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Abstract

This thesis considers the problem of detecting the eating activities (e.g. meals,

snacks) of people by tracking their wrist motion. Our goal is to automatically de-

tect the start and end times of eating activities during free-living. It builds upon

previous work done by our research group [6] [7] [8] [21]. The detection is done by

segmenting data into segments then classifying the segments as EA (eating activity)

and NonEA (non-eating activity) using a Bayesian classifier. Previous features used

in the classifier developed by our group included the sum of acceleration, the amount

of manipulation, the amount of wrist roll and the regularity of wrist roll [6] [7] [8].

Additional features studied include a frequency analysis of manipulation, the time

since the last EA, and the cumulative time spent eating in a day [21]. In this thesis

we study two new features: the autocorrelation of the manipulation and the off-line

analysis of the time since the last EA. The autocorrelation feature enables the study of

patterns of manipulation that may not be precisely regular, and facilitates frequency

analysis through the transform of the manipulation signal into something more sinu-

soidal. The off-line analysis of the time since the last EA allows for the calculation

of every possible combination of segment classifications throughout the day, so that

an early incorrect classification of a segment as an EA does not always inadvertently

affect the classification of subsequent segments. This thesis further discusses these

concepts and then tests them under the framework developed by our group. The
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overall accuracy of regularity of autocorrelation of manipulation along with the orig-

inal 4 features is 70%. The overall accuracy of trying every combination along with

the original 4 features is 65%. Finally, we compare the results to the previous work

and discuss the results based on our findings.
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Chapter 1

Introduction

This thesis considers the problem of detecting the eating activities (e.g. meals,

snacks) of people by tracking their wrist motion. On average, people eat 3-5 meals

and snacks per day [1]. Our goal is to automatically detect the start and end times

of each eating activity (EA) during free-living. We assume that the person is wearing

a watch-like configuration of accelerometers and gyroscopes [8]. The sensors in the

device continuously track the wrist motion. We are developing methods to process

and analyze the sensor data obtained from the device in order to detect the EAs.

1.1 Obesity and overweight

The motivation is obesity. Obesity and overweight are critical public health

issues in the United States and worldwide. It is estimated that in the United States,

17% children and 32% adults are overweight (body mass index > 25), and 2.8% of

males and 6.9% of females are extremely obese (body mass index ≥ 40) [19]. In the

past 30 years, the prevalence rate of obesity has undergone a sustained increase, with

the world rate doubling since 1980 [13].
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Obesity can contribute to several health risk factor for individuals, such as car-

diovascular disease, diabetes, musculoskeletal disorders and cancers [26]. Overweight

and obesity have also been linked to an increased risk of death [10]. In the U.S., the

economic burden of obesity costs approximately 78.5 billion dollars and accounted for

about nine percent of the total U.S. medical expenditures in 1998 [9].

The major cause of overweight and obesity is that energy intake and energy

expenditure are not equal, which can be due to an increased intake of energy from

food or insufficient physical activity [11]. There are numerous behavior changes that

have been associated with improvements in the obesity and overweight conditions,

such as a reduction in the consumption of fat and sugar, engaging in more physical

activity, and a healthier life regime [24]. Self-monitoring has been consistently found

to play a role in successful weight loss and weight management [3].

1.2 Tools for monitoring energy intake

Doubly-labeled water (DLW) is regarded as the gold standard measure for

energy intake assessment with a reported precision of ± 3% to 5% [22]. Carbon

dioxide and water are produced during energy expenditure procedure. The DLW

method can measure energy expenditure by calculating the difference between the

isotope rates of hydrogen and oxygen [23]. However, the cost, expense and technical

expertise required to administer DLW are large, so it is usually used only in studies

with small sample sizes.

The three most common methods developed for the purpose of assessing en-

ergy intake are the diary record, 24 hour recall and food frequency questionnaire

(FFQ) [25]. Diary record methods require the subject to record the details of foods

and beverages consumed, preferably measured using scale devices or pre-packaged
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quantities. Other information of the food including the brand names and cooking

details should also be recorded [25]. Due to the user burden, seven days or less of

recording is a typical interval. Although the diary record method does not require

recall, the different eating habits of people could make it potentially less precise [15].

Burrows reported that 19%-41% error per day for the food record method were ob-

served when comparing it to the DLW method [4]. The second method is the 24

hour recall, which is where individuals are interviewed about food and beverage con-

sumption in the past 24 hours. Although it has less cost and burden, the 24 hour

recall method is memory based and people have the tendency to underreport food

consumption. Champagne et al., estimated 10%-30% food consumption underreport-

ing in normal weight individuals and 20%-50% food consumption underreporting in

obese individuals [5]. The third method reports the frequency of food and beverage

consumption over a reference period (e.g. 6 months or a year) using a food frequency

questionnaires. FFQs are used to identify food patterns or investigate associations

between diet and disease, but are not designed to produce measures of energy intake

and do not provide meal pattern information [27].

1.3 Previous work of our group

The work in this thesis is based on the previous work of our group [8] [21].

The goal is to automatically detect EAs during free-living using a watch-like device

to continuously track the subject’s wrist motion for an entire day [8]. The original

features used in the classification algorithm are amount of wrist roll motion, regularity

of wrist roll motion, linear acceleration and manipulation. Our group later studied the

regularity of manipulation, the time since the last EA, and cumulative eating time.

These features were computed using the sensor data obtained from the accelerometers
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and gyroscopes in the watch-like device. The detection was done by segmenting data

into segments then classifying the segments as EA and NonEA using a Bayesian

classifier.

1.4 Novelty

We consider a new feature related to the regularity of manipulation [21]. The

previous work analyzed the manipulation signal as a function of its sinusoidal com-

ponents. However, if we explore deeper into the data, we find that the manipulation

signal is not sinusoidal in form and is not strictly cyclical. In this thesis we studied

the autocorrelation of the mainpulation signal to transform it into something more

sinusoidal. In addition, the previous work used the time-based features in the same

framework as other features. In this framework, every segment was classified inde-

pendently. However, time-based features must be dependent upon the classification

of previous segments, causing a cascade effect in the classification output. In this

thesis, we reexamine the time since last EA feature in a framework that tries every

possible combination of EA and NonEA for all segments.
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Chapter 2

Methods

Firstly, we overview the algorithm and the features previously developed by our

group [6] [7] [8] [21]. We then describe the method of data collection. Next, we define

the new features developed for this thesis. Finally, we introduce the software tool

built for observing data and the evaluation metrics used to determine the accuracy

of this approach.

2.1 Overview

Our method assumes a person is wearing a watch-like configuration of ac-

celerometers and gyroscopes [8]. The sensors in the device track the linear and rota-

tional motion of person’s wrist. Figure 2.1 shows a sample of the data using a custom

software tool developed for this work (it will be further described in section 2.4).

From top to bottom we can see the data from accelerometers (AccX,AccY,AccZ)1

and gyroscopes (Y aw, P itch,Roll).

As Figure 2.1 illustrates, the raw data obtained from the sensors are noisy. A

1AccX means acceleration in x direction.
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AccX

AccY

AccZ

Yaw

Pitch

Roll

13:37 13:39

Figure 2.1: Raw data obtained from sensors over a period of 2 minutes
from 13:37 to 13:39 (24 hour format).

AccX

AccY

AccZ

Yaw

Pitch

Roll

13:37 13:39

Figure 2.2: Smoothed data in Figure 2.1 using Equation 2.1.
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Gaussian-weighted window is applied to reduce the effects of noise:

St =
0∑

i=−N

Rt+i

exp(−t2
2R2 )∑N

x=0 exp(−(x−N)2

2R2 )
(2.1)

where Rt is the obtained raw sensor data and St is the corresponding smoothed datum

at time t. The Gaussian-weighted window implemented in Equation 2.1 centers on

the current measurement, which means only half of a Gaussian distribution is used

for smoothing. N represents the window size and R is the standard deviation of the

Gaussian distribution. Equation 2.1 is applied independently to the data obtained

from each accelerometer and gyroscope axis. Figure 2.2 shows the smoothed result

of each axis for the raw sensor data shown in Figure 2.1. It is clear to see that data

in Figure 2.2 is much smoother than raw sensor data in Figure 2.1.

In previous work our group found that there tends to be a period of larger

wrist motion energy prior to an EA (caused by things like bringing food to a table,

unwrapping food, adjusting the position of utensils, etc.), as well as at the end of

an EA (caused by motions such as cleaning up a table, washing hands, standing up,

etc.) [8]. Using this discovery, a method using the wrist motion energy was developed

to perform data segmentation. Wrist motion energy as a feature is called sum of

acceleration and is defined as follows:

Et =
1

W + 1

t+W
2∑

i=t−W
2

|Sx,t|+ |Sy,t|+ |Sz,t| (2.2)

where Sx,t, Sy,t and Sz,t are the smoothed acceleration readings at time t and W

represents the window size. Our group has found that a sliding 1 minute window is

sufficient for smoothing over short periods of large wrist motion while still capturing

longer periods of vigorous motion which indicate the boundaries of an EA [8].
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Dinner

Breakfast Lunch

10:40 15:20

15:20 20:00

Snack

20:00 23:00

Figure 2.3: An example of sum of acceleration of a person over an entire day.
Arrows indicate start and end of the meals/snacks.

10:40 15:20

15:20 20:00

20:00 23:00

Figure 2.4: Peak-based segmentation on Figure 2.3.
Arrows indicate detected peaks. Segments are considered as periods between peaks.
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Figure 2.3 shows an example of sum of acceleration of a person for an entire

day. The recording started at 10:40 and ended at 23:00. Meals and snack are indicated

as downward arrows with the description of the EA (e.g. breakfast, snack, etc). The

start and end times for each EA were manually recorded by the person wearing the

watch-like configuration. Figure 2.3 illustrates that the sum of acceleration tends to

be high before an EA begins as well as after it ends, and tends to be low during the

period of the EA.

The data is segmented based on the sum of acceleration by automatically

detecting peaks using a peak-based segmentation algorithm [8]. Figure 2.4 shows the

result of performing automatically peak-based segmentation on the data in Figure 2.3.

Arrows in the figure 2.4 indicate detected peaks. Segments are taken as all periods

between two peaks (indices of arrows).

The original method developed by our group [8] used 4 features to classify

segments. Each feature is computed over each detected segment (denoting as w).

The first feature is manipulation. The manipulation measures the ratio of rotational

wrist motion (Y aw, Pitch and Roll) to linear wrist motion (AccX,AccY,AccZ). It

is calculated as:

f1 =
1

W

W∑ |Sφ,t|+ |Sθ,t|+ |Sψ,t|
|Sx,t|+ |Sy,t|+ |Sz,t|

(2.3)

where W is the span of the segment period, t is the index that iterates across the

span, and S is the smoothed datum (φ=yaw, θ=pitch, ψ=roll). The second feature

is linear acceleration and is computed as:

f2 =
1

W

W∑
|Sx,t|+ |Sy,t|+ |Sz,t| (2.4)
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The third feature is the amount of wrist roll motion:

f3 =
1

W

W∑
|Sφ,t −

1

W

W∑
Sφ,t| (2.5)

The fourth feature is regularity of wrist roll motion. It is calculated as:

f4 =
1

W

∫
W

1∀t ∈ [|Sφ,t| > 100 · · · t+ 8sec] (2.6)

This feature takes on a value between 0 and 1. It represents the percentage of time

that the wrist is in roll motion. The calculation includes the time the wrist roll is

at least 10 deg/sec, plus a period of 8 sec after each occurrence of wrist roll motion

falling below 10 deg/sec [8].

The study of Reyes computed another 3 features based on the same overall

approach [21]. The first feature is regularity of manipulation. This feature uses a

Fast Fourier Transform (FFT) to capture the regularity of peaks of smoothed manip-

ulation. First, since the raw manipulation is noisy, the Gaussian-weighted window in

Equation 2.1 was applied. The window size was N = 225, which is 15 seconds at a

sample rate 15 Hz, with R = 37.6. The FFT is an algorithm that computes a Discrete

Fourier Transform (DFT) but takes significantly less amount of computations than a

DFT. The DFT is computed as:

Xk =
N−1∑
n=0

xn ∗ e
−2πi
N

nk (2.7)

where N is the number of data, each Xk is a complex number and xn is the input
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sequence. The regularity of manipulation is calculated as:

f5 =
1

t

HFB∑
i=LFB

√
r2k + i2k (2.8)

where LFB and HFB represent the lower and higher frequency boundary separately,

rk and ik are the real and imaginary parts of the index k of the FFT output using

Equation 2.7, and t indicates the length of the segment in seconds. The LFB is

chosen as 2
60

Hz and the HFB is picked as 6
60

Hz.

The second feature is called time since last EA. The idea of the time since last

EA is that it is very unlikely for a person to eat again immediately after an EA [21].

The time since last EA feature is calculated as:

f6 = t− tlast (2.9)

where tlast represents the end time of the last segment classified as EA and t represents

the start time of the unknown segment which is currently in the classification process.

The third feature is the cumulative eating time, which is also a time-based

feature. This feature implies that a person spends a certain amount of time eating in

a day [21]. The cumulative eating time records the amount of time in minutes since

the beginning of recording, and is calculated as:

f7 =
t∑
i=0

χi (2.10)

where t is the current time, and χi is defined as:

χi =

{
1 if t ∈ EA

0 otherwise
(2.11)
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All 7 of these features are used in a naive Bayesian classifier for classifying

EA segments and NonEA segments. As we introduced before, the segments are

determined by the peak-based segmentation algorithm. The approach to classification

is to assign the most probable class ci ∈ C, given feature values f1, f2, · · · , fN . Using

the naive assumption of independence of features, the classification problem can be

written as:

ci = arg max
C

P (ci)
∏
j

P (fj|ci) (2.12)

For our problem, only 2 classes will be used, EA (denoted as c0) and NonEA

(denoted as c1). Therefore, probabilities are initialized as:

P (ci) = 0.5 i = 0, 1 (2.13)

The probability of each feature given each class is calculated by a normal distribution

model as follows:

P (fj|ci) =
1√

2πσ2
i,j

exp
(
− (fj − µi,j)2

2πσ2
i,j

)
(2.14)

where µi,j and σ2
i,j are the mean and variance of feature j for class i.

For features f1, f2, · · · , f5, the mean and standard deviations are needed to

classify an unknown segment. Table 2.1 shows these statistics for each feature calcu-

lated by our group. The probability of each feature given each class can be computed

using Equation 2.14.

The probability of feature f6 given each class is calculated in a different way.

Figure 2.5 shows the cumulative distribution function (CDF) of the time since last

EA feature. Probabilities in Figure 2.5 start at 0 and end at 1.0. For an unknown

12
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Notation Feature EA NonEA
Mean Std. Dev. Mean Std. Dev.

f1 Manipulation (deg/s/G) 791 214 395 239
f2 Linear acceleration (G) 0.039 0.014 0.054 0.066
f3 Roll motion (deg/s) 9.1 4.27 6.8 6.3
f4 Roll regularity (%time) 0.58 0.14 0.37 0.26
f5 Manip. regularity (deg/s3/G) 11654 4285 4568 2252

Table 2.1: Average feature values found during training. The values of features
f1, f2, f3 and f4 were computed in [8]. The values of feature f5 were computed

independently for 2 data sets in [21]; the values given here are averaged across all
data.

segment, the probability is calculated by finding the amount of time since the last

segment classified as EA (minutes), and locating this value on the x-axis of Figure 2.5;

the probability of this segment to be EA is considered as:

p(f6|c0) = CDF (2.15)

p(f6|c1) = 1− CDF (2.16)

where CDF represents the CDF value on the y-axis. As mentioned before, EA is

denoted as class c0 and NonEA is denoted as class c1. If no EA has been classified

prior to the current segment, Equation 2.13 is applied to set the probabilities of EA

and NonEA.

The probability of feature f7 given each class is calculated as follows. Fig-

ure 2.6 shows the average (middle line) and ± standard deviation (top and bottom)

of cumulative eating time for each minute since beginning recording. For an unknown

segment, the values of µ and σ are found in Figure 2.6. The details of finding cor-

responding values were discussed in the study of Reyes [21]. The probability of this

segment to be EA p(f7|c0) is computed using Equation 2.14, and p(f7|c1) = 1−p(f7|c0)
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2.2 Data collection

An iPhone 4 [14] inside a pouch was used as the watch-like device of accelerom-

eters and gyroscopes introduced in Section 2.1. This device was chosen because it

is programmable, equipped with an accelerometer and gyroscope, and has a large

memory (16GB) and battery (1420 mAh) to record data for an entire day [21].

This thesis uses 2 data sets collected previously by our group [6] [8]. Set 1 was

collected using a preliminary version of the iPhone program. Users were instructed

to manually log the start and end of meals/snacks. Set 2 was collected from a new

version of the iPhone program on which users could press an event marker button to

log the start and end of meals/snacks.

The data were collected by the iPhone program at 15 Hz. In total, 449 hours

of data from 43 recordings were collected, including a total 22.4 hours of EA over

116 total meals/snacks [8]. Set 1 consists of 20 recordings and set 2 consists of 23

recordings.

For training purpose, data is segmented into EA segments and NonEA seg-

ments. EA segments simply span for the duration periods of the entire meals/snacks.

For NonEA segments, the recording data is broken as 5 minutes long unless the end of

the recording is reached or an EA occurs. If recording data was missed or corrupted,

the recording gap was filled with zeros for all axes when the gap is less than 5 sec-

onds, or discarded when it is longer than 5 seconds. For new features, analysis of the

properties of data and calculating the statistics of features were based on the training

data set. In total, set 1 consists of 35 EA segments and 1997 NonEA segments, and

set 2 consists of 81 EA segments and 3201 NonEA segments [21]. We used both data

sets in this thesis together without differentiating between them.
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(a) Manipulation (top) is regular.
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Figure 2.7: Manipulation (top) with its autocorrelation (bottom).

2.3 New features

2.3.1 Regularity of autocorrelation of manipulation

As mentioned in Section 2.1, the regularity of manipulation feature (f5) uses

a FFT approach to capture the periodicity of manipulation. The FFT algorithm uses

the DFT to reduce the amount of computation [20]. The FFT converts the sampled

function from the time domain to the frequency domain to enable the extraction

of the dominant frequency component [2]. The FFT models the input signal as a

combination of sinusoids. If the input signal is the sum of pure sinusoids, the FFT

could find the periodicity in the input signal fairly well. However, the manipulation

signal itself is not sinusoidal in nature, it is only regular, and manipulation may not
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be regular for all eaters for all meals. People may take bites or conduct motions

with irregular patterns that are only partially cyclical or have multiple phases of

cycles. Figure 2.7 shows 2 examples of the manipulation. It is clear to see that

the manipulation in Figure 2.7a is not sinusoidal but regular. The manipulation in

Figure 2.7b is not even regular. We hypothesized that both of these problems might

be addressed by taking the autocorrelation of the manipulation signal before doing

a frequency analysis. As the autocorrelation results in Figure 2.7a and Figure 2.7b

show, the autocorrelation signal is much more appropriate for frequency analysis.

Autocorrelation is the cross-correlation of a signal with itself. Informally, it is

the similarity between observations as a function of the time lag between them [17].

It is a mathematical tool to find repeating patterns, such as the presence of a periodic

signal effected by noise. Assume there are N pairs of observations on two variables x

and y. The correlation coefficient between x and y is calculated by:

r =

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2
√∑N

i=1(yi − ȳ)2
(2.17)

where the summations are over the N observations. A similar idea could be applied

on autocorrelation computation. The correlation is computed between one time series

and the same series lagged by one or more time units. If the N is reasonably large,

the denominator in Equation 2.17 can be simplified by approximation [18]. Finally,

autocorrelation can be calculated as:

rk =

∑N
i=1(xi − x̄)(xi+k − x̄)∑N

i=1(xi − x̄)2
(2.18)

whereN is the window size, and the quantity rk is called the autocorrelation coefficient

at lag k. The variance is the average squared departure from the mean [18]. The
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autocovariance coefficient is defined as:

ck =
1

N

N∑
i=1

(xi − x̄)(xi+k − x̄) (2.19)

where ck is the autocovariance coefficient at lag k. The autocovariance at lag zero,

c0, is the variance. Therefore, the autocorrelation at lag k can be written as:

rk = ck/c0 (2.20)

Since the autocorrelation is computed between the original signal and the lagged

signal, the max value of lag (k) is:

kmax = Len−N (2.21)

where kmax represents the max value of lag, N represents the window size, and Len

indicates the length of the current data segment. The window size is chosen as:

N = min(w0 ,
1

2
Len) (2.22)

where w0 is the 2.5 minutes window at sample rate 15 Hz (w0 = 2250 samples).

When a non-periodic signal is transformed using the DFT, frequency spectrum

leakage occurs. The leakage causes the energy of the signal to smear out to other

frequency ranges besides the actual frequency range [16]. We apply the Hanning

window [12] to suppress leakage:

w(n) =
1

2

(
1− cos

( 2πn

N − 1

))
(2.23)
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where N is the window size, w(n) is the value of the Hanning window at the index

n. The Hanning window in Equation 2.23 can be applied on the autocorrelation

computed by Equation 2.18 or Equation 2.20. This is followed by performing the

FFT. The new feature, regularity of autocorrelation of manipulation, is calculated as

the sum of the magnitude between a range of frequencies using Equation 2.8.

Figure 2.8 shows the FFT results of the manipulation (top 2 figures)) and FFT

results of the autocorrelation (bottom 2 figures) for Figure 2.7a and Figure 2.7b. We

can see that for the FFT results of autocorrelation, more power focused on a smaller

range of frequencies compared with the FFT results of manipulation.

We want to pick the frequency range ([LFB,HFB] in Equation 2.8) that has

EA and NonEA distributions separate from each other as much as possible. Two

factors are defined to measure how well a given range of frequencies separates EA

segments from NonEA segments [21]. The factor is calculated for EA as:

XEA =
µEA − µNonEA

σEA
(2.24)

and for NonEA as:

XNonEA =
µEA − µNonEA

σNonEA
(2.25)

where µEA and σEA are the mean and standard deviation of the EA distribution, and

µNonEA and σNonEA are the mean and standard deviation of the NonEA distribution.

A higher factor X means the EA and NonEA distributions are more isolated from

each other.

The factors values of different frequency ranges are shown in Table 2.2. Based

on the results, we picked the frequency range [ 3
60

Hz − 10
60

Hz] since it has the highest

factors overall, taking all three data set options into account.
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(a) FFT result of the manipulation in
Figure 2.7a.

(b) FFT result of the manipulation in
Figure 2.7b.

(c) FFT result of the autocorrelation in
Figure 2.7a.

(d) FFT result of the autocorrelation in
Figure 2.7b.

Figure 2.8: FFT results of the manipulation (top 2 figures) and FFT results of the
autocorrelation (bottom 2 figures) for Figure 2.7a and Figure 2.7b. After

autocorrelation, the FFT result shows a higher concentration of power in a smaller
range.
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Figure 2.9: Distribution of regularity of autocorrelation of manipulation in
frequency range [ 3

60
Hz− 10

60
Hz] (both sets).

XEA = 1.324, XNonEA = 4.024.
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Set 1 Set 2 Both sets

Range XEA XNonEA XEA XNonEA XEA XNonEA

4
60

Hz-10
60

Hz 1.311 4.014 1.253 3.765 1.271 3.829
2
60

Hz- 6
60

Hz 1.242 3.633 1.244 3.676 1.243 3.659
6
60

Hz-10
60

Hz 1.375 3.779 1.002 2.858 1.098 3.130
4
60

Hz-7.5
60

Hz 1.222 3.911 1.233 3.868 1.231 3.861
5
60

Hz-10
60

Hz 1.424 3.882 1.077 3.059 1.167 3.304
5
60

Hz-7.5
60

Hz 1.277 3.843 1.053 3.236 1.116 3.415
3
60
Hz-10

60
Hz 1.359 4.263 1.308 3.931 1.324 4.024

3
60

Hz-7.5
60

Hz 1.292 4.202 1.295 4.044 1.296 4.078
2.4
60

Hz-10
60

Hz 1.380 3.920 1.268 3.814 1.298 3.841

Table 2.2: The factor values of different frequency ranges
for data set 1, data set 2, and both data sets.

Notation Feature EA NonEA
Mean Std. Dev. Mean Std. Dev.

f8 Autocorrelation regularity(/s) 2.872 1.510 0.873 0.497

Table 2.3: Statistics for regularity of autocorrelation of manipulation (both sets).

Figure 2.9 shows the distributions of EA and NonEA segments for the se-

lected frequency range of both data sets. Since there are fifty times more NonEA

segments than EA segments, the values of EA segments in Figure 2.9 are magnified

by 25. Table 2.3 shows the mean and standard deviation values for the new fea-

ture, regularity of autocorrelation of manipulation. The frequency range is selected

as [ 3
60

Hz − 10
60

Hz]. The probability of this new feature f8 given each class can be

computed using Equation 2.14.
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2.3.2 Time since last EA

As introduced in Section 2.1, the time since last EA feature (f6) is a time-

based feature. In the study of Reyes [21], the original method of applying this feature

is the same as other non-time-based features (f1, f2, · · · , f5). That means the time

since last EA feature was computed as though the system ran in real-time. The

method classified the current unknown segment using Equation 2.12, then moved on

to the next segment. The time since last EA feature contributes to the classifier

by using the CDF shown in Figure 2.5. Thus, once a segment had been classified

as EA or non-EA, its class affects the feature value for subsequent segments, and it

cannot be reclassified. This thesis considers the time since last EA feature in an off-

line approach, trying every possible combination of classifications of segments then

considering the combination with the largest sum of probabilities as the classification

result.

For each combination, we calculate the sum of possibilities of each segment

classified as each class. Using the naive assumption of independence of features, the

probability of each segment classified as each class is calculated as:

p(sk|ci) = P (ci)
∏
j

P (fj|ci) (2.26)

where sk represents the kth segment, P (ci) is initialized using Equation 2.13. If there

is an EA segment and it is not the last segment, the time since last EA feature will

be used. The value of the time since last EA is found in Figure 2.5.

For example, assume N = 3, then all possible combinations of EA and NonEA
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are:

i1 NonEA NonEA NonEA

i2 NonEA NonEA EA

i3 NonEA EA NonEA

i4 NonEA EA EA

i5 EA NonEA NonEA

i6 EA NonEA EA

i7 EA EA NonEA

i8 EA EA EA

(2.27)

where ik, (k = 1, 2, · · · , 8) represents the row number. Assume we want to calculate

the sum of probabilities of i5 in Equation 2.27, EA is the first segment, the distance

between the first segment EA (s0) and the last segment NonEA (s2) is m, and the

function in Figure 2.5 is denoted as CDF . Then using Equation 2.26, Equation 2.15,

Equation 2.16 and Figure 2.5, the sum of probabilities is calculated as:

sum = p(s0|c0) + p(s1|c1) · (1− CDF (0)) + p(s2|c1) · (1− CDF (m)) (2.28)

Recall that EA is denoted as c0 and NonEA is denoted as c1.

Since we only have two classes, EA and NonEA, the total number of possible

combination is 2N , where N is the number of segments. The average number of

segments in a data recording is 67. The total possible combinations are 267 − 1 ≈

1.5 × 1020. This is a huge amount of computations, so we need to find another way

of calculating the result instead of simply iterating all the possible combinations. We

chose to only consider 8 segments at a time, combining the top combination iteratively

as follows. First, we store all possible 256 combinations generated by 8 segments since

we will use them for several times in the algorithm. Then, copy them as the initial top
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N Segments

Store 28 combinations 

N >= 8 ?

Yes

Concatenate each

top combination with 

stored 28 combinations

No

Concatenate each

top combination with 

all 2N combinations

Find the combination

with max sum of prob.

END

Compute sum of prob.

for each combination

Extract Top 256 

combinations

N = N - 8

Copy them as

Top 256 

combinations  

Figure 2.10: The flowchart of the algorithm of finding the combination with the
max sum of probabilities.
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Command Function
- + zoom out/in
a s rewind fast/slow
d play/pause

f g forward slow/fast
[ ] navigate between ground truth EA
< > decrease/increase FFT display scale

w set autocorrelation window size
1 display smoothed manipulation
2 display smoothed manipulation and autocorrelation
3 display smoothed manipulation, autocorrelation and FFT

Table 2.4: Keyboard commands of the software tool.

256 combinations. If remaining segments number is not less than 8, combine each top

combination with stored all possible combinations, which is total 256× 256 = 65536

combinations. Compute the corresponding sum of probabilities, and find the top

256 combinations with relatively higher sum of probabilities. This process repeats

until the remaining segments are less than 8. Combine each top combination with

all possible combinations generated by the remaining segments, and consider the

combination with the largest sum of probabilities as the classification result. The

flowchart of this algorithm is shown in Figure 2.10.

2.4 Software tool

A custom software tool was developed to display the ground truth, display

the data, view different feature values, go through detected peaks as illustrated in

Section 2.1, and perform the classification process using Equation 2.12. The keyboard

commands are convenient to use and efficient to display data in any desired way, shown

in Table 2.4. There are many functions of the software tool, Figure 2.11 only shows

two of them.
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Toolbar

Sum of 
Acceleration

Features
Value

Classification
Result

Peaks

(a) View of sum of acceleration and classification result.

Cursor

Toolbar

Smoothed 
Manip.

FFT 
Result

Autocorrelation

(b) View of autocorrelation and FFT result.

Figure 2.11: Screenshot of the software tool.
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Figure 2.11a is the view option of displaying sum of acceleration as well as

the result of the Bayesian classifier. Similar to Figure 2.4, the peaks of the sum of

acceleration are marked as downward arrows. The horizontal bars connected with

arrows indicate the width of peaks. The values of features are displayed under the

sum of acceleration. The classification results were marked as horizontal bars between

the sum of acceleration and the values of features. The horizontal bars span the whole

periods of the segments that were classified as EA segments.

Figure 2.11b is the view option of displaying smoothed manipulation, autocor-

relation and the FFT result of the autocorrelation simultaneously. The details about

autocorrelation were discussed in Section 2.3.1. Note that there is an amplify scale

factor in the FFT result zone. We can turn it larger to see the frequency components

that have smaller power, also we can make it smaller to have a global view of all the

components.

Another software tool was developed to try every possible combination of

segments, then find the combination that has the highest sum of probabilities. The

details of the algorithm are shown in Figure 2.10 in Section 2.3.2.

2.5 Evaluation metrics

The metrics evaluate the classifier by the total amount of time correctly clas-

sified [8]. True positives (TP) were counted as the number of seconds of time that

were labeled as EA in the manual logs and also classified as EA. False positives (FP)

were counted as the number of seconds of time that were labeled as NonEA in the

manual logs but classified as EA. True negatives (TN) and false negatives (FN) were

computed in a similar way by comparing manual logs and classification results. The
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accuracy can be calculated as:

accuracy =
TP× 20 + TN

(TP + FN)× 20 + (TN + FP)
(2.29)

where the factor 20 weights TP to TN at a ratio of 20:1, since EA occurs much less

frequently than NonEA [8]. The accuracy of EA and NonEA were computed as [21]:

AccuEA =
TP

TP+FN
(2.30)

and

AccuNonEA =
TN

TN+FP
(2.31)
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Chapter 3

Results

3.1 Accuracy results

Results of the previous features which were introduced in Section 2.1 on all

data are shown in Table 3.1. The values of TP, TN, FP and FN were counted in

seconds. The accuracy of EA was calculated using Equation 2.30, the accuracy of

NonEA was calculated using Equation 2.31, and the overall accuracy was calculated

using Equation 2.29. Results of different features for each person in data set 1 are

shown in Table 3.2, and results of different features for each person in data set 2 are

shown in Table 3.3.

Features Totals (sec) Accuracy
TP TN FP FN EA NonEA Overall

f1, f2, f3, f4 61388 1266353 270261 18309 77% 82% 81%

Table 3.1: Results for previous features using average on all data [8].
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Accuracy
Person ID f1, f2, f3, f4 f1, f2, f3, f4, f8 f1, f2, f3, f4, f6

001 0.87 0.66 0.49
002 0.85 0.74 0.67
003 0.90 0.82 0.97
005 0.71 0.51 0.76
006 0.96 0.60 0.94
007 0.92 0.64 0.48
010 0.96 0.67 0.67
011 0.32 0.75 0.40
012 0.65 0.65 0.70
013 0.82 0.80 0.88
014 0.77 0.48 0.73
015 0.85 0.74 0.59
016 0.87 0.68 0.57
017 0.68 0.61 0.51
018 0.86 0.66 0.95
022 0.64 0.51 0.76
023 0.86 0.65 0.74
024 0.72 0.42 0.96
025 0.82 0.56 0.59
027 0.74 0.65 0.56

Table 3.2: Results of original 4 features (f1, f2, f3, f4) with the regularity of
autocorrelation of manipulation feature (f8), and trying every possible combination

approach on the time since last EA (f6) feature for each person in data Set 1.
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Accuracy
Person ID f1, f2, f3, f4 f1, f2, f3, f4, f8 f1, f2, f3, f4, f6

201 0.86 0.72 0.59
202 0.94 0.81 0.61
203 0.93 0.75 0.60
204 0.90 0.87 0.71
205 0.41 0.77 0.35
207 0.76 0.74 0.78
208 0.85 0.67 0.66
209 0.74 0.65 0.54
210 0.78 0.70 0.74
212 0.67 0.61 0.54
213 0.81 0.65 0.88
214 0.69 0.72 0.63
215 0.91 0.90 0.72
216 0.82 0.66 0.67
218 0.82 0.74 0.88
221 0.86 0.71 0.62
222 0.90 0.75 0.48
226 0.87 0.86 0.64
227 0.87 0.86 0.57
233 0.86 0.80 0.67
234 0.81 0.57 0.71
235 0.97 0.88 0.75
239 0.58 0.45 0.50

Table 3.3: Results of original 4 features (f1, f2, f3, f4) with the regularity of
autocorrelation of manipulation feature (f8), and trying every possible combination

approach on the time since last EA (f6) feature for each person in data Set 2.

Features Totals (sec) Accuracy
TP TN FP FN EA NonEA Overall

f1, f2, f3, f4, f8 66975 863914 672700 12722 84% 56% 70%
f1, f2, f3, f4, f6 32710 1369000 167614 46987 41% 89% 65%

Table 3.4: Results of original 4 features (f1, f2, f3, f4) with the regularity of
autocorrelation of manipulation feature (f8), and trying every possible combination

approach on the time since last EA (f6) feature.
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3.2 Regularity of autocorrelation of manipulation

The results of the new feature, regularity of autocorrelation of manipulation,

are shown in Table 3.4. As Section 2.3.1 described, the classifier used 5 features in

total, the original 4 features (f1, f2, f3, f4) and the regularity of autocorrelation of

manipulation feature (f8). Comparing with the previous results in Table 3.1, we can

see that the overall accuracy dropped from 81% to 70%. Applying the regularity of

autocorrelation of manipulation, the classifier detected EA better. The accuracy of

EA has been improved from 82% to 84%. However, the accuracy of NonEA decreased

from 81% to 56%. The reasons why the accuracy of NonEA was not improved are

explained as follows. The first reason is that, as Figure 2.9 illustrates, the distribution

of NonEA is a Gaussian-like distribution while the distribution of EA does not look

like a Gaussian distribution. However, when we calculate the probability of the

regularity of autocorrelation of manipulation feature (f8) given class EA (c0) using

Equation 2.14, we use a Gaussian distribution to approximate the distribution of

EA. Meanwhile, the standard deviation of the EA segments is much larger than the

NonEA segments, as seen in Table 2.3. These two facts cause the result that the

left part of the distribution of EA overlaps with the distribution of NonEA a lot.

Therefore, the classifier detected less true negatives (TN) but more false positives

(FP). Although the amount of time of detected true positives (TP) was increased

by 1922 seconds (about 30 minutes), the amount of time of detected false positives

(FP) was greatly increased from 280915 seconds to 672700 seconds. Comparing the

accuracy of the original 4 features and adding in the regularity of autocorrelation

of manipulation feature to the original 4 features in Table 3.2 and Table 3.3, we

can find that the regularity of autocorrelation of manipulation feature improved the

classifier performance most for person ID 011 (from 32% to 75%). Figure 3.1 shows
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10:15 14:50

14:50 19:25

EA

EA

Figure 3.1: The classification results of original 4 features for person ID 011. The
ground truth EA segment is marked by downward arrows. The horizontal bars

represent the segments that were classified as EA segment.

10:15 14:50

14:50 19:25

EA

EA

Figure 3.2: The classification results of original 4 features with regularity of
autocorrelation of manipulation feature for person ID 011. The ground truth EA

segment is marked by downward arrows. The horizontal bars represent the segments
that were classified as EA segment.
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the classification results of the original 4 features (f1, f2, f3, f4) for person ID 011, and

Figure 3.2 shows the classification results of adding in the regularity of autocorrelation

of manipulation feature to the original 4 features (f1, f2, f3, f4, f8) for person ID 011.

The ground truth EA segments are marked by downward arrows. The horizontal bars

indicate the detected EA segments. The classifier did not detect the EA segments

using only the original 4 features. After including the regularity of autocorrelation

of manipulation feature, the classifier detected the EA segments correctly. We can

see that although the EA segment was detected, which means the number of true

positives (TP) increased, the number of false positives (FP) also increased.

Another reason for not seeing more improvement concerns the actual period-

icity of the manipulation signal. As we described in Section 2.3.1, the value of the

regularity of autocorrelation of manipulation feature is calculated by performing FFT

on the autocorrelation of manipulation data. Figure 3.3 shows the autocorrelation of

manipulation for an EA segment chosen from the area where the distribution of EA

does not overlap with the distribution of NonEA (right tail of the distribution of EA

in Figure 2.9). The EA segment spans 14805 samples, which is about 16 minutes at

a sample rate of 15 Hz. Figure 3.3 only displays the first 5000 samples for clarity.

Figure 3.4 shows the autocorrelation of manipulation for a NonEA segment chosen

from the area where the distribution of NonEA does not overlap with the distribution

of EA (left tail of the distribution of NonEA in Figure 2.9). As Section 2.2 illustrates,

the NonEA segments are segmented into 5 minutes long. The window length is de-

termined as 2.5 minutes (@15Hz) using Equation 2.22. Therefore, the max offset of

autocorrelation is 2.5 minutes (@15Hz) after applied Equation 2.21. It is clear to see

that the autocorrelation data in Figure 3.3 is much more periodic than the autocorre-

lation data in Figure 3.4. We can conclude that the FFT will perform really well on

classifying EA segments like the one shown in Figure 3.3 and NonEA segments like
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Figure 3.3: Autocorrelation of manipulation for an EA segment located on the
right-most position of the distribution of EA in Figure 2.9.
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Figure 3.4: Autocorrelation of manipulation for a NonEA segment located on the
left tail of the distribution of NonEA in Figure 2.9.
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Figure 3.5: Autocorrelation of manipulation for an EA segment located in the area
where the EA distribution overlaps the NonEA distribution in Figure 2.9.
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Figure 3.6: Autocorrelation of manipulation for a NonEA segment located in the
area where the NonEA distribution overlaps the EA distribution in Figure 2.9.
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19:02 19:10

Figure 3.7: The manipulation of the EA segment in Figure 3.5.
The EA segment spans 8 minutes.

the one shown in Figure 3.4, since the autocorrelation data shows a significant differ-

ence between them. In conrast, Figure 3.5 shows the autocorrelation of manipulation

for an EA segment chosen from the area where the distribution of EA overlaps with

the distribution of NonEA in Figure 2.9. It is not clear to see any kind of periodicity

on the autocorrelation data. Figure 3.6 shows autocorrelation of manipulation for an

NonEA segment chosen from the area where the distribution of NonEA overlaps with

the distribution of EA in Figure 2.9. We find that the autocorrelation data is much

more periodic than the autocorrelation data in Figure 3.4.

Looking more closely at Figure 3.5, we see that the beginning part and the

last part of autocorrelation show regular patterns while the middle part of the auto-

correlation loses regularity. Figure 3.7 shows the manipulation of the corresponding

EA segment. We can clearly see that the manipulation shows a regular pattern at

the beginning part as well as the end part. The period of the manipulation signal at

the right tail of the segment is approximately the same as the period of the manip-

ulation signal at the beginning. However, the middle of the segment shows that the

subject did not make manipulation motions during that time. The subject may have

been doing other things like taking a rest, playing with a phone, talking to someone

without moving the wrist, or drinking water by straw. Since there was a period of

relatively low manipulation, the middle of the autocorrelation in Figure 3.5 shows
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low periodicity.

Figure 3.8 shows another example of the autocorrelation of manipulation for an

EA segment chosen from the area where the EA distribution overlaps with the NonEA

distribution in Figure 2.9. Figure 3.9 shows the manipulation corresponding to the EA

segment in Figure 3.8. We find that the period at the end part of the autocorrelation

is clearly larger than the period at the beginning part of the autocorrelation. The

subject moved frequently at the beginning of the EA, kept still for a while, then

continued to move the wrist but using a slower pace than before. We are assuming

that the subject pressed the start button on the iPhone program (as introduced in

Section 2.1) but started to prepare another dish. The process of cooking will cause

continuous manipulation. Then the subject took a rest and truly started to eat.
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Figure 3.8: An example of the autocorrelation of manipulation for an EA segment
which shows the different periodicity between the begin and the end of the segment.
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Figure 3.9: The manipulation of the EA segment in Figure 3.8
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3.3 Time since last EA

The results of trying every possible combination of the time since last EA

feature are shown in Table 3.4. Comparing with the previous results in Table 3.1, we

find that the overall accuracy dropped from 81% to 65%. After applying the algorithm

of trying every possible combination, the accuracy of NonEA was improved from 81%

to 89% while the accuracy of EA decreased to 41%.

Comparing the accuracy of the original 4 features and trying every possible

combination on the time since last EA (f6) feature in Table 3.2 and Table 3.3, we

find the most improvement for person ID 024 (from 72% to 96%), and the biggest

decrease in accuracy for person ID 001 (from 87% to 49%). Figure 3.10 shows the

classification results of the original 4 features (f1, f2, f3, f4) for person ID 024, and

Figure 3.11 shows the new classification results. The ground truth EA segment is

marked by downward arrows. The horizontal bars indicate the detected EA segments.

Most of the FPs in Figure 3.10 are connected to each other, while after applying the

method of trying every possible combination, this issue has been greatly reduced. The

classifier successfully eliminated 15 FPs. Figure 3.12 shows the classification results

of the original 4 features (f1, f2, f3, f4) for person ID 001, and Figure 3.13 shows the

classification results of trying every possible combination on the time since last EA

(f6) feature with the original 4 features (f1, f2, f3, f4, f8) for person ID 001. We find

that although the detected EA segments are isolated with each other, they are located

at the wrong times.

Recall the CDF of time since last EA in Figure 2.5 of Section 2.1. For a com-

bination, the segments next to an EA segment will have extremely low probabilities

to be classified as EA. When we are looking for the max sum of probabilities (as

described in Section 2.3.2), the combination with multiple EA segments connected
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13:35 18:10

Figure 3.10: The classification results of the original 4 features for person ID 024.
The ground truth EA segment is marked by downward arrows. The horizontal bars

represent the segments that were classified as EA.

EA

9:00 13:35

13:35 18:10

Figure 3.11: The classification results of trying every possible combination on the
time since last EA feature with the original 4 features for person ID 024. The
ground truth EA segment is marked by downward arrows. The horizontal bars

represent the segments that were classified as EA.
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Figure 3.12: The classification results of the original 4 features for person ID 001.
The ground truth EA segments are marked by downward arrows. The horizontal

bars represent the segments that were classified as EA.
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Figure 3.13: The classification results of trying every possible combination on the
time since last EA feature with the original 4 features for person ID 001. The

ground truth EA segments are marked by downward arrows. The horizontal bars
represent the segments that were classified as EA.
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is unlikely to be chosen. The chosen combination with the max sum of probabili-

ties tends to have isolated EA segments. Therefore, the classifier detected more true

negatives (TN) and suppressed false positives (FP). We can also notice that the ac-

curacy of EA decreased from 82% to 41%. If the ground truth NonEA segment right

before the ground truth EA segment has a much higher probability to be classified

as EA, then the combination with the max sum of probabilities tends to choose the

combination of classifying this NonEA segment as EA. Therefore, the ground truth

EA segment will be classified as NonEA due to the value of the time since last EA

feature.
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Chapter 4

Discussion

This thesis was concerned with the problem of detecting eating activities dur-

ing free-living by tracking wrist motion. It builds upon two previous studies done by

our research group. This thesis explored 1 new feature and 1 new method of calcu-

lating a previously developed time-based feature. The new feature was the regularity

of autocorrelation of manipulation. It was intended to better capture the cyclical

nature of manipulation activities during eating, such as taking bites of food. The

methods show that it provides a signal with more sinusoidal regularity, and that this

in turn shows a higher concentration of power in a smaller range of frequencies. How-

ever, while using this feature in a classifier shows an improvement for some eaters in

some meals, overall it showed a slight decrease in performance. We hypothesize that

this is due to natural differences in the regularity of manipulation during eating. In

some cases, the new feature helped overcome variations in regularity, while in other

cases, the new feature is not appropriate. It may be that when people pause for

lengthy periods of time, the use of a regularity-based feature decreases the likelihood

of detection.

The previous study that considered time-based features applied these features
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in a real-time paradigm, classifying each segment based upon the classification of pre-

vious segments. This thesis explored the time since last EA in an off-line paradigm,

trying every possible combination of classifications. While this new paradigm sub-

stantially decreased false positives, it also reduced true positives so that overall per-

formance was decreased. It is important to note that the algorithm chosen to explore

this idea was limited computationally and did not truly try every possible combina-

tion. Due to the exponential number of possible combinations, a brute force approach

is not practical. Future work may try a genetic algorithm that improves the search

by trying the subset of combinations most likely to produce the highest overall prob-

ability, as opposed to the simple subset-approach tried in this thesis.

For future work, we suggest that new features could be explored that focus on

NonEAs rather than EAs. It may be easier to identify signal characteristics that never

happen during eating, and thereby exclude those periods of time before proceeding

to EA versus NonEA classificaiton. For training, the work in this thesis used all

available data, which was a single day of recording for each of 43 people. Collecting

free-living data from more individuals over a longer duration is suggested to be a

candidate for future studies. It may be that the classifier will perform better if it is

trained on data for each person separately. This could allow the classifer to capture

the typical ranges of motion during eating for each individual without grouping them

all together.
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