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Abstract— In this paper, a Model Predictive Control (MPC)
strategy is developed for the first time to solve the optimal energy
management problem of power-split hybrid electric vehicles. A
power-split hybrid combines the advantages of series and parallel
hybrids by utilizing two electric machines and a combustion
engine. Because of its many modes of operation, modeling
a power-split configuration is complex and devising a near-
optimal power management strategy is quite challenging. To
systematically improve the fuel economy of a power-split hybrid,
we formulate the power management problem as a nonlinear
optimization problem. The nonlinear powertrain model and the
constraints are linearized at each sample time and a receding
horizon linear MPC strategy is employed to determine the
power split ratio based on the updated model. Simulation
results over multiple driving cycles indicate better fuel economy
over conventional strategies can be achieved. In addition the
proposed algorithm is causal and has the potential for real-time
implementation.

I. INTRODUCTION

In Hybrid Electric Vehicles (HEVs) there are additional
components, such as electric motors and batteries, which
provide more flexibility to operate the powertrain system to
meet the driver demand and minimize the fuel consumption.
In other words, with respect to a conventional vehicle,
there are more degrees of freedom for controls to satisfy
driver demand. In general, the main components of HEVs
may be classified into an energy source (fuel), energy
convertors (engine, generators, and motors) and an energy
accumulator (battery or ultracapacitor). Torque couplers
or/and speed couplers may be employed as a link between
these components [1]. Different hybrid configurations such
as series, parallel, and power-split have been developed
depending on the arrangement of these components. Power-
Split or Parallel-Series types which provide both series and
parallel functionality have been the preferred configuration
by many auto-makers. The Ford Escape hybrid and Toyota
Prius both use a power-split configuration.
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Fig. 1. Power flow of a power-split HEV

Figure 1 schematically shows the power flow in the
mechanical and electrical paths in a power split hybrid.
The electrical and mechanical nodes represent the compo-
nents which combine power flows. In this configuration,
the engine and the generator are connected to the planet
carrier and sun gear of a planetary gear set (speed coupler
at mechanical Node 1) respectively. The output of the
planetary gear set is coupled with another motor/generator
electric machine through a torque coupler (mechanical Node
2) and powers the vehicle driveline. In this configuration,
because the generator can also work in a motoring mode
and deliver energy to the speed coupler, circulation of power
around the triangular loop of the diagram can be utilized to
shift the engine’s operating point to a more efficient region.
Also the battery provides another degree of freedom by its
energy buffering capability. Thus, there are two degrees of
freedom for energy management of these HEVs . These two
degrees of freedom and the many modes of operation of
a power-split hybrid increase the flexibility for running the
vehicle more efficiently, while at the same time the complex
configuration renders design of the energy management
strategy quite challenging.

The need for systematic design of a near-optimal energy
management strategy is addressed in this paper by a Model
Predictive Control (MPC) approach [2]. The energy man-
agement problem is formulated as an optimization problem
over a future time window during which the objective
is to i) minimize fuel use, ii) reduce service brake use,
and iii) prevent over-charge and -discharge of the battery
while respecting kinematic equality constraints and several
time-varying inequality constraints of the engine, motor,
generator, and the battery. The solution of this nonlinear
optimization determines the “optimal” distribution of power
demand between the engine, motor, generator, and service
brakes.

An analytical solution to such a nonlinear constrained



optimization problem does not exist in general. Therefore
in the past researchers have proposed numerical solutions,
e.g. by using dynamic programming (DP) or have simplified
the dynamic optimization problem to an equivalent instanta-
neous optimization in a family of ECMS (Equivalent Con-
sumption Minimization Strategy) schemes. A more detailed
review of these optimal control methods along with heuristic
rule-based methods can be found in [3] and [4]. Most of
the existing literature has focused on the less complicated
parallel and series configurations and only a few papers
address the case for power-split hybrids. One of those is
[5] where both DP and ECMS were applied and compared
for the Toyota Prius power-split HEV.

Obtaining the optimal solution using DP requires knowl-
edge of future driving cycle and therefore is non-causal.
Together with high computational demand of DP, this pre-
vents its real-time implementation. The ECMS methods, on
the other hand, are less intensive in computations and causal
but may be short-sighted and are sensitive to their tuning
parameters. The MPC design proposed in this paper over-
comes some of these shortcomings. In the MPC approach,
the optimization is solved over a future prediction horizon
(therefore less-likely to make short-sighted decisions). At
the same time knowledge of the future drive cycle is not as-
sumed. Instead a model is used to project the torque demand
and the resulting velocity over a future prediction horizon
(therefore causal). To prevent the computational cost of a
nonlinear optimization problem, the nonlinear plant model
and the constraints are linearized at each sample time; this
reduces the nonlinear optimization problem to a quadratic
program for which efficient real-time solutions exist [6].
Moreover, the relation between MPC tuning parameters and
the results may be more transparent and systematic than that
of ECMS methods.

Because MPC is a model-based control method, the ve-
hicle model is first derived and the constraints are specified
in Section II. The optimization problem and the linear MPC
design are laid out in Section III. Simulation results in
three different driving scenarios are presented in Section
IV followed by the Conclusions.

II. THE PLANT MODEL

A schematic of a power-split HEV configuration is shown
in Figure 2. What makes this configuration different from
the series and parallel configurations is the split of engine
power by a speed coupler (planetary gear set) which allows
both series and parallel power flow modes. Because the
focus of the paper is a model-based optimization method,
a model of the system is derived in this section. For more
details, the reader is referred to the literature [7], [5].

In general, the system dynamics can be divided into
powertrain dynamics and battery dynamics. The following
assumptions are made:

• Dynamics of engine, motor and generator are fast with
respect to the dynamics of powertrain and vehicle.

Fig. 2. A Power-Split HEV Configuration

• The motor is directly connected to the ring gear of the
speed coupler.

• The power loss in the final transmission can be ignored
with respect to other sources of power losses.

• All components connecting motor to wheel are rigid

Consequently, the powertrain dynamics are summarized
as:

Jgen
dωgen

dt
= τgen +F×NS

Jeng
dωeng

dt
= τeng−F× (NS +NR)

Jmot
dωmot

dt
= τmot − τdrive + τbrake

g f
+F×NR

m
dV
dt

=
τdrive

rw
− 1

2
ρA fCdV 2−mgsin(θ)−µmgcos(θ)

(1)

Where Jeng, Jgen, Jmot are the inertia of the engine, gen-
erator and motor, NS, NR are the radius of the sun and
ring gears, τeng, τgen, τmot are the engine, generator and
motor torques, ωeng, ωgen, ωmot are the engine, generator
and motor speeds, τdrive is the drive shaft torque , τbrake
is the friction or service brake torque, V, m, A f are the
speed, mass and frontal area of the vehicle, rw is the wheel
radius, µ is the friction coefficient, CD and ρ are the drag
coefficient and air density, g f is the final gear ratio, θ is the
road grade and g is gravitational acceleration. Also F is the
interaction force between different parts of the power-train.
For example, F×NS is the reaction torque on the sun gear.
Also there are two kinematic equality constraints between
velocities:

Nsωgen +NRωmot = (Ns +NR)ωeng (2)

and

ωmot =
g f

rw
V (3)

Substituting equations (2)-(3) into the dynamics of the
powertrain and eliminating the interaction force F , between
them, the powertrain dynamics are reduced to,
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(4)
where the resistance torque is defined by,

τresist = rwmg(µcosθ+ sinθ)+
1
2

ρCdA f r3
w

(
ωmot

g f

)2

(5)

The battery state of charge (SOC) is an important variable
in energy management of HEVs. Its dynamics are described
by [1],

dSOC
dt

=−Voc−
√

V 2
oc−4(Pbatt)Rbatt

2CbattRbatt
(6)

where Voc, Rbatt , Cbatt are the battery’s open-circuit voltage,
internal resistance and capacity respectively and Pbatt =
Pmot + Pgen + Ploss

motor + Ploss
gen represents the charging and

discharging power of the battery and includes motor and
generator losses. In our model, positive power indicates
battery discharging and negative power indicates charging.
To model the motor/generator power losses, a surface is
fitted to experimental data. An experimental map of the
engine relates the fuel consumption rate to engine speed
and engine torque. The Willan’s line method is used to
approximate this map resulting in a closed-form formula,

ṁ f =
aTengωeng +bωeng + cω3

eng

ā+ b̄ωeng + c̄ω2
eng

(7)

where ṁ f is the fuel consumption rate and a, b, c, ā, b̄,
and c̄ are constant parameters.
Finally, several physical constraints of the model are sum-
marized as:

SOCmin ≤ SOC ≤ SOCmax

0≤ ωeng ≤ ωmax
eng

ωmin
mot ≤ ωmot ≤ ωmax

mot

ωmin
gen ≤ ωgen ≤ ωmax

gen

0≤ τeng ≤ τmax
eng

τmin
mot ≤ τmot ≤ τmax

mot

τmin
gen ≤ τgen ≤ τmax

gen

0≤ τbrake

Pbatt ≤V 2
oc
/
4Rbatt

where ∗min and ∗max represent the minimum and maximum
bounds on the parameters. These bounds on τeng, τgen, and
τmot are variables and are functions of engine, generator and
motor speeds respectively.

III. CONTROL SYSTEM STRUCTURE

The power management module of a power-split HEV
determines the engine, generator, motor, and service brake
torques based on the driver’s demanded torque and loads
from the road and auxiliary subsystems. Because of the
dynamic nature of the power demand, this is a dynamic
decision making problem. Its objective is to minimize fuel
consumption while ensuring all the constraints are enforced
pointwise-in-time. In this work, we manage the complexity
of this problem by breaking it into two levels. The first
or supervisory level finds the optimum values for the
two independent degrees of freedom of the system (here
engine speed and engine torque) at each sample time. These
optimum values are issued as references to the second or
low-level controller. The low-level controller determines
the engine, motor, generator, and brake torques required
to follow the references set by the supervisory layer. A
block-diagram schematic is shown in Figure 2. The low-
level controller can use standard control loops for reference
tracking. In what follows, the focus is on the supervisory
control design.

Fig. 3. Structure of the Control System

At the supervisory level, the power management problem
can be viewed as a constrained nonlinear dynamic opti-
mization problem. The need for real-time implementable
optimization-based approach has motivated us to use a
Model Predictive Control (MPC) formulation. In short,
MPC contains three steps: First, based on an internal
(usually reduced-order) model of the plant, it predicts the
plant outputs along a future time horizon. Then it calculates
a future control sequence that minimizes a performance
index which reflects the optimization goals subject to the
constraints. Finally it applies just the first of this control
sequence to the plant. The process is repeated at the
next time step by moving the prediction horizon one step
forward.

A. Nonlinear Internal Model

In the MPC’s internal prediction model, we ignore the
powertrain inertial losses in comparison to other slower
dynamics. This reduces the model complexity and increases
computational efficiency. Also because the speed of the ve-
hicle is controlled by the driver, the vehicle speed dynamics



are moved outside of the internal model. The remaining
dynamic state of this internal model is the battery’s state of
charge. As briefly noted earlier, the model is driven by 3
independent inputs. The service brake torque is always an
independent input and therefore a fixed degree of freedom.
There are several other choices for the other degrees of
freedom. In this work, we have chosen the engine speed and
engine torque as the other two degrees of freedom. These
are the free optimization variables in the supervisory control
formulation and are chosen to minimize the following finite-
horizon cost function at each sample time:

min
~u(t)

J =
∫ ∥∥∥~L(x;~u,~v)

∥∥∥
2

dt (8)

subject to




ẋ = f (x;~u,~v)
~yr =~g(x;~u,~v)
~yc =~g(x;~u,~v)

xmin ≤ x≤ xmax

~ymin
c ≤~yc ≤~ymax

c

~umin ≤~u≤~umax

(9)

where

x = [SOC] , ~u =




τeng
ωeng
τbrake


 , ~v =

[
τdrive

V

]

~yr =
[

SOC
ṁ f

]
, ~yc =




Pbatt
ωgen
τmot
τgen




are the vectors of state, control inputs, measured inputs,
tracking outputs and constrained outputs respectively. Due
to practical limits, the SOC should be kept around a desired
value (SOCr). Therefore the performance index penalizes
deviations in state of charge in addition to fuel rate and
brake use. The integrand in equation (8) is defined as,

~L(x;~u,~v) =
[

wSOC(SOC−SOCr), w f ṁ f , wbτbrake
]T

where wSOC, w f and wb are penalty weights.

B. Standard Linear MPC

Because the MPC control strategy at the supervisory level
is based on the standard MPC for linear systems, it is briefly
explained in this section. More details can be found in
[2], [8]. A finite-horizon quadratic cost function penalizes
deviation of the system outputs y from the corresponding
references r. In its more general form, it can be formulated
as:

min
∆U

J =
P−1

∑
i=0
‖u(k + i|k)−utarget (k)‖2

wu
i
+

‖∆u(k + i|k)‖2
w∆u

i
+‖y(k + i+1|k)− r (k + i+1)‖2

wy
i+1

+ρεε2

(10)
subject to

{
x(k +1) = Ax(k)+Buu(k)+Bvv(k)
y(k) = Cx(k)+Dvv(k)

umin
i ≤ u(k + i|k)≤ umax

i

∆umin
i ≤ ∆u(k + i|k)≤ ∆umax

i

−ε+ ymin
i ≤ y(k + i+1|k)≤ ymax

i + ε
∆u(k + i|k) = 0; j = M, ...,P

ε≥ 0

where P is the prediction horizon, M is the control horizon,
∆U = [∆u(k|k) , ...,∆u(k +M−1|k)]T is the sequence of
input increments to be optimized, wu

i , w∆u
i , wy

i+1 are the
weighting factors at the ith sample time, x(k) ∈ Rn is
the state vector, u(k) ∈ Rm is the vector of manipulated
variables, y(k) is the vector of outputs and ε is the softening
variable. Using the discrete model of the system, the outputs
over a future prediction horizon are predicted by:

y(k + i+1|k) = C[Ai+1x(k)+
i

∑
l=0

AiBu

(
u(k−1)+

l

∑
j=0

∆u(k + j|k)
)

+

Bvv(k + l|k)]+Dvv(k)

(11)

Substituting predicted trajectories of outputs into the perfor-
mance index J, the optimization problem can be formulated
as a Quadratic Program (QP),

[
∆Uopt ,ε

]
= argmin

∆U,ε

1
2

∆UT H∆U +FT ∆U (12)

subject to
Gu∆U +Gεε≤W +Sx(k)

where H,F,Gu,Gε,W , and S are constant matrices and
functions of references, measured inputs, input targets, the
last control input, and the measured or estimated states at
the current sample time [2], [8]. After solving this standard
QP problem and obtaining the optimal input sequences
∆Uopt , the control input to the plant is obtained by

u(k) = u(k−1)+∆uopt (k|k) (13)

C. The MPC-Based Control Strategy

The nonlinear model is linearized at each sample time
around its current operating point and the control input is
generated by applying MPC on this updated linear model
of the system. The MPC problem is formulated as a QP
problem with a linear model and linear constraints to be
solved at each sample time. The stability and disturbance
rejection properties for this approach are addressed in the
literature [9], [10]. At each step k the following steps are
taken:

1- Measurment/estimation of system state (SOC(k))

2- Prediction of the torque demand and vehicle speed
(measured inputs) over the next prediction horizon:



The future driver torque demand, which is unknown, is
assumed to be exponentially decreasing over the prediction
horizon, i.e.

τdrive((k + i)T ) = τdrive(kT )e
(
−iT
Td

)
i = 1, 2, · · · , P

(14)
where τdrive(kT ) is the known value of the torque demand
at the beginning of the prediction horizon and Td deter-
mines the decay rate. Due to frequent variation of torque
demand in a driving cycle, assumption of a decaying torque
demand was found to be more reasonable than a constant-
torque assumption (which is the MPC default for measured
disturbances). This was later confirmed by the simulation
results.

By using the above torque model and by numerical
integration of the vehicle longitudinal dynamics over the
future horizon, the future velocity profile is predicted,

V ((k + i)T ) = V (kT )+
1
m

∫ (k+i)T

kT
τdrive(t)e

(
−t
Td

)

−1
2

ρCDA fV (t)2−mgcos(θ(t))+µmgsin(θ(t))dt
(15)

where V (kT ) is the actual value of the velocity at the
beginning of the prediction horizon. Here we assign θ = 0
in the prediction model if grade information is not available.

3- Linearization of the nonlinear internal model around
an operating point and update of linear system matrices:

{
ẋ = Ãx+ B̃uu+ B̃vv+ F̃

y = C̃x+ D̃uu+ D̃vv+ G̃
(16)

where

Ã =
(

∂ f
∂x

)

(x0,u0,v0)
; B̃u =

(
∂ f
∂u

)

(x0,u0,v0)

B̃v =
(

∂ f
∂v

)

(x0,u0,v0)
;C̃ =

(
∂[gr,gc]

∂x

)

(x0,u0,v0)

D̃u =
(

∂[gr,gc]
∂u

)

(x0,u0,v0)
; D̃v =

(
∂[gr,gc]

∂v

)

(x0,u0,v0)

F̃ = f (x0,u0,v0)− Ãx0− B̃uu0− B̃vv0

G̃ = g(x0,u0,v0)−C̃x0− D̃uu0− D̃vv0

(17)

To remove direct injection of the inputs in the output equa-
tions in accordance to standard MPC formulation (section
2), the linearized system is augmented with fast filters with
time constant of Tf ,

[
ẋ
ẋa

]
=

[
[0]1×1 B̃u
[0]3×1 −1

/
Tf [I]3×3

]

︸ ︷︷ ︸
Ac

[
x
xa

]
+

[
[0]1×3

1
/

Tf [I]3×3

]

︸ ︷︷ ︸
Bc

u

~u+
[

B̃v [1]1×1 [0]1×6
[0]3×2 [0]3×1 [0]3×6

]

︸ ︷︷ ︸
Bc

v




~v
F̃
G̃




[y] =
[

C̃ D̃u
]

︸ ︷︷ ︸
Cc

[
x
xa

]
+

[
D̃v [0]6×1 [I]6×6

]
︸ ︷︷ ︸

Dc
v




~v
F̃
G̃




(18)
4- Discretization of the augmented linear system matrices

(AC, BC
u , BC

v , CC, DC
v ) in order to evaluate discretized

linear system matrices A, Bu, Bv, C, Dv.

5- Application of standard linear MPC explained in
the previous section to the updated model to find control
inputs for next sample time.

6- Repetition of the previous steps at the next sample
time.

IV. SIMULATION RESULTS AND DISCUSSION

A. MPC Controller Tuning

In standard MPC, the adjustable parameters are penalty
weights and prediction and control horizons. In addition
in this work, the time constant Td in the torque model
(14) is another tuning parameter. In all simulations, the
sample interval of MPC is fixed to 1 second. Also, the
prediction and control horizons are fixed to 5. Via various
simulations and observations we found that the results can
be improved if the penalty weights and the time constant Td
are varied with the level of torque demand. The following
rules for selecting the weights and the time constant were
established:

if τdrive(kT )≥ 1000
WSOC = 1,Wṁ f = 1 and Td = 0.1

elseif 450≤ τdrive(kT ) < 1000
WSOC = 1,Wṁ f = 1 and Td = 1

elseif 100≤ τdrive(kT ) < 450
WSOC = 1,Wṁ f = 10 and Td = 1

elseif 0≤ τdrive(kT ) < 100
WSOC = 1,Wṁ f = 50 and Td = 10

elseif τdrive(kT ) < 0
WSOC = 0,Wṁ f = 1e6 and Td = 0.1

Here a smaller Td (faster decay) is chosen for larger driver
torque demands. This is motivated by the observation that
periods of large torque demand are very short in a typical
driving cycle. In other words, a large torque demand is
not expected to prolong much. A number of trial and
error revealed that choice of a larger penalty on fuel rate
during periods of low torque demand improved the MPC



performance. One possible explanation is that the engine
is less efficient at low torque levels and its use should
be further penalized. Finally when the torque demand is
negative, the weight on SOC is set to zero to encourage
regeneration into the battery even if that requires deviation
from the desired state of charge. At the same time the
fuel consumption is penalized with a very large weight to
discourage use of the engine. Except for the braking mode,
the brake torque is penalized by a large weight of 1000.
The reference values are taken to be constant and equal to
0.65 and 0 for state of the charge and fuel rate respectively.

B. Acceleration-Cruise-Braking Scenario

In order to analyze the performance of the developed con-
trol system for energy management of a power-split HEV,
we used different driving scenarios. The first simulated
driving scenario includes a 0 to 70 (km/hr) acceleration,
then a constant 70 (km/h) cruise, and finally decelerating to
a stop. This scenario covers acceleration, deceleration, and
cruise. The simulation results are presented in figures 4-6.
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We observe from these results that during acceleration
(15 to 35 seconds), the motor assists the engine to deliver
the required power and the SOC decreases. The generator
provides negative or reaction torque that increases trans-
mission of engine torque to the wheels. This operation is
called positive-split. Later during the cruise mode (35 to
60 seconds), the controller decreases the generator speed
to negative values and the generator works in the motoring
mode. During this mode, the vehicle speed is relatively high
and the power demand is low which causes the generator
speed to decrease to negative values and reduces the engine
speed according to equations (2)-(3). In other words, a
part of the engine power is re-circulated through the motor
and generator to decrease engine rotational speed while it
delivers the demanded power. This mode is called negative-
split. Eventually during deceleration, the motor works in
the generating mode and energy is recuperated into the
battery and the battery state of the charge is increased. This
mode is the regenerative braking mode. As shown, MPC
can perform well in all operating modes. In addition as
shown in figure 6, the controller enforces all the variable
constraints on the engine, motor, and generator torques.

C. Simulation results with standard driving cycles

In order to analyze the performance of the developed
control system with respect to fuel economy, two different
standard driving cycles were tested. Figures 7-8 show sim-
ulation results over UDDS (Urban Dynamometer Driving
Schedule also called FTP 72) cycle. The controller satisfies
all the constraints and maintains the SOC near the desired
value of 0.65. For the given driving cycle, the simulation
yields an equivalent fuel economy equal to 74.93 mile per
gallon (mpg). The PSAT 6.2 simulation program developed
by Argonne National Laboratory (ANL) [11] which uses a
rule-based power management strategy calculates a compa-
rable equivalent fuel economy of 71.56 (mpg) for the same
cycle.

The MPC performance is also tested in a highway driving
scenario, the HWFET (Highway Fuel Economy Driving
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Schedule also called FHDS) cycle. For this driving cycle,
MPC yields equivalent fuel economy equal to 67.76 (mpg)
with final SOC=0.69. With the same driving cycle, the
PSAT software calculates a comparable equivalent fuel
economy equal of 66.42 (mpg). These simulation results
are promising and encourage stepping toward experimental
validation which is the plan for future work.

V. CONCLUSIONS

In the existing literature, optimal power management of
HEVs has relied mostly on dynamic programming (DP)
or minimization of an instantaneous cost function in a
family of ECMS approaches. The drawbacks to DP are its
cycle-dependence and computational intensity. The ECMS
may be short-sighted and also very sensitive to its tuning
parameters. The MPC formulation presented in this paper
has the advantages of being i) predictive in nature ii)
adaptive to changes in the plant operating point and external
disturbances, and iii) systematic to tune with less parameter-
sensitivity. It achieves very good fuel economy via on-
line optimization, while, at the same time, it is causal and

therefore potentially real-time implementable. The power-
split hybrid which was the subject of this work, is one
of the most complex types of HEVs having strong non-
linearities, kinematic equality constraints, and time-varying
inequality constraints. This complexity was reflected in
the high-fidelity model that was used. We demonstrated
that by constantly linearizing and updating the prediction
model and the constraints, a linear MPC makes decisions
that qualitatively match those of a well-tuned conventional
power management strategy. Also quantitatively, the fuel
economies achieved with MPC are better than those re-
ported by the rule-based PSAT simulation software. Further
simulation and experimental investigation are required to
validate these quantitative results.

VI. ACKNOWLEDGEMENTS

This project is supported by a URP grant from Ford
Motor Company which the authors thankfully acknowledge.
Also, the authors wish to thank Dr. Stefano di Cairano
of Ford Motor Company for his valuable comments and
discussions.

REFERENCES

[1] S. E. Gay A. Emadi M. Ehsani, Y. Gao, Modern Electric, Hybrid
Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design,
CRC, 2004.

[2] J. M. Maciejowski, Predictive Control with Constraints, Prentice
Hall, 2002.

[3] A. Sciarretta and L. Guzzella, “Control of hybrid electric vehicles,”
IEEE Control Systems Magazine, vol. 27, no. 2, pp. 60–70, 2007.

[4] P. Pisu and G. Rizzoni, “A comparative study of supervisory control
strategies for hybrid electric vehicles,” IEEE Transactions on Control
Systems Technology, vol. 15, no. 3, pp. 506–518, 2007.

[5] J. Liu and H. Peng, “Modeling and control of a power-split hybrid
vehicle,” IEEE Transactions on Control Systems Technology, vol.
accepted for inclusion in a future issue of this journal, 2008.

[6] A. Bemporad, “Model predictive control design: New trends and
tools,” in Proceedings of the IEEE Conference on Decision and
Control, 2006, pp. 6678–6683.

[7] J. Czubay F. U. Syed, M. L. Kuang and H. Ying, “Derivation
and experimental validation of a power-split hybrid electric vehicle
model,” IEEE Transactions on Control Systems Technology, vol. 54,
no. 6, pp. 1731–1747, 2006.

[8] M. M. Seron G. C. Goodwin and J. A. Dona, Constrained Control
and Estimation, Springer, 2005.

[9] S. Oliveira, Model Predictive Control for Constrained Nonlinear
Systems, vdf Hochschulverlag AG, 1996.

[10] J. H. Lee and N. l. Ricker, “Extended Kalman filter based nonlinear
model predictive control,” Industrial Engineering and Chemical
Research, vol. 33, no. 6, pp. 1530–1541, 1994.

[11] Argonne National Laboratory, “Powertrain System Analysis Toolkit,”
commercial software.


