then we need to consider if the improvement

from individual models is worthy or not, when considering the cost in data collection and labelling.

In fact, there is a trade-off between improvement and burden from data collection. If we emphasize

the improvement from individual models, then it is worth collecting more data from that individual,

despite that it leads to higher cost and more time for data collection and labelling. If we care more

about the cost of data collection and labelling than the performance, then the improvement would

be less worthy. We can simply collect fewer days to train the models and reduce the burdens. Hence

such trade-off and worthiness of the improvement from individual models can depend on the needs

from users. This is also a common problem in deep learning, which requires a large amount of data
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to get better performance.

There are other interesting topics that can be extended from this work. For example, we

can test how many days do each individual model require to be trained on in order to have better

performance than the group model. By doing research about this, it can give us an insight about the

approximate minimum amount of days required for one individual in order to train a good model,

so that we can minimize the cost of data collection. We can also apply transfer learning in this

research in the future to borrow the knowledge learned from the group model to each individual

model so that each individual model can require less individual data to get better performance in

eating detection.

Additionally, we can investigate subgroups of people. Could we look for subgroups of people

and train the group model for each subgroup? We call the subgroups as phenotypes. In this case, we

can consider person as a variable and cluster people into different phenotypes based on the similarity

of their eating, non-eating behaviors and then investigate performance of models trained on these

subgroups. For example, we can split people into different groups based on utensils they use, like

fork, chopstick, etc, and train a group model on each subgroup. This allows us to investigate the

differences between groups that affect eating behaviors.

The last topic for future work is about model architecture. As the group model has more

data, could the group model use more parameters or use other model architectures to improve

performance? It is reasonable that the group model trained on a very large data set may need more

parameters to increase model capacity and learn more patterns. This could be also a good topic for

the future work. However, in this work, we want to replicate the group model from the previous work

[27] and compare that group model with individual models from this work. Moreover, the group

model architecture from previous work was selected based upon maximizing accuracy on CAD data

set already. So we don’t change the amount of parameters in the group model. In addition, CNN

model architecture, compared with other model architectures like recurrent neural network (RNN),

LSTM, can save memory and have faster training speed due to the property of sharing parameters

in convolution layer. Hence we utilized the same CNN model without changing model architecture

or the amount of parameters in this work.
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Appendix A Results of two other Ts, Te tuning methods

All Ts and Te tuning methods were performed on the possibility sequence output from the

testing step in 5-fold cross validation as mentioned in section 2.6.4.

A.1 Method focusing on TPR improvement

dataset Ts Te
1 0.85 0.10
2 0.85 0.10
3 0.50 0.40
4 0.65 0.10
5 0.65 0.10
6 0.85 0.10
7 0.55 0.10
8 0.85 0.25

Table 1: Table of thresholds Ts and Te searched by algorithm 1 with TPR threshold T0 =0.8

dataset
TPR FP/TP

GroupModel Individual-Models GroupModel Individual-Models
1 0.594 0.969 0.368 0.484
2 0.923 0.923 0.375 0.292
3 0.333 0.817 2.8 1.735
4 0.763 0.816 0.897 1.774
5 0.75 0.8 1.4 2.562
6 0.885 0.923 1.739 1.458
7 0.773 0.818 3.882 1.833
8 0.864 0.909 0.789 0.65

average 0.736 0.872 1.531 1.348

Table 2: Episode metrics of individual models using individual thresholds using algorithm 1, TPR
method, that optimizes TPR and group model with thresholds Ts=0.8 and Te=0.4
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Figure 1: Improvements of episode metrics of individual models with thresholds searched from
algorithm 1, TPR method with T0=0.8. The top figure shows the improvements of individual
models before and after applying TPR method. The bottom figure shows the improvements of
individual models using thresholds from TPR method compared with the group model

68



A.2 Method focusing on FP/TP improvement

dataset Ts Te
1 0.55 0.4
2 0.50 0.1
3 0.85 0.1
4 0.85 0.1
5 0.85 0.1
6 0.85 0.1
7 0.85 0.1
8 0.75 0.1

Table 3: Table of thresholds Ts and Te searched by algorithm 2 that focuses on optimizing FP/TP
with FP/TP threshold T1 =1

dataset
TPR FP/TP

GroupModel Individual-Models GroupModel Individual-Models
1 0.594 0.969 0.368 1.0
2 0.923 0.962 0.375 0.64
3 0.333 0.583 2.8 1.0
4 0.763 0.737 0.897 1.214
5 0.75 0.6 1.4 1.417
6 0.885 0.923 1.739 1.458
7 0.773 0.773 3.882 1.588
8 0.864 0.909 0.789 0.95

average 0.736 0.807 1.531 1.158

Table 4: Episode metrics of individual models using individual thresholds searched from algorithm
2, FP/TP method with T1 = 1, that optimizes FP/TP and group model with thresholds Ts=0.8
and Te=0.4
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Figure 2: Figure of improvements of episode metrics of individual models with thresholds searched
from algorithm 2, FP/TP method with T1=1. The top figure shows the improvements of individual
models before and after applying FP/TP method. The bottom figure shows the improvements of
individual models using thresholds from FP/TP method compared with the group model
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