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Abstract—Trilateration calculations are affected by errors in
distance measurements from the set of fixed points to the olje
of interest. When these errors are systemic, each distinctes of
fixed points can be said to exhibit a unique set noise. For ul&-
wideband (UWB) indoor position tracking, the set of fixed ponts
is a set of sensors measuring the distance to a tracked tag. In
this paper we develop a noise model for this sensor set noise,
along with a particle filter that uses our set noise model. Wedst

our methods on a real UWB system. Our methods showed an At time t At time t+1 At time t+2
approximately 15% improvement for improving the accuracy of
the raw measurements. Fig. 1. Changing noise due to sensor set switching.

|. INTRODUCTION Il. METHODS
In the early 1980s, the Global Positioning System (GPS) hadThe problem of fixed point set switching is illustrated in
an accuracy in the range of 100m, useful for ship navigatioiigure 1. The sequence shows three consecutive trilataratio
aeronautics, and battlefield awareness. Today, GPS agcure@culations that use different sensor sets, each regutiia
is in the range of 1-2m, providing new applications in vehicldifferent tracked location, even though the object of iestr
navigation and automated farming. UWB indoor positiohas not moved. At time t, the position of the tag (object of
tracking currently has an accuracy in the range of 30-100dhierest) is computed from sensors (fixed points) A, B and C.
[1], [2], suitable for applications that require rough roomAt time t+1, a new sensor set consisting of A, B, C and D are
level precision such as asset tracking [3], indoor nawvigati used to calculate the position of the tag. It can be observed
and surveillance [4]. Our long-term goal is to improve th#éhat a change in the sensor set has caused a shift in the
accuracy to 1cm or better, expanding potential applicatiogalculated position of the tag, due to the changing collecti
to telepresence, augmented reality, training, entertairirand  Set of noises in the distance measurements. At time t+2, a new
medical devices [5]. set of sensors consisting of A, B and E causes another shift in

Trilateration-based tracking relies upon measuring tiee dihe calculated position. Hence, switching between seretsr s
tances from a fixed set of fixed points (“satellites”) to aAt each time instant adds a different noise to the measutemen
object of interest (“tag”). In this work we consider the rmiscorresponding to the noise model of each sensor set. This
at the level of a set of satellites used in a single trilaterat Causes a “jump” in the calculated position of the tag, even
calculation. This noise changes when the set changes.WRen the tag is not moving. A video of such a behavior
a Global Navigation Satellite System (GNSS), set changif@§curring at our facility using a real UWB position tracking
happens rarely, because of the scale of the tracking systé¥Stem can be seen at http:/youtu.be/B-oCDTBQLdA4.
one must move a fairly large distance across the Earth
change the set of visible satellites. However, in indoorault
wideband (UWB) indoor position tracking, set changing hap- We used a commercially available UWB based local posi-
pens frequently. The sets change while moving around assintjbning system developed by Ubisense Inc. (Cambridge, U.K.
room, and sometimes even while standing still, dependiige installed eight Series 7000 sensors in the facility atdfixe
upon the received signal strengths. In preliminary work olmcations. These sensors detect UWB pulses from Ubisense
group examined this issue in simulations [6]; in this paper wags [7], which are tracked moving throughout the test area.
study it in a real system. We describe a method to modelFigure 2 shows the positions of the eight sensors distribute
this noise, and a particle filter that uses our noise modakross our facility. The company recommends an install esher
We demonstrate our method on a real UWB indoor positidhe sensors are placed in a rectangular pattern surrouttding
tracking system, providing approximately 15% improvemenmtrea of interest, with minimum NLOS conditions. However,
in tracking accuracy. the promise of UWB indoor position tracking is that it can be
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,&. UWB positioning system
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Fig. 2. Layout of the facility (0-7 indicate UWB sensor pasis). Fig. 4. Distribution of measurements.
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accomplished without direct LOS between the tracked objecism
and fixed sensor points. Our install purposefully introduce ss

some NLOS conditions from the facility in order to explore s 560

this challenge. However, it must be noted that NLOS is not ssg;;——; @ m ke de @ W
the only noise source that contributes to errors in distance s em b s fom)
measurements for trilateration, and that even with a corelyle (a) Sensor set 3 (b) Sensor set 4

LOS install, we have observed significant sensor set swi¢chi Fig. 5. Noise models of four sensor sets at (X,Y,Z) = (450,88pcm.
noise.
B. Noise model a possible total ofs,,., = (5) = 56 sensor sets. However,

1) Sensor setWe assume that a tracking measurement yge assume that a relatively small number of sensor sets
calculated from any subset of the available sensors and eaeminates the possibilities used for tracking measuresnent
sensor set has a noise model associated with it. We moBgjure 3 shows a plot of 1,000 measurements made by our
the noise associated with each sensor set independently. Boisense system, all at a single ground truth location shown
the sake of simplicity, we assume that the noises are nam-zgy a ‘+'. The dots represent the actual measurements reteive
mean Gaussian, but our methods could be applied with othigsm the system. Figure 4 shows the frequency distribution o
distributions. the sensor sets for these measurements. The most common

We model the total set of sensors as{1,2,...,imez}- 5 sensor sets account for 858 measurements, or 85.8% of
Let a sensor set represent any subset of size 5 sensors the data. These 5 sensor sets are ‘76540’, ‘75420’, ‘65410’,
drawn fromI, denoting a specific sensor subset. We calculategs420’ and ‘76541’, where the numbers indicate the sensor
Gaussian noise model for measurements relative to theiabctused to provide a measurement. The most commonly occurring
location for each sensor setas sensor set corresponds to the sensors that are most LOS,

N2, 12,02, 0%) 1) _and therefore generally the most powerful signals. However

» Py me Tty it accounts for less than 45% of the total data. The second
The total possible subsets can grow large as the numbemudst commonly occurring sensor set contains a sensor which
sensors] grows. For example, if| I ||= 8, then there are lies in the hallway and contributes approximately 20% of the



measurements. Similarly, other sensor sets contain at leakeres; is the sensor set used to measifey;. The obser-
one sensor which lies in the hallway, providing better aagulvation equationg are
coverage but more NLOS conditions.

Figure 5 shows the noise models for four sensor sets from
the data collected in Figure 3. The noise model for each senso

§e 4 {1,2, ..., Smax}
9= | =z +N(pg' 03') (6)
set is given by(u;, uy, 05, 0,) Where (u;, p;) corresponds

Ue =ye + Nyt 0p0)

to the average shift of the r%easurements from the sensorwbere it is assumed that a random non-zero mean Gaussian
relative to the ground truth location, ar, ;) corresponds noise associated with sensor Sghas been added to the actual
to the standard deviation of the measurements from theinmeposition to produce the measurement.
The length of the axes of the ellipses in figure 5 correspondParticle filtering is a sequential Monte Carlo methodology
to three standard deviations. where the posterior density function is recursively approx

2) Calibration: In order to calculate our noise model, wamated using a set of random samples and weights, from which
conduct a calibration step. A tag is placed at a known looaticestimates are computed [8], [9]. The number of samies
and 1000 measurements are collected. This process isedpedepends on how accurately we want to model the posterior
at 6 different locations distributed throughout the fagili density; in this work we uséd = 1000.
The noise parameterg], u;,0;,0,) for each sensor set are In our experiments, we initialize all particles to have dqua
calculated at each location, and then weighted-averagedvigight and the same initial state:
the number of measurements for each sensor set across the 6
locations. At a single location, if a sensor set has less than "%0 1
30 measurements then no noise model is calculated at that X = {X’“,w’“}i{_1 = = (7
location. After weighted-averaging, some sensor sets ragg h B wol| K

. . . 0

no model. We therefore also calculate a facility-wide noise
model that is used by default for measurements taken fromherex, andy, are the known starting position of the tag
a non-modeled sensor set. The facility-wide noise model aong the x and y axes with zero initial velocities.
taken as the average of all measurements taken during thé&n observationZ; is taken. We use sequential importance
calibration step. sampling using the prior importance function [9], so that th

C. Set noise particle filter weights for the particles are updated according to

We assume a 2D linear constant velocity model in our wy = wi_p(Ze| XF) (8)

experiments. Let the state of the syst&nbe defined as The weight update step given by

Tt

: ((zf — pt) — @)
_ | S
X " (2) 2(0’;)2
Yt n (e = p5}) = Ge)? )
where,z;, 1y, are the positions along the x and y axes at time 2(a§f)2
t andz,,y; are the velocities. . _ . 3 )
The system transition equatiohsare where (zy — 15*) and (y;° — py') gives the most probable

. measurement of each particle. Equation 9 calculates tke lik
T =T+ Ty lihood of obtaining the actual observed measurement velati
Ter1 = Ly +N(020d) (3) to the most probable state of the particle, according to the
Y=yt T measurement noise distribution associated with the sesetor
Yer1 = e+ N(0,0a) used to take the measurement.
where (0, o4) is a continuous zero-mean Gaussian random Collectively, the discrete values of the particles repnese
variable. The dynamic nois®J; denotes the dynamic noisecontinuous probability distribution function (pdf) of tretate

f:

during a state transition: at a particular time. After updating the weights, they muest b
0 normalized:
& K
w
u, — |NO,09) @) {wf — } (10)
0 Die1 Wi k=1
N(0,04)

) ] ) ) We then calculate the expected value of the set of particles a
The dynamic noise models a potential change in velocigyipyt:

during each time step. K
At each timet, the set of observed valugsis Elx] =) Xfu* (11)
gt k=1
Z = |7 (5) Particle filtering is well-known to suffer from a degradatio

Tt over time where particle weights tend towards zero. In order
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Fig. 7. Test tracks in the facility.
to counter this effect, we follow the general strategy of

resampling when a sizable percentage of particles reaches TABLE |
negligible weight. Following methods outlined in [10], we RANGE OF MOTIONS

calculate the coefficient of variation (CV) as Recording #| Total Measurementy Speed (cm/s)| Raw Error (cm)
1 1521 11 18
VAR(w
CV = 7h Z (Kw* —1)? (12) 2 467 35 19
(Elw K< 3 250 65 21
, o K 4 164 100 23
The effective sample size is calculated BS'S = 5 v 5 135 120 2>

This factor indicates if there are sufficient particles hayi
appreciable weight and whether resampling is necessary. If

ESS < 0.5, we resample using the select with replacemegy oy ground truth distance covered by the total timenak

algorithm [10]. when the tag is in motion. Now, multiplying the velocity by
D. Data collection the time at which the measurement was received gives us the

Figure 6 shows the apparatus used to record experlmenct%\rlreSpondIng ground truth position of the tag at that time

data for testing. A tag was placed on a tripod resting on at ant
trolley. The tripod was adjusted so that it would match up to 1
the same height (92 cm) used to collect calibration data. The
trolley was then pulled manually along a track laid on the The output for the particle filter is to some degree contblle
ground at different speeds. For each recording, the apmard?y the value chosen far, (see equation 4), the dynamic noise
was pulled back and forth seven times along a 250 cm straightthe motion model. This value represents the amount of
line. The total distance covered in each recording is 1750 cfxpected change in velocity at each time step. The lower this
Figure 7 shows the location of the track in the test area. PéRlue, the more the filter weights the output towards theesyst
each recording along the track, the Ubisense system provigéluations, in essence providing more smoothing. The higher
raw measurements of the tag along the X and Y axes, and this value, the more the filter weights the output towards the
sensors used to calculate each measurement. We turnee off@gasurements, allowing a quicker reaction to actual dyegmi
simple averaging filters provided by the Ubisense system adthe cost of less smoothing.
collected the raw measurements. Figure 8 shows the raw measurements and set noise particle
Five recordings were collected along the track at differefitter output for this recording at; = 6.0 cm/s. For clarity,
speeds. The speed was varied frerhl cm/s (extremely slow Only a subset of the data is shown, and only the X-coordinates
motion) to ~120 cm/s (walk speed) [11]. Table I lists theare shown (the motion is along a straight line of constant Y).
recording number and the approximate speed of the recardifgcause the optimal value of; was chosen for this figure, it
The speeds were chosen to test the viability of our method fé&h be seen that both filters provide a fairly good output that
a range of motion dynamics resemb”ng a slow moving rob.tﬂ better than the raw measurements. However, it can also be
to the walking of a person. seen that the set noise patrticle filter output is more aceurat
particularly in the range of measurements from 80 to 120.
E. Ground Truth Figure 9 shows the average error curves for all five record-
We use a least squares approach to calculate the groimgs. The error curves are the average Euclidean distance
truth data. Since we assume that the tag is moving withearors of the recordings over 100 trials (repeated runs ofi ea
constant velocity, we can associate each measurement witfiltar at each value of ;); this is necessary because the particle
ground truth location. The velocity is calculated by divigi filter is a Monte Carlo approach and a single trial of limited

. EXPERIMENTAL RESULTS
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