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Abstract—Trilateration calculations are affected by errors in
distance measurements from the set of fixed points to the object
of interest. When these errors are systemic, each distinct set of
fixed points can be said to exhibit a unique set noise. For ultra-
wideband (UWB) indoor position tracking, the set of fixed points
is a set of sensors measuring the distance to a tracked tag. In
this paper we develop a noise model for this sensor set noise,
along with a particle filter that uses our set noise model. We test
our methods on a real UWB system. Our methods showed an
approximately 15% improvement for improving the accuracy of
the raw measurements.

I. I NTRODUCTION

In the early 1980s, the Global Positioning System (GPS) had
an accuracy in the range of 100m, useful for ship navigation,
aeronautics, and battlefield awareness. Today, GPS accuracy
is in the range of 1-2m, providing new applications in vehicle
navigation and automated farming. UWB indoor position
tracking currently has an accuracy in the range of 30-100cm
[1], [2], suitable for applications that require rough room-
level precision such as asset tracking [3], indoor navigation
and surveillance [4]. Our long-term goal is to improve the
accuracy to 1cm or better, expanding potential applications
to telepresence, augmented reality, training, entertainment and
medical devices [5].

Trilateration-based tracking relies upon measuring the dis-
tances from a fixed set of fixed points (“satellites”) to an
object of interest (“tag”). In this work we consider the noise
at the level of a set of satellites used in a single trilateration
calculation. This noise changes when the set changes. In
a Global Navigation Satellite System (GNSS), set changing
happens rarely, because of the scale of the tracking system;
one must move a fairly large distance across the Earth to
change the set of visible satellites. However, in indoor ultra-
wideband (UWB) indoor position tracking, set changing hap-
pens frequently. The sets change while moving around a single
room, and sometimes even while standing still, depending
upon the received signal strengths. In preliminary work our
group examined this issue in simulations [6]; in this paper we
study it in a real system. We describe a method to model
this noise, and a particle filter that uses our noise model.
We demonstrate our method on a real UWB indoor position
tracking system, providing approximately 15% improvement
in tracking accuracy.
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Fig. 1. Changing noise due to sensor set switching.

II. M ETHODS

The problem of fixed point set switching is illustrated in
figure 1. The sequence shows three consecutive trilateration
calculations that use different sensor sets, each resulting in a
different tracked location, even though the object of interest
has not moved. At time t, the position of the tag (object of
interest) is computed from sensors (fixed points) A, B and C.
At time t+1, a new sensor set consisting of A, B, C and D are
used to calculate the position of the tag. It can be observed
that a change in the sensor set has caused a shift in the
calculated position of the tag, due to the changing collective
set of noises in the distance measurements. At time t+2, a new
set of sensors consisting of A, B and E causes another shift in
the calculated position. Hence, switching between sensor sets
at each time instant adds a different noise to the measurements
corresponding to the noise model of each sensor set. This
causes a “jump” in the calculated position of the tag, even
when the tag is not moving. A video of such a behavior
occurring at our facility using a real UWB position tracking
system can be seen at http://youtu.be/B-oCDTBQLd4.

A. UWB positioning system

We used a commercially available UWB based local posi-
tioning system developed by Ubisense Inc. (Cambridge, U.K.).
We installed eight Series 7000 sensors in the facility at fixed
locations. These sensors detect UWB pulses from Ubisense
tags [7], which are tracked moving throughout the test area.

Figure 2 shows the positions of the eight sensors distributed
across our facility. The company recommends an install where
the sensors are placed in a rectangular pattern surroundingthe
area of interest, with minimum NLOS conditions. However,
the promise of UWB indoor position tracking is that it can be
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Fig. 2. Layout of the facility (0–7 indicate UWB sensor positions).
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Fig. 3. 1000 measurements collected at a single location (450, 590, 92) cm.

accomplished without direct LOS between the tracked object
and fixed sensor points. Our install purposefully introduces
some NLOS conditions from the facility in order to explore
this challenge. However, it must be noted that NLOS is not
the only noise source that contributes to errors in distance
measurements for trilateration, and that even with a completely
LOS install, we have observed significant sensor set switching
noise.

B. Noise model

1) Sensor set:We assume that a tracking measurement is
calculated from any subset of the available sensors and each
sensor set has a noise model associated with it. We model
the noise associated with each sensor set independently. For
the sake of simplicity, we assume that the noises are non-zero
mean Gaussian, but our methods could be applied with other
distributions.

We model the total set ofI sensors as{1, 2, ..., imax}.
Let a sensor sets represent any subset of size≥ 5 sensors
drawn fromI, denoting a specific sensor subset. We calculate a
Gaussian noise model for measurements relative to their actual
location for each sensor sets as

N (µs
x, µ

s
y, σ

s
x, σ

s
y) (1)

The total possible subsets can grow large as the number of
sensorsI grows. For example, if‖ I ‖= 8, then there are
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Fig. 4. Distribution of measurements.
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(a) Sensor set 1 (b) Sensor set 2
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(a) Sensor set 3 (b) Sensor set 4

Fig. 5. Noise models of four sensor sets at (X,Y,Z) = (450,590,92) cm.

a possible total ofsmax =
(

8

5

)

= 56 sensor sets. However,
we assume that a relatively small number of sensor sets
dominates the possibilities used for tracking measurements.
Figure 3 shows a plot of 1,000 measurements made by our
Ubisense system, all at a single ground truth location shown
by a ‘+’. The dots represent the actual measurements received
from the system. Figure 4 shows the frequency distribution of
the sensor sets for these measurements. The most common
5 sensor sets account for 858 measurements, or 85.8% of
the data. These 5 sensor sets are ‘76540’, ‘75420’, ‘65410’,
‘65420’ and ‘76541’, where the numbers indicate the sensor
used to provide a measurement. The most commonly occurring
sensor set corresponds to the sensors that are most LOS,
and therefore generally the most powerful signals. However,
it accounts for less than 45% of the total data. The second
most commonly occurring sensor set contains a sensor which
lies in the hallway and contributes approximately 20% of the



measurements. Similarly, other sensor sets contain at least
one sensor which lies in the hallway, providing better angular
coverage but more NLOS conditions.

Figure 5 shows the noise models for four sensor sets from
the data collected in Figure 3. The noise model for each sensor
set is given by(µs

x, µ
s
y, σ

s
x, σ

s
y) where (µs

x, µ
s
y) corresponds

to the average shift of the measurements from the sensor set
relative to the ground truth location, and(σs

x, σ
s
y) corresponds

to the standard deviation of the measurements from their mean.
The length of the axes of the ellipses in figure 5 correspond
to three standard deviations.

2) Calibration: In order to calculate our noise model, we
conduct a calibration step. A tag is placed at a known location,
and 1000 measurements are collected. This process is repeated
at 6 different locations distributed throughout the facility.
The noise parameters (µs

x, µ
s
y, σ

s
x, σ

s
y) for each sensor set are

calculated at each location, and then weighted-averaged by
the number of measurements for each sensor set across the 6
locations. At a single location, if a sensor set has less than
30 measurements then no noise model is calculated at that
location. After weighted-averaging, some sensor sets may have
no model. We therefore also calculate a facility-wide noise
model that is used by default for measurements taken from
a non-modeled sensor set. The facility-wide noise model is
taken as the average of all measurements taken during the
calibration step.

C. Set noise particle filter

We assume a 2D linear constant velocity model in our
experiments. Let the state of the systemX be defined as

X =









xt

ẋt

yt
ẏt









(2)

where,xt, yt are the positions along the x and y axes at time
t and ẋt, ẏt are the velocities.

The system transition equationsf are

f =









xt+1 = xt + T ẋt

ẋt+1 = ẋt +N (0, σd)
yt+1 = yt + T ẏt

ẏt+1 = ẏt +N (0, σd)









(3)

whereN (0, σd) is a continuous zero-mean Gaussian random
variable. The dynamic noiseUt denotes the dynamic noise
during a state transition:

Ut =









0
N (0, σd)

0
N (0, σd)









(4)

The dynamic noise models a potential change in velocity
during each time step.

At each timet, the set of observed valuesZ is

Z =





s̃t
x̃t

ỹt



 (5)

wheres̃t is the sensor set used to measurex̃t, ỹt. The obser-
vation equationsg are

g =





s̃t ← {1, 2, ..., smax}
x̃t = xt +N (µs̃t

x , σs̃t
x )

ỹt = yt +N (µs̃t
y , σs̃t

y )



 (6)

where it is assumed that a random non-zero mean Gaussian
noise associated with sensor sets̃t has been added to the actual
position to produce the measurement.

Particle filtering is a sequential Monte Carlo methodology
where the posterior density function is recursively approxi-
mated using a set of random samples and weights, from which
estimates are computed [8], [9]. The number of samplesK

depends on how accurately we want to model the posterior
density; in this work we useK = 1000.

In our experiments, we initialize all particles to have equal
weight and the same initial state:

χ =
{

X
k, wk

}K

k=1
=
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(7)

wherex0 and y0 are the known starting position of the tag
along the x and y axes with zero initial velocities.

An observationZt is taken. We use sequential importance
sampling using the prior importance function [9], so that the
weights for the particles are updated according to

wk
t = wk

t−1p(Zt|X
k
t ) (8)

The weight update step given by

p(Zt|X
k
t ) = exp−

(

((xk
t − µs̃t

x )− x̃t)
2

2(σs̃t
x )2

+
((ykt − µs̃t

y )− ỹt)
2

2(σs̃t
y )2

)

(9)

where (xk
t − µs̃t

x ) and (ykt − µs̃t
y ) gives the most probable

measurement of each particle. Equation 9 calculates the like-
lihood of obtaining the actual observed measurement relative
to the most probable state of the particle, according to the
measurement noise distribution associated with the sensorset
used to take the measurement.

Collectively, the discrete values of the particles represent a
continuous probability distribution function (pdf) of thestate
at a particular time. After updating the weights, they must be
normalized:

{

wk
t =

wk
t

∑K

i=1
wi

t

}K

k=1

(10)

We then calculate the expected value of the set of particles as
output:

E[χ] =

K
∑

k=1

X
kwk (11)

Particle filtering is well-known to suffer from a degradation
over time where particle weights tend towards zero. In order
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Fig. 6. Setup used to collect recordings.

to counter this effect, we follow the general strategy of
resampling when a sizable percentage of particles reaches
negligible weight. Following methods outlined in [10], we
calculate the coefficient of variation (CV) as

CV =
V AR(wk)

(E[wk])2
=

1

K

K
∑

k=1

(Kwk − 1)2 (12)

The effective sample size is calculated asESS = K
1+CV

.
This factor indicates if there are sufficient particles having
appreciable weight and whether resampling is necessary. If
ESS < 0.5, we resample using the select with replacement
algorithm [10].

D. Data collection

Figure 6 shows the apparatus used to record experimental
data for testing. A tag was placed on a tripod resting on a
trolley. The tripod was adjusted so that it would match up to
the same height (92 cm) used to collect calibration data. The
trolley was then pulled manually along a track laid on the
ground at different speeds. For each recording, the apparatus
was pulled back and forth seven times along a 250 cm straight
line. The total distance covered in each recording is 1750 cm.

Figure 7 shows the location of the track in the test area. For
each recording along the track, the Ubisense system provides
raw measurements of the tag along the X and Y axes, and the
sensors used to calculate each measurement. We turned off the
simple averaging filters provided by the Ubisense system and
collected the raw measurements.

Five recordings were collected along the track at different
speeds. The speed was varied from≈11 cm/s (extremely slow
motion) to ≈120 cm/s (walk speed) [11]. Table I lists the
recording number and the approximate speed of the recording.
The speeds were chosen to test the viability of our method for
a range of motion dynamics resembling a slow moving robot
to the walking of a person.

E. Ground Truth

We use a least squares approach to calculate the ground
truth data. Since we assume that the tag is moving with a
constant velocity, we can associate each measurement with a
ground truth location. The velocity is calculated by dividing
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Fig. 7. Test tracks in the facility.

TABLE I
RANGE OF MOTIONS

Recording # Total Measurements Speed (cm/s) Raw Error (cm)

1 1521 11 18

2 467 35 19

3 250 65 21

4 164 100 23

5 135 120 22

the total ground truth distance covered by the total time taken
when the tag is in motion. Now, multiplying the velocity by
the time at which the measurement was received gives us the
corresponding ground truth position of the tag at that time
instant.

III. E XPERIMENTAL RESULTS

The output for the particle filter is to some degree controlled
by the value chosen forσd (see equation 4), the dynamic noise
in the motion model. This value represents the amount of
expected change in velocity at each time step. The lower this
value, the more the filter weights the output towards the system
equations, in essence providing more smoothing. The higher
this value, the more the filter weights the output towards the
measurements, allowing a quicker reaction to actual dynamics
at the cost of less smoothing.

Figure 8 shows the raw measurements and set noise particle
filter output for this recording atσd = 6.0 cm/s. For clarity,
only a subset of the data is shown, and only the X-coordinates
are shown (the motion is along a straight line of constant Y).
Because the optimal value ofσd was chosen for this figure, it
can be seen that both filters provide a fairly good output that
is better than the raw measurements. However, it can also be
seen that the set noise particle filter output is more accurate,
particularly in the range of measurements from 80 to 120.

Figure 9 shows the average error curves for all five record-
ings. The error curves are the average Euclidean distance
errors of the recordings over 100 trials (repeated runs of each
filter at each value ofσd); this is necessary because the particle
filter is a Monte Carlo approach and a single trial of limited
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Fig. 8. Recording 2 atσd = 6.0 cm/s (partial output along X-axis).

length does not necessarily provide a typical representative
output. The average accuracy of the raw measurements is
approximately 23 cm. The range ofσd = 30 to 50 cm/s
shows that the set noise particle filter improved the accuracy
of the raw measurements by approximately 5 cm on average.
Thus, our set noise particle filter shows an approximately 15%
improvement over raw measurements.

IV. CONCLUSION AND FUTURE WORK

The contribution of this paper is that we have identified
a new noise source due to the switching of fixed point sets
for trilateration. While this noise is theoretically present in
all trilateration-based systems, it is not readily apparent in
large-scale systems like the GPS, but it can cause noticeable
jump-like behavior in indoor UWB position tracking. We
have developed a mathematical model and particle filter that
accounts for this noise. We tested our methods on a real UWB
indoor position tracking system. Our set noise particle filter
showed an approximately 15% improvement in improving the
accuracy of the raw measurements.

Our experiments have been conducted in a semi-controlled
but real world setting. Even with the semi-controlled setting,
we have achieved modest improvement in the tracking accu-
racy over a range of dynamics. However, we have observed
that noise due to NLOS, multipath and timing errors tend to
be more significant than noise caused by sensor set switching.
Hence, research studying the impact of these noise sources
in isolation have been able to achieve sub-decimeter [12],
[13] and sometimes even sub-centimeter accuracies [14], [15],
while we have been able to observe only a modest improve-
ment. In practice, we believe that our set noise filter should
be combined with filters specifically designed for other noise
sources. This is a subject for future work.
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