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Predictive Cruise Control: Utilizing Upcoming Traffic Signal Information for
Improving Fuel Economy and Reducing Trip Time

Behrang Asadi and Ardalan Vahidi

Abstract—This brief proposes the use of upcoming traffic signal
information within the vehicle’s adaptive cruise control system to
reduce idle time at stop lights and fuel consumption. To achieve
this goal an optimization-based control algorithm is formulated
that uses short range radar and traffic signal information predic-
tively to schedule an optimum velocity trajectory for the vehicle.
The control objectives are: timely arrival at green light with min-
imal use of braking, maintaining safe distance between vehicles,
and cruising at or near set speed. Three example simulation case
studies are presented to demonstrate the potential impact on fuel
economy, emission levels, and trip time.

Index Terms—Fuel economy, model predictive control (MPC),
predictive cruise control (PCC), traffic light preview.

I. INTRODUCTION

A MERICAN drivers spend a total of 40 h per year idling
in traffic. The cost of fuel used during this idle time is 78

billion dollars per year [1]. A big portion of our idle time is the
time spent behind traffic lights. Poor traffic signal timing is be-
lieved to account for an estimated 10% of all traffic delays on
major roadways (about 300 million vehicle hours) [2]. Effective
advanced traffic signal control methods such as traffic-actuated
signals and signal synchronization have been deployed at many
traffic intersections which help us save precious time and expen-
sive fuel every day. Such measures, however, are very costly to
implement and maintain; just the annual cost of signal timing
updates is estimated at 217 million dollars a year according to
[3]. Even with these measures in place, we often cruise at full
speed toward a green and have to come to a sudden halt when
the light turns red. This lack of information about the “future”
state of the traffic signal increases fuel consumption, trip time,
and engine and brake wear. In an ideal situation, if the future
of a light timing and phasing are known, the speed could be ad-
justed for a timely arrival at green.

While maybe unrealistic a few years ago, communicating
traffic signal state to the vehicles in advance is not far-fetched
today. In Europe some lights are capable of two-way communi-
cation with public transportation vehicles [4]. In the U.S., re-
searchers are now experimenting with broadcasting red light
warnings to vehicles to improve traffic intersection safety [5],
[6]. The INTERSAFE project in Europe is another example of
light to vehicle communication for improved intersection safety
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Fig. 1. Schematic of telematics-based PCC.

[7]. As demonstrated in [6], the required information broadcast
technology is available today and is expected to be more widely
deployed in the near future.

This brief focuses on employing upcoming light time and
phase information within the vehicle’s adaptive cruise con-
trol system to reduce: 1) wait time at stop lights and 2) fuel
consumption, which may also reduce total trip time and CO
emissions. To achieve this goal an optimization-based control
algorithm will be formulated for each equipped vehicle that
uses short range radar and traffic signal timing information
to schedule an optimum velocity trajectory. The objectives
are timely arrival at green light with minimal use of braking,
maintaining safe distance between vehicles, and cruising at
or near set speed. Fig. 1 shows a schematic of this proposed
concept.

Adaptive cruise control is now in production and a well-ma-
tured technology. Many ideas on intelligent transportation
system (ITS) have been explored extensively during the 1990’s
within intelligent highway initiatives in the U.S., Japan, and
Europe [8]. Optimal traffic management at intersections has
been mainly studied from a signal-timing optimization perspec-
tive (signal synchronization) [9]–[11]. More recently and for
futuristic autonomous vehicles, Dresner et al. [12], [13] have
proposed replacing traffic lights and stop signs by intelligent
lights: via a two way communication protocol, the autonomous
vehicles call the intersection ahead to reserve a time-space slot
to pass; which among other things can help improve the fuel
economy. Also in the late 1990’s and within the Urban Drive
Control project use of traffic signal information for improving
traffic flow was studied in Italy [14]. Voluntary use of future
signal and traffic information has recently regained momentum
under Cooperative Intersection Collision Avoidance Systems
(CICAS) initiative mainly for improving intersection safety
[15], [16].

The predictive cruise control (PCC) concept proposed in this
brief utilizes the adaptive cruise control function in a predictive
manner to simultaneously improve fuel economy and reduce
signal wait time. The proposed predictive speed control mode
differs from current adaptive cruise control systems in that be-
sides maintaining a safe gap between vehicles, it: 1) decreases
use of brakes, thus reducing brake wear and kinetic energy loss;
2) is applicable in stop and go traffic; and more importantly 3)

1063-6536/$26.00 © 2010 IEEE

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on May 26,2010 at 20:36:53 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

receives a timing signal from an upcoming traffic light in ad-
vance to safely and smoothly speed up or down to a timely ar-
rival at green light whenever possible, therefore reducing idling
at red.

These sometimes conflicting objectives are unified under an
optimization-based model predictive control (MPC) framework.
The proposed MPC formulation allows tracking a target speed,
calculated based on traffic signal information, while reducing
brake use. At the same time it enforces several physical con-
straints including a safe distance to the vehicle in front. Simu-
lation of complex stop and go situations is facilitated relying on
MPC as the “driving brain” of each vehicle. Because model pre-
dictive control is an optimization-based approach, it may handle
the traffic imposed constraints more systematically than the ex-
isting microscopic and macroscopic models for traffic simula-
tion [17]–[19]. Many underlying functions or rules required to
determine procession of vehicles limit our ability to embed sys-
tematic optimization routines in the existing methods.

Section II formulates the methodology for planning a desired
velocity profile around red lights and the tracking of this target
velocity under motion constraints using model predictive con-
trol. Section II-C describes a detailed powertrain model used for
evaluating the fuel economy and CO emissions of the vehicle.
Three simulation case studies are presented in Section III to
illustrate application of the proposed methodology in single-
and multi-vehicle scenarios. Conclusions are presented in
Section IV.

II. METHODOLOGY

The objective is to find the optimal vehicle velocity that
reduces idling at red lights given the future state of traffic lights.
One of the analytical challenges unique to this optimal control
problem is the dynamic switching of lights to red and green.
These types of motion constraints render the feasible solution
space non-convex. Solution of a non-convex optimization
problem is computationally intensive and may not converge to
the global optimum. In order to find a near-optimal solution
with reasonable level of computations, we handle the problem
at two levels: 1) a set of logical rules that calculates a reference
velocity for timely arrival at green lights combined with 2) a
model predictive controller that tracks this target velocity. The
resulting solution may be sub-optimal but can be implemented
in real-time. A simple model of the vehicle will be used at the
supervisory level for velocity planning; but the fuel economy,
CO emissions, and drivability will be later evaluated using a
detailed model of the powertrain.

A. Reference Velocity Planning

A reference velocity is determined based on the driver
set cruise speed and also the signal received from the upcoming
traffic light. The basic idea is to safely: 1) increase , up to
a maximum allowable, when there is enough green time to pass
or otherwise 2) decrease , down to a minimum allowable,
to arrive at the next green. All will be done considering driver’s
set cruise control speed. The objective is to avoid stopping at a
red light if feasible.

It is assumed that the approximate distance to the next traffic
light(s) is known at each time and shown by . The subscript

Fig. 2. Schematics map of red lights distributed over space-time. The graphics
shows how a PCC car passes two consecutive traffic intersection without having
to stop at a red.

denotes the light number in a sequence of traffic lights, i.e., is
the approximate distance to the first upcoming light and to the
second light at each time. The light(s) update and broadcast their
expected sequence of green and red times regularly. Suppose
is start of the th green of the th traffic light and is start of the
th red of the th light. For example, light number 1 broadcasts,

at regular intervals, a sequence

which implies the first traffic light is currently red, it will turn
green in 40 s, red in 100 s, green again in 150 s, and so forth.
Fig. 2 shows a schematic of the map formed at each time step
based on the information received from the lights. Equipped
vehicles can use the remaining distance to the next light(s)
and the green and red sequence to set their target speed. This
target speed (slope of each path) should be in the feasible
range , where is the road’s minimum speed
limit and is the smaller of two quantities: the velocity
set by the driver and the road’s maximum speed limit. Other
constraints, such as acceleration constraints, maintaining safe
distance to the front vehicle, and reducing use of brakes are
handled separately by a dynamic optimization scheme (details
in Section II-B).

The following steps determine the target speed at each step .
1) For a vehicle to pass during the first green of the first light,

its velocity should be in the interval . This
is only feasible if this interval has a set intersection with
the feasible speed interval of . If this set inter-
section is empty, passing through the first green without
stopping at red is deemed infeasible. In that event, feasi-
bility of passing during the next green interval is checked
and the process is repeated until for some th interval

has a set intersection with .
This set intersection is mathematically characterized by

(1)

and determines the range of speed that ensures passing the
first light without having to stop at a red.
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For example assume the speed limits are
[5,20] m/s and the distance to the first traffic light is 1000
m. The first light broadcasts

5 s 25 s 40 s 100 s

then

m/s

does not meet the speed limit. The second interval

m/s

intersects with the feasible speed at m/s. Therefore,
if the velocity of the vehicle is chosen between 10 and 20
m/s, the vehicle passes the first light without having to stop.
If no feasible set intersection is found, stopping at the light
will be unavoidable and no further check is necessary.

2) If passing without stop at the first light is determined to be
feasible, the process in step 1 is repeated for the second
traffic light by checking the set intersections

and picking the first non-empty one.
3) Next, the set intersection of the feasible range of speeds de-

termined in step 1 and that of step 2 is calculated. A non-
empty solution indicates feasibility of passing
the two lights without having to stop at a red by main-
taining a constant speed. However an empty solution does
not imply that stopping at red is necessarily required. It
only means that passing the two consecutive lights with
the same speed is not feasible. In that event, the vehicle
can readjust its target speed after passing the first light to
pass the green of the second light.

4) The process is continued by checking the next lights until
a stop at red becomes unavoidable. The last feasible range

is an appropriate target velocity. In this brief
we set for reducing trip time.1

Note that the target velocity is updated at each sampling time
and therefore may change at each instant based on vehicle’s
position and the most recent information from the lights. This
set of rules is not necessarily “optimal”, but helps break down
a fundamentally non-convex optimization problem to a sim-
pler real-time implementable one. Tracking this target velocity,
maintaining a safe distance to the front vehicle, and reducing

1One can argue that in some scenarios a decreasing target velocity profile
may require less fuel than a constant target velocity with same travel time. One
can check, for example, feasibility of a target velocity decreasing linearly where
the constant deceleration rate � before a light can be found from the following
kinematic equation:

� �
�

�
�� � � �

where � is the initial speed. Because searching for variable speed profiles in-
creases the search space and the computational time, such profiles are not con-
sidered in this brief.

use of brakes are handled by the optimization scheme which is
described next.

B. Optimal Tracking of the Reference Velocity

A simple model of the vehicle is used at the supervisory level
for calculating the vehicle acceleration based on effective trac-
tion force of the engine or braking force and the
road forces . For the th vehicle with mass , the longitu-
dinal dynamics is [20]

(2)

where lumps the road forces including aerodynamic drag,
rolling resistance, and road grade forces

(3)

where is the road grade, is a “lumped” drag coefficient,
is the coefficient of rolling resistance, and is gravitational

acceleration. The term is treated as a measured disturbance
and updated at each sample time. Equation (2) can be written in
the following state-space discretized form

(4)

where is the state vector,
is the control input, and is the measured disturbance.
The main outputs of interest are ; however other
outputs are introduced in the simulation code to handle the gap
inequality constraint described later. The matrices

, and are the discretized
system matrices. The engine and brake forces are manipulated
for tracking the target speed as closely as possible while main-
taining a safe distance to the front vehicle. These objectives
along with the desire to reduce use of service brakes can be
unified in a model predictive control (MPC) framework. The
control performance index at each step for the th vehicle is
defined as

(5)
The trip time is reduced by setting equal to maximum

feasible speed as explained in the previous section. This con-
stant-velocity solution may be suboptimal; the truly optimal so-
lution requires explicit optimization of trip time over space of
all functions .

Here and are simply penalty weights for each term.
The above index penalizes deviations of vehicle speed from
the target speed and also reduces use of brake force over
a future prediction window of steps. Reduced use of service
brakes in the cost function indirectly contributes to fuel savings.
Fuel consumption is not explicitly penalized; this allows use
of the simpler vehicle model for control design. Fuel savings
will be later evaluated using a detailed model of the vehicle’s
powertrain.
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Fig. 3. Schematic of a PSAT powetrain model.

The speed limit, engine and brake force limits, and the min-
imum safe following distance are imposed as pointwise-in-time
inequality constraints. The constraints should be satisfied over
the future prediction horizon .
The speed limit constraint is

(6)

where and are speed limits and should also be smaller
than the driver set speed. Bounds on the traction force are rep-
resented by

(7)

where and depend on tire and road con-
dition and also maximum engine and braking torque capability.
The minimum safe distance between the vehicle and the front
vehicle (target) should be a function of the vehicle speed and is
chosen as [8]

(8)

where is a “static gap” parameter and determines the min-
imum gap needed when the vehicles are stopped and is a “dy-
namic gap” parameter providing extra gap with increased speed.
Note that when the vehicle is approaching a red light, the light is
considered similar to a stopped vehicle and the position
is fixed to the position of the light. This ensures that the vehicle
comes to a stop with distance from the light .

The cost function (5) subject to the model equation (4) and in-
equality constraints (6), (7), and (8) is minimized at each sample
time to determine the sequence of next control in-
puts over the
future horizon . When the remaining control moves

are assumed to
be zero. According to the standard MPC design, only the first
entry of the control sequence , is applied to the vehicle;
the optimization horizon is moved one step forward, the model
and constraints are updated if necessary, and the optimization

process is repeated to obtain the next optimal control sequence
[21]–[23].

C. Evaluation of Fuel Savings Potential With a Detailed
Powertrain Model

The MPC solution generates a constraint-admissible velocity
profile that follows the set target speed as closely as possible.
In order to estimate the fuel economy of the vehicle when
following this optimal velocity trajectory, a production vehicle
is selected and its powertrain model is assembled from the
extensive database of Powertrain System Analysis Toolkit
(PSAT). PSAT, developed by Argonne National Laboratory
[24], is a powerful simulation tool for evaluating the fuel
economy of conventional and hybrid vehicles when following
a prescribed velocity cycle. Its physics-based component
models combined with empirical maps obtained from produc-
tion vehicles allow high-fidelity evaluation of fuel economy.
Fig. 3 shows schematics of a PSAT powertrain model. This
is a conventional (non-hybrid) powertrain with an automatic
transmission. The models for torque converter, transmission,
and vehicle dynamics are all very detailed and include several
dynamic states and switching modes. Details such as electrical
accessory loads, the starter, generator, etc. are not overlooked,
and are modeled for simulation accuracy.

PSAT is a “forward-looking” causal simulation tool in which
the vehicle speed is determined by the combined influence of
road loads and engine (or brake) torque at the wheels. The re-
sulting velocity is compared to the prescribed desired velocity;
the difference is fed to a driver model (a PI controller) which
in turn determines a torque demand. The torque demand is met
by the engine (or brake) torques and the above simulation loop
is repeated. The engine fuel rate is determined using an empir-
ical engine map and as a function of engine speed and engine
torque. The fuel rate is integrated over the whole cycle time to
determine the amount of fuel used.

III. SIMULATION CASE STUDIES

This section presents the results of a few simulations per-
formed to demonstrate validity of the proposed PCC method-
ology and to observe the fuel economy, emissions, and travel

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on May 26,2010 at 20:36:53 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ASADI AND VAHIDI: PREDICTIVE CRUISE CONTROL 5

TABLE I
MPC PARAMETERS

time gains in these example simulations. To understand the im-
pact of PCC on the average and under different traffic lights
and vehicle parameters, an extensive simulation study is needed
which is outside the scope of the current brief. We hope the fol-
lowing simulation results motivate a detailed statistical analysis
in the future.

The simulations are run first with the PCC off which serves as
a baseline for comparison and then with PCC on during which
advanced information of the lights phasing and timing is avail-
able. The comparison baseline is a vehicle without advanced
access to signal phasing and timing information. For a fair com-
parison, the baseline vehicle is assumed to operate in adaptive
cruise control mode as well.2 The baseline vehicle tracks a target
velocity using the MPC strategy explained in Section II-B. Its
controller minimizes (5) subject to the same model equation (4)
and inequality constraints (6)–(8). However the target velocity

is always equal to the driver set speed for the baseline ve-
hicle. The need for a timely stop at red light is enforced through
the constraint (8) and by fixing to the position of the light
as soon as the light turns amber or if an upcoming light is found
to be red (thus no advanced phase and time information).

The parameters of the supervisory level controller are sum-
marized in Table I. In all simulations, the vehicle mass is as-
sumed to be 1000 kg. Maximum acceleration is assumed
to be 3 m/s which is a conservative estimate of the
maximum acceleration capability of a midsize vehicle. From
there we calculate 3000 N. Assuming
braking on dry asphalt, the coefficient of braking is chosen to
be [20]. The maximum possible braking force is
then calculated as 6800 N. The sam-
pling time of 0.2 s allowed capturing the relevant dynamics.
After several trials, prediction and control horizons of 8 and 2
s, respectively, were found to be adequate and beyond this the
performance did not change considerably. The penalty weights

and were tuned to track the target velocity with rea-
sonable braking effort. The gap parameters are most relevant
in multi-vehicle simulations and are chosen to ensure sufficient
distance between vehicles.

2Adaptive cruise control assumption can be thought of as a systematic mean
to model a driver behavior in flowing traffic. In other words the comparison is
not limited only to ACC equipped vehicles.

Fig. 4. Trajectory of PCC and baseline vehicles with respect to the red-light
map. Horizontal solid lines represent red intervals.

A. Single Vehicle Scenario

1) Case I-Suburban Driving: The first simulation case study
is created to approximate suburban driving conditions: the driver
set speed is 30 m/s, the maximum speed is 30 m/s, and
the minimum speed is zero. A sequence of 10 traffic lights
spaced at 1 km intervals is assumed for this simulation study.
The light timing and phasing is assumed to be fixed and inde-
pendent of the incoming traffic. Future work can consider situ-
ations of synchronized or traffic-actuated lights. Fig. 4 summa-
rizes the light timing information. Also on this graph we show
the trajectory of PCC and baseline vehicles.

Fig. 5 shows the velocity profile, control inputs, and the dis-
tance traveled by the baseline vehicle. Zero portions of the ve-
locity profile show that the baseline vehicle stops at multiple red
signals. In a period of 400 s, the vehicle travels the distance of
7.66 km and passes 7 lights. The average velocity is therefore
19.15 m/s. During the same time and with the same initial con-
ditions the PCC-equipped vehicle was able to travel 8.92 km
as shown in Fig. 6. By predictive use of signal information, the
PCC vehicle schedules its velocity to a timely arrival at a green
light whenever possible. As a result the average velocity is 22.32
m/s which is a 16.5% improvement over the baseline vehicle.
During the simulation the minimum and maximum speed con-
straints as well as all other constraints are met.

To evaluate the resulting fuel economy and emissions, an
economy-sized passenger vehicle with the mass of 1000 kg
and 5-speed automatic transmission was selected in PSAT.
The vehicle has a 1.7 L 4-cylinder gasoline engine with the
maximum power of 115 hp. The detailed vehicle model is
assembled in PSAT v6.2. The velocity profiles shown in the
first subplot of Figs. 5 and 6 are fed as inputs to the PSAT
simulation environment. A driver-model follows this input
velocities very closely. Table II summarizes the statistics of the
resulting velocity and acceleration. The maximum acceleration
and deceleration for both PCC and baseline vehicles are within
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Fig. 5. Velocity, control inputs, and the position for a vehicle without advanced
signal information.

Fig. 6. Velocity, control inputs, and the position for a vehicle with advanced
signal information.

TABLE II
DRIVE-CYCLE STATISTICS FOR PCC AND BASELINE VEHICLES

physical constraints and comparable to maximum accelera-
tion and deceleration levels in many standard city cycles.3

The calculated fuel economy and CO emissions are shown
in Table III. In this particular simulation, the PCC-equipped
vehicle uses 47% less fuel with 56% less CO emissions than
the vehicle with the conventional ACC for the same travel time.
These benefits are seen even though the PCC vehicle travels a
longer distance.

3For example US06 Supplemental Federal Test Procedure (SFTP) which has
been developed to address the shortcomings with the FTP-75 test cycle in the
representation of aggressive, high speed and/or high acceleration driving be-
havior, rapid speed fluctuations, and driving behavior following startup has a
maximum acceleration of 3.75 m/s and maximum deceleration of�����m/s .

TABLE III
PSAT SIMULATION RESULTS FOR AN ECONOMY-SIZE VEHICLE

Fig. 7. Google map of a part of Pleasantburg Drive in Greenville, SC used in
the second simulation case study.

To determine if real-time implementation of the proposed
optimization-based strategy is computationally viable, we also
recorded the total computational time for solving the MPC opti-
mization problem. The simulations were run in SIMULINK on
a dual-core Intel4 Pentium IV processor with 1 GHz processing
speed per core, 4 MB of cache, and 2 GB of RAM. An estimate
of CPU time was obtained using the CPU command in MATLAB.
5 For a simulation interval of 400 s the CPU time for running the
MPC optimization was 19.1 s.

2) Case II-City Driving: The second single vehicle simula-
tion case study represents inner-city driving. For this we were
able to acquire traffic signal phasing and timing data from a
stretch of Pleasantburg Drive6 inside the city of Greenville, SC.
Fig. 7 shows a Google Map7 of this street and 10 of its con-
secutive intersections selected for this study. The distances be-
tween these intersections have been measured using the map.
Observing the posted speed limit of 45 m/h along Pleasantburg
Drive, we set 20 m/s. The driver set speed is also se-
lected at 20 m/s, and the minimum speed is set to zero.
The other simulation parameters are those of Case I.

The simulations were run with two sets of initial conditions.
Figs. 8 and 9 show the trajectories of PCC and baseline vehicles
in these two scenarios. With the first set of initial conditions, the
PCC vehicle saves 65 s of trip time with 29% less fuel (25.97
m/g versus 20.07 m/g for the baseline). If the start time is de-
layed by 20 s, the PCC’s trip time advantage will only be 2 s

4Intel is a registered trademark of Intel Corporation, Santa Clara, CA.
5MATLAB and SIMULINK are registered trademarks of The MathWorks Inc.

of Natick, MA.
6Pleasantburg Drive, south bound, starting from Century Drive and ending

at Cleveland Street. The lights phasing and timing are those in place in April
of 2009 and obtained from the Traffic Engineering Department of the City of
Greenville.

7Google Map is a registered trademark of Google Inc., Mountainview, CA.
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Fig. 8. First set of PCC and baseline trajectories simulated with Pleasantburg
Drive signal timings. Horizontal solid lines represent red intervals.

Fig. 9. Second set of PCC and baseline trajectories simulated with Pleasantburg
Drive signal timings. Horizontal solid lines represent red intervals.

and the fuel economy gain will reduce to 24% (25.11 m/g versus
20.26 m/g for the baseline).

B. Multi-Vehicle Scenario

In this section we investigate the trip time and fuel economy
for a fleet of PCC-equipped vehicles in a multi-vehicle simula-
tion. Each vehicle runs a copy of the control strategy presented
in Section II in a decentralized fashion. All vehicle and signal
parameters are those chosen in Case I of single vehicle scenario.

The former set of constraints in (6) and (7) remains un-
changed. When a vehicle is detected at a distance in front, the
constraint in (8) is also activated with set as the position
of the lead vehicle. Otherwise will be the position of the
next targeted red light. The parameter can be chosen based
on a vehicle’s maximum braking distance (See Fig. 10).

Simulations are performed for two fleets of vehicles: A PCC-
equipped fleet and a fleet of the same vehicles without PCC.
Each fleet has six vehicles aligned initially with the set of initial
conditions shown in Table IV.

Figs. 11 and 12 show the trajectories of PCC and baseline
fleets for a simulation period of 400 s. The distance traveled by
each vehicle as well as the total distance traveled by the vehicles
of each fleet during this period are tabulated in Table V for this

Fig. 10. Illustration of � as the gap constraint activation area.

TABLE IV
INITIAL SPEED AND POSITION FOR THE FLEET VEHICLES

Fig. 11. Trajectories of fleet of PCC vehicles.

simulation case study. The average velocity of the PCC fleet is
19.31 m/s as compared to the 18.53 m/s of the baseline fleet; in
other words the PCC fleet is 4.2% faster than the baseline fleet.
Fig. 13 shows the gap and gap constraint activation area between
each two vehicles in the PCC fleet. It can be seen that the gap al-
ways remains above the velocity-dependent gap constraint line.

The vehicle velocity trajectories are fed to PSAT to determine
the fuel used by each fleet. The vehicle configuration and param-
eters are those described in Section III-A. Table VI summarizes
the results. The average fuel economy of the PCC fleet is 41.8%
better than that of the baseline fleet in this case study.

IV. CONCLUSION

Communicating the signal state to vehicles has been recently
proposed for improving traffic intersection safety. The positive
simulation results of this brief promise that signal-to-vehicle
communication technology may also enable reduction of fuel
consumption, greenhouse gas emissions, and trip time of future
vehicles by predictive velocity planning. In one example case
study, predictive use of signal timing reduced fuel consump-
tion by 47% and lowered CO emissions by 56% for simulated

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on May 26,2010 at 20:36:53 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Fig. 12. Trajectories of fleet of Baseline vehicles.

Fig. 13. Gap and Gap constraint between each two vehicles in the PCC fleet.
The velocity-dependent constraint line is shown with the lower solid line; the
dashed-line shows the border beyond which the constraint is switched on.

TABLE V
TOTAL TRAVELED DISTANCE FOR PCC AND BASELINE FLEETS

TABLE VI
FUEL ECONOMY COMPARISON FOR PCC AND BASELINE FLEETS

driving through a sequence of 9 traffic lights. Another case study
which used real-world traffic signal data showed similar gains.
We hope these positive results encourage further research and
innovation towards more intelligent traffic intersection control
systems. Of course, any gain from the proposed PCC method-
ology depends on timing and phasing of traffic lights and the
distance between them and the vehicle parameters. A detailed

statistical analysis using Monte Carlo simulations is one pos-
sible way of determining attainable gains with PCC, and may
be a good direction for future simulation analysis.

From an analytical perspective, formulation of the trip opti-
mization in this brief in a model predictive control framework
is novel and lends itself well to many traffic-imposed hard con-
straints. In an ongoing work we hope to evaluate the impact
of traffic on the PCC strategy and vice versa by combining a
macroscopic traffic model and the microscopic MPC method-
ology.
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