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Identifying and Filtering Noise Caused by Sensor
Set Switching in UWB Indoor Position Tracking

Abstract: Trilateration calculations are affected by errors in distance measurements from
the set of fixed points to the object of interest. When these errors are systemic, each
distinct set of fixed points can be said to exhibit a unique set noise. For ultra-wideband
(UWB) indoor position tracking, the set of fixed points is a set of sensors measuring the
distance to a tracked tag. In this paper we develop a noise model for this sensor set noise,
along with a particle filter that uses our set noise model. We test our methods on a real
UWB system. Our methods showed an approximately 15% improvement in accuracy over
the raw measurements.

Keywords: ultra-wideband (UWB), local positioning system (LPS), particle filter.

1 Introduction

Trilateration-based tracking relies upon measuring the
distances from a fixed set of points (“sensors”) to an
object of interest (“tag”). In this work we consider the
noise at the level of a set of sensors used in a single
trilateration calculation. This noise changes when the
set changes. In a Global Navigation Satellite System
(GNSS), the set of sensors changes slowly because of
the scale of the tracking system (see Figure 1). In an
unobstructed area, the set of visible satellites changes
approximately every 15 minutes (Hofmann-Wellenhof
et al. 1997). However, in indoor ultra-wideband (UWB)
indoor position tracking, sensor sets change with every
new measurement (typically 100 ms). The sets change
while moving around a single room, and sometimes even
while standing still, depending upon the received signal
strengths as shown in Figure 2.

The problem caused by set switching is illustrated
in Figure 3. The sequence shows three consecutive
trilateration calculations that use different sensor sets,
each resulting in a different tracked location, even though
the object of interest has not moved. At time t, the
position of the tag is computed from sensors A, B and
C. At time t+1, a new sensor set consisting of A,
B, C and D is used to calculate the position of the
tag. It can be observed that a change in the sensor
set has caused a shift in the calculated position of
the tag, due to the changing collective set of noises in
the distance measurements. At time t+2, a new set of
sensors consisting of A, B and E causes another shift
in the calculated position. Hence, switching between
sensor sets at each time instant adds a different noise to
the measurements corresponding to the noise model of
each sensor set. This causes a “jump” in the calculated
position of the tag, even when the tag is not moving. A
video of such a behavior occurring at our facility using
a real UWB position tracking system can be seen at
http://youtu.be/B-oCDTBQLd4.

Figure 1 Trilateration using a GNSS (earth-sized).
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Figure 2 UWB indoor trilateration (building-sized).
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Figure 3 Changing noise due to sensor set switching.

"jump"
A

B
C

"jump"

At time t At time t+1 At time t+2

A

C
B B

A

D

E

Copyright c© 2012 Inderscience Enterprises Ltd.



2 author

Previous works have examined several different
sources of noise in UWB position tracking, but none have
considered set switching. Zetik et al. (2004) examined
mitigating the effects of multipath, synchronization,
antenna effects and peak detection. Low et al. (2005)
considered peak search and match filtering in indoor line-
of-sight (LOS) signals to improve accuracy. Lie et al.
(2005) combined an envelope detector with a leading-
edge pulse detection method using a tunnel diode for
UWB ranging in a multipath environment. Meier et al.
(2007) suppressed multipath effects in highly reflective
laboratory environment by detecting the LOS and NLOS
signals by filtering the measurement noise using a
Kalman filter. Mahfouz et al. (2008) also conducted
experiments in a small test area and concentrated
on reducing the effects of multipath, synchronization,
antenna effects, peak detection and sensor placement. In
order to determine the impact of each noise source, they
conducted experiments to measure the position of the
transmitter over a small (1 - 2 m) unobstructed area.
Jing et al. (2010) studied the impact of propagation
of signals through various building materials. Shen
et al. (2010) proposed a new method to identify and
mitigate the effects of non-line-of-sight (NLOS) signal
propagation by comparing the mean square errors of
the range estimates with the estimated LOS ranges.
They conducted simulations to compare the performance
of the proposed method with other methods in this
area. Zhang et al. (2010) proposed an architecture for
combining traditional energy-based and carrier-based
detection schemes to minimize carrier phase noise and
timing error effects for static and dynamic tracking.
Further research by Yang et al. (2010) proposed a
modified correlation algorithm to improve the accuracy
and reduce the computational burden of systems. Caron
et al. (2007) proposed different particle filters which can
handle synchronous and asynchronous measurements
received from different sensors in a multisensor system.
These particle filters can switch between different
observation models and also handle cases where sensors
fail or their functioning changes. Denis et al. (2005)
used modified extended Kalman filter and modified
regularized particle filter to track biases caused by
transitions from LOS to NLOS and from NLOS to NLOS
conditions. It should be noted that some of these works
were only theoretical and not applied to real world
systems.

In this paper we identify noise due to the
switching of sensor sets. This noise is present in any
trilateration-based tracking system, but its effect is
much more pronounced in an indoor positioning system.
In preliminary work our group examined this issue in
simulations (Ganjali 2009); this paper is the first to study
it in a real system. After providing a mathematical model
for this noise, we describe a particle filter for reducing
its effect. We then demonstrate the operation of this
particle filter on data from a real system, showing an
approximately 15% improvement in accuracy over the
raw measurements.

2 Methods

2.1 Facility

Our facility is located in the basement of Riggs Hall at
Clemson University. The test area covers approximately
8 m × 8 m, covering the majority of a laboratory and
part of an adjacent hallway. Figure 4 shows a picture
of part of this area, where it can be observed that the
laboratory and the adjacent hallway are separated by
a stone wall which is approximately 20 cm thick. The
walls are approximately 5 m high with false ceilings at a
height of 3 m. The false ceilings are made up of thermocol
and placed on metal railings. In addition, there are two
metal mailboxes and a vending machine in the hallway,
and two cupboards in the laboratory. Figure 5 shows the
locations of furniture, walls and sensors in the test area.

Figure 4 The facility and location of one of the eight
sensors.

2.2 UWB positioning system

We used a commercially available UWB based
local positioning system developed by Ubisense Inc.
(Cambridge, U.K.). We installed eight Series 7000
sensors (Ubisense 2011b) in the facility at fixed locations.
These sensors detect UWB pulses from Ubisense tags
(Ubisense 2011a), which are tracked moving throughout
the test area. Sensors are powered over network cabling
using a Power-over-Ethernet switch. The Ubisense
system uses a combination of angle of arrival and
time difference of arrival, followed by multilateration or
hyperbolic positioning, to calculate the position of a tag
(Ubisense 2011c). The system chooses five sensors which
have the highest demodulation power. We refer to this
collection of five sensors as a sensor set.

Figure 5 shows the positions of the eight sensors
distributed across our facility. The company recommends
an install where the sensors are placed in a rectangular
pattern surrounding the area of interest, with minimum
NLOS conditions. However, the promise of UWB indoor
position tracking is that it can be accomplished without
direct LOS between the tracked object and fixed sensor
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Figure 5 Layout of the facility (0–7 indicate UWB sensor
positions).
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points. Our install purposefully introduces some NLOS
conditions from the facility in order to explore this
challenge. However, it must be noted that NLOS is
not the only noise source that contributes to errors
in distance measurements for trilateration, and that
even with a completely LOS install, we have observed
significant sensor set switching noise.

2.3 Noise model

2.3.1 Sensor set

We assume that a tracking measurement is calculated
from a subset of the available sensors and each sensor
set has a noise model associated with it. We model
the noise associated with each sensor set independently.
We model the total set of I sensors as {1, 2, ..., imax}.
Let a sensor set s represent any subset of size ≥
5 sensors drawn from I, denoting a specific sensor
subset. The total possible subsets can grow large as
the number of sensors I grows. For example, if ‖ I ‖=
8, then there are a possible total of smax =

(

8
5

)

= 56
sensor sets. However, we assume that a relatively small
number of sensor sets dominates the possibilities used
for tracking measurements. Figure 6 shows a plot of
1,000 measurements made by our Ubisense system, all
at a single ground truth location shown by a ‘+’. The
dots represent the actual measurements received from
the system. Figure 7 shows the frequency distribution
of the sensor sets for these measurements. The most
common 4 sensor sets account for 795 measurements,
or 79.5% of the data. These 4 sensor sets are ‘76540’,
‘75420’, ‘65410’ and ‘65420’, where the numbers indicate
the sensors (see figure 5) used to provide a measurement.
The most commonly occurring sensor set corresponds to
the sensors that are most LOS, and therefore generally
the most powerful signals. However, it accounts for less
than 45% of the total data. The second most commonly
occurring sensor set contains a sensor which lies in
the hallway and contributes approximately 20% of the
measurements. Similarly, other sensor sets contain at

Figure 6 1000 measurements collected at a single location
(450, 590, 92) cm.
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Figure 7 Distribution of measurements.
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least one sensor which lies in the hallway, providing
better angular coverage but more NLOS conditions.

Figure 8 shows the measurements for the top four
sensor sets from the data collected in Figure 6. The
measurements from each sensor set appear clustered
at different offsets from the ground truth position. To
capture this behavior, we use a Gaussian noise model
with non-zero mean:

N (µs
x, µ

s
y, σ

s
x, σ

s
y) (1)

The noise model for each sensor set is given by
(µs

x, µ
s
y, σ

s
x, σ

s
y) where (µs

x, µ
s
y) corresponds to the

average shift of the measurements from the sensor
set relative to the ground truth location, and
(σs

x, σ
s
y) corresponds to the standard deviation of the

measurements from their mean. The length of the axes
of the ellipses in figure 8 correspond to three standard
deviations. The use of other noise models is possible and
is discussed in the conclusion.
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Figure 8 Noise models of four sensor sets at (X,Y,Z) =
(450,590,92) cm.
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(a) Sensor set 1 (b) Sensor set 2
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(c) Sensor set 3 (d) Sensor set 4

2.3.2 Calibration

In order to calculate our noise model, we conduct a
calibration step. A tag is placed at a known location,
and 1000 measurements are collected. This process is
repeated at 6 different locations distributed throughout
the facility. The noise parameters (µs

x, µ
s
y, σ

s
x, σ

s
y) for

each sensor set are calculated at each location, and
then weighted-averaged by the number of measurements
for each sensor set across the 6 locations. At a single
location, if a sensor set has less than 30 measurements
then no noise model is calculated at that location. After
weighted-averaging, some sensor sets may have no model.
We therefore also calculate a facility-wide noise model
that is used by default for measurements taken from a
non-modeled sensor set. The facility-wide noise model is
taken as the average of all measurements taken during
the calibration step.

Figure 9 shows how calibration data was collected. A
tag was placed on a wooden sawhorse 92 cm in height.
This height was chosen since it corresponds to the typical
height of the waist of an upright person. The base of
the setup is marked at intervals of 10 cm so that it can
be aligned with markings on the floor of the facility.
This enables accurate positioning of the sawhorse with
respect to the ground truth coordinate system. We used
laser levels and tape measures to ensure that the ground
truth locations are accurate to within 1 cm relative to
the calibrated Ubisense coordinate system.

2.4 Basic particle filter

Before describing how we use our noise model, we
describe a basic particle filter algorithm. In our

Figure 9 Setup used to collect calibration data.

experiments we compare the performance of our set noise
particle filter to this basic particle filter.

We assume a 2D linear constant velocity model in our
experiments. Let the state of the system X be defined as

X =









xt

ẋt

yt
ẏt









(2)

where, xt, yt are the positions along the x and y axes at
time t and ẋt, ẏt are the velocities.

The system transition equations f are

f =









xt+1 = xt + T ẋt

ẋt+1 = ẋt +N (0, σd)
yt+1 = yt + T ẏt

ẏt+1 = ẏt +N (0, σd)









(3)

where N (0, σd) is a continuous zero-mean Gaussian
random variable. The dynamic noise Ut denotes the
dynamic noise during a state transition:

Ut =









0
N (0, σd)

0
N (0, σd)









(4)

The dynamic noise models a potential change in velocity
during each time step.

At each time t, the set of observed values Z is

Z =

[

x̃t

ỹt

]

(5)

where x̃t, ỹt is the measured position of the tag. The
observation equations g are

g =

[

x̃t = xt +N (0, σnx
)

ỹt = yt +N (0, σny
)

]

(6)

where it is assumed that a 2D zero-mean Gaussian
random noise with standard deviation σnx

, σny
has

been added to the actual position to produce the
measurement.

Particle filtering is a sequential Monte Carlo
methodology where the posterior density function is
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recursively approximated using a set of random samples
and weights, from which estimates are computed
(Arulampalam et al. 2002, Djuric et al. 2003). The
number of samples K depends on how accurately we
want to model the posterior density; in this work we use
K = 1000.

In our experiments, we initialize all particles to have
equal weight and the same initial state:

χ =
{

Xk, wk
}K

k=1
=























x0

0
y0
0









,
1

K















(7)

where x0 and y0 are the known starting position of the
tag along the x and y axes with zero initial velocities.

In an iteration of the particle filter, each particle is
transitioned through the system transition equations f

with a randomly computed dynamic noise Uk
t :

{

Xk
t

}K

k=1
= f

{

Xk
t−1,U

k
t

}K

k=1
(8)

An observation Zt is taken. We use sequential
importance sampling using the prior importance
function Djuric et al. (2003), so that the weights for the
particles are updated according to

wk
t = wk

t−1p(Zt|X
k
t ) (9)

Based upon equation 6, we assume p(Zt|X
k
t ) is a 2D

Gaussian that can be written as

p(Zt|X
k
t ) = exp−

(

(xk
t − x̃t)

2

2(σnx
)2

+
(ykt − ỹt)

2

2(σny
)2

)

(10)

Equation 10 calculates the likelihood of obtaining the
actual observed measurement relative to the most
probable measurement of the particle, according to the
measurement noise distribution.

Collectively, the discrete values of the particles
represent a continuous probability distribution function
(pdf) of the state at a particular time. After updating
the weights, they must be normalized:

{

wk
t =

wk
t

∑K

i=1 w
i
t

}K

k=1

(11)

We then calculate the expected value of the set of
particles as output:

E[χ] =

K
∑

k=1

Xkwk (12)

Particle filtering is well-known to suffer from a
degradation over time where particle weights tend
towards zero. In order to counter this effect, we follow the
general strategy of resampling when a sizable percentage
of particles reaches negligible weight. Following methods
outlined in Rekleitis (2004), we calculate the coefficient
of variation (CV) as

CV =
V AR(wk)

(E[wk])2
=

1

K

K
∑

k=1

(Kwk − 1)2 (13)

The effective sample size is calculated as ESS = K
1+CV

.
This factor indicates if there are sufficient particles
having appreciable weight and whether resampling is
necessary. If ESS < 0.5, we resample using the select
with replacement algorithm (Rekleitis 2004).

2.5 Set noise particle filter

Using our sensor set noise model, the basic particle filter
algorithm is adjusted as follows. At each time t, the set
of observed values Z is

Z =





s̃t
x̃t

ỹt



 (14)

where s̃t is the sensor set used to measure x̃t, ỹt. The
observation equations g are

g =





s̃t ← {1, 2, ..., smax}
x̃t = xt +N (µs̃t

x , σs̃t
x )

ỹt = yt +N (µs̃t
y , σs̃t

y )



 (15)

where it is assumed that a random non-zero mean
Gaussian noise associated with sensor set s̃t has
been added to the actual position to produce the
measurement.

The weight update step given in equation 10 is
replaced with

p(Zt|X
k
t ) = exp−

(

((xk
t − µs̃t

x )− x̃t)
2

2(σs̃t
x )2

+
((ykt − µs̃t

y )− ỹt)
2

2(σs̃t
y )2

)

(16)

where (xk
t − µs̃t

x ) and (ykt − µs̃t
y ) gives the most

probable measurement of each particle. Equation 16
calculates the likelihood of obtaining the actual observed
measurement relative to the most probable state of the
particle, according to the measurement noise distribution
associated with the sensor set used to take the
measurement.

All the other steps are the same as described for the
basic particle filter.

2.6 Data collection

Figure 10 shows the apparatus used to record
experimental data for testing. A tag was placed on a
tripod resting on a trolley. The tripod was adjusted
so that it would match up to the same height (92
cm) used to collect calibration data. The trolley was
pulled manually by a person standing at maximum arm
length in order to minimize any disturbances in the
measurements from the presence of a person. The trolley
was moved along a track laid on the ground at different
speeds. For each recording, the apparatus was pulled
back and forth seven times along a 250 cm straight line.
The total distance covered in each recording is 1750 cm.
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Figure 10 Setup used to collect recordings.

Figure 11 Test tracks in the facility.
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Figure 11 shows the location of the track in the test
area. For each recording along the track, the Ubisense
system provides raw measurements of the tag along the
X and Y axes, and the sensors used to calculate each
measurement. By default, the Ubisense system uses a
simple averaging filter to remove outliers by comparing
each measurement to the average and variance in
position of previous measurements. We turned off this
filter to avoid any potential confusion in understanding
the noise due to sensor set switching, and collected raw
measurements. In practice we have observed that the
noise due to sensor set switching does not appear similar
to outlier noise.

Five recordings were collected along the track at
different speeds. The speed was varied from ≈11 cm/s
(extremely slow motion) to ≈120 cm/s (walk speed)
(Knoblauch et al. 1996, Waters & Mulroy 1999). Table
1 lists the recording number and the approximate speed
of the recording. The speeds were chosen to test the
viability of our method for a range of motion dynamics
resembling a slow moving robot to the walking of a
person.

Table 1 Range of motions

Recording # Total Measurements Speed (cm/s) Raw Error (cm)

1 1521 11 20

2 467 35 22

3 250 65 23

4 164 100 25

5 135 120 23

2.7 Ground Truth

We use a least squares approach to calculate the ground
truth data. The tag is initially placed in the start
position and measurements are collected for 15 seconds
at this position before moving the tag. After the tag
reaches the end position, we wait for another 15 seconds
before ending the recording. This gives us “flat” regions
near the start and end positions along with linear regions
in between which indicate the movement of the tag.
Now, a subset of measurements in each region is used to
provide a least squares fit to the set of measurements in
that region. The measurement closest to the intersection
of the lines determines the start, end or change in
dynamics (change in direction of the tag). Figure 12
shows a partial output of this approach. In this figure,
we can observe the flat region indicating the start region
and two linear regions indicating the first two passes of
motion long the track. (A full trial has seven passes of
motion, with a single flat area at the beginning and end.)

Since we assume that the tag is moving with a
constant velocity, we can associate each measurement
with a ground truth location. The velocity is calculated
by dividing the total ground truth distance covered
by the total time taken when the tag is in motion.
Now, multiplying the velocity by the time at which the
measurement was received gives us the corresponding
ground truth position of the tag at that time instant.
This can be written as

x̆t =
Dx

T
× t (17)

y̆t =
Dy

T
× t (18)

where x̆t, y̆t are the ground truth data at time t, Dx, Dy

are the total ground truth distances along x and y axes
respectively, and T is the total time taken to complete a
recording .

2.8 Error metric

In order to evaluate the performance of the filtered
output we calculate the average Euclidean distance
between the filtered data and the corresponding ground
truth data over the total number of measurements. This
distance is known as the position error (P.E.) and can
be defined as

P.E. =
1

N

N
∑

i=1

√

(xi − x̆i)2 + (yi − y̆i)2 (19)
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Figure 13 Illustration of the effect of σd on filter output.
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(a) Raw measurements (b) Filtered output, σd = 0.55 cm/s (c) Filtered output, σd = 2.3 cm/s
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(d) Filtered output, σd = 2.8 cm/s (e) Filtered output, σd = 3.7 cm/s (f) Filtered output, σd = 55.0 cm/s

Figure 12 Least squares approach to generate ground
truth data (partial output).
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where, xi, yi are the filtered data, x̆i, y̆i are the
corresponding ground truth data for measurement i and
N is the total number of measurements.

3 Experimental Results

The output for the particle filter is to some degree
controlled by the value chosen for σd (see equation
4), the dynamic noise in the motion model. This
value represents the amount of expected change in
velocity at each time step. The lower this value, the
more the filter weights the output towards the system
equations, in essence providing more smoothing. The
higher this value, the more the filter weights the output
towards the measurements, allowing a quicker reaction

to actual dynamics at the cost of less smoothing. Figure
13 demonstrates this effect. Part (a) shows the raw
measurements for a recording; parts (b)-(f) show the
basic particle filter output for increasing values of σd.
In part (b), the actual dynamics in the recording (the
step changes in velocity) are considerably larger than
the value chosen for σd, so that the filter output is not
able to reliably track the motion. In effect, the filter is
smooothing too much. In parts (c)-(d), the larger values
for σd cause the filter to more reliably track the actual
motion, but there is a noticeable lag, particularly at the
points where the actual dynamics change. In part (e),
σd most closely matches the actual dynamics so that
the optimal filter output is obtained. Part (f) shows the
output for an even larger value of σd, where the filter is
giving too much weight to individual measurements.

Figure 15 shows the error curves comparing the raw
measurements, basic particle filter, and set noise particle
filter, for one recording. The error is shown over a range
of σd = 0.01 to 60 cm/s. It is important to evaluate
performance across a range of σd because in practice
the actual dynamics of tracked targets are unknown (for
example, people can walk at varying speeds). The error
curves are the average errors of the recordings over 100
trials (repeated runs of each filter at each value of σd);
this is necessary because the particle filter is a Monte
Carlo approach and a single trial of limited length does
not necessarily provide a typical representative output.
From the figure, it can be seen that the set noise model
particle filter performs better than basic particle filter
over the entire range of dynamic noise. The minimum
error is 15 cm, and occurs at approximately σd = 6.0
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Figure 14 Recording 2 at σd = 6.0 cm/s (partial output)
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Figure 15 Error curve for one recording.
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cm/s, where σd best matches the actual dynamics of the
motion for this recording.

Figure 14 shows the basic particle filter and set noise
particle filter output for this recording at σd = 6.0 cm/s.
For clarity, only a subset of the data is shown, and
only the X-coordinates are shown (the motion is along a
straight line of constant Y). Because the optimal value of
σd was chosen for this figure, both filters provide a fairly
good output that is better than the raw measurements.
However, it can also be seen that the set noise particle
filter output is more accurate, particularly in the range
of measurements from 80 to 120.

Figure 16 shows the average error curves for all five
recordings. From this figure, it can be observed that the
set noise particle filter performs better than the basic
particle filter across the entire range of dynamic noise.
There is no global minimum like there was in Figure 15
because the actual dynamics of all the recordings vary
(see Table 1). For the range of motions tested, any value
of σd between 30 to 50 cm/s is appropriate. The average
accuracy of the raw measurements is approximately
23 cm. In the range of σd = 30 to 50 cm/s, the set
noise particle filter improved the accuracy of the raw
measurements by approximately 4 cm on average, about
double that of basic particle filter. Thus, our set noise

Figure 16 Average error curve for all recordings.
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particle filter shows an approximately 15% improvement
over a basic particle filter.

4 Conclusion and Future Work

The contribution of this paper is that we have identified
a new noise source due to the switching of fixed point
sets for trilateration. While this noise is theoretically
present in all trilateration-based systems, it is not
readily apparent in large-scale systems like a GNSS,
but it can cause noticeable jump-like behavior in
indoor UWB position tracking. We have developed a
mathematical model and particle filter that accounts
for this noise. We tested our methods on a real UWB
indoor position tracking system. Our set noise particle
filter showed an approximately 15% improvement in
accuracy over the raw measurements. We use a particle
filtering approach since it can handle non-zero mean
noise models, unlike Kalman filtering approaches. In the
experiments, we used Gaussian noise models for the
sensor sets. However, our approach could be applied
using other noise models by substitution for N in
equation 15 and the reformulation of equation 16 to
account for the alternative noise distribution.
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Our experiments have been conducted in a real world
setting, where we have achieved modest improvement in
the tracking accuracy over a range of dynamics. However,
we have observed that noise due to NLOS, multipath
and timing errors tend to be more significant than
noise caused by sensor set switching. Hence, research
studying the impact of these noise sources in isolation
have been able to achieve sub-decimeter (Low et al.
2005, MacGougan et al. 2010) and sometimes even
sub-centimeter accuracies (Mahfouz et al. 2008, Zetik
et al. 2004), while we have been able to observe only a
modest improvement. In practice, we believe that our set
noise filter should be combined with filters specifically
designed for other noise sources. This is a subject for
future work.
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