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ABSTRACT

In this dissertation a novel bottom-up computer vision approach is proposed. This

approach is based upon quantifying the stability of the number of regions or count in a

multi-dimensional parameter scale-space. The stability analysis comes from the properties

of flat areas in the region count space generated through bottom-up algorithms of thresh-

olding and region growing, hysteresis thresholding, variance-based region growing. The

parameters used can be threshold, region growth, intensity statistics and other low-level

parameters. The advantages and disadvantages of top-down, bottom-up and hybrid compu-

tational models are discussed. The approaches of scale-space, perceptual organization and

clustering methods in computer vision are also analyzed, and the difference between our

approach and these approaches is clarified. An overview of our stable count idea and im-

plementation of three algorithms derived from this idea are presented. The algorithms are

applied to real-world images as well as simulated signals. We have developed three experi-

ments based upon our framework of stable region count. The experiments are using flower

detector, peak detector and retinal image lesion detector respectively to process images and

signals. The results from these experiments all suggest that our computer vision framework

can solve different image and signal problems and provide satisfactory solutions. In the end

future research directions and improvements are proposed.
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Chapter 1

Introduction

1.1 Overview

This dissertation considers the problem of stability analysis of the parameter space of al-

gorithms for data analysis. We are interested in problems where the analysis should arrive

at a count of things within the data. For example, the segmentation of an image produces

a number of regions identifying objects or areas of interest in the image. In a sense, the

number of regions (the count) is part of the output. As another example, an analysis of a

database could identify a specific number of trends or patterns within the data. Again, the

number of trends (the count) is part of the output. As yet another example, an analysis of

a signal could quantify the number of transitions it undergoes. All of these problems are

similar, in that part of the goal of the automated data analysis is to identify a unique count

of things in the output. We graphically show the idea of “N” count for a few examples in

Figure 1.1.

All algorithms operate using parameters, such as thresholds, limits, windows, and iter-

ation controls. As the values of these parameters are changed, an algorithm will produce

different results, and hence a different output count. We define a parameter space as all

possible values for all the parameters of a given algorithm. We hypothesize that within a
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Figure 1.1: The examples of “N” count of things



3

parameter space, there should reside an area of stable output count. The area of stable out-

put count should identify the best values for the parameters to use in processing the data.

The shape of the stable area may identify which parameters are more and less sensitive for

the given data. If the output count is stable for all values for a given parameter, this could

indicate that the given parameter is useless. If there is no stable area within the entire pa-

rameter space, this could indicate that the algorithm is not suitable for processing the given

data.

Our approach may be considered a brute force search for algorithms, parameters, and

parameter values, to process a given data set. For example, consider the image segmen-

tation problem. Given an image, one can consider processing it with every segmentation

algorithm known to man. For each algorithm, we could try all possible parameter combi-

nations. Counting up the regions produced in each segmentation, we would create a region

count space. We could then search for the stability of region count within this space to

identify the best algorithm and parameter values to use to segment that image. Searching

further, we may find that multiple algorithms agree on region count, and therefore produce

a larger area of stability in the region count space, and therefore provide greater confidence

in the result.

One could argue that a brute force approach like we describe is completely impractical,

due to the required processing time and computational complexity of the approach. How-

ever, one can point to recent successes in brute force approaches to solving problems that

were at one time considered impossible. In the game of chess, a computer was first able

to defeat the human champion of the world by employing a brute force approach to move

analysis [13]. That same group is now studying the game of go, which is many orders

of magnitude more complicated than chess, and believes that a brute force approach will

eventually triumph [14].

Although these are solutions to games, they model problems that may be similar to

other more daunting problems such as image segmentation. Given the historical trend
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of computational power increasing each year (“Murphy’s Law”), it seems reasonable to

suppose what could be done if the brute force methodology were applied to algorithm and

parameter selection for data analysis.

In this dissertation, we largely focus the development of our approach on images and the

image segmentation problem. Two of our three experiments involve segmenting different

types of images to identify a count of objects of interest. However, it is important to note

that our methods are applicable to any sort of data. For one of our experiments, we apply

our methods to the analysis of a 1-D signal. We would also like to point out that while

the segmentation problem is being used in our experiments, we are not ultimately trying

to build the “optimal segmenter”. We assume we are provided with a segmenter (or any

algorithm), and are interested in studying the stability of its output in its parameter space,

and how that relates to its performance.

1.2 Related Work

From a high level, we can contrast our approach with several other methodologies. Perhaps

the most closely related is clustering. Clustering methods typically separate and combine

data until a criterion is reached. The result is that a specific count of clusters is identified.

This can be thought of as a localized, gradient search through a parameter space. Instead of

trying all possible combinations of parameters, and searching through the resulting region

count space, the parameter space is traversed according to a criterion which quantifies the

similarity of clusters. Although an output count is identified in the end, this is different

from a brute force approach to identifying that count. We discuss clustering methods more

in Section 1.5.

Another related methodology is scale-space analysis. In this framework, an image is

processed with different parameter values that vary the scale (size) of the operations. The

persistence of an image feature across multiple scales is measured, and used to derive the
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final result. In this methodology, the parameter space is again being searched somewhat

locally, rather than brute force. In addition, these methods use a data persistence measure-

ment rather than count stability to identify the final result. We discuss scale-space methods

more in Section 1.6.

Other researchers have looked at automated parameter selection. One of the most com-

monly applied areas is automated threshold selection in images. Another important applica-

tion is edge detection in the existence of noise. The rest can be listed as application specific

implementation of automated parameter selection in solving different kinds of practical,

real-world problems.

People use this approach to remove the noise in the histogram of images and segment

the images to get the best result. In this paper [40], a typical automated threshold selec-

tion method was developed for blood vessel segmentation. Two moving-window methods,

either flat or Gaussian weighted windows, for local thresholding with robust automatic

threshold selection were developed to segment blood vessels in 3-D angiograms. In form-

ing the automatic thresholding scheme, both grey level intensity and edge strength were

used together. The method was found to be robust to noise and modest in computation

cost. The results show that this method can segment complex images with filamentous

structures at relatively low computation cost. The automated threshold selection in this

method is typical among this kind of application.

The other most commonly applied area is the edge detection with intrinsic noise. In

edge detection, this approach is often used together with scale-space and wavelet to find

the best parameters for generating the edges. In the paper [42], an optimal filter scale based

upon edge detection theory and an automatic threshold to eliminate the ragged edge were

developed to form a fast edge detecting algorithm. A Gaussian scale-space is used to form

the optimal filter scale in detecting the specific edge. The method was applied in the X-

ray cephalometric images to detect the edges of soft and bone tissues. The experimental

results show that the method can achieve either the noise removing effect of low-resolution
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filter or the edge detecting precision of high-resolution filter and make a better compromise

between the precision of edge detection and the effect of noise removal. In this case the

automated threshold detection is used in the edge detection to remove noise, and this is the

case like most other automated threshold selection used in edge detection.

There are many other application specific situations where automated parameter selec-

tion is used. In this paper [15], automatic parameter selection and color histograms were

used to track objects in video surveillance. The automatic determination of the number of

bins in the color histograms was made possible in this work compared with arbitrary selec-

tion of such a parameter and it has achieved good result. The method has been applied to

sequences of face tracking, car tracking and aerial video, and it demonstrated the robustness

in tracking in different applications. In another paper [26], an automatic threshold selec-

tion method was developed in subblock matching-based conditional motion estimation for

video compression. Block matching is a time consuming part in the encoding process,

and a threshold automatically determined through an iterative algorithm was developed to

differentiate an active block and an inactive block so that only active blocks are subjected

to motion estimation. Experimental result shows that this method provides better tradeoff

between computation and rate-distortion performance than some other contemporary meth-

ods. We only give above two examples about how the automatic parameter selection can be

applied to solving different problems. Many more applications can be found for automatic

parameter selection.

Our work differs from all of those in that we are not tied to any specific application

or parameter type. We search globally in the parameter space, while the other methods

search locally in the respective space. We demonstrate our brute-force method and other

methods in Figure 1.2. We search in the parameter space of any algorithm with any range

of parameters for the best values for that parameter set to operate best in that particular

algorithm.
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original retinal image blood vessels highlighted

Figure 1.3: A retinal image with blood vessels highlighted

1.3 Computational models

One of the ultimate goals of computer vision is object recognition, the capability to recog-

nize the contents of images. It is presumed that this enables machines to perform visual

tasks as people desire on behalf of or in support of human beings.

Figure 1.3 shows a retinal image of the human eye and an image of the eye with blood

vessels highlighted through computer vision algorithms. The enhanced image therefore

facilitates doctors in diagnosing the symptoms of hemorrhages in the patients’ eyes [10].

To recognize an object in a computer-assisted visual task, there are three styles of com-

putational approaches,

• model-based top-down approach,

• data-based bottom-up approach, and

• combinations of the above two approaches.

These three paradigms can all be employed to complete the perceptual process and achieve

object recognition.
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original image image with objects segmented

Figure 1.4: Bottom-up image processing

The bottom-up approach deals basically with the fundamental components of an image

such as edges, blobs, regions, segmentations and illuminations. In other words, the bottom-

up approach starts from the image, of which there is no a priori knowledge, through pro-

cessing all pixels equally to find candidate pixels, regions or features, and therefore extract

meaningful information to achieve high-level image understanding. Figure 1.4 shows an

image and some meaningful objects extracted from the image in a bottom-up framework.

The top-down approach becomes an appropriate implementation when a known object

has to be recognized in an image. In this paradigm, features can be extracted from the

image and compared to those stored in a database to find a match. The processing of pixels

is guided by known data, data model, template or process. Therefore, image understanding

starts from a known feature and then continues through finding similarities between that

particular feature and the information in an image with multiple features. Figure 1.5 shows

an image of an individual’s face recognized from an image with many individuals’ faces

together in a top-down framework.

David Marr was a pioneer in the bottom-up investigation of images. In his work, Marr

modeled the vision process as an information processing task in which the visual infor-

mation undergoes different hierarchical transformations at and between levels, generating

representations which successively make three-dimensional features more explicit [22], as
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target face image with many faces face recognized

Figure 1.5: Top-down image processing in face recognition
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summarized by [38]. He specified three levels that any information-processing task must

understand, the computational theory level which deals with the goal of computation and

the logic of strategy to achieve the goal, the representation and algorithm level which deals

with the input and output structure and algorithm for the transformation to implement the

computational theory, and the hardware level to realize the representation and algorithm

physically. He also outlined the three-stage process for human vision: from the original

2-D image to primal search to 2.5-D sketch to 3-D model representation. Primal search

gets raw local properties such as zero-crossings and blobs, the 2.5-D sketch makes explicit

the orientation and rough depth of surfaces and contours of discontinuities in a viewer-

centered coordinate frame, and 3-D model describes shapes and their spatial organization

in an object-centered coordinate frame through a modular hierarchical representation that

includes volumetric space and surface primitives for ultimate object recognition.

Rutishauser et al. [28] have developed a bottom-up saliency-based region selection

attention system for object recognition. They have found that the bottom-up attention per-

forms better in three domains, learning and recognition in highly cluttered scenes, learning

and recognition when several objects are in the same image, and online learning of land-

marks suitable for robot navigation.

Jones et al. [16] have presented a simple computational model to implement a top-

down, object-class-specific and example-based approach. The model has been used to test

on edge-detection and view-prediction for three-dimensional objects and found to be con-

sistent with human perceptual expectations. The model is also performing better on sensor

noise and incomplete input image information than the conventional bottom-up strategies,

and therefore in support of the hypothesis that human visual system may learn to perform

low-level perceptual tasks in a top-down fashion. But only human faces are used in the

paper as the example images, which makes the application scope of such a model limited.

Borenstein, Sharon and Ullman [3] have developed a scheme to combine bottom-up and

top-down approaches into a single figure-ground segmentation process. The top-down ap-
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proach uses object representation learned from examples to detect an object in a given input

image and provide an approximation to its figure-ground segmentation while the bottom-

up approach uses image-based criteria to define coherent groups of pixels that are likely to

belong to either the figure or the background part. A global cost function is constructed

to reflect the top-down and bottom-up requirements and a global minimum of such a cost

function can be efficiently found by applying the sum-product algorithm. Khadhouri and

Demiris [17] have also developed a scheme to combine the saliency of top-down elements

and bottom-up components to construct a visual attention mechanism. Bottom-up part is

used to initialize the top-down part so that a limited computational resources are needed to

compute a selection of behaviors generated. The system has been implemented on a robot

to examine its performance during the observation of object-directed human actions.

The bottom-up and top-down approaches have their respective advantages and disad-

vantages. The bottom-up approach can better overcome the local noise in the image back-

ground and provide robust low-level features for high-level analysis. The bottom-up ap-

proach is the only option in a scenario when you have no clue what you are looking for

at all. However the bottom-up data-driven approach does have the problem of not han-

dling very well some high-level features such as occlusions compared with its top-down

counterpart. On the other hand, although a top-down approach can perform well with

high-level model information, it may deteriorate and degrade dramatically when the image

background is noisy with inherent clutter.

Although some problems can be solved purely top-down or bottom-up, previous re-

search and experience show that neither top-down nor bottom-up strategies can explain

the vision process or solve complex vision problems alone. So many researchers believe

the appropriate combination of the top-down and bottom-up approaches may yield a more

flexible and powerful vision solution than just use each of the approach individually.

One important link that lies between low-level image processing and high-level image

understanding is the mid-level image processing. Perceptual organization, currently under
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intense research, plays the role of a middle platform connecting low-level structures and

high-level recognition. Scale-space is another important image processing technique fitting

into most computer vision frameworks. These two techniques will be explained in the next

two sections respectively. In the last section, we are giving an overview of our method, the

region count stability in the scale-space. Our approach is a mid-level scale-space technique

originating from low-level processing, similar to that of perceptual organization.

1.4 Perceptual organization

Perceptual organization is the technique to group low-level features that are probably com-

ing from one object into an intermediate framework for further vision processing. These

visual primitives are grouped and organized by basic geometric relations such as prox-

imity, parallelism, continuation, symmetry, similarity, closure, common region and object-

background separation to become more perceptually significant data structures. The group-

ing principles are supported by psychological laws such as Gestalt theory.

Compared with the large amount of research work done both in top-down and bottom-

up approaches, relatively a small quantity of research is completed in perceptual organiza-

tion, between the low-level feature extraction and the high-level object detection.

Engbers and Smeulders [6] have proposed six considerations for the design of generic

grouping in computer vision: proper definition, invariance, multiple interpretations, multi-

ple solutions, simplicity and robustness. Although these principles are generic, they have

more theoretical importance than practical significance.

Yu [45] has developed a perceptual organization scheme to combine grouping cues,

figure-ground cues and depth order cues in one process. The scheme also combine top-

down and bottom-up information in a single grouping process. The whole process is an in-

teractive feedback process between segmentation, grouping, figure-ground and recognition.

Object segmentation is eventually achieved with cues from spatial and object attention.
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Sarkar and Soundararajan [29] have developed a flexible learning perceptual organiza-

tion framework based on graph partitioning. The grouping process is able to form large

groups from a small number of salient relationships such as parallelism, continuity, com-

mon regions and perpendicularity. The robust performance of the grouping and learning

frameworks has been statistically demonstrated on a variety of real images. It is concluded

that large salient groups can be formed from a set of local relations defined over a small

number of primitives.

Tu et al. [37] have proposed a general framework to parse images into regions and ob-

jects. In this framework, the detection and recognition of objects proceed simultaneously

with image segmentation in a comparative and cooperative manner. Bottom-up proposals

are combined with top-down generative models using Data Driven Markov Chain Monte

Carlo algorithm to guarantee convergence. However, the objects to be recognized are re-

stricted to human face and text in a scene.

Zhu [47] tries to build up perceptual organization framework through studying the vi-

sual patterns of images. In this paper, the issue of conceptualizing visual patterns and

their components (vocabularies) is addressed through statistics mechanism. This paper has

provided an interesting idea to understand and process images in a mostly statistical per-

spective.

Perceptual organization is the link between low-level segmentation and high-level de-

tection and recognition. Based on the nature of the technique and the research work already

finished in this area, it is evident that perceptual organization has the potential to incorpo-

rate the top-down and bottom-up approaches into one uniform framework and therefore

overcome the deficiencies of individual approaches, and eventually enable figure-ground

separation, object recognition, scene reconstruction, image or video change detection,

spatio-temporal grouping, and many other areas in computer vision.
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1.5 Clustering methods

Many methods are used in image segmentation such as histogram-based thresholding, edge

detection and region growing. Clustering methods are an approach one of the methods

used in image segmentation. K-means is a typical clustering algorithm that can be used to

segment images. In this algorithm, K cluster centers are picked randomly or heuristically

first, each pixel in the image is assigned to the cluster so that the variance between the pixel

and cluster center of the cluster is minimal, and then the pixel membership and the cluster

centers are repeatedly computed iteratively until a convergence criterion is reached. In this

way, an image can be segmented into a given number of regions.

One of the representative work [32] using clustering method to segment images is the

normalized cut. In their work, Shi and Malik treats image segmentation problem as a

graph partitioning problem. The normalized cut criterion developed measures both the total

dissimilarity between the different groups as well as the total similarity within the group so

that a “fair” 2-way cut can be implemented recursively until a maximum number is reached

or a stopping criterion is hit in the iterative process. The method uses eigenvectors to

bipartition the graph. The method also explores the simultaneous k-way cut with multiple

eigenvectors. The normalized cut has really improved from the original K-means clustering

method.

The clustering method is guaranteed to converge but does not guarantee the optimal

solution because it only executes a local search rather a global search in the parameter

space. The result of clustering method depends greatly on the initial guess of the cluster

centers or the preassigned number of cluster K. In contrast, our stable region approach

does not need a predefined number of regions. More importantly, we carry out a rigorous

global search in the parameter space to locate the best parameter set and values for the

image processing operation. From another perspective, our method is purely a bottom-up

approach whereas the clustering method is a top-down approach.
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1.6 Scale space

The concept of scale-space was first introduced by Iijima more than 40 years ago and

became popular later in the 1970s and 1980s by the work of Witkin and Koenderink.

A scale-space is created when convolving an original image with a linear filter (such

as Gaussian spatial filter or wavelet transform), or processing an original image with a

nonlinear filter (such as a morphological operator), or by any other means (such as pyramid,

quadtree, statistics etc.). According to Lindeberg [18], real-world objects appear and exist

in different ways depending on the scale of observation, which shows the importance of

scale in image processing and understanding. The scale-space is most necessary and useful,

and sometimes indispensable when information of an original image cannot be derived and

analyzed at the original scale and only a multi-scale structure is capable of extracting the

necessary features from it. Since the idea of scale-space can be conveniently applied to any

measurement in which the measurement depends on a parameter or a set of parameters that

can be varied, many varieties of scale-space techniques can be developed by researchers

with their special perspectives to solve various kinds of image processing problems.

Table 1.1 lists some important representative research work in scale-space theory in

recent years. In the table, the first column lists the author and citation, the second column

lists the scale-space kernel used in the work, which actually describes the parameter that is

created and varied across multiple scales, and the third column lists the result, which is the

parameter that is measured across different scales.

The most common scale-space kernel is a Gaussian filter used for smoothing. The

parameter varied is the width of the Gaussian, which affects the amount of smoothing. Lin-

deburg [18] uses a Gaussian filter scale-space to segment blobs, measuring how well they

correlate across different scales. He defines the terms significance and saliency of a blob to

describe the correlation, and he uses the blob volume to quantify significance and saliency

which refers to the regions of perceptual importance in an image. Hadjidemetriou, Gross-

burg and Nayar [12] have used Gaussian filtering to create a scale-space of histograms and
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Table 1.1: Summary of Scale-space Techniques
Citation Scale-space Kernel Scale-space Parameter

Lindeberg [18] Gaussian Spatial
Filter

Significance and saliency measure in terms of
blob life-time and intensity.

Hadjidemetriou,
Grossberg and Nayar
[12]

Gaussian Spatial
Filter

Intensity Histogram.

Gauch [7] Gaussian Spatial
Filter

Intensity Watershed Hierarchies.

Ho and Gerig[8]
Laplace Scale-Space
from Gaussian Spatial
Filter

A statistical model based on training a 1-D
scale-space system which preserves the across-
boundary features but blurs the along-boundary
features in the resultant Laplace scale-space.

Setarehdan and
Soraghan[30] Wavelet Transform

HFT is a scale-space edge detection technique us-
ing wavelet transform, which is used for endocar-
dial and epicardial boundary estimation. B-spline
approximation method is used to define the closed
LV boundaries.

Wang et al. [39] Wavelet Transform via
Quadtree

Sharply focused objects in a low DOF image are
detected by using wavelet frequency analysis and
statistical methods. Average Intensity of Image
Block and Variance of Wavelet Coefficients in the
High Frequency Bands are evaluated to gener-
ate segmentation in a quadtree scale-space frame-
work.

Acton and
Mukherjee[1]

Area Open-Close and
Area Close-Open Op-
erators

Intensity of pixels in the scale-space is formed
into a vector, and Fuzzy C-means clustering tech-
nique is used to group scale-space vectors based
on a similarity measure, which leads to a classifi-
cation.

Chen and Wang[4]

Product of Gaussian
Spatial Filter and the
Inverse Function of the
Absolute Value of the
Difference between
Neighboring Pixels

Scale-space edge-preserving filter is used to pro-
tect edges as well as remove noise and can be ap-
plied to constructing further scale-space system.

Wilson and Li[41] Quadtree Filtering

Multi-resolution formed by quadtree and Markov
Random Fields are combined to analyse and de-
scribe image structures statistically, leading to
segmentation of certain types of images.

Yu and Hoover[43]
Threshold, Region
Growing and Gaussian
Smoothing

Stability of the number of regions in the
scale-space formed by thresholding and region-
growing.

David G. Lowe[20] Difference-of-
Gaussian function

Standard deviation of Gaussian function σ
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developed a matching algorithm making use of differences between histograms of consec-

utive image resolutions for image recognition. Gauch [7] has used Gaussian filtering and

constructed a multi-scale watershed hierarchy to achieve image segmentation and object

recognition. In the research, watersheds are computed by identifying the local minima,

and drainage directions for each pixel are identified by calculating the image gradient. Par-

titions of image by watershed is achieved by marking the locations of intensity minima

and associate every pixel with a local minimum. Multi-scale hierarchy is imposed on wa-

tershed regions by linking the paths of intensity extrema in the Gaussian scale-space, and

also associate scale with watershed boundaries. Interactive or automatic image segmenta-

tion achieved via gradient watershed hierarchy in Gauch’s scheme. Derivative of Gaussian

scale-space has also been used by some people. Ho and Gerig [8] have utilized Gaussian

spatial filter to construct a Laplace scale-space and train the scale-space model to achieve

segmentation through edge protection. In the research, image profiles are completed by

sampling in a coordinate system relative to the object boundary. A 1-D scale-space is con-

structed on these profiles which preserves the across-boundary features but blurs the along-

boundary features in the resultant Laplace scale-space. A statistical model is built based

on training the scale-space model which can be incorporated into a Bayesian segmentation

framework.

Wavelet transform is another popular scale-space technique used in the research. Setare-

hdan and Soraghan [30] have used wavelet transform to construct a edge detection scale-

space to denoise and protect boundaries of a special group of medical images. In their re-

search, HFT(Hibrid Fuzzy Temporal)-FMED(Fuzzy Multi-scale Edge Detection and Track-

ing) is a scale-space edge detection technique using wavelet transform, which is used for

endocardial and epicardial boundary estimation. It is based on the intensity and motion

information of a moving edge in a fuzzy-based framework. The a priori information on the

temporal, spatial and frequency domain properties of the boundaries are used in wavelet

transform to denoise the boundaries. Finally, a uniform cubic B-spline approximation
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method is used to define the closed LV boundaries. Wang et al. [39] have also built a

wavelet and quadtree scale-space framework to generate segmentation of sharply focused

objects in low depth-of-field images through a statistical approach. Sharply focused ob-

jects in a low DOF image are detected by using wavelet frequency analysis and statistical

methods. Average Intensity of image block and variance of wavelet coefficients in the high

frequency bands are evaluated to generate segmentation in a quadtree scale-space frame-

work.

Morphological operator has also been investigated by researchers in recent years. Acton

and Mukherjee [1] use morphological operators to construct a scale-space and then apply

fuzzy C-means to grouping each pixel by its vector in the scale-space. Many other scale-

space approaches have been investigated. Chen and Wang [4] have developed a special filter

(product of Gaussian filter and inverse function of absolute difference value of neighboring

pixels) to construct a scale-space to protect edge and remove noise. Wilson and Li [41]

have used quadtree filtering to build a scale-space together with Markov Random Fields to

analyse and describe image structure statistically and achieve segmentation.

Many other ideas in scale-space have been proposed, but are within the types we have

discussed above.

1.7 Overview of our approach

We are trying to develop a computational model for perceptual processing in computer

vision through the application of scale-space technique. We are coming up with a unique

approach based on the psychological idea of “stable perception”, which characterizes the

count of objects perceived as the stable view of an image.

Figure 1.6 shows an image containing coins sitting on a piece of plain cloth. If a casual

viewer were asked to describe what the image contains, a likely answer would be “some

coins”. If the viewer were asked to make a specific count of “things of interest” in the
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image, the answer would likely be “16”. The question we are trying to address is how that

specific count of objects could be used to drive the visual processing of the image. We

seek to use the search for a “stable count” of segmented regions to drive automated image

processing.

For example, the coins in Figure 1.6 readily stand out for several reasons. First, they are

substantially brighter than the cloth background. Second, they are roughly the same size

and shape. Third, they are organized into a regular pattern, in this case a 4×4 grid. Fourth,

there is nothing else in the image to draw focus of attention away from seeing the coins.

Some or all of these properties cause the viewer to quickly and easily see a segmentation

of the image in terms of the 16 coins.

In terms of image processing, one could apply a simple thresholding algorithm to seg-

ment this image. A wide range of threshold values would all yield roughly the same seg-

mentation. In each of these segmentations, the count of segmented regions would always

be 16. If we could automatically find this “stable region count” across the range of segmen-

tations, it would provide a positive indicator that (a) simple thresholding is a good choice

of algorithm to segment this image, and (b) a good value for the threshold parameter is

somewhere within the range that produces the “stable region count”.

Other image processing algorithms are also likely good candidates for producing a

good segmentation for this simple image. For example, a circular template detector or a

Hough transform would also likely work fairly well. Each of those algorithms has its own

parameters, and each parameter has a possible range of values. We would seek ranges of

parameter values over which the final region count in the segmentations remains constant.

Figure 1.7 shows another image with a scenery of yellow plants, dark green trees,

patches of white cloud and blue sky. This image is not as definitive as the above coins

image in terms of region count, but a rough number of regions are still identifiable. In other

words, although we cannot find an exact number of regions as the number of 16 in the coins

image, we can still get a fairly close range of numbers that most viewers agree upon. When
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Figure 1.6: A coins image

looking at such an image, a viewer should find the four distinct objects in the image, but

maybe five or more regions are detected as the patches of cloud may represent more than

one object. Therefore we expect to find in the scale-space at least four objects, but maybe

five or even more in the stable view.

Looking deeper into the mechanism to segment such an image, there are three reasons

worth attention. First, the different objects (clouds, trees, plants and sky) are in different

shapes and patterns from each other. Second, the objects in the image are of different

colors from each other. Third, the different objects are fairly uniform in color and intensity

in itself but different in these properties from others. So an algorithm differentiating in

color or intensity will probably provide a good segmentation of this image. If a proper

algorithm is selected to apply to the image, with appropriate parameters determined and

appropriate range of values found, where there is a stable number of regions counted in

the parameter scale-space, a good segmentation of the image will be yielded through the

implementation of such an appropriate scheme.
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Figure 1.7: A natural scene image

This is a low-level to mid-level approach for image segmentation, which also leads

to high-level recognition. We are looking for a stable “N object count” in an image by

subjecting the image in a range of a parameter or a set of parameters (in their scale-space) to

extract the number of regions (objects) in the image and locate the parameter range where

there is the least change in the region count, and this area indicates psychologically the

meaningful objects in an image. We capture this idea using a scale-space formulation, and

detect “stable” segmentations as local minima in the scale-space. This work was originally

motivated by the problem of detecting some types of common lesions in retinal images

(many lesions appear to be abnormally bright areas) [43].

This is a bottom-up approach in parallel with and similar to perceptual organization.

Since the bottom-up approach deals primarily with the basic features of images, which are

the low-level data structures and the building blocks of images, starting from the bottom-up

approach will eventually lead to the correct understanding of images.

We explore building up the scale-space by expanding the number of degree-of-freedom

from one dimension to two or even higher dimensions, and the parameter from just a basic
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threshold to others such as hysteresis threshold, intensity mean and standard deviations and

other local structural and statistical properties.

Our scheme should be considered as a low-level to mid-level method for the fact that the

parameters used in the scale-space, such as thresholding, segmentation, primitive statistics

etc., are primarily rudimentary image data structures, meanwhile the object count is really

an important aspect of stable perception which has some bearing on the human cognition,

and therefore is a high-level mechanism or at least has some high-level connection. By

placing any image into such a parameter scale-space, insightful information can be derived

from the image and provided for high-level object recognition in computer vision.

We try to investigate how this idea works in several 1-D and 2-D scale-spaces with al-

gorithms such as thresholding and region merging, hysteresis thresholding, variance-based

region growing. We try to get the best figure-ground separation by looking for the stability

of region count in the scale-space.



Chapter 2

Methods

We consider the problem where an image is to be segmented into a number of regions,

where each region indicates an object or area of interest. A number of algorithms are

available to perform the segmentation. Each algorithm has a different set of parameters

that control its operation. Each parameter has a range of values. Changing the values of the

parameters of an algorithm, for a given input image, produces a different result. For each

result we count up the number of regions segmented. This analysis produces a “region

count space”, which we call an “R-space” for brevity. The R-space can be analyzed to

locate areas of “stability”, where the number of regions segmented does not change in the

local area. We propose that stable areas in the R-space point to good segmentations, and

hence appropriate algorithms, parameters, and parameter values.

In this chapter we formalize the concept of an R-space. We then demonstrate the com-

putation of an R-space using three different algorithms on a handful of images. We then

discuss the computation of stability in an R-space, from a general point of view. We have

found that the computation of stability depends to some degree upon the specific segmenta-

tion problem being considered. Varying factors can be useful during stability computation,

so that the analysis can be tuned to the problem at hand. We demonstrate several of these
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factors, and show examples. Finally, we discuss our framework from a general point of

view, before proceeding to specific case problems and experiments in the next chapter.

2.1 Region count space (R-space)

An image can be modeled as an intensity function I(x). This intensity function l(x) is

defined in x, which is in a 2-dimensional spatial domain D. Sometimes images can represent

a 3-dimensional scene of the real world, but the image itself is still in a 2-dimensional area.

In this research, the algorithms are designed based upon 2-dimensional image data but can

be extended to any higher dimensional data. Therefore we use I to symbolize an image.

This image data can be replaced by any other data of higher dimensions in terms of the

application of the algorithms.

The algorithms are symbolized using Aj where j = 1...J. Since a countless number of

algorithms can be developed in this general framework, J is any integer number. For each

algorithm, there are one or more parameters which control the operation of the algorithm.

These parameters include the properties (such as threshold, growth and variance) to be

measured and a measurement range of these properties (determined by the maximum and

minimum values of these measurements). Sometimes objects in an image are in a range of

a certain reasonable guess, for example, they cannot be zero or above a thousand, so we

often use the feasible range to replace the maximum range to save computation time. We

symbolize the parameter sets as Pk(Aj) where k = 1...Kj, and Kj is an integer. We use

Aj in the symbolization of P because parameter sets are dependent on the algorithms; that

is, every algorithm is composed of a specific set of parameters. The selection of parameter

sets is a major component of design in an algorithm development. The parameters are

characterized by their values and ranges. We use V(Pk) to symbolize the values of any

parameter. As the parameter values are dependent on the parameter sets selected, we denote

the parameter value V as a function of parameter set P.
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After processing with an algorithm, a segmentation of the image is derived and we

count the number of regions in the segmented image. So our methods consider a transform

from the image space I ⊂ D to a region count space R ⊂ φ. The processing steps are

summarized as follows,

I ⊂ D→ I× {Aj,Pk,V} → R ⊂φ (2.1)

The whole method is actually a transformation from the image space D to the region count

space φ. The transformed region function R is in a region count space φ determined by

image I, algorithm A, parameter set P and parameter values V. A will determine if an

algorithm is appropriate for an image I; P will determine if a parameter is important for

A or I; V will eventually determine the final range of parameters that lead to strong and

meaningful segmentation from the original image I. So the methods we are developing

are actually transformations from the spatial domain of D to the parameter domain of φ

through a series of intermediate steps of A, P and V, for the given I. We put A, P and V in

a set symbol { } because of their inter-dependencies.

All image processing methods have parameters and variables that control their opera-

tion. If an algorithm is well-suited to process an image, and the image contains an obvious

“stable count” of objects of interest, then there should be a wide range of parameter values

for that algorithm that all produce the same region count.

The region count space φ is a space composed of the region count of all segmented

images over all kinds of parameter values in all algorithms. In other words, φ-space is

composed of all kinds of individual R-spaces. We speculate that if any image is subjected

into such a space, with all algorithms tested on it, all parameters tried on it and all value

ranges checked out, there should be a stable region count area somewhere in there in the

space of φ. This stable region count area will yield valuable information for the further

analysis of that particular image. An example (simulated) 1-dimensional stable region

count space is shown in Figure 2.1.
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Figure 2.1: An example of a stable region count in a parameter-space.

By this means, we transform an image from its original domain to a multi-dimensional

scale-space region domain and investigate the stability of region count in such a domain.

We propose that the parameters at the areas with stable region count in the scale-space will

provide a meaningful view of the original image.

2.2 Example R-spaces

In this section we demonstrate the construction of an R-space (region count space). To

construct the R-space, we use parameter sets and algorithms. We have tentatively selected

a few algorithms and related parameters to demonstrate how to construct the R-spaces.

The algorithms selected are thresholding and region merging, hysteresis thresholding and

variance-based region growing .

We select three parameter sets to form three algorithms, and in each parameter set, we

focus our attention to two dimensional R-space, so we have two parameters in a set. For
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each parameter value, we use integer values for the parameters to build up the R-space. The

details of the methods and ranges of parameter values are given in the next sections.

Through the mathematical theory introduced in the previous section, we can create

a R-space such that the region count R is a function of any pairs of parameters such as

threshold, variance, growth or any others deemed as appropriate. We call this function the

region count space, or R-space. This R-space is a R-space created with the parameter sets

selected and implemented with different algorithms. We introduce three R-spaces created

with our idea of stable region count and selected parameters.

2.2.1 Thresholding and region merging

The purpose of this algorithm is to segment bright objects or areas in an image. All dark

areas are lumped together and left unlabeled. A threshold parameter controls what is con-

sidered bright. A second parameter is used to merge together nearby bright areas. For

example, looking at clouds, one can envision segmenting them as a single patch of cloudy

area or a distinct number of individual clouds. We call this algorithm a thresholding and

region merging algorithm.

Algorithm

The basic steps of the algorithm are as follows:

• Threshold the original image using a value T .

• Grow the thresholded image by an amount S.

• Compute the number of regions R.

The thresholding step is done using the basic function:

OT [r, c] = 1 if I[r, c] ≥ T

0 if I[r, c] < T (2.2)
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where I[r, c] is the original input image and OT [r, c] is the output thresholded image.

At each thresholding stage, we also complete a growing process from the smallest

growth to the largest. The growing step is done using:

OTS[r, c] = 1 if any OT [r ± {1...S}, c± {1...S}] = 1

0 otherwise (2.3)

where OTS[r, c] is the output image after growing. The idea behind this step is to combine

regions that are close together, where the parameter S controls how close two regions need

to be in order to be combined. Figure 2.2 shows an example image demonstrating growing

at different values of S. This example serves as good motivation for this step. The image

is a retinal image, showing some lesions as bright spots. This area of interest could be

perceived as 10-15 smaller lesions, as 2-4 mid-sized lesions, or as a single large lesion. It

is difficult to say which of these is the most correct perception, so that no fixed value for S

seems definitive. Therefore as T is varied, we consider the change in the number of regions

across the whole range of S. Finally, the region counting step uses standard 8-connected

component analysis to identify the integral number of regions in the image.

Using these steps, the number of regions R is a function of the threshold T and the

amount of growing S:

R = F(T, S) (2.4)

Implementation of algorithm

We threshold an image at every interval of dT = 2 (0, 2, 4, ..., 254), and then at each thresh-

old grow the segmented image at intervals of dS = 5 (0, 5, 10, ..., 50) through region merg-

ing. These choices are made to save the processing time of the image without losing im-
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original image S = 5

S = 25 S = 50

Figure 2.2: An example of region count as a result of thresholding and region growing.
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portant information to be extracted. The minimum and maximum ranges ensure that there

is not any strong perception beyond these limits.

Example image

We use the coins image in Figure 2.4 to demonstrate the R-space created with the above

algorithm.

R-space

The R-space created with the above algorithm and parameter pair is shown in Figure 2.3. In

this R-space, it is easy to see the plateau corresponding to a region count of 16. The center

of the plateau is pointed out by a vertical broken line. We discard any region count number

above 50 because usually there are not that many objects to be detected in an image.

Segmentation corresponding to the largest plateau

From the center of the plateau, we get the parameter pair as (198,10). We use these parame-

ters to segment the original image, and we get the segmented image as shown in Figure 2.4.

2.2.2 Hysteresis thresholding

The purpose of the hysteresis thresholding algorithm is to segment bright objects or areas

that may not stand out very well from the background. We expect that parts of objects

may be darker than others, and possibly darker than the average background, so that a

single threshold will not adequately separate foreground from background. Therefore, two

thresholds are used. At least one or more pixels in an object must be brighter than the first

threshold, while any connected pixels must be greater than the second, lower threshold.

Algorithm

The basic steps of hysteresis thresholding are as follows:
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33

The coins image.

Segmentation by the largest plateau.

Figure 2.4: The coins image and the segmentation corresponding to the largest plateau in
the R-space of the coins image. The numbers in the segmentation image indicate region
labels.



34

• Threshold the original image using a value T1, marking foreground pixels as 1 and

background pixels as 0.

• Scan through the image and find pixels with an intensity value less than T1 but greater

than T2 (T1 > T2), and mark these pixels as 1 if they are connected with foreground

pixels in the first thresholding run (with T1).

• Process the whole image iteratively until all pixels fitting the criteria are processed.

• At each set of thresholds T1 and T2, compute the number of regions R in the resulting

binary image.

The initial thresholding step is done using the basic function:

OT1 [r, c] = 1 if I[r, c] ≥ T1

0 if I[r, c] < T1 (2.5)

where I[r, c] is the original input image and OT1[r, c] is the output thresholded image. The

second thresholding step is done using:

OT1T2[r, c] = 1 if any I[r ± 1, c± 1] ≥ T2 and OT1[r ± 1, c± 1] = 0

0 otherwise (2.6)

Using these steps, the number of regions R is a function of the higher threshold T1 and the

lower threshold T2:

R = F(T1, T2) (2.7)
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Implementation of algorithm

We threshold an image at every interval of dT1 = 5 (0, 5, 10, ..., 255), and then at each

threshold grow the segmented image at intervals of T2 ≤ T1 with a step of 10 (for example,

for T1 = 120, T2 = 0, 10, 20, ..., 120) through hysteresis thresholding. These choices

are made to save in processing time of the image without losing important information

to be extracted. The minimum and maximum ranges ensure that there is not any strong

perception beyond these limits.

Example image

We use a scenery image of sky, clouds and trees in Figure 2.6 to demonstrate the R-space

created with the above algorithm.

R-space

The R-space created with the above algorithm and parameter pair is shown in Figure 2.5.

In this R-space, the largest plateau shows a region count of 2. The center of the plateau

is pointed out by a vertical broken line. There are 2 other smaller plateaus in the R-space.

Their heights are 3 and 4. These 2 plateaus separate the white clouds into 1 and 2 more

pieces, which are reasonable too. So all the plateaus in the R-space can give good segmen-

tations to the image although the largest one gives relatively the best segmentation.

Segmentation corresponding to the largest plateau

From the center of the plateau, we get the parameter pair as (215,75). We use these parame-

ters to segment the original image, and we get the segmented image as shown in Figure 2.6.
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Figure 2.5: The R-space of the scenery image, using hysteresis thresholding algorithm.
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Example image of sky, clouds and plants

Segmentation by the largest plateau

Figure 2.6: The segmentation corresponding to the largest plateau in the R-space of the
scenery image. The numbers in the segmentation image indicate region labels.
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2.2.3 Variance-based region growing

The purpose of the variance-based region growing algorithm is to segment objects or areas

in an image that have homogenous color. The first parameter sets the threshold to seed

pixels by their color variance (how similar the pixel colors are in the local area), and the

second parameter sets the threshold to group together other pixels which are connected

with the seeded pixels. The algorithm is designed to group regions or areas in an image by

their colorness rather than by brightness as used in the previous algorithms.

Algorithm

The basic steps of the variance-based region growing algorithm are as follows:

• Calculate the variance (standard deviation) of the all the pixels within a N×N window

in the image as,

V =
1

N2

i,j=N∑

i,j=1

√
(Rij − Rmean)2 + (Gij − Gmean)2 + (Bij − Bmean)2 (2.8)

where Rij, Gij and Bij are the red, green and blue intensities of the pixel and Rmean,

Gmean and Bmean are the mean intensities of red, green and blue colors in the N × N

window where N = 9.

• Threshold the image using variance V1, marking foreground pixel with labels and

background pixel as 0.

• Scan through the image, from the pixel with the smallest variance to that with the

largest variance, and find pixels whose variance is smaller than V2, and mark these

pixels with labels if they are connected with foreground pixels in the first thresholding

run (with V1).

• Process the whole image iteratively until all pixels fitting the criteria are processed.
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• At each set of V1 and V2, compute the number of regions R in the resulting labeled

image.

The initial seeding step is done using the basic function:

OV1[r, c] = label if V[I[r, c]] ≤ V1

0 if V[I[r, c]] > V1 (2.9)

where I[r, c] is the original input image and OV1[r, c] is the output thresholded image. The

second grouping step is done using:

OV1V2[r, c] = label if any V[I[r ± 1, c± 1]] ≤ V2

0 otherwise (2.10)

Note that the grouping starts from the pixel with the smallest variance to that with the

largest variance.

Using these steps, the number of regions R is a function of the first seeding variance V1

and the second grouping variance V2:

R = F(V1,V2) (2.11)

Please note that we denote the variance method for convenience, the parameter V1 and

V2 are actually standard deviations which is the square root of the variance defined in

probability.

Implementation of algorithm

We have implemented this algorithm using variance region growing. We threshold an im-

age at every interval of dV1 = 2 (1, 3, 5, ..., 99), and then at each threshold grow the seg-

mented image at intervals of dV2 = 5 (V2 = 1, 6, 11, ..., 496) through variance region
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growing. These choices are made to save in processing time of the image without losing

important information to be extracted. The minimum and maximum ranges ensure that

there is not any strong perception beyond these limits.

Example image

We use a forest and lake image in Figure 2.8 demonstrate the R-space created with the

above algorithm.

R-space

The R-space created with the above algorithm and parameter pair is shown in Figure 2.7.

In this R-space, the largest plateau shows a region count of 3. The center of the plateau is

pointed out by a vertical broken line.

Segmentation corresponding to the largest plateau

From the center of the plateau, we get the parameter pair as (51,201). We use these parame-

ters to segment the original image, and we get the segmented image as shown in Figure 2.8.

2.2.4 Discussion

In this section we have finished some exploratory research by segmenting a number of im-

ages using the algorithms described above. We have presented the detailed implementation

of the algorithms. We have created the R-spaces of all three algorithms, each with an image

as an example. In the R-spaces, we find a plateau that gives the best segmentation of this

image. Sometimes multiple plateaus are found, which all give reasonable segmentations.

We need to further explore other features of the R-space.

Since noise comes with any real-world images, we use a region size filter to remove

unwanted noise, that means, we don’t count a region as one if it is smaller than a certain

size. For most of the images, we use a region filter size of 30. It should be noted that the
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A forest and lake image.

Segmentation by the largest plateau.

Figure 2.8: The segmentation corresponding to the largest plateau in the R-space of the
forest and lake image. The numbers in the segmentation image indicate region labels.
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region size filter is not such a sensitive parameter, and it is not necessary to tune it for every

image. For a batch of similar images, a rough size of the filter is specified depending on

what is the noise to be discarded. In rare cases in which the size of the filter matters a lot, it

is always possible to incorporate this parameter as one dimension in the R-space and search

for a plateau in such a R-space.

2.3 Stability

From the R-space, we wish to know where the stable region count occurs in the R-space.

The parameter sets at these places of stable region count should produce a better or more

reasonable view of the image than at those places of no or smaller stable region count. We

call this analysis the stability analysis of the R-space.

According to our theory, a stable view of the image comes from the size of the stable

region count in the R-space. Therefore our primary goal is to search for the largest flat

area (plateau) in the R-space. Besides the size of the plateau, we also need to investigate

whether the other “features” of the plateau such as the height of the plateau, the location

and surrounding of the plateau, the uniqueness of the plateau, and any other properties of

the plateau (such as compactness) are informative.

We create R-spaces of more images with the three algorithms. We search for the region

count in such R-spaces showing the number of regions segmented at any set of parameters

in the R-space. There are “plateaus” appearing in such R-spaces. We refer to a “plateau”

as a flat area in the R-space where the region count is a constant. We manually select the

points in those plateaus to check the corresponding segmentations of the original images

and find whether they make perceptual sense to us.

From the R-spaces created with all three algorithms, we wish to find a strong correlation

between a plateau in the R-space and good segmentations of the original images in the

application of every algorithm. Sometimes there are multiple plateaus, sometimes there is
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only one, and other times there is none. We wish to verify that whenever there is a plateau

or multiple plateaus, there is one or more reasonable segmentations or views corresponding

to the parameters in that plateau or plateaus. The results are listed in the following sections.

2.3.1 Big plateau corresponds to strong segmentation

Our most obvious finding in the important findings in the correlation between a plateau and

a segmentation is that a large, stable and unique plateau usually corresponds to a strong

segmentation. This phenomenon can be seen in Figures 2.9 through 2.11. The three results

are obtained with three different algorithms, two for the coins image and one for a scenery

image. These results show a stable region count.

From the figures, it is easy to see that all of them have only one large obvious plateau

in the the R-space. Using the parameter set in the center of these plateaus we can get very

good segmentations of the original images. The correlation between the plateau and the

segmentation is very clear.

2.3.2 Multiple plateaus indicate good segmentations

We have processed several images using the three algorithms. We see multiple plateaus of

different sizes rather than one big plateau. Analyzing these plateaus indicates that one or

more of them represents good segmentations too. We discuss four examples in detail in

Figures 2.12 through 2.15. These figures all show multiple plateaus in their respective R-

spaces, one or more such plateaus lead to meaningful segmentations of the original images.

The images are from coins, retinal, and scenery, and all three algorithms are used. These

results again support our idea of stable region count.

Figure 2.12 shows a retinal image processed with the thresholding and region merging

algorithm. This algorithm is a threshold-based noise removing approach to segment im-

ages. Because there is a growth (merging) factor in the labeled image with this kind of

algorithm, the segmented image is not easy to see. But excluding the growth factor, the
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three segmented images show clearly that the lesions and optic nerve (only in one of the

labeled images) in the original retinal image have been captured by the algorithm. The

first segmentation (point 1) considers the legions as four separate parts, the second (point

2) considers all four parts as one integral legion, and the third segmentation (point 3) not

only finds the legions but also the optic nerve. From a human point of view, all these

segmentations make good sense of the retinal image.

Figure 2.13 shows a coins image processed with the thresholding and region merging

algorithm. In this segmentation, the coins image is viewed by the algorithm in two ways,

one segmentation of sixteen separate coins and another segmentation of coins connected as

one integral part. Both views make sense to human perception. When we look at such an

image, we first see a bunch of coins in some background, and then when we look closely,

we see sixteen different coins in there.

Figures 2.14 and 2.15 are both for the same image of sky, clouds and trees. One is

processed with hysteresis thresholding algorithm and the other with variance-based region

growing algorithm. Even processed with two different algorithms, they show similarity

in R-space. Both have a few small plateaus and all these plateaus correspond to some

meaningful segmentations. Except for one segmentation showing a result of separated

forest (point 3 of Figure 2.15) and another segmentation showing a result of connected

yellow plants and green forest (point 2 of Figure 2.15), others only differ in the way the

white clouds are organized into one piece, two pieces or three pieces. When such an image

is put to a human, he or she should also have different views to organize these pieces of

clouds. Another point worth noting is that the larger the size of the plateau, the more the

segmentation seems to make sense, and that means the more stable and stronger perceptual

view for humans.
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Figure 2.16: An example of an R-space having a small plateau corresponding to a reason-
able segmentation. (Retinal image processed by the hysteresis thresholding algorithm.)

2.3.3 Small plateau indicates good segmentation

There are times when only fairly small plateaus are present in the R-space. Checking

the corresponding segmentations of these plateaus reveal to us that the plateaus represent

moderate if not ideal or strong view of the images. Figures 2.16 through 2.18 show such

cases.

Figure 2.16 shows the legions captured by the hysteresis thresholding algorithm, which

is one of the meaningful segmentations by the region-merging algorithm. It does not get
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Figure 2.17: An example of an R-space having multiple small plateaus. Each plateau
indicates a reasonable segmentation. (Image of sky, clouds and plants processed by the
variance-based region growing algorithm.)
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Figure 2.18: Another example of an R-space having multiple small plateaus. Each plateau
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the optic nerve as another possible view of the image. Figure 2.17 show several possible

segmentations of the image of sky, clouds and plants, and segmentations make human

perceptual sense. Due to the yellow flowers in the image, the region count is not stable,

and that may be the reason why plateaus are so small. Figure 2.18 shows two meaningful

views of the sand dunes separated from the sky. How to organize the visual components on

the right side of the image may be the reason contributing to the small sizes of the plateaus.

2.3.4 Valley indicates reasonable segmentation

In an unusual case we don’t find any plateau in the R-space, instead we find a “V” shaped

valley. The height of the valley does not exceed five. A parameter pair in this valley also

gives us fairly good segmentations as shown in Figure 2.19. In this figure, the sky, sea,

sand and chairs can be differentiated by a pair of parameters in the valley. So this case has

given us an alternative if a plateau is not present in the R-space.

2.3.5 Cases of no correlation

On the other hand, for some other images we have processed with these three algorithms,

we did not find any reasonable view or segmentation. There are usually two reasons for

this. One reason is that there is no plateau at all, so there is no stable view associated

with the algorithm. The other reason is that there is some kind of plateau, but the view or

segmentation associated with the plateau does not make sense to a human observer. In both

cases the algorithm is not a good choice for that particular image. We show a few results

of processed images which do not show the plateau-segmentation correlation below.

Although Figures 2.20 through 2.24 don’t reveal the kind of views we have anticipated,

they do reveal some important information for the future improvement of our method. Since

the region-merging and hysteresis thresholding algorithms are basically threshold-based

methods, white clouds in Figures 2.20 and 2.21 are detected, sand traps and bright sky are

also detected in Figure 2.22 by several different plateaus. In Figure 2.23, although chairs
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Figure 2.19: An example of valley in stead of plateau in the R-space. The corresponding
segmentation is reasonable. (Image of beach, sky and chairs processed by the variance-
based region growing algorithm.)
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Figure 2.21: Second example of no correlation. (Image of sky, clouds, trees and plants
processed by the thresholding and region merging algorithm.)
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Figure 2.22: A third example of no correlation. (Image of golf course processed by the
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are not separated from the beach, they are separated with the beach from the white clouds,

bright sky and the sea. These are just proving the fact that threshold-based algorithms are

first and foremost a white-blob detector. For the retinal image shown in Figure 2.24, the

plateaus only reflect that the retinal is different from the background or the remnants of

legions are extraordinarily different in color from the rest of the image. This segmentation

result shows that the variance-based approach is actually a color differentiator.

It should be noted that the “no correlation” statement is made at a relatively high stan-

dard. In those cases, the best segmentations have been achieved within the capabilities of

the respective R-spaces (parameter pairs and algorithms). The results are not satisfactory

because the R-space formulated is not appropriate for that particular image. So it is vi-

tally important to select the most appropriate algorithm and the right parameter set for the

images.

We have created all these R-spaces of different images with the three algorithms in the

hope of finding a systematic approach for locating the best parameter set for segmentation.

However, we didn’t find a unified approach to analyze the R-space. Instead, we have to

search for the stability of R-space in an application specific manner. In other words, we

need to develop an individual R-space analysis method for each specific group of images or

each specific algorithm. Although our idea of stable region count still works, the framework

has to adapt to different applications.

2.4 Discussion

From the above data and analysis we notice that if there is only one plateau in the R-space,

that plateau usually is what we are looking for. Sometimes there are multiple plateaus,

one or more of which make sense. In this case we tentatively speculate that the larger the

area of the plateau, the better the segmentation. The plateaus should better lie in some big

changes (mountains) in the R-space. Plateaus usually are not what we need if they connect
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with the start and end of the R-space. On the other hand, the amplitude of the plateau is

also an important factor. A region count of zero means nothing is in there, so it is not what

we are looking for. A region count of one is usually not significant unless you are searching

for only one object in that image. By the same reasoning, the region count equalling to the

maximum number (we set some threshold so that beyond this range the number is not a

possible region count) in the R-space is not what we are interested in because a very large

number of objects in an image is not likely.

Based upon the observations noted in Section 2.3, we hypothesize that it should be

possible to automatically identify the best parameter values of the given algorithm for the

given input image. We assume that the given algorithm is appropriate to process the given

image; that is, we assume that the algorithm is capable of producing a strong segmentation

if the appropriate parameters are used. The problem is to decide how to use the region

count space to identify the best parameter values.

We have tried to explore searching for parameter values by looking for plateaus with

desirable properties, including area, height, surroundings and uniqueness. These properties

could be combined into a single search. For example, a score for each property could be

computed, and then the scores could be combined into a single value, relating to overall

“stability” of the segmentation at the given parameter values. Conversely, the properties

could be searched in some preferred order. For example, the area of a plateau could be the

deciding factor, unless no plateau of appreciable area is found, in which case the search

proceeds to uniqueness.

However, through all our efforts, we cannot combine all these properties of area, height,

surroundings and uniqueness into one single score for all these heterogeneous images al-

though we strongly believe the usefulness of these properties in helping us to find the right

parameter values. We just cannot prove the usefulness of these properties through this di-

verse group of images, but we believe these can be proved through a group of images that

are somewhat similar. We have also failed in searching the best parameters by the pre-
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ferred order. But we do find the plateau area is the dominating factor in locating the best

parameter values in the R-space.

We have also tried several variations on these ideas, computing combined scores in

various manners and conducting searches in various preferred orders and methods. We

evaluate each of these variations using hand graded results from the region count spaces

presented in Figures 2.9 to 2.19. We try to use the different variations to get the best

parameter pairs but only succeed in using the plateau area as the criterion for the stability

analysis.

We plan to use the only usable stability criterion — the plateau area to analyse some

specific groups of images.



Chapter 3

Experiments

In this chapter we apply our framework to three specific problems. The first problem is

flower detection in images of flowers. The second problem is real-time peak detection in a

1-dimensional signal over time. The third problem is lesion detection in retinal images. For

each problem, we describe the algorithm, parameter set, implementation, and computation

of the region count space. We then describe an automated method to compute stability.

The stability computation is used to produce a unique output segmentation. We evaluate

our results according to the criteria for success for the given segmentation problem.

3.1 Flower detector

For this problem, we want to detect and segment flowers in any given image. In order

to simplify algorithm development (We are not interested in building the most powerful

flower detector ever constructed, we are only interested in demonstrating the application

of our framework to the problem.), we restrain the problem to the detection of brightly

colored (non-white) flowers. Thus, the algorithm primarily depends upon finding groups of

brightly colored, non-white pixels. We selected 44 images to test our methods. Each image

contains a readily identifiable number of flowers or flower clusters, so that the correctness

of our automatically produced segmentation can be evaluated. We evaluate our methods
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by human visual inspection, as well as by comparison of the count of flowers against the

human-determined correct count. The following sections describe in detail the algorithm,

R-space computation, data set and results.

3.1.1 Algorithm

For flower detection, we use an algorithm called RGB-distance variance-based region

growing. The basic steps of RGB-distance variance region-based growing are as follows:

• Calculate the variance (standard deviation) of all the pixels with respect to neighbor-

ing pixels (within a fixed 9 × 9 window) in the image.

• Seed the pixels in the entire image (don’t seed any pixel with a high green compo-

nent), marking foreground pixel with labels from 2 and up, and mark background

pixels and unlabeled pixels as 0.

• Scan through the image, from the seeded pixel with the smallest variance to that with

the largest variance.

• Grow a region by finding pixels whose RGB distance D1 from a neighbor pixel al-

ready in the region is smaller than T1.

• Find the above pixels whose RGB distance from the average RGB value of the grow

region D2 is smaller than T2 and mark these pixels with the same labels as the grow

region.

• Process the whole image iteratively until all pixels fitting the criteria are processed.

• At each set of T1 and T2, compute the number of regions R in the resulted labeled

segmentation.

The RGB distance related to T1 is computed as:

D1 =
√

(Rp − Rn)2 + (Gp − Gn)2 + (Bp − Bn)2 (3.1)
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where Rp, Gp and Bp represent the red, green and blue intensity of the current pixel to be

grown, and Rn, Gn and Bn represent the red, green and blue intensity of the neighboring

pixel already in the region grown.

The second RGB distance related to T2 is computed as:

D2 =
√

(Rp − Rr)2 + (Gp − Gr)2 + (Bp − Br)2 (3.2)

where Rr, Gr and Br represent the average red, green and blue intensity of the region already

grown. These values are updated every time a pixel joins the region.

In order to select seed pixels for growing regions, we follow several criteria. First,

during the seeding process, the grouping always starts from the pixel with the smallest

variance to that with the largest variance.

Second, we compute the “colorness” of the pixels by calculating the distance between

the pixel’s RGB values and the perfect grey vector. In computing the “colorness” of the

pixels, we define,

U =
(Rmean × 255 + Gmean × 255 + Bmean × 255)

(2552 + 2552 + 2552)
(3.3)

where Rmean, Gmean and Bmean are the mean red, green and blue intensity of the 3× 3 window

with the pixel being computed at the center. The perfect grey vector is VR = 255 × U,

VG = 255× U and VB = 255× U. So the “colorness” is computed as,

Colorness =
√

(Rmean − VR)2 + (Gmean − VG)2 + (Bmean − VB)2 (3.4)

Any pixel with a “colorness” value lower than a certain value (we set our value at 100)

cannot be seeded.
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Third, we discard any pixels whose green component is greater than red and blue com-

ponents, that is when (Gmean − VG) > (Rmean − VR) and (Gmean − VG) > (Bmean − VB). We

do so because we don’t want to segment green leaves and grass and we only want to seed

the brightly colored flowers.

Any pixel with a variance higher than a certain value (we set our value at 100) cannot

be seeded either. The reason behind this criterion is that flower pixels tend to have a lower

variance than other non-flower pixels.

For any seeding pixel, we have a “nearness” measure. We construct a 5×5 window

centering on the seeding pixel. If there is another seeding pixel within this window, the

current pixel cannot be seeded. If we grow from this seed, we will probably grow 2 regions

in the same flower.

We use a region size filter to control the validity of the regions segmented. The max-

imum region allowed is 70% of the total image area because a flower can rarely occupy

more than such a portion of an image. The smallest region allowed is 0.5% of the total

image area, and this measure is to smooth out smaller region noise.

Using these steps, the number of regions R is a function of the first grouping RGB

distance T1 and the second grouping distance T2:

R = F(T1, T2) (3.5)

3.1.2 R-space

In the implementation of the algorithm to the application of flower detection, the ranges

of parameters T1 and T2 are selected as T1 = 5, 10, 15...125 and T2 = 25, 30, 35...125. Our

R-space will be created in this parameter range.

An R-space example of the RGB-distance variance-based region growing algorithm

implemented on a flower image is given in Figure 3.1. The image has 4 separate flowers.

The most stable part of the R-space shows a value of 4. This can be seen in the 3-D plot
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A flower image Segmentation at the largest plateau (T1 = 65, T2 = 95, R = 4).
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Figure 3.1: An example of variance-based region growing with different pairs of standard
deviations.

as the largest plateau. It is even more obvious when viewing the R-space as a 2-D image,

where the continuous central area has a value of 4. The parameter values selected for

producing the final segmentation are (T1 = 65, T2 = 95), which is roughly in the middle of

that plateau. It is worth mentioning that in the 2-D image, the color of the blocks represents

the height of the plateau. If the colors of two blocks are the same, it means they are at the

same height (same number of regions detected) even though they are not connected.
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3.1.3 Data set

We have collected 44 flower images from various public websites. In these flower images,

there are different colors of flowers, different numbers of flowers, different clusters and

different backgrounds.

Six example flower images are presented in Figure 3.2. In the 44 flower images, the

number of flowers varies from 1 to 12. Table 3.1 shows the number of flowers in each

image for all of the 44 flower images.

3.1.4 Results and evaluation

We processed these flower images using the algorithm of RGB-distance variance-based

region growing. To verify our methods, we list the ground truth count of the number of

flowers in these images and the number count from computer generated result in Table 3.3.

The table shows that only a difference of 6 out of 44 images between the computer result

and the ground truth. That is 13.6% in disagreement and 86.4% in agreement. In most of

the successful detection cases, the number of flowers is a definite countable number. In

the 6 failed cases, however, 2 of them are patches of flowers, the number of which is not

a definite number even for a human viewer; the rest of the cases are that the number of

flowers is definite, but the background is noisy and some pixels there grows as if it were

a flower pixel. It is interesting that although the numbers of flowers don’t match in these

failed cases, the segmentations produced are the best for these images.

We also try to see where are all the parameter pairs (T1, T2) are located. In Figure 3.3,

it is easy to see that the parameters corresponding to the center of the largest plateaus are

scattered in almost the entire parameter ranges. That is to say, our framework is not one

that finds a common good parameter set for a group of similar images, but instead it can

adapt to difference in a group of specific images and produce the best parameter values for

each image differently from others.
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1 flower 4 flowers

Figure 3.2: Example of flower images.
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Table 3.1: Table of All Flower Images
Image Name Image Description Number of Flowers
Flower image No.1 Red flower 1
Flower image No.2 Yellow flower 1
Flower image No.3 Yellow flowers 4
Flower image No.4 Bouquets of flowers of several colors 6
Flower image No.5 Bouquets of flowers of several colors 2
Flower image No.6 Yellow sunflower 1
Flower image No.7 Red and yellow flowers 2
Flower image No.8 Magenta flower 1
Flower image No.9 Yellow flowers in green leaves 12
Flower image No.10 Yellow flower in green leaves 1
Flower image No.11 Red flower 1
Flower image No.12 Red flower 1
Flower image No.13 Red flower 1
Flower image No.14 Red flower 1
Flower image No.15 Pink flower 1
Flower image No.16 Pink flower 1
Flower image No.17 Red flowers 2
Flower image No.18 Yellow flower 1
Flower image No.19 Orange flower 1
Flower image No.20 Yellow flower 1
Flower image No.21 Yellow flower 1
Flower image No.22 Yellow flower 1
Flower image No.23 Yellow flower 1
Flower image No.24 Yellow flower 1
Flower image No.25 Yellow flower 1
Flower image No.26 Red flower 1
Flower image No.27 Red flower 1
Flower image No.28 Red tulips 1
Flower image No.29 Pink flower 1
Flower image No.30 Yellow,red and violet flowers 4
Flower image No.31 Pink flower 1
Flower image No.32 Yellow and red flowers 3
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Table 3.2: Table of All Flower Images (continued)
Flower image No.33 Yellowgreen and pink flowers 7
Flower image No.34 Yellow flowers 7
Flower image No.35 Pink flowers 1
Flower image No.36 Pink flowers 2
Flower image No.37 Red flowers 3
Flower image No.38 Orange flowers 2
Flower image No.39 Yellow and red flowers 4
Flower image No.40 Orangered flowers 8
Flower image No.41 Violetred flowers 1
Flower image No.42 Red flowers 3
Flower image No.43 Red flowers 7
Flower image No.44 Pink flowers 1
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Figure 3.3: Parameter distribution of the flower detection.
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Table 3.3: Table of Flower Count Ground Truth and Computer Results
Image Name Ground Truth Computer Result Match
Flower image No.1 1 1
Flower image No.2 1 1
Flower image No.3 4 4
Flower image No.4 6 8 failed
Flower image No.5 2 2
Flower image No.6 1 1
Flower image No.7 2 2
Flower image No.8 1 1
Flower image No.9 12 12
Flower image No.10 1 2 failed
Flower image No.11 1 1
Flower image No.12 1 1
Flower image No.13 1 1
Flower image No.14 1 1
Flower image No.15 1 1
Flower image No.16 1 1
Flower image No.17 2 2
Flower image No.18 1 1
Flower image No.19 1 2 failed
Flower image No.20 1 1
Flower image No.21 1 1
Flower image No.22 1 1
Flower image No.23 1 1
Flower image No.24 1 1
Flower image No.25 1 1
Flower image No.26 1 1
Flower image No.27 1 1
Flower image No.28 1 2 failed
Flower image No.29 1 1
Flower image No.30 4 2 failed
Flower image No.31 1 1
Flower image No.32 3 3
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Table 3.4: Table of Flower Count Ground Truth and Computer Results (continued)
Flower image No.33 7 1 failed
Flower image No.34 7 7
Flower image No.35 1 1
Flower image No.36 2 2
Flower image No.37 3 3
Flower image No.38 2 2
Flower image No.39 4 4
Flower image No.40 8 8
Flower image No.41 1 1
Flower image No.42 3 3
Flower image No.43 7 7
Flower image No.44 1 1

Besides all the above objective evaluation metrics, we have also designed an interesting

experiment of subjective evaluation by human participants. In the objective test, we only

match up the number of flowers detected. We need to know if the quality of the segmen-

tations are good as well. In the failed cases of the objective test, even though the numbers

don’t match, the segmentations are still the best. It is also possible that even though the

numbers match, but the related segmentations are not the best. As a result of all these

speculation, we need human viewers to compare the segmentations at the parameter values

selected by the computer with that in the other parts of the R-space.

We generate the region space of these flower images, and analyse the stability of these

region spaces. The largest plateau (flat area) in the region space is the parameter set where

we believe there is good segmentation of the original image. We create segmentations of

the image at the center of the largest plateau as well as two other segmentations at medium

and small plateaus. The medium and small plateaus are picked randomly from a list of

plateau sizes in the R-space. We have created a website where the original image stands

side by side with three segmentations corresponding to the three plateaus, big, medium and

small. The three segmentations are displayed in random order on the webpage.
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Original image Good segmentation Bad segmentation

Figure 3.4: Good and bad segmentations in the instruction.

After that, we have asked 11 people to view the 44 flower images on our website and fill

out a table telling us which segmentation is the “best segmentation” of the original image.

In the instructions given to the participants, we define the “best segmentation” as,

• One single flower should be best segmented into one segmentation;

• For multiple flower clusters, same color flowers should remain together in the seg-

mentation;

• The single flower shape should be as full as the original.

We also show the participants an example of good segmentation and bad segmentation as

in Figure 3.4.

Among these 11 people, 5 people are faculty or undergraduate or graduate students from

Psychology Department, whom we assume to have little image processing knowledge or

background; 6 others are graduate students from Electrical and Computer Engineering De-

partment, whom we assume to have some image processing knowledge or background. We

believe the different backgrounds of the participants could help us to get a more objective

evaluation and avoid the bias that may result from knowledge or lack of knowledge in the

image processing field.
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We compare the human responses with computer results (the segmentations at the

largest plateau in the R-space), and count how many they match each other and how many

they don’t. The polls show that all 11 people agree our machine results at an overall rate of

90.90%. If we separate the psychology group from the ECE group, 5 psychology people

agree with our machine results at an average rate of 88.63% (from 81.81% to 95.45%),

while ECE people agree at an average rate of 92.80% (from 81.81% to 97.73%). ECE peo-

ple score better than the psychology people at a mere difference of 5%, which shows that

their knowledge may have a somewhat positive impact on their selection. The polls show

that our method can generate the best segmentations that most human viewers agree with

at an percentage of roughly 90%.

We show a sample of flower images and segmentations in Figure 3.5 and Figure 3.6.

Most other segmentations are very similar to the samples shown. All the flower images

and segmentations in this experiment can be viewed somewhere in the Parl system of Elec-

trical and Computer Engineering Department. Interested parties should contact Dr. Adam

Hoover for information as to where they are.

In this experiment, we have collected some flower images from various public sources

for processing with our stable count framework. We have designed an objective test and a

subjective evaluation test. The objective test measures matching of the number of flowers

detected automatically and visually. The subjective test measures how much the human

viewers agree with the segmentations produced by the computer algorithm. The results

from both tests show our framework can produce the best segmentation. Therefore our

stable count idea can be used to process a specific group of images such as flower images.

3.2 Peak detector

For this problem, we want to show how our framework can be applied to problems be-

sides image segmentation. We develop a synthetic peak generator and peak detector for
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A flower image (2 flowers) Segmentation corresponding to the largest plateau

Segmentation corresponding to a medium plateau Segmentation corresponding to a small plateau

Figure 3.5: A flower image and segmentations from different sizes of stable count plateaus.
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A flower image (4 flowers) Segmentation corresponding to the largest plateau

Segmentation corresponding to a medium plateau Segmentation corresponding to a small plateau

Figure 3.6: A flower image and segmentations from different sizes of stable count plateaus.
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Figure 3.7: A 1-D signal with Gaussian noise with 5 peaks.

a 1-dimensional signal over time. This type of operation is common in signal processing

problems. Figure 3.7 shows a generated 1-D signal with 5 peaks. The signal is mixed with

some Gaussian noise. Our peak detector uses a threshold to detect when a peak has oc-

curred, along with a Gaussian filter to smooth out noise in the signal. We use our methods

to analyze the R-space of the peak detector to select parameter values automatically. We

generate a number of different example signal inputs, with varying amounts of noise and

peak thresholds. We evaluate our results according to the correct determination of peaks.

3.2.1 Algorithm

We call this algorithm peak detector. The basic idea of the algorithm is to smooth a 1-D

signal over time and threshold to identify peaks or pulses. This algorithm comes from the

idea of stable view or stable count, but is applied to general signal processing.

The basic steps of this thresholding and smoothing algorithm are as follows:
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• Use Gaussian function to smooth each data point of the signal with neighboring

data values. Each Gaussian smoothing is characterized by a parameter of standard

deviation σ.

• At each σ, separate the possible range of the whole signal at certain equally spaced

thresholds T , from low to high.

• At each set of values σ and T , find the number of peaks R the signal has.

The smoothing is implemented using the following Gaussian function:

F(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (3.6)

where we use the standard Gaussian function with σ = 1 and µ = 0. Suppose we have a

signal S(i), i = 1...1000. The signal is tainted with uncertain amount of Gaussian noise.

We use a window size W to process the signal with Gaussian smoothing. Therefore the

smoothed signal is computed as follows:

SSmoothed(i) =
1√
2π

σ∑

j=1

e−
(j−1)2W

2σ2 S(i− j + 1) (3.7)

where i = 1...1000 and j = 1...σ. To be counted as a peak, the signal value at that point

should be higher than the two adjacent points and higher than the threshold T .

Using these steps, the number of peaks is a function of the threshold T and the standard

deviation σ.

R = F(T, σ) (3.8)
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A signal with uncertain Gaussian noise Signal smoothed with σ = 10
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Figure 3.8: An example of a noisy signal and the effect of Gaussian at different scales.

An example of the effect of the smoothing algorithm on a signal with Gaussian noise is

given in Figure 3.8.

The smoothing is showing effect after increasing the σ. To detect the real significant

peaks while not duped by those small peaks caused by noise, we only need to count the

number of peaks by searching for the largest plateau in the 2-D space along the threshold

(height of the signal) axis and smoothing (σ) axis. The stable count of peaks in this space

will pinpoint to the number of real peaks in the signal.

3.2.2 Data set

In this experiment of peak detection, we use some generated signals that have some Gaus-

sian noise rather than images. The generated signals: (1) contain any number of peaks if
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necessary; (2) contain peaks generated by a Gaussian function; (3) have random spacings

between peaks; (4) have added Gaussian noise of different means and standard deviations.

The noise of the signal is added by multiplying a standard Gaussian signal by a signal

of noise σ. We try to use different combinations of peak heights, peak numbers, noise

standard deviations to construct the noisy signals. A list of signals we have tested is in

Table 3.5.

Table 3.5: Table of Some Generated Signals
No. Peak height Number of Peaks Standard deviation σNoise

1 16 6 3.0
2 26 5 6.0
3 12 5 2.0
4 18 5 2.0
5 16 6 3.0
6 8 6 1.0
7 28 2 1.0
8 28 2 1.0
9 28 3 5.0
10 18 2 4.0
11 15 5 5.0
12 12 7 3.0
13 12 7 1.0
14 12 7 5.0
15 10 2 3.0
16 10 2 5.0
17 16 6 3.0
18 10 2 2.0
19 12 2 4.0
20 16 6 3.0
21 12 3 6.0
22 12 2 8.0
23 12 8 8.0
24 10 5 1.0
25 10 6 2.0
26 10 6 3.0
27 12 3 5.0
28 10 2 6.0
29 16 6 6.0
30 10 5 6.0
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For the 30 generated signals in the table, we have used different combinations of peak

height, number of peaks and noise standard deviations. Changing the number of peaks and

peak height is relatively easy for any algorithm to adapt to, but the standard deviation of the

noise creates more difficulty for detection. In this table we have tested a maximum Nσ = 8,

which can create quite a large noise for detection. We believe these different noisy signals

have represented most real situations.

3.2.3 R-space

The R-space of the signal in Figure 3.7 after implementation of the above algorithm is

shown in Figure 3.9. As the R-space is not so easy to see in 3-D plot, we use an image to

show the R-space with the intensity of pixels representing the region count (the Z amplitude

in 3-D plot). The largest plateau is the one on the right side, but its region count is 0, so

it can be ignored. The next largest plateau is the one located in the lower center, and the

reading in the Z axis is 5. The number of peaks in the noisy signal in Figure 3.7 is 5 too. So

the algorithm has correctly detected the number of peaks in the signal through the largest

(valid) plateau in the R-space.

3.2.4 Results and evaluation

We implement the thresholding and smoothing algorithm with more than a dozen combina-

tions of noises with different means and standard deviations. In all these various situations,

the algorithm can correctly detect the number of peaks in these noisy signals. We show a

5-peak signal in Figure 3.10, and the R-spaces both in 3-D and image in Figures 3.11. The

Nσ in this case is 6.0 (SNR = 0.6), so we can only vaguely identify 5 peaks. From the

image of R-space, the largest plateau on the lower right side only has a region count of 0,

so it is not the plateau we are looking for. The next largest plateau is the one on the lower

center to the lower left of the zero plateau. It is the valid largest plateau and it reads 5. So

the 5 peaks are detected in the R-space by checking this plateau. We show another signal
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Figure 3.9: The R-space of the signal after implementation of the peak detection algorithm.
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Figure 3.10: A noisy signal with 5 peaks.

with 8 peaks in Figure 3.12, and the R-spaces both in 3-D and image in Figure 3.13. The

Nσ in this case is 8.0 (SNR = 0.55), and the 8 peaks are less obvious than the previous

5-peak signal. From the R-space image, the largest plateau on the right side has a region

count of 0. The next largest plateau is the one occupying 3 columns in the lower middle of

the image to the left of the 0-plateau, and its region count is 8. So the number of peaks is

correctly detected by the largest (valid) plateau in the R-space. The number of peaks of all

the generated noisy signals listed in Table 3.5 are successfully detected.

We design this simulation experiment just to show that our idea of stable count can be

utilized to solve problems other than image segmentation. The solution can be applied to

finding the number of peak seasons in business sales, or the number of rain seasons in a

year, or the number of extreme summer temperatures in a whole season, or the number of

critical water levels in a reservoir, or any other “similar problems”. From this experiment,

we show that our idea of stable count can not only work on images but also on general

signals with noise.
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Figure 3.12: A noisy signal with 8 peaks.

3.3 Retinal image lesion detector

For this problem, we want to detect bright lesions in any given retinal image. This problem

is different from the previous problems in that it is much more difficult to define the ground

truth. In a few images, there is a uniquely identifiable count of lesions, upon which most

viewers would agree. But for most images, there is not necessarily only one unique count.

Some lesion patches may be viewed as either a high count of smaller areas, or a low count

of larger areas, depending upon how the viewer combines the ill-defined boundaries of

overlapping lesions. Therefore we formulate a stability analysis that is more than simply

identifying the largest plateau in the R-space. Instead, we look for the stability of region

count across a range of scales, where the scale is determined by how much nearby lesions

are merged together. Basically, our algorithm thresholds the image, and then merges nearby

areas.
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Figure 3.14: A retinal image.

Figure 3.14 shows a retinal image with lesions. The lesions in this image are the abnor-

mally bright areas in the center. There is stable view of lesions in this image, but the exact

number of region count is hard to determine because the lesions are so close to each other

that it is difficult to count several neighboring lesions as a combined 1 or their individual

numbers (This is true for most retinal images containing lesions.). As the intensities of

these lesions are not identical, but rather span a certain range, a simple thresholding algo-

rithm will not work. Therefore, we use our stable region count framework by constructing

an R-space through counting the number of regions segmented as the threshold is varied.

The stability analysis depends on finding a range for the threshold in which the number of

regions segmented shows the least change.

3.3.1 Algorithm

We get the region count by thresholding and region growing. The steps are:

• Threshold the original image using a value T .
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• Grow the thresholded image by an amount S.

• Count the number of regions R.

Therefore, we get region count R as a function of threshold T and growth S:

R = (T, S) (3.9)

Since the number of region count is not a definite number at different growth S, we consider

the change in the number of regions across the whole range of S as threshold T is varied.

In this 1-D R-space of T , we seek to find a range of values of T with multiple scales of S

where the number of regions R remains relatively constant. The wider the range, the more

perceptually “stable” the segmentation. We define the function

∆R =
∫ dR

dT
dS (3.10)

The value ∆R denotes the difference in R across all S as T changes. Integrating S this

way allows us to quantify how the number of regions changes across all “blurrings” of the

threshold T . A ∆R plot of a retinal image is shown in figure 3.15.

We desire to find the local minima in the function ∆R. Depending on the image content,

∆R can be noisy. Some local minima are not of interest, where the stable range of F(T, S)

is narrow. In order to bring out the more important local minima, we apply Gaussian

smoothing to ∆R:

G(∆R, σ) = ∆Re−
∆R2

2σ2 (3.11)

Figure 3.16 shows four plots of G with different amounts of smoothing (at values of σ = 0.5,

1.0, 2.0, 4.0), computed from the ∆R in Figure 3.15. Equation 3.11 is in the classic form

for scale-space processing (see for example [33], pg. 88). One way to use Equation 3.11
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is to increase σ until only one local minimum is found in G(∆R, σ). This should produce

the “most stable” segmentation. However, in some cases multiple “perceptually strong”

segmentations may be possible. In this case σ should be increased until only a small number

of minima are found in G(∆R, σ). We detail our specific use of Equation 3.11 in the results

and evaluation section.

3.3.2 Data set

To verify our idea of stable count, we select the STARE database of retinal images[10, 11].

The group of retinal images contains 397 images (Each image is 605 × 700 8-bit pixels

in resolution.) with different kinds of lesions such as drusen, exudates, cotton wool spots

and other commonly occurring symptoms. Their shape, boundaries, cardinality (count) and

patterns are difficult to definitively identify.

A few retinal examples are shown in Figure 3.17. The three example retinal images

contain common lesions. Figure 3.17(a) shows a large crescent-shaped patch of lesion of

medium contrast. Figure 3.17(b) shows dozens of small lesions of varying shapes, con-

trasts, and amounts of merging with neighbors. Figure 3.17(c) shows a large amorphous

patch of lesion of faint contrast, with no easily discernible boundaries. (Note: For all the

images in this paper, the global contrast has been adjusted for clarity in printing.) Often,

an ophthalmologist refers to the presence of these types of lesions through a qualifying

adjective, such as “many drusen” or “few drusen”, because it is impossible to identify in-

dividual lesion boundaries. Work in automating the detection of these lesions is therefore

hampered by the fact that even a trained human expert cannot produce a definitive pixel-

level segmentation, or even a specific count of lesions against which detected “blobs” can

be compared.
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(a) (b) (c)

Figure 3.17: Example retinal images, showing variability in lesion size,shape and contrast.

3.3.3 R-space

We show an example of a retinal image and the 1-D R-space in Figure 3.18. The R-spaces

of other retinal images are very similar to this example. In the R-space, there is always a

global peak and some local peaks and valleys right before and after the global peak. The

global peak is where the greatest change is taking place in perception and in segmentation

(The number of regions changes dramatically and segmentations change greatly as a re-

sult.). We select the final threshold T by finding the global maximum in G(δR, σ = 1.0),

and then finding the local minimum closest to that peak and which has a value lower than

65% of the value at the global maximum. Our selection of T finds the threshold near this

volatile range at which the segmentation is most stable.

From the Figure 3.18, after averaging region counts across all growth S and applying

the Gaussian smoothing to ∆R, the stability occurs at the lowest G(∆R, σ) after the peak

at approximately threshold T = 152, as indicated by the broken red line. The thresholds of

all retinal images are determined in this manner.

3.3.4 Results and evaluation

We implement Equation 3.10 by thresholding the image at every interval of dT = 2

(0, 2, 4, ..., 254), and growing at intervals of dS = 5 (0, 5, 10, ..., 50). These ranges (in-

stead of dT = 1 and dS = 1) were chosen to speed up the processing of an image. We
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chose 50 as a maximum value for S because in our experience growing beyond this limit

does not match any strong perception of the image.

We implement Equation 3.11 using σ = 0.5, 1.0, 2.0, 4.0, to search for reasonable

quantities of local minima. Eventually we decided to use a fixed σ = 1.0, giving reasonable

results in most cases.

To subjectively evaluating our results, we decide if the segmentation has captured all

of the lesions in the retinal images. If all of the lesions are not captured, we consider

the segmentation a failure. We show some successful segmentations in Figure 3.19. In

the four retinal images shown in the figure, the size, distribution, intensities, locations,

number, background of lesions are different from each other. However, our algorithm has

successfully segmented all the lesions from the image. All the 382 successful cases are

similar to the ones shown in this figure. We show 2 failed segmentation cases in Figure 3.20.

In both cases like all other failed cases, the lesions are faint and difficult even for a human

view to perceive “strong segmentation”. As a result, the algorithm cannot catch all the

lesions but instead only segments out the normally bright lesions without the other large

amount of faint lesions. In this manner, we find satisfactory segmentations on 382 of 397

retinal images.

Through this experiment we have built a 1-D R-space for 397 retinal images and test

our framework of stable region count. We search for the best threshold by analyzing the

stability of the R-space. The thresholds selected by our R-space can achieve a 96.22%

success rate through our reasonable subjective evaluation. This experiment has proved that

our stable region count framework can be applied to processing specific groups of images

such as retinal images.
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(a) retinal image (b) segmentation

Figure 3.19: Example successful segmentations.
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(a) retinal image (b) segmentation

Figure 3.20: Example failed segmentations.
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3.4 Summary of results

In this chapter, we have presented some experimental results of studies of three specific

problems. These problems come from different domains, use different data types (images

and signals), employ different algorithms and exhibit different stability analysis. With the

plateau size as our primary indicator for position of good parameter values, we have found

good segmentations in the experiments of peak detector and flower detector although the

retinal image experiment uses the same idea but a little different implementation. In the

retinal image experiment, although the R-space has shrunk from 2-D to 1-D, the thresh-

old selected is a point in the thresholding scale where there is the least change. In the

peak detector case, the correct count of peaks are always detected by finding the largest

contiguous area in the R-space and read the height of the plateau. In the flower image

experiment, besides the objective region count match rate at around 86%, we demonstrate

through human evaluation that people are around 90% in agreement with our machine gen-

erated segmentations are the best among all results. These best segmentations come solely

from the parameter values at the largest plateau in the R-space.

Through all these studies and experiments, we can see the viability of the idea of stable

count in the application of images and signals we have randomly selected or generated.

The idea and implementations can also be applied to other problems.



Chapter 4

Conclusions

Why can the human eye see the world around it so conveniently and instantly? Why it is so

easy for the human eye to see while so difficult for the machine to simulate? How should

we model a human vision system? We answer this kind of questions by presenting our

stable view computational model to simulate the human vision system. Our computational

model is a bottom-up framework similar to and in parallel with the perceptual organization

framework which organizes and groups low-level features from one object for high-level

vision processing. In our model, we create a carefully designed scale-space by counting the

number of regions in the image subjected to the processing by a pair of specially selected

parameters. The dimension of the parameters can be expanded to three or more depending

on the need of the algorithm used. In such a region count scale-space, we analyse the stabil-

ity all over the place and try to find the largest flat area called plateau as the best parameter

set to segment the image and provide the best understanding of the image. We have used

several experiments to validate the viability and versatility of the idea and implementations

in our model. The experiments have been very successful in corroborating the feasibility

and adaptability of our computational model of human vision system.

We have developed a computer vision framework that resembles that of perceptual or-

ganization, but also different from it. The similarity comes from the fact that both our
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framework and perceptual organization are the middle link between low-level image fea-

tures and high-level image understanding and recognition. The nuance lies in the fact that

the perceptual organization uses the low-level features such as proximity, parallelism, sym-

metry, similarity etc. to group data structures, while we subject the image into a scale-space

formulated by parameters that are very effective in low-level data grouping, and then count

the number of regions generated. Our idea is easy and convenient to implement and per-

forms as well as perceptual organization.

We have completed several studies and experiments to process different kinds of real-

world images and generic signals with several algorithms derived from the same idea of

stable region count. Each algorithm uses appropriate low-level image processing parame-

ters to formulate a scale-space. We analyse the stability in the scale-space. From the results

and analysis in the previous chapter, we can see that the idea does help to achieve good seg-

mentations of different groups of real-world images as well as to detect significant peaks

in artificially generated noisy signals.

Although we think our research is successful and inspiring, it is interesting to investi-

gate further along the following directions.

1. During the studies and experiments, so far we can only use the significant role played

by the plateau area to determine the best segmentation of images. As shown in our

studies, the height, plateau surroundings, uniqueness of plateaus, compactness of

plateaus and other relevant factors all have some role to play in yielding the best seg-

mentation, and therefore the stable view. We don’t have the time and resources to

investigate all these factors, find out their intrinsic relationships as well as their over-

all combined effect on providing the best and reasonable segmentations of images.

This is one of the interesting directions for research in the future.

2. In our research we can automatically determine the best parameter pairs from a score

based only on the plateau area size. As we have noted before, the height, surround-

ings, uniqueness, compactness and other factors all have some role to play in the
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process to get the best segmentation. It is interesting to explore the viability of a

combined dynamic score composed of all these components on the process to get

the best segmentations of various kinds of images automatically. This is another

interesting direction to pursue.

3. In the research we have found that some algorithms are not only working on the

images they are designed for, but also on those they are not originally intended for. So

it is interesting to explore whether an algorithm can cross design boundary and works

on other images. We can pursue an automatic determination of algorithm suitability

by creating a standard segmentation of an image and compare the segmentations of

different algorithms with that standard copy and measure the total difference in the

number of pixels, position of pixels and other relevant criteria. If the difference is

higher than a certain threshold, we declare it doesn’t work, otherwise it works.

4. We can also pursue whether an algorithm works on an image best over all the other

algorithms in the case that multiple algorithms work on a certain image. We can

achieve this automated algorithm selection by comparing the segmentations of each

image processed with different algorithms with its standard segmentation, as pro-

posed in the last research direction. We list the difference from small to high, and

rank the algorithm with smallest one as the best algorithm, and so on. In this way we

can automatically rank the performance of all the algorithms.

5. Our computational model is a bottom-up mid-level computer vision framework. Al-

though it is a bottom-up module, it can receive high-level cues and adjust itself ac-

cordingly, and it can also be used interactively with low-level features and high-level

cues. The model is not stand-alone, but can be combined with other frameworks to

achieve the best result. So it is very interesting to investigate some other compu-

tational models and combine ours with theirs to see how well they could solve the

real-world problems together.



Appendix A

Saliency

We have done some work in parallel with the stability algorithm. This work is based on the

idea of saliency.

We compare our stability approach with one based on saliency. Figure 1.1 shows the

saliency image for one of the retinal images. Notice that the lesions tend to have a medium

saliency, between the high saliency of the blood vessels and the low saliency of the reti-

nal background. In order to find the best threshold for segmenting the retinal image, we

examine the distribution of saliency of pixels in the resulting segmentation for all possi-

ble thresholds. We select the threshold whose distribution most closely matches a normal

distribution.

Figure A.1: Saliency image for a retinal image (left). The darker a pixel, the higher the
saliency.
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Formally, we complete the following steps. We compute the saliency image once, due

to its high computational cost, using the publicly available code of Alter and Basri [2]. The

result is an 8-bit image, which we will denote S[r, c]. The following steps are repeated for

all thresholds at intervals of dT:

1. The original retinal image is thresholded to produce OT [r, c] according to Equation

2.9.

2. Let N be the number of pixels thresholded in OT [r, c], and let pi, i = 1...N, be the

locations of these pixels. The mean and standard deviation of the saliency of the

thresholded pixels are computed:

s =
1

N

N∑

i=1

S[pi]

σ =

√√√√ 1

N

N∑

i=1

(S[pi]− s) (A.1)

3. The skew and kurtosis of the distribution of saliency of the thresholded pixels are

computed:

Ssk =
1

Nσ3

N∑

i=1

(S[pi]− s)3

Sku =
1

Nσ4

N∑

i=1

(S[pi]− s)4 (A.2)

Both the skew and kurtosis are zero for a perfect normal distribution. Skew is a

measure of the asymmetry of the distribution about the mean line, and kurtosis is a

measure of the distribution of spikes above and below the mean line.

The sum of the skew and kurtosis, | Ssk | + | Sku |, provides a measure of the normalness

of the distribution of saliency of the pixels. Figure 1.2 shows a plot of this sum versus the

threshold for the example in Figure 1.1. We select the leftmost local minimum that is no

more than double the global minimum as the best threshold.
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