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Abstract

This thesis considers the problem of detecting periods of eating in free-living conditions by

analyzing wrist motion data collected using sensors embedded within a typical smartwatch. Previous

work by our research group included the collection of a dataset containing 354 days of recorded

wrist motion data from 351 different people (approximately one day of data per person) [42]. A

machine learning model was then trained to classify this wrist motion data as either eating or

non-eating [40]. We refer to this model as the group model. Subsequent work in our research

group collected approximately ten days of data each for eight new individuals and trained a model

for each person solely using their own data [51]. We refer to these models as individual models.

It was observed that, in most cases, the individual models outperformed the group model when

evaluating the data of their corresponding individual, but at the cost of requiring each individual to

collect two weeks of additional data. The novelty of this work is using transfer learning to leverage

features learned within the group model and apply them to new individual models to further increase

performance and possibly reduce the amount of individual data needed.

Two datasets were used in this work. The first was the Clemson All Day (CAD) dataset,

which contains 354 days of recorded wrist motion data from 351 different participants (approximately

one day of data per participant). The CAD dataset includes a total of 4,680 hours of data, including

1,063 meals. The second dataset used was the Multiday dataset, which is comprised of at least ten

days of free-living wrist motion data each for eight individuals. Both datasets were pre-processed

using smoothing and normalization techniques. Training samples were then generated using a sliding

window approach with a window size of six minutes.

All group, individual, and transfer learning models evaluated in this work utilized an identi-

cal convolutional neural network (CNN) architecture. For a given window, the classifier generated a

value that represented the probability of eating (P (E)) in the window. Entire days of wrist motion
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data were passed to the network to produce a continuous P (E) sequence for an entire day. This

sequence was processed using a dual thresholding technique to locate predicted segments of eating

within the recording.

In our results, the transfer learning model achieved an eating episode true positive rate

(TPR) of 81% with a false positive per true positive ratio (FP/TP) of 1.40. Compared to the

individual model, this was a 6% decrease in episode TPR but a 43% improvement in FP/TP. The

transfer learning model showed a time weighted accuracy (AccW ) of 80%, which was only a 1%

decrease relative to the individual model. After removing an outlier from the Multiday dataset and

rerunning our experiments, the transfer learning model showed an episode TPR of 86% with an

FP/TP of 1.34. Compared to the individual model, this was only a 3% decrease in TPR and a 46%

improvement in FP/TP. By excluding the outlier, the transfer learning model also showed an 83%

AccW , which was a 1% increase relative to the individual model. Furthermore, the transfer learning

model was able to reduce training times by 12% compared to the individual model. In conclusion, we

were able to find evidence that transfer learning could be utilized in order to improve individualized

eating detection models by increasing weighted accuracy and decreasing false detections.
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Chapter 1

Introduction

1.1 Overview

This thesis considers the problem of detecting periods of eating by tracking wrist motion

using sensors embedded within a typical smartwatch. Previous work by our research group included

the collection of a dataset containing 354 days of recorded wrist motion data from 351 different

people (approximately 1 day of data per person) [42]. A machine learning model was then trained

to classify this wrist motion data as either eating or non-eating [40]. We refer to this model as the

group model. Subsequent work in our research group collected approximately 10 days of data each

for 8 new individuals and trained a model for each person solely using their own data [51]. We refer

to these models as individual models. It was observed that, in most cases, the individual models

outperformed the group model when evaluating the data of their corresponding individual.

This thesis considers the use of transfer learning to leverage features learned within the

group model and apply them to new individual models to further increase performance. By using

the group model as a baseline for continued training with individual data, we hypothesize that

an improvement in eating episode detection could be achieved while reducing the number of false

detections. We compare the performance of our transfer learning model against both the group

model and individual models by evaluating each model on all individual datasets. We also compare

the training time of our transfer learning models to those of the individual models in order to

determine if transfer learning could be used to speed up the training process.

The remainder of this chapter first covers the background for this thesis. Section 1.2.1
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examines the global obesity epidemic and its repercussions that are the primary motivations behind

this work. Section 1.2.2 reviews the field of mobile health (mHealth) and its tools that allow

people to track data related to their health. Section 1.3 describes the Shimmer3, a wearable wrist

motion tracking device that was used to collect the datasets for the experiments outlined in this

thesis. Section 1.2.4 reviews several topics related to deep learning, including neural networks,

convolutional neural networks (CNNs), and transfer learning. After examining the background for

this work, Section 1.3 explores related works in the field of eating detection and transfer learning.

Finally, Section 1.4 briefly covers the novelty of this thesis and the questions that this work seeks to

answer.

1.2 Background

1.2.1 Obesity

Obesity is a widespread and complex health issue. It is a medical disorder involving excessive

fat accumulation that exposes a person to increased risk of diseases and other health problems such

as heart disease, diabetes, and many cancers. Obesity is commonly diagnosed using the body mass

index (BMI), which uses the ratio of a person’s weight and the square of their height (kg/m2). A

person is considered overweight if their BMI exceeds 25 and obese if their BMI exceeds 30.

Global trends indicate an alarming increase in obesity, which has tripled since 1975. It was

reported by the World Health Organization (WHO) that, as of 2016, more than 1.2 billion adults

(ages 20 and older) worldwide were overweight and over 650 million were obese [55]. In addition,

over 340 million children (ages 5-19) worldwide were overweight or obese in 2016 [55]. These figures

have started to increase more rapidly with each passing year. In the United States, a recent data

brief from the Centers for Disease Control and Prevention (CDC) highlighted the obesity epidemic,

finding that, in 2018, 42.4% of all U.S. adults were obese [20]. Another recent study has predicted

this progression in obesity rates will worsen, and that by the year 2030 approximately 50% of all

adults living in the United States will be obese [50]. A plot illustrating the obesity rates in the

United States for both children and adults over the last two decades is shown in Figure 1.1. In

this short amount of time, it can be observed that adult obesity rates have climbed over 12% and

childhood obesity rates have risen more than 5%. This disconcerting trend has the potential to

severely impact public health initiatives and further drive up the costs of healthcare in our country.
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Figure 1.1: Obesity rates in the United States from 1999 to 2018, adapted from [20].

The primary factors associated with these increases in obesity rates are consumption of

foods high in sugars and fat and increased sedentarism both at home and at work. Urbanization

and the growth of public transportation have also led to decreases in everyday activity levels. The

recent COVID-19 quarantines have compounded several of these factors. By forcing people to

confine themselves within their homes, overeating and sedentarism have increased. In addition, the

quarantines have limited access to conventional exercise venues such as public gyms [31]. It has also

been shown that individuals who suffer from obesity and its associated diseases experience more

severe symptoms after contracting COVID [10].

Previous studies have shown that genetic, physiologic, environmental, psychological, social,

and economic factors can all have an influence on predisposition to obesity; however, obesity is

highly preventable in most cases [56, 55]. Changes in weight occur due to an imbalance in energy

intake and energy expenditure, typically measured in units of calories. If energy expenditure is

higher than energy intake, the human body will burn stores of fat in order to keep up with energy

demands. Conversely, if energy intake is higher than energy expenditure, the human body will

convert the excess energy into fat to use in case of future energy shortages. Although physical

activity and exercise can increase energy expenditure to help balance out a high energy intake,
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the most important quantifiable aspect of effectively monitoring and ensuring weight loss is the

measurement of calorie intake [48].

1.2.2 mHealth

Modern medicine has considerably improved both quality of life and life expectancy in recent

history. With these improvements, noncommunicable diseases (NCDs) have now become the leading

causes of death around the world. According to a 2021 survey by the WHO, NCDs are responsible for

over 41 million deaths each year, which account for approximately 71% of all deaths worldwide [54].

The four most deadly NCDs were found to be cardiovascular diseases, cancers, respiratory diseases,

and diabetes. Obesity has been proven to be a contributing risk factor to the development of all of

these diseases [55]. This suggests that many cases of NCDs are preventable with a healthy lifestyle;

however, modern healthcare is mainly reactive. Medical care is only administered when a patient

seeks out a professional or when severe health concerns arise. In order to halt the onset of NCDs,

more proactive methods of monitoring personal health are necessary. This is where the burgeoning

field of mobile health, or mHealth, may provide assistance.

mHealth refers to the practice of medicine and monitoring of personal health using mobile

devices such as smartphones and smartwatches. Two popular mHealth devices are the Apple Watch

and Fitbit (shown in Figure 1.2), which together formed a market share of nearly 57% in North

America in 2020 [7]. These devices make health monitoring more accessible to the average user

by utilizing several automatic biometric sensors. For example, the Apple Watch includes a heart

rate monitor that can automatically detect irregular rhythms, an electrocardiogram (ECG), and

an IMU that can detect falls [4]. The Fibit also has several useful sensors that can automatically

monitor blood oxygen saturation, skin temperature, and breathing rate [17]. These devices are most

commonly used to monitor physical activity. By tracking activity, they are able to automatically

provide energy expenditure estimations.

Although current mHealth devices are able to automatically track energy expenditure, they

are unable to automatically track energy intake. This must be done manually using self-monitoring

methods such as food journaling. An extensive review on self-monitoring found a strong corre-

lation between self-monitoring and weight loss [6]. This same survey found that more frequent

self-monitoring led to increased weight loss; however, a decrease in self-monitoring frequency was

observed in longer studies. This suggests that long-term self-monitoring is difficult to maintain due
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(a) Apple Watch [4] (b) Fitbit [17]

Figure 1.2: The Apple Watch and Fitbit, two of the most popular smartwatches at the time of
writing.

to the tedious nature of self-reporting. In addition, self-monitoring can be prone to reporting bias.

A previous study found that obese individuals are more likely to underreport energy intake and

overreport physical activity [26].

The objective of the emerging field of automated dietary monitoring (ADM) is to produce

a device capable of automatically tracking energy intake in order to mitigate the drawbacks of self-

monitoring. Our research group has examined the use of wrist motion data to create an ADM

system that can be integrated with a typical smartwatch [40, 28, 51, 34]. Our goal is to help with

the treatment of obesity and eating disorders. A detailed analysis of our group’s previous research

and other works related to ADM is provided in Section 1.3.

1.2.3 Shimmer3 Device

The wrist motion data for the CAD and Multiday datasets were collected using the Shim-

mer3 wearable device, shown in Figure 1.3 [40, 51]. The Shimmer3 contains an inertial measurement

unit, or IMU, which uses both an accelerometer and gyroscope in order to track motion. The ac-

celerometer measures linear acceleration across the x, y, and z axes, while the gyroscope measures

angular velocity about those same axes. This results in a multivariate time-series with six total axes

of data. The Shimmer3 recorded data at a rate of 15.06 Hz, though this was downsampled to 15 Hz
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Figure 1.3: The Shimmer3 wearable IMU device [44]

during post-processing.

Data collection using the Shimmer3 device was a straightforward process. First the device

was turned on using the small switch on its side. This caused one of the LEDs on the device to

turn green to indicate that it was running. The large orange button on the front of the device was

then held down for approximately five seconds in order to begin the data collection process, which

produced a regular flash on the second LED. Data was saved to an embedded micro SD card. In

order to log start and end times for meals, the button on the front was quickly pressed to produce

a timestamp in the data. This also produced a quick flash on the second LED. Once recording was

finished, the button was held down again for 5 seconds in order to halt data collection. The Shimmer3

was then connected to a dock using a port located on the bottom of the device. Next, the dock was

connected via USB to a computer to download the data in CSV format using the Consensys software

package specifically developed for the Shimmer3 device. The complete data collection process for

the CAD dataset and Multiday dataset are described in [42] and [51], respectively.

1.2.4 Deep Learning

Deep learning is a subset of the broad field of machine learning, which seeks to apply

anatomical concepts of the human brain to mathematical models. Specifically, deep learning involves

training these mathematical models, referred to as neural networks, to learn information provided
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through examples. Many different deep learning architectures have been created, including deep

neural networks (DNNs), recurrent neural networks (RNNs), and convolutional neural networks

(CNNs). These architectures have made ground-breaking developments in many fields, including

computer vision, machine translation, advertisement, financial forecasting, and healthcare.

There are four different categories of deep learning: supervised learning, unsupervised learn-

ing, semi-supervised learning, and reinforcement learning. In supervised learning, training samples

that are provided to a neural network are labeled with their correct output, or ground truth. This

allows the neural network to compare its output to the ground truth so it can better fit itself to

the training data. Unsupervised learning takes the opposite approach and provides neural networks

with training samples that have no ground truth. Unsupervised learning is used in order to reveal

features or patterns within data that may be difficult to discern in their raw form. Semi-supervised

learning combines supervised learning and unsupervised learning by using mostly unlabeled training

data with a small number of labeled samples that can help identify important features. Finally,

reinforcement learning is used to generate a set of instructions that maximize a reward function.

For example, reinforcement learning can be used in order to train a neural network to play games

such as chess.

The remainder of this section will focus on supervised learning for classification tasks, since

that is what was used in the experiments of this thesis. This section first examines the basics of

neural networks. Next, the convolutional neural network, or CNN, is reviewed. Finally, the concept

of transfer learning is explored.

1.2.4.1 Neural Networks

Neural networks are mathematical models that are trained to learn information from exam-

ples. Neural networks consist of neurons, or nodes, that each have one or more inputs, an activation

function, and a single output. When the output of one neuron is connected as an input to another

neuron, this value is first multiplied by a value known as a weight. In addition, each neuron has

a constant value added to its inputs called a bias. These bias values and weighted connections be-

tween neurons are what define a neural network. Once all weighted inputs and the bias value for a

neuron have been added together, they are passed to the activation function to produce an output.
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Mathematically, a neuron can be represented as:

y = f(

n∑
i=1

xiwi + b) (1.1)

where n represents the number of inputs to the neuron, x represents the vector of input values,

w represents the vector of weights, b represents the bias value, and f(·) represents the activation

function of the neuron. The activation function mathematically relates the inputs of a neuron to its

output. Many different activation functions have been developed for neural networks. The activation

functions used in this thesis include the rectified linear unit (ReLU) and sigmoid functions, which

are covered in more detail in Chapter 3.

A group of neurons that have the same input, activation function, and output are collectively

referred to as a layer in the neural network. The size of a neural network is typically described in

terms of layers rather than neurons. A neural network must contain an input layer and an output

layer. Any layers placed between the input layer and output layer are referred to as hidden layers.

Hidden layers can take many different forms. Examples include convolutional layers, pooling layers,

and fully-connected layers. These types of hidden layers are examined more thoroughly in Section

1.2.4.2. Figure 1.4 shows a small neural network containing one fully-connected hidden layer. With

deep learning, it is common to have many hidden layers present in a network.

Training a neural network is an iterative optimization process. During each training iter-

ation, inputs are passed to the network to learn from. Each input is combined with the weights

and biases in the network to produce an output. The error, or loss, between the network output

and its desired output is then calculated using a function called the loss function to observe how

well the network performed. The loss is then used to update all of the trainable parameters of the

network, which include weights and biases. A lower loss value indicates that the network performed

well and the trainable parameters do not need to be adjusted much. Conversely, a high loss value

indicates that the network performed poorly and more drastic changes to the trainable parameters

are necessary. Many different loss functions have been developed for machine learning. One such

example is the cross-entropy loss function, which is commonly used in multi-class classification tasks.

Cross-entropy can be mathematically represented as:

L = −
C∑
c=1

yc · log(ŷ) (1.2)
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Input Layer

Hidden Layer

Output Layer

Figure 1.4: An example of a fully-connected neural network with an input layer containing three
neurons, one hidden layer containing four neurons, and an output layer containing one neuron.

where L is the loss value that is supposed to be minimized, C is the number of classes, y is the

vector of ground truth values, and ŷ is the vector of output predictions from the neural network.

After the loss has been computed using the loss function, trainable parameters in the network

are updated using a process known as gradient descent. During gradient descent, partial derivatives

for a function are calculated in order to determine where minima are located within the function.

With neural networks, we use gradient descent with respect to the loss function. Partial derivatives

of the loss function are taken with respect to every trainable parameter in the network. This provides

us with a vector that details the direction in which the loss function increases most rapidly. We then

move along the loss function in the opposite direction, since our goal is to minimize loss. Computing

the gradients provides us with a direction to move along the loss function; however, it does not tell

us how far we should move. This is determined by an adjustable parameter called the learning rate.

Careful considerations must be made when selecting the learning rate for a given problem.

Since the learning rate determines the speed at which the loss function is traversed, it is possible

to miss minima in the loss function if the correct value is not chosen. A learning rate value that is

too low will cause the loss to converge very slowly, meaning many training iterations will be needed
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Figure 1.5: An example showing how different learning rates can affect the gradient descent opti-
mization task.

to find the minima. A low learning rate may also cause the gradient descent algorithm to settle at

local minima rather than a global minima. A learning rate that is too high may skip over minima

in the loss function entirely. Figure 1.5 illustrates how learning rate values can affect the gradient

descent process.

When updating the trainable parameters in a network using the gradients and learning rate,

it is important to remember that changes to lower layers will affect the performance of higher layers.

Therefore, updates must occur in a top-down (last to first) fashion. This is accomplished using an

algorithm called backpropagation. Once all network parameters have been updated, the gradient

descent process is concluded and the network can begin another training iteration. Gradient descent

can be expressed mathematically as:

w = w − η

n

n∑
i=1

∇Li(w) (1.3)

where w represents the network weights in matrix form, η represents the learning rate, n represents

the number of training samples, and ∇Li(·) represents the gradient of the loss function for the i-th

training sample.

There are three varieties of gradient descent: batch gradient descent, stochastic gradient

descent, and mini-batch gradient descent. Batch gradient descent only updates network parameters

after all training samples have been passed through the network. Batch gradient descent provides

more accurate gradient estimations but can be taxing on certain hardware due to large memory

requirements. Stochastic gradient descent updates network parameters after every training sample.

This approach allows the network to train more quickly but can provide noisy gradient estimations.
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Lastly, mini-batch gradient descent strikes a balance between the previous methods by updating

network parameters after subsets, or batches, of the training data have been passed through the

network. Regardless of what method is used, once all training samples have been examined, the

network is said to have gone through one training epoch. It is common practice to perform many

training epochs when fitting a neural network with data.

When performing network training for classification tasks, data is typically divided into

training data and testing data. Training data, as the name suggests, is used to train the neural

network. Testing data is used after the training process in order to determine how well the neural

network performs when given data it has never observed before. It is imperative to make sure the

training and testing sets are kept separate from one another. If a network were to test on the same

data that it trained on, this could result in inflated network performance metrics. It is common when

training a neural network to also select a small subset of the training data to use as a validation set.

Validation sets act as smaller testing sets, but are evaluated after every training epoch in order to

observe how a model is performing as it is training.

1.2.4.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are a form of deep neural network that utilize several

types of layers in order to extract identifying features from provided inputs. These layers include

convolutional layers, pooling layers, and fully-connected layers.

CNNs derive their name from their use of convolutional layers. Convolutional layers operate

by taking an input and performing a set of convolutions between the input and a set of kernels, or

filters. These filters represent the trainable parameters, or weights, of the convolutional layer.

Effectively, the filters gradually learn to recognize various input features during the training process.

Ideally, each filter will learn a different feature from the inputs. The number of filters and the size

of each filter are configurable for each convolutional layer. In addition, a stride value can be set for

each convolutional layer. The stride value determines how each filter is moved across inputs when

performing convolutions. A higher stride value will move the filters across inputs with larger steps.

Deep CNNs typically utilize many convolutional layers at the beginning of their architectures. Lower

convolutional layers are able to extract more general or generic features while higher convolutional

layers extract more specific features. The combined set of features that a convolutional layer learns

is referred to as a feature map.
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Figure 1.6: An example of two-dimensional convolution.

Convolutional layers are commonly used to extract many different features from their in-

puts. Pooling layers are then used in order to downsample these features. The two most popular

pooling layer methods are average pooling and max pooling. In average pooling, several features

are combined in order to form an average that is passed to the next layer. In max pooling, only the

maximum value in a subset of features is selected to be passed to the next layer. Effectively, pooling

layers allow a CNN to reduce its feature space while maintaining the features that are important

for classification. Since pooling layers simply perform a mathematical operation, they contain no

trainable parameters.

After extracting a final feature map using convolutional layers and pooling layers, CNNs

use fully-connected, or dense, layers for classification. In fully-connected layers, all outputs from the

previous layer are connected as inputs to all neurons within the fully-connected layer (see Figure

1.4). Put simply, these layers take features as inputs and output a final prediction for what class

the features belong to. It is common to use several fully-connected layers for classification in CNNs.

CNNs are particularly useful for processing data with spatial or temporal dependencies. This

makes them well-suited for computer vision tasks such as image classification. When training on

images, CNNs perform two-dimensional convolutions. Filters are able to extract spatial features such

as edges, colors, and textures from these images. Figure 1.6 shows an example of two-dimensional

convolution.

In addition to images, CNNs are also useful for processing time-series data. With time-series

classification, each sample within the time-series is treated as an input feature. For multivariate time-
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Figure 1.7: An example of one-dimensional convolution using different stride values.

series data, this can mean that inputs could have thousands or possibly millions of input features.

CNNs are well suited for this type of data because they employ effective downsampling methods

such as striding and pooling. Figure 1.7 shows an example of one-dimensional convolution using

different stride values.

1.2.4.3 Transfer Learning

Transfer learning is a technique where knowledge gathered from one task is applied to an-

other, related task. Consider, for example, the way we learn to use different programming languages.

Everyone starts to program using one language, such as C, C++, Java, or Python. Although each of

these languages has a unique syntax, they share many features. Loops, conditionals, and variables

are fundamental concepts in most programming languages. Therefore, once we have become familiar

with these concepts by learning our first language, it is easier for us to learn another language. This

same technique can be applied to deep learning. With deep learning, knowledge can be transferred

from one neural network to another. Knowledge, in this case, includes features or network weights.

Consider another example, where a CNN has been trained as an image classifier that can differ-

entiate between images of cats and dogs. Suppose now we want to train another image classifier

that can discern different breeds of cats from one another. Instead of training a new network from

scratch, we can use the pre-trained classifier as a base model for our new problem. This pre-trained

model has already learned to recognize the general features of a cat, therefore once it is given new

training images of different cat breeds, it will be able to converge more quickly.

Many neural networks developed for classification can be divided into feature extraction

layers and classification layers. Feature extraction layers, such as convolutional layers and pooling
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layers, are responsible for learning important features from their inputs. After learning a desired

number of features, these features are passed to the classification layers. The classification layers are

responsible for mapping their provided set of features into a predicted class label. Multiple layers

used for classification are collectively referred to as a classification head. Fully-connected layers

are often used as classification heads in CNNs. When using transfer learning, the feature extraction

layers comprise the knowledge that is transferred to a new network. Conventionally, transfer learning

for classification problems follows the following steps:

1. Train a General Model: First, a general or generic model is trained on a larger dataset. This

general model should be comprised of both feature extraction layers and classification layers.

Many popular deep learning models that have been trained on large datasets are publicly

available. For example, the VGGNet [45] architecture that has been trained on ImageNet [37]

is available online. TensorFlow, a popular machine learning library [1], even has a built-in

function that loads this specific model.

2. Transfer and Freeze Feature Extraction Layers: Once the general model has been

trained, its feature extraction layers are transferred to a new model. The weights in these

feature extraction layers are then frozen, meaning they can no longer be updated. This is

done so that the information stored in these weights is not overwritten when training the new

model.

3. Train a New Classification Head: After adding the general feature extraction layers to a

new model, a new classification head is added to the new model. This network is then trained

using a new dataset related to the general dataset. The classification layers are the only layers

that are updated during initial training epochs on the new model. Figure 1.8 illustrates this

process.

4. Fine-Tune Feature Extraction Layers: During fine-tuning, the feature extraction layers

are unfrozen and all trainable parameters within the network are allowed to learn. In order

to avoid completely overwriting the weights of the feature extraction layers, fine-tuning is

typically performed with a lower learning rate and a limited number of training epochs. For

deep neural networks with many layers, some lower feature extraction layers may still be kept

frozen during fine-tuning in order to retain knowledge of more general, low-level features.
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Figure 1.8: A flowchart illustrating the transfer learning technique for classification tasks.

Using transfer learning can provide many advantages. One major benefit of using transfer

learning is that it can reduce the amount of data necessary for training an accurate classifier. Data

collection can be a time-consuming and often expensive process. By utilizing feature extraction

layers trained on a general or related dataset, fewer new training samples are needed in order to

make a transfer learning model converge.

Another benefit of transfer learning is that it can help speed up the training process. By

starting with a model trained on a similar problem, the model weights are initialized to values that

will let them converge quickly. Even when training a new model on a dataset with a sufficient

number of training samples, starting with a pre-trained model can reduce the number of training

epochs needed to fit the model properly. This is especially useful for very deep neural networks that

have many feature extraction layers and trainable parameters.

One more benefit that transfer learning can provide is improved model performance. In

addition to helping models converge faster, pre-trained weights can also help models identify minima

in their loss functions that they may have missed using only their own dataset for training. This is

particularly advantageous when working with very small datasets.
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1.3 Related Work

This chapter explores past literature related to the research of this thesis. First, methods

developed for detecting periods of eating using ADM are analyzed, including the advantages and

disadvantages of each implementation. Next, past transfer learning algorithms and applications are

evaluated. The final section of this chapter includes a summary of all related works and a comparison

of this literature to the work of this thesis.

1.3.1 Automated Dietary Monitoring

Studies in automated dietary monitoring (ADM) have employed a variety of different sensors

and learning techniques. Early experiments in ADM by Amft et al. included the use of in-ear micro-

phones that detected sounds of chewing [3]. The authors of this study determined that placement

of the microphone in the ear would be unobtrusive and socially acceptable since other ear-mounted

devices such as hearing aides and phone headsets were commonly seen in public. Four subjects

were each given four different types of food to eat for data collection (N = 4). The microphone

signal was segmented into individual chews using a low-pass filter and then classified using a simple

decision tree classifier. Results showed that the classifier was able to recognize periods of chewing

and determine what type of food was being chewed with an accuracy of 67-86% depending on the

food type. Amft continued their work by designing a less invasive earpad sensor that rested outside

the ear [2]. In this new study, three participants were given 19 different foods to chew (N = 3). A

Bayes classifier was used to determine food type and showed an overall accuracy of 86%.

Makeyev et al. used a similar method to detect sounds of swallowing by placing a microphone

over the throat [29]. By placing the microphone directly over the throat, the authors were able to

reduce ambient noise. Data for this study was collected from a single subject (N = 1) that recorded

20 samples each for three classes of sounds (swallowing, talking, and head movement). A fourth

class was artificially introduced containing random sounds of music in order to include a class with

little similarity to the other three. By using a four-layer neural network, the authors were able to

achieve a classification accuracy of 99%; however, this approach was eventually disregarded due to

the intrusiveness of the throat sensor.

Gao et al. also used microphones to detect eating by using more commercially available,

off-the-shelf Bluetooth headsets [19]. The motivation behind this was to make a practical ADM
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system that was more acceptable to consumers. In this study, 28 participants (N = 28) were tasked

with recording periods of eating, speaking, and drinking for data collection in a lab setting. Using

both a support vector machine (SVM) and a deep neural network, a classification accuracy of 95-

96% was attained. The authors of this study extended their work by evaluating their classifiers in

free-living conditions as well; however, in this scenario the accuracy of the SVM classifier and deep

neural network both dropped sharply to 65% and 77%, respectively. The main cause of this decrease

in performance was attributed to excessive ambient noise. This study highlights the importance of

testing ADM methods in free-living environments.

In addition to microphones, strain sensors have also been used to successfully detect periods

of eating. Sasanov et al. used a piezoelectric strain gauge sensor worn below the outer ear to track

movement of the lower jaw during food intake [39]. Data was collected from 20 volunteers (N =

20) that included periods of eating, resting, and speaking. By using an SVM, the authors reported

an 81% classification accuracy on windows of 30 seconds. Nguyen et al. also used piezoelectric

sensors along with an IMU to create an ADM device worn around the neck [32]. Both a random

forest classifier and long short-term memory (LSTM) neural network were trained on data collected

in a controlled environment (N = 10). Results showed that the LSTM was able to beat the random

forest classifier in F1-score (76% to 67%).

Fontana et al. proposed a wearable sensor system containing a jaw motion strain sensor,

hand gesture sensor, and accelerometer that was worn around the neck on a lanyard [18]. Information

collected by the system was processed by a three-layer feedforward neural network in windows of 30

seconds for classification as eating or non-eating. Results for this sensor system showed an average

classification accuracy of 90% on a dataset collected from 12 subjects (N = 12). Each subject

recorded 24 hours of sensor data in a free-living environment. Farooq et al. continued this research

by creating a sensor system with an accelerometer and temporalis muscle strain sensor that attached

to a pair of eyeglasses [15]. Signals recorded by the sensors were divided into segments of 3 seconds

for classification by a pair of SVMs and a decision tree (N = 10). An F1-score of 99% was reported

for this learning technique. Recently, Doulah et al. continued this research even further [14] by

adding a camera to the sensor system developed by Farooq et al. [15]. When eating is detected

by the accelerometer and temporalis muscle sensor, the camera captures images of the food being

eaten. Classification of sensor data was performed by an SVM using windows of ten seconds. Results

showed a classification accuracy of 83% (N = 30). Bai et al. used a similar approach with a camera
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and proximity sensor with comparable results [5].

The social considerations of wearable devices is an important aspect of ADM. Wearable

sensors must be both comfortable and unobtrusive. A study by Kalantarian et al. [23] examined

the efficacy and social acceptability of several different forms of wearable eating monitors, including

microphones, piezoelectric strain sensors, cameras, and smartwatches that used IMUs. An online

survey was used to determine social acceptance scores (N = 96). Out of all devices that were

evaluated, the smartwatch was rated as the most socially acceptable device and also rated highly

in terms of performance. Mercer et al. also examined the social acceptability of several different

wearable activity monitors and determined that smartwatches were observed as the most tolerable

form of device [30]. These studies show that smartwatches could serve as effective and marketable

ADM devices.

Dong et al. experimented early with wrist motion-based eating detection by creating an IMU

device that counted individual bites [11]. The authors discovered that there is a distinctive rolling

motion of the wrist when bites of food are taken. This rolling motion is illustrated in Figure 1.9.

Data was collected in a laboratory setting from ten subjects (N = 10) that were given a meal to eat

with the utensils of their choice. A rule-based algorithm was then developed for detecting bites that

showed a true positive rate (TPR) of 91%. Although the authors achieved a high TPR, it was noted

that the bite counter did show a large number of false positives. Dong et al. continued their work

by collecting an entire day of wrist data from four participants (N = 4) in free-living conditions [12].

Using an updated rule-based algorithm developed for detecting entire eating sessions, a classification

accuracy of 82% was achieved. Dong et al. developed their research even further in 2013 by collecting

a larger free-living wrist motion dataset with smartphones [13]. In this newer study, an entire day of

wrist motion data was recorded from 43 volunteers (N = 43). One-second-long windows were used

to detect periods of eating using a naive Bayes classifier. Results showed an 81% accuracy in eating

episode detection. These studies showed that using wrist motion to automatically detect periods of

eating in free-living environments was feasible.

A survey by Salley et al. compared the wrist-mounted bite counting device developed by

Dong et al. [11] to a more traditional manual food journaling application in order to determine which

was more appealing to users. [38]. Findings from the survey revealed that 76% of all participants (N

= 83) preferred the bite counting device due to its ease of use. A later survey by Turner-McGrievy

et al. also compared the same bite counting device [11] to another food journaling application to
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Figure 1.9: The distinctive rolling motion of the wrist during a bite, adapted from [11].

find which was more effective for weight loss [49]. Results showed that the participants who used

the journaling application lost more weight than those that used the bite counter (N = 81). This

was attributed to the fact that some bite counter users forgot to log some of their meals and were

unable to make edits to their data. These surveys suggested that, although there was a high interest

in a wrist-mounted ADM device, more work was required to make these devices accessible.

Shen et al. used hidden Markov models (HMMs), a type of statistical model, in order

to recognize eating behavior in different demographics [43]. Wrist motion data for this study was

collected in a cafeteria from 276 volunteers that each ate a single meal (N = 276). This dataset is

now publicly available and known as the Clemson Cafeteria Dataset [21]. By using HMMs, it was

shown that grouping subjects by age, gender, and utensil choice could all be used to increase gesture

recognition accuracy.

Recent advancements in the field of deep learning have also been utilized to detect periods

of eating from wrist motion. Kyritsis et al. used a hybrid CNN-LSTM network in order to classify

wrist motion data collected from smartwatches (N = 12) [24, 25]. Individual bites were collected

and merged in order to detect entire meals. Results from this study showed a weighted classification

accuracy of 79%. Due to the large size of the network, training times for this architecture proved

long, meaning integration with a standard smartwatch may not be feasible. In addition, the choice

of eating utensils in this study gave varying results in network performance. This is a limitation of
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a bottom-up approach to meal detection.

Stankoski et al. used a CNN architecture in order to detect entire meal segments from

wrist motion data collected with smartwatches [46]. In order to accomplish this, the authors used

a top-down approach with a large sliding window of 15 seconds to generate samples of eating and

non-eating. 481 hours of free-living data was collected from 12 subjects (N = 12). Results showed

an average true positive rate (TPR) of 81%. In addition to training a model on the entire dataset,

the authors also created personal models for each test subject in order to observe if any performance

could be gained by doing so. It was found that, on average, the personalized models offered similar

or slightly improved performance compared to the group model, though this improvement varied

depending on the subject. Lopez-Meyer et al. also explored the idea of using personalized models

with similar results [27].

Luktuke used a CNN modeled after U-Net [36] to classify eating gestures from wrist mo-

tion [28]. The Clemson Cafeteria Dataset [21] was used to train this deep CNN architecture. Luktuke

used a top-down procedure by training with windows of 30 seconds for classification. Results showed

that 78% of all gestures were correctly classified on average.

Sharma also used a CNN for wrist motion classification of eating events with a large window

size of six minutes [41, 40]. Sharma collected the Clemson All-Day (CAD) dataset for this approach,

which consisted of 4,680 hours of data collected from 351 different volunteers (N = 351) [42]. Each

volunteer recorded wrist motion in free-living conditions for approximately one day each. This is the

largest known dataset of free-living wrist motion data. Using the CAD dataset, Sharma reported

a weighted accuracy of 80% with their CNN architecture. They also developed a dual threshold

hysteresis method to evaluate detection of entire eating events. Using this method, Sharma reported

a TPR of 89% for meal detection with a false positive to true positive ratio of 1.7.

Patyk continued the work of Sharma [40] by developing a recurrent neural network (RNN)

capable of applying daily context to detected meals [34]. This was accomplished by training the RNN

on daily eating probability values provided by Sharma’s CNN model. The CAD dataset was also

used for these experiments [42]. Using this method, results showed an 85% TPR for meal detection

with a false positive to true positive ratio of 0.8. Although this showed a decrease in TPR relative

to Sharma’s base model, the number of false detections decreased substantially. A limitation of this

study was that entire days of data are required for classification to be possible.

Wei applied the CNN model developed by Sharma [40] to individual datasets containing
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multiple days of data from the same subject [51]. The Multiday dataset was collected for this

study, which consisted of at least ten days of data each for eight different subjects (N = 8). The

objective of this study was to determine if a model trained solely on one individual’s data could

outperform a group model on the same data (an idea also examined by Stankoski et al. [46] and

Lopez-Meyer et al. [27]). First, a group model was trained on the entire CAD dataset [42]. Next, an

individualized model was trained for each subject in the Multiday dataset. Using the group model

on each individual’s data showed an average weighted accuracy of 78%. Using the individualized

models showed an average weighted accuracy of 82% (a 4% increase); however, the indvidualized

models were more prone to false detections. Improvements in weighted accuracy varied by subject.

For some subjects, the group model was able to outperform the individual models. The work of this

thesis draws largely from the work of Sharma [40] and Wei [51].

1.3.2 Transfer Learning

Several extensive surveys have been conducted in recent years that review the applications

and benefits of transfer learning for many tasks related to machine learning [33, 52, 47]. One of

the major benefits of transfer learning discussed in these surveys is that it can solve the problem of

insufficient training data. By starting with a model trained on a related dataset, general features that

were learned can accelerate learning on a new dataset that may have a limited number of samples.

Not only can this improve the performance of the new model trained on the limited dataset, it can

also reduce the training time needed for the new model to converge.

Transfer learning has been used for many different classification tasks, including image

classification. Cheng et al. used transfer learning with CNNs in order to classify images of abdominal

ultrasounds. [8]. Ultrasound images were rescaled to a lower resolution and then passed to two

different CNNs based on VGGNet [45] and CaffeNet [22] that were first trained on ImageNet [37].

After this initial training period, the weights of all convolutional layers in each network were frozen

in order to keep feature extraction intact. Next, several dense layers were added to the top of

the network to act as a new classification head. Both CNN architectures were able to outperform a

trained radiologist. Similar studies have used CNNs in conjunction with transfer learning techniques

to improve image classification accuracy [35, 57].

Transfer learning has also been used for time-series classification. Fawaz et al. recently

explored using transfer learning with CNNs to classify time-series data [16]. Using 85 different
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publicly available time-series datasets, the authors trained a CNN with each dataset and then fine-

tuned it with the others to observe performance changes. This resulted in the creation of 7,140

distinct CNNs. Results for this study showed improvements in classification accuracy for 71 of the

85 datasets, which demonstrates that transfer learning can indeed be beneficial for time-series data.

Wen et al. also used transfer learning with time-series data for fault detection [53]. In this study, the

authors trained a CNN based on U-Net [36] on a large time-series dataset containing many errors

with corresponding ground truth labels. After training on this larger dataset, the authors fine-tuned

their network using smaller synthetic datasets that were slightly corrupted to produce errors. By

using transfer learning, the authors saw an average improvement in intersection over union (IoU)

score of 20% compared to baseline models.

Cook et al. conducted an extensive survey on the applications of transfer learning to the

field of human activity recognition [9]. One application the authors describe is that transfer learning

can be used to transfer knowledge of one activity to a related activity. For example, a neural network

trained to identify periods of walking could help train another network to identify periods of running.

In addition, knowledge of an activity gathered from one type of sensor could be shared in order to

identify the same activity with a different type of sensor.

1.4 Novelty

The novelty of this work is applying transfer learning to leverage features learned from a

group eating detection model in order to improve the performance of individual eating detection

models. We consider using the group model as a foundation for the creation of new individual

models in order to reduce false detections and increase accuracy. This work specifically seeks to

answer the following questions:

1. Can transfer learning be employed to increase the performance of individualized eating detec-

tion models by utilizing features learned from a group eating detection model?

2. How much performance can be gained by using transfer learning to create individualized mod-

els? Does this performance gain vary depending on the individual?

3. Can transfer learning speed up the training process for individualized models?
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Chapter 2

Methods

This chapter outlines the methods used in the experiments of this thesis. We first describe

the CAD [42] and Multiday [51] datasets that were used for our experiments in Section 2.1. Next,

the data pre-processing techniques that we utilized on each of these datasets are examined in Section

2.2. The CNN architecture that was used for all group, individual, and transfer learning models is

then reviewed in Section 2.3. Following this, Section 2.4 describes the training process for each type

of model. The post-processing procedures used on each model are examined in Section 2.5. Finally,

the evaluation metrics that were used to measure the performance of each model are provided in

Section 2.6.

2.1 Datasets

Two datasets were used in the experiments of this work. The first was the Clemson All-

Day (CAD) dataset, which contained 354 days of recorded wrist motion data from 351 different

subjects. One subject recorded data for three days, another subject recorded for two days, and the

rest recorded for one day. The CAD dataset contained a total of 4,680 hours of data, including

1,063 meals. Recording was performed in free-living conditions using the Shimmer3 IMU device.

The Shimmer3 recorded six total axes of data (accelerometer x, y, and z as well as gyroscope pitch,

roll, and yaw) at a rate of 15.06 Hz, though this was downsampled to 15 Hz after collecting the

data from the Shimmer3. The CAD dataset was separated into 354 different files with the SHM (an

abbreviation for Shimmer) file extension, where each file contained binary IMU data for one day
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of recording. Each data file also had a corresponding text file that listed the ground truth eating

events for the recording. The average length of each recording was approximately 13 hours. The

entire data collection procedure for the CAD dataset is explained by Sharma in [42].

The second dataset used in this work was the Multiday dataset, which included at least

10 days of free-living wrist motion data each for eight individuals. Each of these individuals were

referred to as subjects in the dataset and labeled using a three-digit number from 001 to 008. The

Multiday dataset followed the same data collection procedure as the CAD dataset. Files were first

separated by subject before being separated by day, however. The entire data collection procedure

for the Multiday dataset is described by Wei in [51]. Some inconsistencies were observed in the

Multiday dataset that Wei used in his experiments. In order to fix this, we manually edited the

dataset in the following ways:

1. Subject 001 data included a duplicate data file for one day of recording. This file was removed.

2. Subject 001 data included two days of recording that were each split into two separate data files.

The ground truth text files for these four recordings showed that each recording only contained

data for a single meal. Since no non-eating data was also available for these recordings, they

were removed from the dataset in order to maintain a class distribution (eating and non-eating)

similar to other recordings in the dataset.

3. Wei excluded two days of recording for subject 003. Upon examination, these recordings

contained valid data and were therefore added to our updated dataset.

4. One day of recording for subject 003 contained a ground truth event for teeth brushing. This

event was removed from the ground truth file.

5. One day of recording for subject 003 contained a ground truth event for a single bite that only

lasted for four seconds. This event was removed from the ground truth file.

6. Wei removed two days of recording for subject 006. Upon examination, these recordings

contained valid data and were therefore added to our updated dataset.

7. Subject 007 data included two days of recording that each spanned three entire days. These

two files were found to be duplicates. To fix this, each file was edited so that they only included

the data for their particular day. In addition, the ground truth text files for these days were

edited so that they only included eating events for their corresponding day.
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Subject
Original Dataset Triaged Dataset

Days Meals
Total
Hours

Eating
Hours

Days Meals
Total
Hours

Eating
Hours

001 17 32 129.2 7.7 12 26 115.1 6.2
002 14 26 125.6 3.3 14 26 125.6 3.3
003 23 60 167.2 7.6 24 59 170.7 7.6
004 13 38 134 9.3 13 38 134 9.3
005 14 20 127.8 5.9 14 20 127.8 5.9
006 12 26 144.8 7 14 30 174.6 8.6
007 10 22 120.4 5.9 10 19 111.1 5.0
008 12 22 115.5 10.8 12 22 115.5 10.8

Table 2.1: Comparison of the original Multiday dataset [51] to the triaged Multiday dataset

Overall, discrepancies were found in four out of eight subjects. Table 2.1 shows a comparison

of the original Multiday dataset to the triaged version that was ultimately used.

2.2 Data Pre-Processing

Several pre-processing steps were taken in order to prepare each dataset for use in training

machine learning models. Section 2.2.1 covers the technique we used to smooth raw IMU data.

Section 2.2.2 examines the normalization method that was used on the smoothed IMU data. Next,

section 2.2.3 details how we used a sliding window process to create training samples. Finally, section

2.2.4 examines how we balanced the classes of our training samples.

2.2.1 Smoothing

Raw data recorded using IMUs is prone to noise. An IMU worn on the wrist would further

compound this issue, since people move their wrists during many different activities throughout the

day. Even trying to hold the wrist completely still typically results in slight shaking motions. In

order to help reduce the effects of noise in our data, we applied smoothing using a Gaussian filter

as outlined in [40].

Each axis of the accelerometer (x, y, z) and gyroscope (yaw, pitch, roll) was filtered inde-

pendently. The complete equation for the Gaussian filter is provided by:

St =

0∑
i=−N

Rt+i
exp(−t2

2σ2 )∑N
x=0 exp(−(x−N)2

2σ2 )
(2.1)
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Figure 2.1: A sample of the Gaussian smoothing filter being used on the accelerometer x data axis.

where St represents each smoothed signal at time t, Rt represents each raw signal at time t, σ2 is

the variance of the filter, and N is the length of the filter. For all axes of data, we used a variance

of σ2 = 10 and a filter length of N = 15 in order to cover one second of past data. Figure 2.1 shows

the Gaussian filter operating on a segment of data recorded from the accelerometer x channel of the

Shimmer3 IMU device. It can be observed from this figure that the filter helps preserve trends in

the data while eliminating unnecessary noise.

2.2.2 Normalization

Normalization is used when creating machine learning models so that the values of all fea-

tures share a common scale. If one feature has higher values than the others, a model may become

biased towards this feature during training. In our datasets, it was observed that the gyroscope

measurements (measured in deg/sec) showed a larger range of values than the accelerometer mea-

surements (measured in m/s2). In order to rescale these values, we used Z-score normalization.

Z-score normalization can be represented mathematically as:

z =
x− µ
σ

(2.2)

where x is the input data, µ is the mean of the data, and σ is the standard deviation of the data.

By subtracting its mean and dividing by its standard deviation, the data is rescaled to have a new
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mean close to zero and a new standard deviation close to one. Each IMU data axis was normalized

independently using this method. Z-score normalization was used because it was shown to yield

better results than other normalization methods such as min-max scaling [40].

As mentioned previously, it is important to keep training and testing sets separated from

each other when training a neural network. When performing Z-score normalization, the means and

standard deviations of only the training set are calculated. Both the training set and testing set are

normalized using these values.

2.2.3 Sliding Window

Wrist motion data was recorded over the course of entire days. In order to reshape this

data into a more efficient size for training purposes, a sliding window approach was used. With this

approach, many shorter samples, or windows, are extracted from a larger sample. After extracting a

window from our time-series data, the window was shifted along the recording by an amount called

the stride. The number of time-series windows that could be collected from a day of recording can

be calculated by:

N =
T −W
S

+ 1 (2.3)

where T is the length of the entire day of recording, W is the window size, and S is the stride value.

The size of the windows that are extracted can have a large impact on neural network performance.

For our datasets, we used a larger window size of W = 6 minutes in order to better detect entire

meals. When collecting windows from the CAD dataset, we used a stride value of S = 15 seconds.

A stride value of S = 5 seconds was used with the smaller Multiday dataset in order to extract more

windows of eating data. Figure 2.2 shows how windows of data were collected from the smoothed

and normalized IMU datasets.

Once data windows were collected from a recording, they were labeled using the correspond-

ing ground truth file. We used a majority vote labeling scheme. If at least half of the data within

an extracted window was self-reported as eating in the ground truth file, the window was labeled as

eating (1). Otherwise, the window was labeled as non-eating (0).
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Figure 2.2: An illustration depicting the creation of multivariate time-series windows from IMU
recordings using striding.

2.2.4 Data Imbalance

Determining whether windows of wrist motion data corresponded to eating or non-eating was

a binary classification task. When creating a classifier, it is important that all classes are represented

equally in the training data. The CAD and Multiday datasets, however, are imbalanced. This is

because the average person spends much less time eating than not eating throughout the course of a

day. If a neural network is trained using imbalanced data, it will learn to favor the most represented

class.

Two methods of fixing the imbalanced data were available: undersampling and oversampling.

With oversampling, samples from the minority class are randomly selected for duplication until the

total number of minority class samples equals the number of majority class samples. Oversampling

allows all samples from the majority class to be kept for training; however, by making exact copies

of the minority class, overfitting becomes more likely. Another disadvantage of oversampling is that

it can make training sets very large, resulting in long training times.

Undersampling takes the opposite approach. Samples from the majority class are randomly

removed from the training set until the total number of majority class samples matches the number
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of minority class samples. Undersampling discards potentially useful data from the majority class

but is not prone to overfitting. Undersampling also allows for faster training times by shrinking the

size of the training set.

We used an undersampling approach when training all models in our experiments. After

windows of data were collected and labeled as described in Section 2.2.3, we randomly selected non-

eating windows to be removed from the training set until the eating and non-eating classes were

balanced. This approach was taken to reduce excessive training times.

2.3 Neural Network Architecture

This section examines the CNN architecture that was shared by all group, individual, and

transfer learning models. Each layer of the architecture and its corresponding settings are described.

2.3.1 Input Layer

Windows of eating and non-eating were created from the CAD and Multiday datasets using

the steps outlined in Section 2.2. Using a window size of W = 6 minutes (5400 data points at 15

Hz) and all six axes of data recorded from the Shimmer3 IMU device, each input passed through

our CNN had a shape of (5400, 6). These inputs were fed in batches to the network for training.

2.3.2 Convolutional Layers

Input windows were first passed through a series of three one-dimensional convolutional lay-

ers in the CNN. These layers were responsible for learning identifying features from the multivariate

time-series windows. Each convolutional layer was defined by their number of filters (f), the size of

these filters (k), and a stride value (s). Each convolutional layer was passed an input of shape (Li,

c), where Li was the length of the input and c was the number of channels, or axes, in each input.

Using these variables, the number of trainable parameters in each convolutional layer was calculated

using:

N = f · k · c+ f (2.4)

The total number of weights in each layer was represented by the f · k · c term in this equation and

the total number of biases was represented by f , since each filter had one bias value. The output
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(a) Rectified linear unit (ReLU) function (b) Sigmoid function

Figure 2.3: The rectified linear unit (ReLU) and sigmoid activation functions.

length of each convolutional layer was also calculated using these variables, and can be represented

as:

Lo =
Li − k
s

+ 1 (2.5)

Since each convolutional layer used f filters, the final output shape from these layers was represented

as (Lo, f). Each convolutional layer was also assigned with an activation function. All three of the

convolutional layers in our architecture used the rectified linear unit (ReLU) activation function.

The ReLU function can be expressed mathematically as:

f(x) =

x x ≥ 0

0 otherwise
(2.6)

where x represents an input value. The ReLU function clips any negative input values to 0, otherwise

it returns its input. Gradient computations using the ReLU function are very efficient due to

the function’s simplicity. A graph of the ReLU function is provided in Figure 2.3a. Lastly, all

three convolutional layers used an L1 regularization penalty of 0.01 in order to reduce the risk of

overfitting [40].

The first convolutional layer in our CNN used f = 10 filters, a filter size of k = 44, and a

stride of s = 2. Lower convolutional layers within a CNN are trained to recognize low-level features

within input data. A filter size of k = 44 (approximately 3 seconds of data recorded at 15 Hz) was

selected for this layer in order to identify wrist motion patterns associated with individual bites,
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Figure 2.4: An illustration of one-dimensional global average pooling. Each one-dimensional input
channel is reduced to the average of its values.

since previous work has shown the average bite lasts around 3 seconds [40]. This layer accepted

inputs of shape (5400, 6) directly from the input layer. Using equations 2.4 and 2.5, this meant that

the layer had N = 2650 trainable parameters and an output shape of (2679, 10).

The second convolutional layer of the CNN used f = 10 filters, a filter size of k = 20, and

a stride of s = 2. This layer was designed to identify wrist motion patterns related to consecutive

eating gestures. Using equations 2.4 and 2.5, this layer had N = 2010 trainable parameters and an

output shape of (1310, 10).

The third and final convolutional layer of the CNN used f = 10 filters, a filter size of k = 4,

and a stride of s = 2. This final convolutional layer was designed to detect high-level wrist motion

patterns associated with entire meals. Using equations 2.4 and 2.5, this layer had N = 410 trainable

parameters and an output shape of (664, 10).

2.3.3 Pooling Layer

A one-dimensional global average pooling layer was used after the three convolutional layers

of our CNN in order to downsample the feature map provided by the last convolutional layer. Global

average pooling reduces all values within an input channel to their average. In our CNN, the last

convolutional layer had an output shape of (664, 10). The global average pooling layer averaged each

channel of 664 values from this output to provide a new output shape of (10). Figure 2.4 illustrates

how this process works by reducing an input of shape (5, 3) to an output of shape (3). Because

pooling layers simply perform a mathematical operation in order to downsample, they contain no

trainable parameters or associated variables. The global average pooling layer and convolutional

layers together formed the feature extraction layers in our CNN architecture.
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2.3.4 Fully-Connected Layers

Two fully-connected layers were used in our CNN architecture after the global average

pooling layer. These fully-connected layers served as the classification head of our network. The

number of trainable parameters in each fully-connected layer was calculated using:

N = Li · n+ n (2.7)

where Li was the length of the input vector and n was the number of neurons in the fully-connected

layer. The total number of weights in each fully-connected layer was represented by the Li · n term

in this equation and the total number of biases was represented by n, since each neuron had one

bias value. Each neuron produced one output, meaning that the number of outputs from each

fully-connected layer was equal to n.

The first fully-connected layer accepted an input of shape (10) from the one-dimensional

global average pooling layer and used n = 200 neurons. This meant the layer produced an output

of shape (200) and, using equation 2.7, had a total of N = 2200 trainable parameters. This layer

used the ReLU activation function (see Figure 2.3a).

The second fully-connected layer contained a single neuron and functioned as the output

layer in the CNN. Using equation 2.7, this layer had a total of N = 201 trainable parameters.

The output layer used the sigmoid activation function. The sigmoid function can be represented

mathematically as:

f(x) =
1

1 + e−x
(2.8)

where x represents an input value. The sigmoid function rescales all input values to the range [0, 1].

By using this activation function in the output layer, the CNN effectively provided the probability

of eating (P (E)) for input windows of wrist motion data. A P (E) greater than or equal to 0.5

represented eating and a P (E) lower than 0.5 represented non-eating during classification. Figure

2.5 shows an example of a P (E) curve produced from a full day of wrist motion data.

2.3.5 Architecture Summary

The full CNN architecture used for our experiments used three one-dimensional convolu-

tional layers followed by a one-dimensional global average pooling layer for feature extraction. It
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Figure 2.5: The probability of eating P (E) throughout an entire day of recording.

Layer Type Output Shape Parameters

Input (5400, 6) 0
1D Convolutional (2679, 10) 2650
1D Convolutional (1310, 10) 2010
1D Convolutional (664, 10) 410
1D Global Average Pooling (10) 0
Fully-Connected (200) 2200
Fully-Connected (1) 201

Table 2.2: Output shapes and number of trainable parameters for each layer in the CNN architecture.

then used two fully-connected layers for classification. The final fully-connected layer acted as an

output layer. By using the sigmoid activation function, this layer provided a final output value

that represented the probability of eating (P (E)) for each input window. Input windows passed to

the network were of the shape (5400, 6), which represented W = 6 minutes of data recorded from

an IMU. Table 2.2 shows a summary of each layer in the CNN, including the output shape and

number of trainable parameters for each layer. Figure 2.6 shows the full architecture, including the

activation function and variables used for each layer.

2.4 Network Training

Three types of models were used in our experiments: group models, individual models, and

transfer learning models. This section examines the training process for each type of model as well

as the hyperparameters used during training.
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Conv1D Layer: (k = 44, f = 10, s = 2), 
activation: ReLu

Feature Extraction

Classification

Conv1D Layer: (k = 20, f = 10, s = 2), 
activation: ReLu

Conv1D Layer: (k = 4, f = 10, s = 2), 
activation: ReLu 

...

Input Layer: (W = 15 Hz * 60 sec/min * 6 min = 5400, c = 6)

P(E)

Dense Layer: (m = 200, n = 1), 
activation: sigmoid

Dense Layer: (m = 10, n = 200), activation: ReLU

Global Average Pooling

Figure 2.6: The complete CNN architecture used for all group, individual, and transfer learning
models. In the input layer, W represents the window length in data and c represents the number of
channels, or axes, in each input. In the convolutional layers, k represents filter length, f represents
the number of filters, and s represents stride. In the fully-connected layers, n represents the number
of neurons. The convolutional layers and pooling layer together formed the feature extraction layers
in the network. The two fully-connected layers formed the classification head.
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Figure 2.7: The process for training and evaluating a group model.

2.4.1 Group Model Training

Each group model used in our experiments was trained on the entirety of the CAD dataset

(354 days of wrist motion data). All days of data were first split into windows. Next, windows labeled

as non-eating were undersampled until the number of eating and non-eating windows matched (see

Section 2.2). 10% of all training windows were used as a validation set when training each group

model in order to observe model performance during training. Only the model that showed the

lowest validation loss during training was saved and used for evaluation.

After training on the full CAD dataset, each group model was evaluated using the Multiday

dataset. All days in the Multiday dataset were separated by subject and each model was evaluated on

each of these eight individual datasets separately. It is important to observe here that no individual

data was used when training the group models. Individual data was only used when evaluating the

group models. Figure 2.7 shows the training process that each group model used.

We referred to the entire training and evaluation process for one model as a trial. A total of

30 group model trials were performed in our experiments. Because non-eating training samples were

undersampled randomly to form training sets, the performance of each group model varied during

evaluation with the Multiday dataset. Metrics were averaged across all trials in order to provide an

unbiased estimate of the group model’s overall performance.
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Figure 2.8: An illustration of k-fold cross validation where k = 5. Final performance metrics are
evaluated by averaging the performance of each individual fold.

2.4.2 Individual Model Training

Individual models were trained for each subject from the Multiday dataset. The number of

days recorded for each subject in the Multiday dataset ranged from 10-24. Due to the limited amount

of data available for each subject, k-fold cross validation was used when training individual models.

When using k-fold cross validation, all data for a given dataset is split into k equally sized partitions,

or folds. One fold is withheld for testing while the others are used for training. This process is

repeated for k iterations using a different fold for testing at each iteration. Final performance

metrics are calculated by averaging across all k iterations. The individual model training process

used 5-fold cross validation. Folds for each individual in the Multiday dataset were composed of

entire days of data. This way, the training and testing sets for individual models did not contain

any overlapping data from the same wrist motion recording. Figure 2.8 provides an illustration of

5-fold cross validation.

Days in each training set were split into windows and balanced as outlined in Section 2.2.

10% of all training windows were used as a validation set. Only models that showed the lowest

validation loss during training were saved and used for evaluation, just as with the group models. 30

total trials were performed when creating individual models. Each trial used 5-fold cross validation
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Figure 2.9: The process for training and evaluating an individual model.

for each subject in the Multiday dataset. This meant that each trial produced 40 different models

and that 1200 individual models were trained and evaluated in total. Performance was first averaged

across folds for each subject before being averaged across trials. Figure 2.9 illustrates the training

procedure used for each individual model.

2.4.3 Transfer Learning Model Training

Transfer learning models were trained using the basic steps outlined in Section 1.2.4.3.

First, a group model trained on the CAD dataset was loaded and its feature extraction layers

were frozen. For our CNN architecture, these layers included three one-dimensional convolutional

layers and a one-dimensional global average pooling layer (see Section 2.3). Next, the classification

head consisting of two fully-connected layers was reset and trained using individual data from the

Multiday dataset. After training the classification head, feature extraction layers were unfrozen and

fine-tuned with individual data.

Four different types of transfer learning models were created by using different fine-tuning

methods. The first type of transfer learning model was configured to fine-tune all of its convolutional

layers. The second type of transfer learning model was configured to fine-tune only its top two

(second and third) convolutional layers. The third type of transfer learning model was configured to
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Figure 2.10: The process for training and evaluating a transfer learning model.

train only its top (third) convolutional layer. The final type of transfer learning model did not use

fine-tuning at all, meaning that only its classification head underwent any training. This was done

in order to determine what fine-tuning procedure was most optimal.

Transfer learning models were trained for each subject from the Multiday dataset. 5-fold

cross validation was used by splitting subject data by day, just as with the individual models. Days

in each training set were then split into windows and balanced as outlined in Section 2.2. 10% of

all training windows were used as a validation set. Only models that showed the lowest validation

loss during classification head training were used for fine-tuning. No model checkpointing was used

during fine-tuning, meaning each model was saved after all fine-tuning epochs. 30 total trials were

performed for each type of transfer learning model. During each trial, a different group model was

loaded as a foundation for transfer learning. By using 5-fold cross validation, each trial produced 40

different models. This resulted in the creation of 1200 total models for each type of transfer learning

model. Performance was first averaged across folds for each subject before being averaged across

trials. Figure 2.10 illustrates the training procedure used for each transfer learning model.
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2.4.4 Hyperparameters

Hyperparameters are configurable values that can be used to adjust the learning process of

a neural network. The hyperparameters used in our experiments are provided:

1. Loss Function: Our experiments followed a binary classification paradigm. Time-series win-

dows were labeled as either eating (1) or non-eating (0). Therefore, we used the binary cross-

entropy loss function. Binary cross-entropy loss is a specific version of general cross-entropy

loss (see equation 1.2). Binary cross-entropy loss can be represented mathematically as:

L = − 1

N

N∑
n=1

yn · log(P (yn)) + (1− yn) · log(1− P (yn)) (2.9)

where N is the number of training samples and yi ∈ {0, 1} is the ground truth class.

2. Number of Training Epochs: Both the group model and the individual models were trained

for 30 epochs. Each transfer learning model was initially trained for 30 epochs with only their

classification layers left unfrozen. Several higher values were tested for each model type;

however, no further improvements in performance were observed beyond 30 epochs.

3. Number of Fine-Tuning Epochs: After initially training each transfer learning model for

30 epochs, they were fine-tuned for 10 epochs. During these epochs, the feature extraction

layers were unfrozen and allowed to learn. Different feature extraction layers were either frozen

or allowed to fine-tune depending on the transfer learning model type (see Section 2.4.3). By

using a relatively low number of fine-tuning epochs, unfrozen feature extraction layers were able

to better fit to individual data without completely overwriting their original weights learned

from the group dataset.

4. Optimizer: The Adaptive Moment Estimation (Adam) optimizer was used to train all group,

individual, and transfer learning models (this included fine-tuning transfer learning models).

Adam uses stochastic gradient descent with a dynamic learning rate for different trainable

parameters in the network.

5. Learning Rate: The default initial learning rate for the Adam optimizer is 0.001. This value

was used when training all group and individual models. The default value was also used

when training the classification head of each transfer learning model. When fine-tuning each
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transfer learning model, the learning rate was decreased to 0.0001. Using this smaller learning

rate for fine-tuning allowed the transfer learning models to successfully fit pre-trained feature

extraction weights to individual training data without completely overwriting them.

6. Batch Size: We used mini-batch gradient descent in order to train all of our models. A smaller

batch size has been shown to decrease both network training time and memory requirements,

which can be useful if accelerators such as GPUs are available; however, a smaller batch size will

also provide less accurate gradient estimations. Conversely, a batch size that is too large will

lead to long training times and memory limitations that may prohibit use of certain hardware.

Since the CAD and Multiday datasets were relatively small, a larger batch size of 256 was used

when training all group, individual, and transfer learning models. This allowed each network

to converge more consistently and reduced model volatility.

7. Model Checkpointing: Model checkpointing was used in order to save the best model

during training epochs. Each model type used a 10% validation split when training. Only

the model with the lowest validation loss was saved during training. Model checkpointing was

only applied to classification head training for transfer learning models and was not used for

fine-tuning.

2.4.5 Hardware and Software

All models were trained using TensorFlow, a software library built for machine learning [1].

TensorFlow version 2.2 for Python was used. All model training and evaluation was performed on

Clemson University’s Palmetto Cluster, a high performance computing (HPC) system. Compute

nodes used on this system were supplied with 40 cores, 372 GB of RAM, and 2 NVIDIA Tesla V100

GPUs.

2.5 Post-Processing

After training, each model was evaluated using entire days of unseen data. For each day in a

model’s testing set, a sliding window procedure was used in order to generate a continuous series of

testing windows. These windows were evaluated by their corresponding model in order to produce

a sequence of values representing the probability of eating (P (E)) throughout the recording. Using
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Figure 2.11: The probability of eating P (E) throughout an entire day of recording with meal seg-
ments detected by the hysteresis thresholds. Ts indicates the starting threshold that the P (E) curve
must exceed to begin a meal detection. Te indicates the ending threshold that the P (E) curve must
fall below in order to end a meal detection.

this P (E) curve, a hysteresis thresholding method developed previously in our research group was

used to detect periods of eating [40].

The hysteresis method used two different thresholds in order to detect meals from a daily

P (E) sequence. First, the P (E) sequence for a recording had to exceed a starting threshold Ts

in order to mark the start of an eating episode. Next, the P (E) sequence had to fall below an

ending threshold Te in order to mark the end of an eating episode. This approach was taken because

previous studies have found that eating behaviors and gestures tend to be more vigorous at the start

of a meal. These gestures slowly become more subdued over the course of the meal. It was found

in these previous works that a starting threshold of Ts = 0.8 and an ending threshold of Te = 0.4

are optimal for accurately detecting meals while limiting false detections [40]. A stride of S = 5

seconds was used to evaluate days of data in order to avoid excessive computation times. Figure

2.11 shows how the hysteresis thresholds detect meal segments from a daily P (E) curve. Once all

meal detections have been found using the hysteresis method, evaluation metrics are calculated by

comparing the detections to a ground truth.

2.6 Evaluation Metrics

Two types of evaluation metrics were used to assess the performance of each model: time

metrics and episode metrics. This section examines both types of metrics as well as the measures

we took to limit model volatility.
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Table 2.3: Eating Classifier Confusion Matrix [34]

2.6.1 Time Metrics

Time metrics were calculated by comparing detections produced during post-processing to

ground truth values at each time point where an evaluation window was produced. When performing

evaluation, the ground truth label at the center point of each window was used as the label for the

entire window. Time metrics were calculated using the four outcomes found in a confusion matrix. A

true positive (TP) was identified if the classifier and ground truth both detected eating at the same

time point. A true negative (TN) was produced if the classifier and ground truth both detected

non-eating at the same time point. A false positive (FP) was recorded if the classifier predicted

eating and the ground truth showed non-eating at the same point. Lastly, a false negative (FN)

occurred if the classifier predicted non-eating at the same time point where the ground truth listed

eating. The number of actual positive cases (P) can be calculated using the sum of all true positives

and false negatives (P = TP + FN). Similarly, the total number of actual negative cases (N) can

be calculated by summing all true negatives and false positives (N = TN + FP). Table 2.3 shows a

confusion matrix with all possible classification outcomes. Figure 2.12 illustrates how ground truth

meals and detected meals were compared to produce each time classification outcome.

The time metric that we used to quantify model performance was weighted accuracy (AccW ).
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Ground Truth Meals

Detected Meals

TNConfusion Matrix FN TP FP TN FP TP FN TN

Figure 2.12: Labeling of eating time metrics using ground truth meals and model detections: true
positive (TP), true negative (TN), false positive (FP), and false negative (FN).

Weighted accuracy was calculated using:

AccW =
W · TP + TN

W · (TP + FN) + (TN + FP)
=
W · TP + TN

W · P + N
(2.10)

where W represented the ratio of non-eating time points to eating time points in recordings.

Weighted accuracy mitigated the class imbalance between eating and non-eating samples to pro-

vide an unbiased measurement of model performance.

2.6.2 Episode Metrics

Episode metrics were calculated by comparing the overlap between detected meals and

ground truth meals. Episodes were first categorized using three of the four outcomes found in a

confusion matrix. A true positive occurred if any overlap existed between a detected meal and a

ground truth meal. A false positive was indicated by a detected meal that had no overlap with any

ground truth meals. A false negative was identified if a ground truth meal did not overlap with

any detected meals. True negatives were not considered when calculating episode metrics. Figure

2.13 shows how ground truth meals and detected meals were compared to produce each episode

categorization.

Two episode metrics were used to quantify model performance in our experiments. The first

was true positive rate (TPR), also known as sensitivity. TPR was calculated using:

TPR =
TP

TP + FN
(2.11)

TPR was used in order to determine what percentage of ground truth meals were successfully
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Figure 2.13: Labeling of eating episode metrics using ground truth meals and model detections: true
positive (TP), false positive (FP), and false negative (FN).

detected. The second episode metric used was the false positive to true positive ratio (FP/TP).

FP/TP was used in order to observe how prone a network was to false detections. There is typically

a trade-off between TPR and FP/TP. As TPR increases, it is common for FP/TP to increase as

well. Conversely, as TPR decreases, FP/TP will often decrease. Ideally, a balance between these

two metrics should be sought that provides a relatively high TPR and low FP/TP.

2.6.3 Training Time

In order to measure the training time of each individual model and transfer learning model,

a custom callback was written using TensorFlow [1]. This allowed the collection of accurate timing

metrics for each model without factoring in overhead caused by model checkpointing. Total training

time was calculated by summing the training times of each epoch. Timings for all individual models

include classification head training time as well as fine-tuning time. Timing values for the group

model are not considered in our experiments.

2.6.4 Model Volatility

Model volatility refers to the differences in performance that are observed when training

and evaluating a model using the same data. One source of model volatility for all models was the

selection of non-eating samples during undersampling. Another source of volatility for the transfer

learning models and individual models was the selection of folds during 5-fold cross validation. In

order to gather accurate performance metrics and mitigate model volatility, each type of model was

trained and evaluated 30 times, as outlined in Section 2.4. To get a measure of model volatility,

standard deviations for each performance metric were calculated across all runs.
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Chapter 3

Results

This chapter examines the results gathered from our transfer learning experiments. First,

the effects of fine-tuning different feature extraction layers are evaluated in Section 3.1 to determine

the optimal transfer learning configuration. Next, the group model, individual model, and transfer

learning model are compared in Section 3.2. Section 3.3 analyzes the performance differences per

subject to see if transfer learning works equally well for all individuals. Finally, the volatility of each

type of model is inspected in Section 3.4.

3.1 Fine-Tuning Transfer Learning Model Layers

Table 3.1 shows the average weighted accuracy (AccW ), episode TPR, and episode FP/TP

that were recorded for each fine-tuning configuration across all subjects from the Multiday dataset.

Each row of the table shows the performance metrics for a different configuration. From the table,

we observe that weighted accuracy and episode TPR both increase as more layers in the CNN are

fine-tuned. These metrics improved most notably when the second convolutional layer was unfrozen,

which can be seen by comparing the second and third rows of data in Table 3.1. Fine-tuning beyond

two layers showed minor improvements to weighted accuracy and episode TPR. Using any amount

of fine-tuning resulted in only a slight increase in FP/TP. We therefore conclude that fine-tuning

all layers yields the best possible performance. Configuration metrics for each subject from the

Multiday dataset are provided in the appendices for completeness.

Table 3.2 shows the average training time for each fine-tuning configuration across all sub-
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Fine-Tuned
Layers

AccW (%) TPR (%) FP/TP

0 73 63 1.20
1 75 69 1.42
2 80 80 1.43
3 80 81 1.40

Table 3.1: Average weighted accuracy (AccW ), episode TPR, and episode FP/TP values measured
across all subjects for each type of fine-tuning configuration.

Fine-Tuned
Layers

Training
Time (s)

0 53.4
1 70.9
2 72.4
3 86.6

Table 3.2: Average 5-fold cross validation training time measured across all subjects for each type
of fine-tuning configuration.

jects from the Multiday dataset. We see from this table that the time spent training the classification

head of the network (represented by 0 fine-tuned layers in the table) takes approximately one minute

and is the largest contributor to training time. Subsequent rows in the table show that fine-tuning

different layers in the network takes approximately 20-30 seconds, providing a small amount of addi-

tional training time. Despite the addition of this fine-tuning time, overall training time was low for

all configurations. We therefore conclude that the cost of fine-tuning all layers is acceptable. The rest

of the results shown in this chapter for transfer learning use fine-tuning for all three convolutional

layers.

3.2 Group vs. Individual vs. Transfer Learning

Table 3.3 shows the average weighted accuracy (AccW ), episode TPR, and episode FP/TP

for the group model, individual model, and transfer learning model across all subjects from the

Multiday dataset. We see from this table that the individual model shows an 8% higher AccW than

the group model on average (81% vs. 73%), which demonstrates that learning wrist motion patterns

by training on individualized data leads to improved classification performance. The transfer learning

model reaches almost the same AccW as the invididual model on average (80% vs. 81%).

In terms of average episode metrics, the individual model achieves a much higher TPR than
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Model AccW (%) TPR (%) FP/TP

Group 73 64 1.39
Individual 81 87 2.45
Transfer 80 81 1.40

Table 3.3: Average weighted accuracy (AccW ), episode TPR, and episode FP/TP values measured
across all subjects for each type of model.

the group model (87% vs. 64%), but also yields an FP/TP approximately 76% higher than the group

model (2.45 vs 1.39). The transfer learning model achieves nearly the same TPR as the individual

model (81% vs 87%) but with an FP/TP comparable to the group model (1.40 vs 1.39). This may

be because the individual model only has a limited number of days to learn all possible wrist motion

patterns, whereas the transfer learning model can benefit from both the group data and individual

data.

Figure 3.1 shows an example of the episode evaluation results for a full day of recording

from the group model (3.1a), individual model (3.1b), and transfer learning model (3.1c). This

day contained two meals reported in its ground truth file. It can be observed that the plot for the

group model in this figure shows a large amount of noise, with P (E) values commonly near 0.5.

This shows that the group model had difficulty separating eating samples from non-eating samples.

Overall, the group model correctly identified one meal, missed one meal, and had one false detection.

Both the individual model and transfer learning model show less noise in their respective plots, with

P (E) values that mostly trend towards 1.0 and 0.0. This shows that the individual and transfer

learning models were able to more confidently separate eating samples from non-eating samples in

the recording. The individual model was able to correctly identify both meals but showed three false

detections. The transfer learning model also correctly identified both meals and did not have any

false detections.

Figure 3.2 shows another example of episode evaluation on a full day of recording for each

model. This day also contained two meals reported in its ground truth file. The group model (3.2a)

showed low P (E) values throughout the entire recording and was unable to detect either meal. The

individual model (3.2b) was able to identify both meals but showed seven different false detections.

The individual model was not able to detect most of the second meal approximately eight hours

into the recording. This did not matter when calculating episode metrics, but would decrease time

weighted accuracy. The transfer learning model (3.2c) was also able to detect both meals in the
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(a) Group model episode evaluation: TP = 1, FP = 1, and FN = 1.
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(b) Individual model episode evaluation: TP = 2, FP = 3, and FN = 0.
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(c) Transfer learning model episode evaluation: TP = 2, FP = 0, and FN = 0.

Figure 3.1: Example of episode evaluation performed on a full day of recording for each type of
model.
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(a) Group model episode evaluation: TP = 0, FP = 0, and FN = 2.
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(b) Individual model episode evaluation: TP = 2, FP = 7, and FN = 0.
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(c) Transfer learning model episode evaluation: TP = 2, FP = 2, and FN = 0.

Figure 3.2: Example of episode evaluation performed on another full day of recording for each type
of model.
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Subject
AccW (%)

Group Individual Transfer

001 82 90 90
002 90 93 94

003 54 71 62

004 60 75 74
005 83 82 83
006 63 82 83
007 73 67 69
008 77 89 89

Table 3.4: Average weighted accuracy (AccW ) for all subjects from the Multiday dataset using each
type of model.

recording and showed only two false positives. In addition, it can be observed that the transfer

learning model was able to detect more of the second meal, which would lead to an increase in

weighted accuracy.

In terms of training time, performing 5-fold cross validation took 98.9 seconds on average

for the individual model. Thus, transfer learning saves approximately 12% training time while

also providing knowledge shared by the group model. Training times could be reduced further by

fine-tuning fewer convolutional layers but this would also lead to a decrease in performance.

3.3 Per Subject Variability

Table 3.4 shows the weighted accuracy across all three model types for each subject from

the Multiday dataset. Similarly, Table 3.5 shows both episode metrics for each subject using all

three model types. These tables allow us to observe which type of model performed best for each

subject. From these tables, it can be observed that the transfer learning model had the highest

weighted accuracy for most subjects (6/8). The individual model only outperformed the transfer

learning model when evaluating subject 003 and 004. For subject 004, this difference was only 1%.

For subject 003, however, this difference was 9%.

Upon closer examination of Table 3.4 and Table 3.5, it was observed that all model types

performed poorly for subject 003. Most notably, the group model only detected 12% of all eating

episodes for subject 003. Using the individual model for this subject, 76% of eating episodes were

detected, but this dropped to 42% for the transfer learning model. This was especially unusual
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Subject
TPR (%) FP/TP

Group Individual Transfer Group Individual Transfer

001 80 98 94 1.73 0.95 0.40
002 87 89 93 0.14 0.88 0.29

003 12 76 42 0.67 2.38 1.81

004 38 85 72 0.17 2.72 1.45
005 75 78 77 2.10 3.66 1.82
006 48 97 96 0.44 2.99 2.01
007 89 80 76 4.16 4.70 2.15
008 81 92 96 0.67 1.30 1.30

Table 3.5: Average episode metrics for all subjects from the Multiday dataset using each type of
model.

since subject 003 had the most days of recorded data as well as the highest number of reported

meals according to Table 2.1. Upon closer examination of the data for subject 003, it was discovered

that many of their meals only lasted 1-5 minutes. It was shown in previous work that the CNN

architecture used for all models had difficulty identifying meals less than its window length of W = 6

minutes [40]. In addition, it was shown in Section 2.1 that several meals had to be removed from the

ground truth files of subject 003. This suggests that the participant may have misinterpreted the

proper usage of the Shimmer3 IMU device. Another possibility is that the participant had highly

irregular eating behaviors compared to the average group behaviors.

To study this further, we excluded subject 003 and recalculated the average performance

metrics across the remaining seven subjects for all three model types. Table 3.6 shows our findings

for this experiment. By excluding subject 003, the performance metrics of the group model and

transfer learning model increase significantly compared to the original findings shown in Table 3.3.

Most notably, the TPR of the group model increases from 64% to 71% and the TPR of the transfer

learning model increases from 81% to 86%. The TPR of the individual model also increases slightly

from 87% to 89%. Additionally, the transfer learning model shows the highest AccW of 83% and

ties with the group model for the lowest FP/TP of 1.34. Although the transfer learning model

receives a marked improvement in average performance metrics, this comparison shows that transfer

learning may not be appropriate for all individuals. If personal eating behaviors fall far outside

group behaviors, it may be better to exclude group data and only train an individual model.
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Model AccW (%) TPR (%) FP/TP

Group 75 71 1.34
Individual 82 89 2.46
Transfer 83 86 1.34

Table 3.6: Average weighted accuracy (AccW ), episode TPR, and episode FP/TP values measured
across all subjects excluding subject 003 for each type of model.

Model AccW (%) TPR (%) FP/TP

Group ±3 ±6 ±0.66
Individual ±1 ±3 ±0.33
Transfer ±1 ±4 ±0.28

Table 3.7: Standard deviations for all evaluation metrics over 30 runs using each type of model.

3.4 Model Volatility

Table 3.7 shows the standard deviations for all evaluation metrics over 30 runs using each

type of model. It can be seen from this table that the standard deviations for all group model metrics

are noticeably higher than those of the individual model and transfer learning model. This is most

likely because there is a much larger variety of wrist motion patterns represented in a group compared

to an individual. The standard deviations for all transfer learning model metrics are comparable to

those of the individual model. This shows that the fine-tuning process greatly reduces the volatility

of the baseline group model during transfer learning.

Using our knowledge of model volatility, we compared the results of our experiments with

the group model and individual model to those of previous work [51] in order to determine if previous

results were replicated. Table 3.8 shows our findings. The table shows that the previous findings

reported in [51] fall within 1-2 standard deviations of our findings but do not match our averages.

This shows the importance of performing multiple runs when evaluating machine learning models,

especially when data availability is limited.

AccW (%) TPR (%) FP/TP

Group Individual Group Individual Group Individual

Previous Work [51] 78 82 74 80 1.53 1.75
30 Runs Results 73±3 81±1 64±6 87±3 1.39±0.66 2.45±0.33

Table 3.8: Comparison of average evaluation metrics for group and individual models across 30 runs
to results of previous work [51].
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Chapter 4

Conclusion

This thesis explored the novel concept of utilizing transfer learning to improve individualized

eating detection models. The results gathered from the experiments of this work answer the three

questions posed in Section 1.4:

1. Can transfer learning be employed to increase the performance of individualized eating detec-

tion models by utilizing features learned from a group eating detection model?

The transfer learning model showed a weighted accuracy (AccW ) of 80%, an episode TPR

of 81%, and an episode FP/TP of 1.40. Compared to the individual model, this was a 1%

decrease in AccW , a 6% decrease in episode TPR, and a 43% improvement in episode FP/TP.

Although the transfer learning model shows slight decreases in AccW and episode TPR, false

detections were substantially reduced compared to the individual model.

2. How much performance can be gained by using transfer learning to create individualized mod-

els? Does this performance gain vary depending on the individual?

It was shown in Section 3.3 that for most subjects in the Multiday dataset, the transfer

learning model was able to achieve the highest weighted accuracy (AccW ) while maintaining a

high episode TPR and low episode FP/TP; however, there was a noticeable outlier in Subject

003. Group model and transfer learning model performance metrics for Subject 003 were much

lower than individual model metrics. Upon closer examination, it was shown that Subject 003’s

data differed greatly from the data of other individuals. By excluding Subject 003’s data and

reevaluating, the transfer learning model showed a weighted accuracy of 83%, an episode TPR
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of 86%, and an episode FP/TP of 1.34. Compared to the individual model, this was a 1%

increase in AccW , a 3% decrease in episode TPR, and an improvement of 46% in episode

FP/TP. This shows that, for most individuals, transfer learning can improve eating detection;

however, some individuals may benefit from excluding group data and only using individual

data.

3. Can transfer learning speed up the training process for individualized models?

The transfer learning model configuration that utilized fine-tuning for all convolutional layers

was able to decrease training time by approximately 12% compared to the individual model.

As less layers were fine-tuned, training time was shown to decrease further. This shows that

there is a trade-off between training time and evaluation performance when fine-tuning transfer

learning models.

4.1 Limitations

Perhaps the largest advantage of the transfer learning model is also its greatest limitation:

it uses a group model. Training a group model requires the collection of a large dataset, which can

be both costly and time-consuming. Thus, transfer learning may be better suited for tasks that have

large datasets that are readily available.

Another limitation of this study was the size of each dataset that was used. Although the

CAD dataset contains data from 351 different people, having a larger dataset would be beneficial so

that knowledge of more eating behaviors could be shared with the transfer learning model. Similarly,

the Multiday dataset only contains wrist motion data for eight individuals. Collecting data from

more participants could help quantify the robustness of the transfer learning model. More data could

also be collected per individual so that an investigation could be performed examining how many

days of data are required to create an accurate individual model. The limitations of this research

do provide suggestions for future work, however.

4.2 Future Work

There are a number of additional experiments that could be performed as future work. One

such experiment could examine adjusting network parameters to improve performance in individual
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models. For example, the effect of window size (W ) on individual accuracy could be examined.

Similarly, changing the hysteresis thresholds Ts and Te could be examined.

Another experiment related to transfer learning that could be explored is altering the amount

of training data. Instead of performing cross validation, a set number of days could be used for

training. This could help determine how many days of individual data are actually needed when

the group model is already being used as a baseline. If this amount of data is found to be low, data

could be collected more quickly from individuals.

An investigation into the causes of model volatility could also be performed. One of the most

likely causes of model volatility is the choice of non-eating windows during undersampling. Future

work could include the creation of a method that allows the most optimal non-eating windows to

be selected for training. In addition to reducing model volatility, this could also improve network

performance.

Another future study could examine different network architectures for the eating detector.

Adding more convolutional layers to the CNN could result in better network performance. Other

hidden layer types could also be used. For example, if an RNN was used, the effects of fine-tuning

recurrent layers could be explored.
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Appendix A Per Subject Fine-Tuning Metrics

This appendix includes the evaluation metrics that were recorded for each subject when

examining different fine-tuning configurations.

Weighted Accuracy (AccW )

Subject Fine-Tune
0 Layers

Fine-Tune
1 Layer

Fine-Tune 2
Layers

Fine-Tune 3
Layers

001 79 80 89 90
002 70 73 93 94
003 53 54 60 62
004 73 74 74 74
005 82 83 83 83
006 77 78 82 83
007 63 68 70 69
008 86 87 89 89

Average 73 75 80 80

Table 1: Weighted accuracy (AccW ) values for all Multiday subjects using different fine-tuning
configurations.

Episode TPR (%)

Subject Fine-Tune
0 Layers

Fine-Tune
1 Layer

Fine-Tune 2
Layers

Fine-Tune 3
Layers

001 67 72 90 94
002 48 55 92 93
003 16 17 38 42
004 65 68 71 72
005 72 75 75 77
006 84 89 94 96
007 55 75 79 76
008 96 98 99 96

Average 63 69 80 81

Table 2: Episode TPR values for all Multiday subjects using different fine-tuning configurations.
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Episode FP/TP

Subject Fine-Tune
0 Layers

Fine-Tune
1 Layer

Fine-Tune 2
Layers

Fine-Tune 3
Layers

001 0.90 1.22 0.73 0.40
002 0.03 0.03 0.26 0.29
003 1.63 1.95 1.81 1.81
004 0.72 0.89 1.30 1.45
005 1.32 1.97 1.69 1.82
006 1.45 1.91 2.17 2.01
007 1.88 1.44 1.90 2.15
008 1.68 1.97 1.61 1.30

Average 1.20 1.42 1.43 1.40

Table 3: Episode FP/TP values for all Multiday subjects using different fine-tuning configurations.
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Hoover. The dietary intervention to enhance tracking with mobile devices (diet mobile) study:
a 6-month randomized weight loss trial. Obesity, 25(8):1336–1342, 2017.

[50] Y. Wang, M.A. Beydoun, J. Min, H. Xue, L.A. Kaminsky, et al. Has the prevalence of over-
weight, obesity and central obesity levelled off in the United States? Trends, patterns, dispar-
ities, and future projections for the obesity epidemic. International Journal of Epidemiology,
49(3):810–823, 02 2020.

[51] W. Wei. Individualized wrist motion models for detecting eating episodes using deep learning.
Master’s thesis, Clemson University, May 2021.

[52] K. Weiss, T.M. Khoshgoftaar, and D. Wang. A survey of transfer learning. Journal of Big data,
3(1):1–40, 2016.

[53] T. Wen and R. Keyes. Time series anomaly detection using convolutional neural networks and
transfer learning. arXiv preprint arXiv:1905.13628, 2019.

[54] World Health Organization. Noncommunicable diseases. https://www.who.int/news-
room/fact-sheets/detail/noncommunicable-diseases, April 2021.

[55] World Health Organization. Obesity and overweight. https://www.who.int/news-room/fact-
sheets/detail/obesity-and-overweight, June 2021.

[56] S.M. Wright and L.J. Aronne. Causes of obesity. Abdominal Radiology, 37(5):730–732, 2012.

[57] Y. Zhu, Y. Chen, Z. Lu, S.J. Pan, G. Xue, et al. Heterogeneous transfer learning for image
classification. In Twenty-Fifth AAAI Conference on Artificial Intelligence, 2011.

62


	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Overview
	Background
	Related Work
	Novelty

	Methods
	Datasets
	Data Pre-Processing
	Neural Network Architecture
	Network Training
	Post-Processing
	Evaluation Metrics

	Results
	Fine-Tuning Transfer Learning Model Layers
	Group vs. Individual vs. Transfer Learning
	Per Subject Variability
	Model Volatility

	Conclusion
	Limitations
	Future Work

	Appendices
	Per Subject Fine-Tuning Metrics

	Bibliography

