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Abstract—A power-split hybrid electric vehicle (HEV) combines
the advantages of both series and parallel hybrid vehicle archi-
tectures by utilizing a planetary gear set to split and combine the
power produced by electric machines and a combustion engine. Be-
cause of the different modes of operation, devising a near optimal
energy management strategy is quite challenging and essential for
these vehicles. To improve the fuel economy of a power-split HEV,
we first formulate the energy management problem as a nonlinear
and constrained optimal control problem. Then two different cost
functions are defined and model predictive control (MPC) strate-
gies are utilized to obtain the power split between the combustion
engine and electrical machines and the system operating points
at each sample time. Simulation results on a closed-loop high-fi-
delity model of a power-split HEV over multiple standard drive
cycles and with different controllers are presented. The results of
a nonlinear MPC strategy show a noticeable improvement in fuel
economy with respect to those of an available controller in the com-
mercial Powertrain System Analysis Toolkit (PSAT) software and
the other proposed methodology by the authors based on a linear
time-varying MPC.

Index Terms—Energy management, hybrid electric vehicle
(HEV), linear time-varying model predictive control (LTV-MPC),
MPC, nonlinear MPC, power-split HEV.

I. INTRODUCTION

H YBRID electric vehicles (HEVs) provide improved fuel
economy due to extra degree(s) of freedom provided

by battery energy storage and one or more electric machine(s)
which allow running a smaller combustion engine in a higher
efficiency region [1]. The battery storage also enables capturing
the braking energy, which is wasted as heat in conventional
vehicles. Among possible configurations of a hybrid electric
powertrain, power-split, or parallel-series which provides
both series and parallel functionality are produced by several
auto-makers. The Ford Escape Hybrid and Toyota Prius both

Manuscript received May 13, 2010; revised December 17, 2010; accepted
February 07, 2011. Manuscript received in final form March 22, 2011. Recom-
mended by Associate Editor J. H. Lee. This work was supported by a University
Research Program (URP) Grant from Ford Motor Company.

H. Borhan and A. Vahidi are with the Department of Mechanical Engineering,
Clemson University, Clemson, SC 29634 USA (e-mail: hborhan@clemson.edu;
avahidi@clemson.edu).

A. M. Phillips, M. L. Kuang, and S. Di Cairano are with Ford Research and
Advanced Engineering, Dearborn, MI 48121 USA (e-mail: aphilli8@ford.com;
mkuang@ford.com; sdicaira@ford.com).

I. V. Kolmanovsky is with the Department of Aerospace Engineering, Uni-
versity of Michigan, Ann Arbor, MI 48109 USA (e-mail: ilya@umich.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCST.2011.2134852

Fig. 1. Power-split HEV configuration.

have a power-split powertrain. Fig. 1 shows a schematic view
of a power-split HEV which is discussed in this research. In this
configuration, the engine and the generator are connected to
the planet carrier and sun gear of a planetary gear set or speed
coupler, respectively. The output of the speed coupler is com-
bined with a second motor/generator through a torque coupler
to power the vehicle driveline. Because of the different possible
power flows in the power-split powertrain, the engine operating
point can be seen as decoupled from the vehicle operating
point. In addition, the battery storage system provides another
degree of freedom to accumulate or deliver energy. Thus, there
are two degrees-of-freedom for the energy management of
these HEVs that together with the different modes of operation
allow the vehicle to operate more efficiently and consequently
to achieve reduced fuel consumption and emissions.

Improvement of fuel economy in HEVs strongly depends on
the employed energy management strategy. When formulated in
an optimal control framework, the energy management problem
becomes a nonlinear, constrained, and dynamic optimization
problem, due to the nonlinearities of the dynamic model of the
powertrain and several equality and inequality constraints on
the states and on the control inputs. In the past, researchers
have used numerical solutions, e.g., based on dynamic program-
ming (DP) [2], [3] or have simplified the dynamic optimiza-
tion problem to an equivalent instantaneous optimization, called
equivalent consumption minimization strategy (ECMS) [4]–[6].
Comprehensive reviews of these optimal control methods, along
with heuristic rule-based methods, can be found in [6] and [7]. If
we assume to have the full knowledge of the future driving con-
ditions, the globally optimal solution for a model of the HEV
can be derived using dynamic programming. However, the DP
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solution is non-causal due to its dependence on unknown fu-
ture power demand, and it is computationally demanding when
a long horizon is considered. The DP solutions over the known
driving cycles have been used mainly as benchmarks for the
best achievable fuel economy [8]. By defining an equivalent fuel
cost for the battery energy, ECMS methods have been devel-
oped to be solved at each instant rather than over the driving
interval [4], [5], [9]. Although ECMS can be applied online as a
closed-loop controller, the decisions are non-predictive because
the dynamics of the system (battery in general) are not consid-
ered. A compromise between the computational cost and the
non-causality of a globally optimal DP solution and the faster,
causal, but instantaneous ECMS solution can be formed in an
energy management strategy based on the model predictive con-
trol (MPC), where the optimization is performed over a moving
finite horizon.

Starting from the initial investigation in [10], we develop a
linear time-varying MPC (LTV-MPC) [11] with a quadratic cost
function for the energy management problem. The LTV-MPC
results are comparable with a well-tuned controller of PSAT
software [12], yet further improvement in the fuel economy
was desirable. Thus, we reformulate the MPC fuel minimiza-
tion problem to include not only the fuel cost over a finite
horizon but also an approximate cost-to-go beyond the plan-
ning horizon represented as a terminal cost in the MPC. We use
the relationship between the Hamilton-Jacobi-Bellman (HJB)
equation and the Pontryagin’s minimum principle [13] to show
that the cost-to-go for this optimal control problem can be
approximated as a piecewise linear function of the deviations
in the battery state of charge. Our derivations are in accordance
with the results in [14] developed in parallel to our research.
A nonlinear MPC framework is employed to solve the optimal
control problem online. Simulation results on a closed-loop
model of a power-split HEV with respect to both the LTV-MPC
and the PSAT software show noticeable improvements.

This paper is organized as follows. The model of the power-
split HEV is first presented and its constraints are discussed in
Section II where a control-oriented model for the design of the
MPC controllers is derived. The control system structure and
the fuel minimization problem are presented in Section III. In
Section IV, the energy management strategy based on a linear
time-varying MPC is formulated using a quadratic cost function.
The results of the LTV-MPC over a high-fidelity closed-loop
model of a power-split HEV are presented in this section. In
Section V, a different cost functional is derived and the optimal
control problem is reformulated. Using a nonlinear MPC frame-
work, an energy management strategy is developed and its re-
sults are presented and compared with the ones of LTV-MPC
controller and the base controller of the PSAT software.

II. PLANT MODEL

In this paper, for the closed-loop simulations we use a de-
tailed model of a power-split HEV from the database of Power-
train Simulation Analysis Toolkit (PSAT) commercial software
[12]. PSAT is a state-of-the-art flexible powertrain simulation
software developed by Argonne National Laboratory with the
support of automotive manufacturers and sponsored by the U.S.

Department of Energy (DOE). It runs in a MATLAB/Simulink en-
vironment and provides access to dynamic models of different
mechanical and electrical components of several hybrid vehicle
configurations. The level of details in PSAT component models
and its forward simulation approach ensures reliable estimation
of the fuel economy. The modeling accuracy of PSAT has been
validated against production HEVs such as the Honda Insight
[15] and the Toyota Prius [16]. In order to analyze the perfor-
mance of our MPC energy management strategies on a high-fi-
delity dynamic model of a power-split HEV, the PSAT Simulink
model of the Toyota Prius was chosen as the plant model for the
closed-loop simulations. The MPC module receives all of its
feedback signals from the PSAT model and applies the engine
torque and speed commands to the model. Because the PSAT
model is too complex for control design, a simplified control-
oriented model that captures the details that are of importance
for the supervisory energy management system is derived in
this section. Fig. 1 shows the main components of a power-split
HEV which are modeled for designing the MPC-based super-
visory controllers. More modeling details are available in [10],
[17], and [18].

The battery’s state of charge is the main state in optimal
control of HEV’s as explained in [8] and its dynamics can be
represented by

(1)

where

(2)

In (1) and (2), , , and are the battery open-circuit
voltage, internal resistance, and capacity, respectively; is
the battery power; and are the motor and gener-
ator power, respectively; and and are the motor
and generator power losses, respectively. In (1), positive battery
power indicates the battery is discharging and neg-
ative battery power indicates battery is charging.
Empirical maps, extracted from PSAT, are used to calculate the
power losses of the motor and generator as functions of the cor-
responding torque and speed.

The power-split powertrain, also called the electric-continu-
ously variable transmission, includes a planetary gear set (speed
coupler) which combines the power of the engine, motor, and
generator. This power coupling can be accomplished such that
the engine operating point becomes independent of the vehicle
operation. Neglecting the inertia of pinion gears in the planetary
gear set and assuming that all the connecting shafts in the pow-
ertrain are rigid, the inertial dynamics of the powertrain can be
obtained using Newton’s laws [10]

(3)

where is the lumped inertia of the generator and the carrier
gear; is the lumped inertia of the engine and the sun gear;
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and is the inertia of the motor lumped with the inertias
of the ring, final transmission, and wheels. In (3), and
are the radii of the sun and ring gears; , , and are
the engine, generator, and motor torques, respectively; ,

, and are the engine, generator, and motor speeds,
respectively; and is the output torque of the powertrain.
Finally in (3), is the interaction force between the different
gears. To reduce the number of dynamic states, the inertial
losses of the engine, motor, and generator, i.e., ,

, and , are ignored and set to
zero in the control-oriented model, a reasonable assumption
since the rotational dynamics are much faster than the battery
dynamics (1) and the inertial losses are limited. As a result,
the relationships in (3) are reduced to three static equality
constraints. An empirical map of the engine, extracted from
PSAT software, is used to relate the fuel flow rate, , to the
engine speed and torque as

(4)

There are also two kinematic equality constraints between ve-
locities

(5)

(6)

where is the vehicle velocity with the following dynamics:

(7)
In (6) and (7), is the final transmission gear ratio; and

are the mass and frontal area of the vehicle, respectively;
is the wheel radius; is the rolling resistance coefficient;
and are the drag coefficient and air density, respectively;

is the road grade which is assumed to be positive when ve-
hicle is driven down a hill; and is the gravity acceleration.
The driveability constraint requires that the total torque at the
wheels, which is the sum of the powertrain output torque
and the friction brake torque1 , is equal to the driver demanded
torque

(8)

Assuming the driveability constraint (8) holds and using the
vehicle speed dynamics (7), the vehicle velocity profile along
a prediction horizon can be uniquely determined for an initial
velocity and a driver torque profile. Furthermore, the following
physical constraints, usually time-varying, must be enforced:

(9)

1The HEV has a conventional braking system in addition to the regenerative
braking system. The braking power drained by the conventional brakes follows
a different energy path, since it does not recharge the battery.

Fig. 2. Hierarchial control system.

where and denote the minimum and maximum bounds
which may vary.

Based on the previous equations and assumptions, the con-
trol-oriented model can be represented by

(10)

where

is the state, is the control input, is the measured distur-
bance, and is the output of the model.

III. CONTROL SYSTEM ARCHITECTURE

The objective of the energy management system is to min-
imize fuel consumption while ensuring that all the constraints
are enforced. In this work, we manage the complexity of the
problem by decomposing the controller into two levels. The
first or supervisory level finds the optimum values for the two
degrees of freedom of the system, engine speed and torque, at
each sampling time. These optimal values are applied as the ref-
erences to the second, low-level, controller where the engine,
motor, generator, and friction brake torques are calculated. A
block-diagram of the closed-loop model is shown in Fig. 2. In
the low-level controller, standard control loops (PI controllers
in PSAT) are used for reference tracking.

At the supervisory level, the energy management problem
can be viewed as a constrained nonlinear dynamic optimization
problem which is addressed here using model predictive control
(MPC). The MPC controller calculates a future control sequence
that minimizes a performance index which reflects the optimiza-
tion goals subject to the equations of the dynamic model of
the system and to the constraints. Then it applies the first ele-
ment of the computed control sequence to the HEV model. The
process is repeated at the next time step by moving the predic-
tion horizon one step forward. Since the engine zero speed is a
feasible MPC solution, a separate engine on/off strategy, as the
one in PSAT controller [12], is not required. This research inves-
tigates two MPC methodologies developed based on two forms
of cost functions which are discussed in the next sections.
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IV. LTV-MPC OPTIMAL CONTROLLER FOR THE POWER-SPLIT

HEV ENERGY MANAGEMENT

In the first methodology, a quadratic cost functional is chosen
for the HEV fuel minimization problem and a LTV-MPC is em-
ployed to solve the problem online. The performance index is
defined by

(11)
where is the prediction time horizon, and
and are the penalty weights. Based on the control-
oriented model and the constraints in (9) and (10), the moving
horizon optimal control problem at each time is defined by

(12)

where and are the sets of admissible inputs and outputs
according to (9). The quadratic finite-horizon optimal control
problem (12) can be solved using LTV MPC approach as ex-
plained in the following sections.

A. Linear Model Predictive Control

The LTV-MPC control strategy is based on the standard MPC
method for the linear systems which is briefly reviewed here.
More details can be found in [19] and [20]. In the standard MPC,
a finite-horizon quadratic cost functional penalizes deviation of
the system output vector from the corresponding reference
vector . In its more general form, the associated optimization
problem can be formulated in discrete-time as

subject to

for

(13)

where is the prediction horizon, is the control horizon,
is the sequence

of input increments to be optimized, is the vector of known
inputs or measured disturbances, , , , and are
the weighting factors at the th sample time, is

the predicted state vector, is the vector of the
manipulated variables, is the vector of the predicted
outputs, is the vector of the output references,
is the vector of the input steady-state references, and is the
softening (slack) variable used to avoid infeasibility. Using the
discrete model of the system, the outputs over a finite future
horizon are predicted by

(14)

Substituting predicted trajectories of the outputs into the perfor-
mance index and output constraints, the optimization problem
can be formulated as a quadratic program (QP) with linear in-
equality constraints

subject to

(15)

where , , , , and are constant matrices and functions
of references, measured inputs, input targets, the last control
input, and the measured or estimated states at current sample
time [19], [20]. After solving QP problem (15) and obtaining
the optimal input sequence , the control input to the plant
is obtained by

(16)

B. LTV-MPC Energy Management Strategy

In the LTV-MPC approach, the nonlinear prediction model
(10) is linearized at each sample time around the current op-
erating conditions and the linearized model is used to formu-
late the linear MPC problem (13). Then the control inputs are
obtained by applying the linear MPC at that sample time. The
stability and disturbance rejection properties for this approach
are addressed in the literature as in [11], [21][22]. In the en-
ergy management based on the linear time-varying MPC, the
following actions are performed at each sampling time .

• Measurement/estimation of system state .
• Prediction of the torque demand and vehicle speed (mea-

sured disturbance) over the prediction horizon. The future
driver torque demand, which is usually unknown, is as-
sumed to be exponentially decreasing over the prediction
horizon [10]

(17)

where is the known value of the driver torque de-
mand at the beginning of the prediction horizon, is the
sample time and determines the decay rate. The effec-
tiveness of (17) has been later confirmed by simulations.
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By using the above driver torque model and by numerical
integration of the vehicle speed dynamics (7) over the fu-
ture time horizon, the future velocity profile is predicted.

• Linearization of the nonlinear model around the current
operating conditions to obtain a linear system

(18)

where

(19)

, , and are the current values of the state, input, and
the measured disturbances to the system, respectively, and

is the vector of the current measurements of
the outputs. In order to remove input-output direct feed-
through in accordance to the standard MPC formulation
presented in Section IV-A, the linearized system is aug-
mented with fast filters with time constant , chosen to
be at least 5–10 times faster than the fastest time constant
of the plant. The augmented linearized system can be rep-
resented as

(20)

• Time discretization of (20) with sampling period and
application of the linear MPC (13) to the resulting model
to compute the control input, as explained in Section IV-A.

• If the MPC requested power, , is greater than
zero, the MPC decisions are applied to the plant; otherwise,
the engine is turned off and and are set to zero.

C. LTV-MPC Simulation Results and Discussion

The design parameters of the standard MPC are the penalty
weights and prediction and control horizons. In addition, in this
work, the time constant in the torque model (17) is another
tuning parameter. These parameters are tuned via various simu-
lations and observations over different driving conditions, some
of which are presented in the next section. In the simulations,

Fig. 3. LTV-MPC results with acceleration-cruise-brake cycle: vehicle speed,
SOC, battery power, and fuel rate.

Fig. 4. LTV-MPC results with acceleration-cruise-brake cycle: engine, gener-
ator, and motor’s speed, torque, and power.

the sampling period of MPC is 1 s and the prediction and con-
trol horizons are chosen five steps. Also the performance index
weights and the demanded torque time constant are chosen to
be , , and 1 s. The fast filter time con-
stant is 0.01 s. Before showing the simulation results over
standard drive cycles, we discuss first a driving scenario that
includes a 0 to 70 (km/hr) acceleration, a constant 70 (km/hr)
cruise, and then deceleration to a stop which is useful to under-
stand the different operating modes of the power-split HEV. The
results are presented in Figs. 3 and 4.

As seen in Fig. 4, during acceleration (15 to 35 s), the motor
provides the initial torque before the engine is engaged and then
it continues to assist the engine. The generator provides negative
or reaction torque to transmit the engine torque to the wheels.
This operation is called the positive-split [18]. Later, during
cruise (35 to 60 s), the controller reduces the generator speed to
negative values and the generator operates in motoring mode.
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Fig. 5. LTV-MPC on UDDS cycle: velocity, SOC, battery power, and fuel rate
(time intervals with zero fuel rate correspond to engine being shut down).

Fig. 6. LTV-MPC on UDDS cycle: engine, generator, and motor speeds,
torques, and powers.

Since during cruise, the vehicle speed is relatively high but the
power demand is relatively low; the negative generator speed
reduces the engine speed according to (5) and (6). This HEV
operation mode is called the negative-split [18]. During decel-
eration, the motor operates in the generating mode and energy
is recuperated into the battery. This mode is called the regen-
erative braking mode. The ripples in the battery power and fuel
consumption rate plots are due to the discrete-time MPC up-
dates.

To demonstrate the LTV-MPC strategy performance quan-
titatively, we ran simulations over standard city and highway
driving cycles over the detailed HEV model extracted from
PSAT. At each sample time, the MPC constraints are updated
based on the feedback from the plant model. The target SOC
is set to 0.7 which is the default value in PSAT for this HEV.
The upper and lower limits of SOC are set to 0.2 and 0.9,

Fig. 7. LTV-MPC on UDDS cycle: engine, generator, and motor torques and
constraints.

respectively. Other constraints are updated as functions of
operating points based on the online feedback from the PSAT
model. The MPC prediction model and tuning parameters are
kept unchanged as described before. The MPC controller issues
its optimal evaluation of engine torque and speed which are
passed to the lower level controller. Figs. 5–7 show simulation
results over urban dynamometer driving schedule (UDDS)
cycle. The dashed lines indicate the constraints on the different
physical outputs. It can be observed that the LTV-MPC con-
troller enforces all of the constraints over the cycle. The MPC
performance is also tested on a highway driving scenario, the
highway fuel economy driving schedule (HWFET) cycle, and
the same performance is observed. Table II compares the fuel
economy and the initial and final battery state of charge for
both MPC and PSAT controllers ran on the same PSAT model
of the HEV. In order to remove the effect of different initial
and final SOCs on the fuel economy, we ran the simulations
over the same cycle multiple times until the system reaches a
charge balance. The fuel economy values with equal initial and
final SOCs are also presented in Table II. It is observed that
the LTV-MPC fuel economy results are comparable with those
of PSAT. Regardless of the fact that the developed LTV-MPC
strategy is a systematic optimal control method to solve the
fuel minimization problem, the fuel economy values over
the standard drive cycles are not improved with respect to
the ones of the available rule-based controller of PSAT. We
attribute this to the model error introduced by linearization of
the control-oriented model. Furthermore, the feasible reference
for the fuel consumption rate cannot be zero most of the time.
Because of these issues, we observed that even increasing the
prediction and control horizons of the LTV-MPC with the
current quadratic cost functional cannot noticeably improve
the fuel economy. Basing on the previous experience of [23]
where better results obtained by using a piecewise linear ap-
proximation of the fuel consumption map for an ERAD HEV
configuration that allows better prediction, yet it results in
a hybrid MPC approach requiring solution of mixed-integer
programs. In the next sections, we develop a nonlinear MPC
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TABLE I
LTV-MPC AND PSAT RESULTS

TABLE II
MPC AND PSAT RESULTS (CYCLES FROM [12])

approach that does not require linearizations and uses a dif-
ferent cost function.

V. NONLINEAR MPC FOR POWER-SPLIT HEV
ENERGY MANAGEMENT

In the second methodology, a different cost function is de-
fined for the fuel minimization problem. It will be shown that
with this choice of cost function and application of nonlinear
MPC the fuel economy is improved versus both LTV-MPC and
PSAT controllers. The total fuel cost over an entire cycle which
starts at time and ends at time can be obtained by

(21)

where penalizes the deviation of at the end
of the cycle from a reference value, . As was previously
discussed in Section IV, the objective of the energy manage-
ment strategy is to minimize a cost function [here (21)] while
satisfying the dynamical equations (10) and the constraints (9).
However in real applications, the driving conditions over long
time horizons are not generally known in advance and further-
more, the parameters of the model and of the constraints may
vary. Moreover, the solution of the optimal control problem over
a long horizon is computationally demanding. To address these
issues, we propose to use Bellman’s principle of optimality [13]
to split the above optimal control problem into an integrated
stage cost and an approximated minimum fuel cost from the end

of the prediction horizon to the end of the drive cycle. We then
propose to solve the problem using the receding horizon frame-
work. At time , the cost function is

(22)

where is any admissible state value at time . The per-
formance metric depends on the values2 of , , and the
control inputs over the interval . The minimum cost or
cost-to-go is obtained by

(23)
subject to the constraints (9) and dynamics (10). By dividing the
time interval one can write

(24)

where is a chosen time horizon. Bellman’s principle of op-
timality implies that

(25)

The minimum fuel cost over the interval , i.e.,
, is not in general a known function

of . In the next section, we show how this function can be
approximated, hence enabling us to solve the above fuel mini-
mization problem using a receding horizon approach.

A. Approximation of the Fuel Cost-to-Go Function

In this section, we derive an approximation for the minimum
fuel cost as a function of the battery’s state of charge. An ap-
proximation of the cost-to-go will be sufficient because the op-
timal solutions are recalculated in a receding horizon manner
at each time step. Assuming that a Taylor series expansion of

around can be made,
we obtain

(26)

2Note that the SOC is the only dynamical state of the system. This explain
the variables in the cost-to-go in (22).
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where . As shown
in Appendix A, by observing the relationship between the Pon-
tryagin’s minimum principle and HJB equations as represented
in [13], if denotes the optimal trajectory from current
time and initial state to the end of the trip, we can
rewrite (26) as

(27)

where

(28)

By adding and subtracting the constant reference value ,
to and from the last term of (27) we obtain

(29)

where is

(30)

Substituting (29) into cost function (25) we get

(31)

Since in (31) is not a function of the control inputs, it does not
affect the selection of the optimal control. Therefore the optimal
control over the interval is obtained by solving the
following finite-time optimal control problem:

(32)

where and are the sets of admissible inputs and outputs
according to (9). Note that at time in (32) is the measured
value of the state at the current time and is known. We will solve
this finite-horizon optimal control problem in a receding horizon
manner as explained in the next section.

As shown in Appendices A and B, the parameter is related
to both the equivalent factor in the ECMS method and the rate
of change of minimum cost with respect to the . An ad-
missible range for can be obtained as explained in the ECMS
literature [24] or from the DP solutions over different driving
cycles [14]. In what follows, it is shown that can be approxi-

mated by a tunable piecewise linear function over the admissible
range. Using (28) and assuming sufficient smoothness of ,
the Taylor series expansion of the function around the
yields

(33)

where . By defining
and

as two tuning design parameters and ignoring the higher order
terms we obtain

(34)

which approximates as an affine function of the state.

B. Nonlinear MPC (NMPC) Energy Management

The optimal control problem in (32) is first discretized with a
sample time and then is solved using dynamic programming.
More specifically, the following actions are performed at each
sampling time .

• The constraints are updated using the feedback from the
HEV model.

• The future torque demand and vehicle speed (measured
disturbances), unknown over the prediction horizon, are
initialized at the current value and predicted according to
(17) and (7).

• As explained in Section V-A, the parameter is calculated
according to (34).

• Using dynamic programming, the updated MPC problem
(32) is solved numerically over the (short) prediction
horizon. Since the MPC prediction horizon is usually short
compared to the whole drive cycle, the computations can
be done in real-time.

• Consistent with standard MPC framework, the first input in
the sequence of the calculated optimal inputs over the pre-
diction horizon is applied to the plant if the MPC requested
power, , is greater than zero; otherwise the en-
gine is turned off and and are set to zero.

The above steps are repeated by receding the prediction
horizon one step forward. Repeating these calculations for
every new measurement yields a state feedback control law.3

C. NMPC Simulation Results and Discussion

To quantitatively demonstrate the validity of the NMPC
strategy, we ran simulations over different driving cycles with
the same parameters and HEV model of LTV-MPC presented
in Section IV-C. Some of the results are presented in Fig. 8 and
in Table II.

The table compares the fuel economy and the initial and final
SOCs of the LTV-MPC controller, the base controller of PSAT,

3Note that an intermediate solution where linear time varying dynamics are
used with the cost function (32) can also be considered. However, this approach
may not, in general, achieve the same performance as NMPC due to the mis-
match in prediction caused by the linearization of the dynamics and of the fuel
flow equation. Due to limited space, this intermediate approach is not further
discussed here.
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Fig. 8. Outputs and constraints of the NMPC closed-loop model over the
UDDS cycle.

and the nonlinear MPC (NMPC) controller. In order to remove
the effect of different initial and final SOCs on the fuel economy,
we ran the simulations over the same cycle multiple times until
the system reached a charge balance (i.e., ).
The fuel economy values with equal initial and final SOCs are
used to compare the performance of different controllers. It can
be observed that over both city and highway driving cycles, the
NMPC controller achieves an improved fuel economy. Also in
Table III, the closed-loop model is simulated over other drive
cycles and it can be observed that the NMPC strategy consis-
tently shows better fuel economy, achieved by using the same
control model and tuning parameters in all of the simulations.
We should mention here that the computational time of the non-
linear MPC approach is about two times larger than the LTV-
MPC. However, the nonlinear MPC uses a DP code written in
MATLAB script and is not necessarily optimized for compu-
tations. On the other hand, the LTV-MPC uses the MATLAB

MPC toolbox [25] which has a C code to solve MPC. Further-
more, because the (nonlinear) control-oriented model has dif-
ferences with the full-order plant model, conditions that guar-
antee constraint satisfaction of the nonlinear MPC (as well as
the LTV-MPC) in the closed-loop model remain open for further
investigation. However, state constraints can be implemented as
soft constraints to avoid infeasibility.

TABLE III
MPC AND PSAT RESULTS (CYCLES FROM [12])

VI. CONCLUSION

Two MPC-based methodologies have been developed for
solving the fuel minimization problem of the power-split hy-
brid electric vehicles. In the first methodology, a quadratic cost
function is defined for the HEV optimal control problem and
a linear time-varying MPC is employed to solve the problem
online. In order to improve the fuel economy, a second cost
function is introduced by dividing the fuel consumption cost
into a stage cost and an approximation of cost-to-go as a
function of battery’s state of charge. The short-horizon allows
to solve the fuel minimization problem online in a nonlinear
MPC framework. The proposed methods are systematic in both
design and tuning and predictive in nature. The results over a
PSAT closed-loop model of a power-split HEV show that with
the nonlinear MPC approach, the fuel economy is improved
noticeably with respect to that of an available controller in
the commercial PSAT software and compared to the linear
time-varying MPC controller.

APPENDIX A
MINIMUM PRINCIPLE AND HEV FUEL MINIMIZATION

The necessary conditions for the optimality can be obtained
by applying the variational approach (Pontryagin minimum
principle as in [13]) to the fuel minimization problem. The
Hamiltonian for problem (21) is defined as

(35)
where . Using this notation, the necessary conditions
for the optimality from current time and an initial value of

to the end of the drive cycle are
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(36)

Conditions (36) need to be satisfied for all admissible
in . As it can be observed in (36), since does
not depend on , and consequently we can
write . The relationship between HJB
equations and the minimum principle [13] implies that

(37)

Thus for an initial time and a state of the charge by
replacing

(38)

where . Note that
is derived by relaxing its constraints (enforced online

by MPC along the finite prediction horizon).
APPENDIX B

PARAMETER OF THE MPC COST FUNCTIONAL AND

THE ECMS FACTOR

In the ECMS method, an instantaneous cost function is de-
fined by [4], [26]

(39)

where is the ECMS factor. The Hamiltonian calculated in
Appendix A is

(40)

According to the Pontryagin’s Minimum Principle [13]

(41)
By considering the dynamics of the battery and ignoring the
power losses due to the internal resistance

(42)

Hence it follows that

(43)

From the relationship between HJB equation and the min-
imum principle as in [13], it follows that:

(44)
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