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Abstract: This paper proposes preview of upcoming traffic light information to minimize idle at the
lights and reduce fuel use. An optimal control algorithm is formulated for each equipped vehicle that uses
short range radar and traffic signal information predictively to schedule an optimum velocity trajectory
for the vehicle. The objectives are timely arrival at green light with minimal use of braking, maintaining
safe distance between vehicles, and cruising at or near set speed. Preliminary simulation results show
considerable reduction of fuel use.
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1. INTRODUCTION

Poor traffic signal timing is believed to account for an estimated
10 percent of all traffic delay (about 300 million vehicle-hours)
on major roadways alone USDT (2007). Advanced traffic signal
control methods such as traffic-actuated signals and signal
synchronization are very costly to implement and maintain; just
the annual cost of signal timing updates is estimated at 217
million dollars a year according to NTSRC (2008). Even with
these measures in place, we often cruise at full speed toward
a green and have to come to a sudden halt whenever the light
turns red. This lack of information about “future” state of the
traffic signal increases fuel use, engine and brake wear, and
sometimes trip time. In an ideal situation if the future state of a
light’s timing and phasing is known, the speed could be adjusted
for a timely arrival at green.

While maybe unrealistic a few years ago, communicating traffic
signal state to the vehicles in advance is not far-fetched today.
In fact researchers are now experimenting with broadcasting
red light warnings to vehicles to improve intersection safety.
The required navigation and information broadcast technology
is available today and is expected to be more widely deployed
in near future.

This paper focuses on employing upcoming light time and
phase information within the vehicle’s adaptive cruise control
system to minimize wait time at stop lights and fuel use.
To achieve this goal an optimal control algorithm will be
formulated for each equipped vehicle that uses short range radar
and traffic signal timing information to schedule an optimum
velocity trajectory for the vehicle. The objectives are timely
arrival at green light with minimal use of braking, maintaining
safe distance between vehicles, and cruising at or near set
speed. Figure 1 shows a schematic of this proposed concept.

Adaptive cruise control is now in production and a well-
matured technology. Many ideas on intelligent transportation
system (ITS) have been explored extensively during the 1990s
within intelligent highway initiatives in the US, Japan, and
Europe [Vahidi and Eskandarian (2003)]. Voluntary use of
future signal and traffic information has only recently at-
tracted attention under CICAS (Cooperative Intersection Col-

Fig. 1. Schematic of telematics-based predictive cruise control.

lision Avoidance Systems) initiative mainly for improving in-
tersection safety [Sengupta et al. (2007); Chan and Bougler
(2005)]. Optimal traffic management at intersections has been
mainly studied from a signal-timing optimization perspective
e.g. signal synchronization [Brockfeld et al. (2001); Huang
and Huang (2003); Gershenson (2005)]. More recently and
for futuristic autonomous vehicles, Dresner et al. [Dresner and
Stone (2008); VanMiddlesworth et al. (2008)] have proposed
replacing traffic lights and stop signs by intelligent lights: Via
a two way communication protocol, the autonomous vehicles
call the intersection ahead to reserve a time-space slot to pass.
It is suggested in [Dresner and Stone (2008)] that this setup has
the potential to improve.

To the best knowledge of the authors, the proposed Predictive
Cruise Control (PCC) concept is first in its kind that utilizes
the adaptive cruise control function in a predictive manner
to simultaneously improve fuel economy and reduce signal
wait time. The proposed predictive speed control mode differs
from current adaptive cruise control systems in that i) besides
maintaining a safe gap between vehicles, it minimizes use of
brakes, thus reducing brake wear and kinetic energy loss, ii) can
work in stop and go traffic, and more importantly iii) receives
a timing signal from an upcoming traffic light in advance to
safely and smoothly speed up or down to a timely arrival at
green light whenever possible, therefore reducing idling at red.

These sometimes conflicting objectives are unified under a
model predictive control (MPC) framework. The proposed
MPC formulation allows tracking a target speed, calculated
based on traffic signal information, with minimum brake use. At
the same time it enforces several physical constraints including
a safe distance to the front vehicle. Simulation of complex stop
and go situations is facilitated relying on MPC as the “driving
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brain” of each vehicle. The result is a potentially powerful sim-
ulation tool that can be extended to multi-vehicle simulations
with each vehicle modeled as an intelligent agent. This may be
another contribution of this work over the existing microscopic
and macroscopic models developed (mainly by physicists and
computer scientists) over the past few decades for traffic sim-
ulation [Nagel et al. (2003); Nagel (1996); Hoogendoom and
Bovy (2001)]. Many underlying functions or rules required to
determine procession of vehicles in these models limit embed-
ding systematic optimization routines in them.

Section II describes the MPC design followed by the approach
taken to accurately estimate the fuel economy and CO2 emis-
sions of the vehicle. Simulation results for a single-vehicle
scenario, driven with and without PCC, are presented in section
III followed by Conclusion in section IV.

2. METHODOLOGY

One of the analytical challenges unique to this optimal control
problem is dynamic switching of lights to red and green. This
type of motion constraints renders the feasible solution space
non-convex. Solution of a non-convex optimization problem is
computationally intensive and may not converge to the global
optimum. We resolve this issue by handling the problem at
two levels: i) a set of logical rules that calculates a reference
velocity for timely arrival at green lights combined with ii)
a model predictive controller that tracks this target velocity.
The resulting solution may be sub-optimal but is real-time
implementable. A simple model of the vehicle will be used
at the supervisory level for velocity planning; but the fuel
economy and drivability will be later evaluated using a detailed
model of the powertrain.

2.1 Reference Velocity Planning

A reference velocity vtarget is determined based on driver’s set
cruise speed, and also the signal received from the upcoming
traffic light. The basic idea is to safely i) increase vtarget , up to
a maximum allowable, when there is enough green time to pass,
or otherwise ii) decrease vtarget , down to a minimum allowable,
to arrive at the next green. All will be done considering driver’s
set cruise control. The objective is to minimize stop time at red.

It is assumed that the approximate distance to the next traffic
light(s) is known at each time and shown by di where the
subscript i denotes the light number in a sequence of traffic
lights, i.e. d1 is the approximate distance to the first upcoming
light and d2 to the second light at each time. The light(s) update
and broadcast an expected sequence of their green and red times
regularly. Suppose gi j is start of the jth green of the ith traffic

light and ri j is start of the jth red of the ith light. For example
light number 1 broadcasts, at regular intervals, a sequence

[g11, r11, g12, r12, g13, · · · ] = [40, 100, 150, 200, 240, · · · ]

which implies the first traffic light is currently red, it will turn
green in 40 seconds, red in 100 seconds, green again in 150
seconds, and so forth. Figure 2 shows a schematic of the map
formed at each time step based on the information received
from the lights. Equipped vehicles can use the remaining dis-
tance to the next light(s) and the green and red sequence to set
their target speed. This target speed (slope of each path) cannot

Fig. 2. Schematics map of red lights distributed over space-
time. The graphics shows how a PCC car passes two
consecutive intersection without having to stop at a red.

exceed the speed limits or the speed set by the driver. Other
constraints such as acceleration constraints, maintaining safe
distance to the front vehicle, and minimizing use of brakes are
handled separately by a dynamic optimization scheme (details
in section II-B).

The following steps are followed to determine the target speed
at each step k:

(1) For a vehicle to pass during the first green of the first

light, its velocity should be in the interval [ d1
r11

, d1
g11

]. This

is only feasible if this interval has an intersection with the
feasible speed interval of [vmin,vmax]. If this intersection is
empty, passing through the first green without stopping
at red is deemed infeasible. In that event, feasibility of
passing during the next green interval is checked and the

process is repeated until for some ith interval [ d1
r1i

, d1
g1i

]

has an intersection with [vmin,vmax]. This intersection is
mathematically characterized by:

[
d1

r1i
,

d1

g1i
]∩ [vmin,vmax] (1)

and determines the range of speed that ensures passing the
first light without having to stop at a red.

For example assume the speed limits are [vmin,vmax] =
[5,20]m/s and the distance to the first traffic light is
1000m. The first light broadcasts,

g11 = 5s, r11 = 25s, g11 = 40s, r11 = 100s

then

[
d1

r11
,

d1

g11
] = [40,200] m/s

does not meet the speed limit. The second interval

[
d1

r12
,

d1

g12
] = [10,25] m/s

intersects with the feasible speed at [10,25] m/s There-
fore, if the velocity of the vehicle is chosen between
10 m/s and 20 m/s, the vehicle passes the first light with-
out having to stop.

(2) If passing without stop at the first light is determined to be
feasible, the process in step 1 is repeated for the second
traffic light by checking the intersections
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[
d2

r2i
,

d2

g2i
]∩ [vmin,vmax]

and picking the first non-empty one.
(3) Next, the intersection of the feasible range of speeds

determined in step 1 and that of step 2 is calculated.
A non-empty solution [vlow,vhigh] indicates feasibility of
passing the two lights without having to stop at a red.

(4) The process is continued by checking the next lights until
a stop at red becomes unavoidable. The last feasible range
[vlow,vhigh] is an appropriate target velocity. To ensure
shortest trip time we set vtarget = vhigh.

Note that the target velocity is updated at each sampling time
and therefore may change at each instant based on vehicle’s
position and the most recent information from the lights. This
set of rules is not necessarily “optimal”, but helps break down
a fundamentally non-convex optimization problem to a sim-
pler real-time implementable one. Tracking this target velocity,
maintaining a safe distance to the front vehicle, and minimiz-
ing use of brakes are handled by this optimization scheme
described next.

2.2 Optimal Tracking of the Reference Velocity

A simple model of the vehicle is used at the supervisory
level for calculating the vehicle acceleration based on effective
traction force of the engine fengine or braking force fbrake and

the road forces fd . For the ith vehicle with mass mi , the
longitudinal dynamics is:

mi
d2xi

dt2
= f i

engine − f i
brake + f i

d (2)

where f i
d lumps the road forces including aerodynamic drag,

rolling resistance, and road grade forces:

f i
d = −cDv2

i −mig(sin(θ)+µcos(θ)) (3)

where cD is a “lumped” drag coefficient, µ is the coefficient
of rolling resistance, and g is gravitational acceleration. The f i

d
term is treated as a measured disturbance and updated at each
sample time. Equation (2) can be written in the following state-
space discretized form:

zi(k +1) = Azi(k)+Buui(k)+Bwwi(k)
yi(k) = Czi(k)

(4)

where zi = [xi vi]T is the state vector, ui = [ f i
engine f i

brake]
T

is the control input, and wi = [ f i
d ] is the measured disturbance.

The main output of interest are yi = [xi vi]T ; however other
outputs need to be introduced to handle the gap inequality
constraint described later. The matrices A ∈ R2×2, Bu ∈ R2×2,
Bw ∈ R2×1, and C ∈ R2×2 are the discretized system matrices.
The engine and brake forces are manipulated for tracking the
target speed as closely as possible while maintaining a safe
distance to the front vehicle. These objectives along with the
desire to minimize use of service brakes can be unified in
a Model Predictive Control (MPC) framework. The control
performance index at each step k for the ith vehicle is defined
as:

Ji(k) =
k+P−1

∑
j=k

[w1(vi( j)− vtarget( j))2 +w2( f i
brake( j))2] (5)

Here w1 and w2 are simply penalty weights for each term.
The above index penalizes deviations of vehicle speed vi from
the target speed vtarget and also reduces use of brake force
over a future prediction window of P steps. Reduced use of
service brakes in the cost function indirectly contributes to fuel
savings. Fuel use is not explicitly penalized; this allows use of
the simpler first-order vehicle model for control design. Fuel
savings will be later evaluated using a detailed model of the
vehicle’s powertrain. The trip time is minimized by setting
vtarget equal to maximum feasible speed as explained in the
previous section.

The speed limit, engine and brake force limits, and the mini-
mum safe following distance are imposed as pointwise-in-time
inequality constraints. The constraints should be satisfied over
the future prediction horizon ∀ j ∈ {k,k+1, · · · ,k+P−1}. The
speed limit constraint is,

vmin ! vi( j) ! vmax (6)

where vmin and vmax are speed limits and should also be smaller
than the driver set speed. Bounds on the traction force are
represented by,

0 ! f i
engine( j) ! f max

acceleration

0 ! f i
brake( j) ! f max

deceleration

(7)

where f max
acceleration and f max

deceleration depend on tire and road con-
dition and also maximum engine and braking torque capability.
The minimum safe following distance between follower vehicle
i and lead vehicle i + 1 depends on the follower vehicle speed
and can be written as:

αvi( j)+β ! xi+1( j)− xi( j) (8)

where β is a “static gap” parameter and determines the min-
imum gap needed when the vehicles are stopped and α is a
“dynamic gap” parameter providing extra gap with increased
speed. The need to stop at a red light is also imposed by the
constraint in (8) where xi+1 is set to the position of the traffic
light or that of a front vehicle stopped at that light.

The cost function (5) subject to the model equation (4) and
inequality constraints (6), (7), and (8) is minimized at each
sample time to determine the sequence of next N ! P control
inputs Ui(k) = [ui(k) ui(k +1) · · · ui(k +N −1)] over the
future horizon P. When N < P the remaining control moves
[ui(k+N) ui(k+N +1) · · · ui(k+P−1)] are assumed to
be zero. According to the standard MPC design , only the first
entry of the control sequence Ui(k), is applied to the vehicle,
the optimization horizon is moved one step forward, the model
and constraints are updated if necessary, and the optimization
process is repeated to obtain the next optimal control sequence
Ui(k + 1) [Maciejowski (2002); G. C. Goodwin and Dona
(2005); Bemporad (2006)].
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Fig. 3. Schematic of a PSAT powetrain model

2.3 Evaluation of Fuel Savings Potential with a Detailed
Powertrain Model

The MPC solution generates a constraint-admissible velocity
profile that follows the set target speed as closely as possible. In
order to estimate the fuel economy of the vehicle when follow-
ing this optimal velocity trajectory, a production vehicle is se-
lected and its powertrain model is assembled from the extensive
database of Powertrain System Analysis Toolkit (PSAT). PSAT
developed by Argonne National Laboratory [PSAT (2002)] is
a powerful simulation tool for evaluating the fuel economy of
conventional and hybrid vehicles when following a prescribed
velocity cycle. Its physics-based component models combined
with empirical maps obtained from production vehicles al-
low high-fidelity evaluation of fuel economy. Figure 3 shows
schematics of a PSAT powertrain. This is a conventional (non-
hybrid) powertrain with an automatic transmission. The models
for torque converter, transmission, and vehicle dynamics are all
very detailed and include several dynamic states and switching
modes. Details such as electrical accessory loads, the starter,
generator, etc. are not overlooked and modeled for simulation
accuracy.

PSAT is a “forward-looking” causal simulation tool in which
the vehicle speed is determined by the combined influence
of road loads and engine (or brake) torque at the wheels.
The resulting velocity is compared to the prescribed desired
velocity; the difference is fed to a driver model which in turn
determines a torque demand. The torque demand is met by
the engine (or brake) torques and the above simulation loop is
repeated. The engine fuel rate is determined using an empirical
engine map and as a function of engine speed and engine
torque. The fuel rate is integrated over the whole cycle time
to determine the amount of fuel used.

3. SIMULATION RESULTS

Simulations are performed to determine the potential impact
on fuel economy and trip time of a single vehicle when future
traffic signal information is predictively used within the adap-
tive cruise control system of the vehicle. Future research will
extend the simulations to the case of multiple equipped vehicles
and their impact on the flow and fuel economy of mixed traffic.

The simulations are ran first with the Predictive Cruise Control
(PCC) off which serves as a baseline for comparison and then
with PCC on during which advanced information of the lights
phasing and timing is available. The comparison baseline is a
vehicle without advanced access to signal phasing and timing
information. For a fair comparison, the baseline vehicle is as-
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Fig. 4. Trajectory of PCC and baseline vehicles with respect to
the red-light map.

sumed to operate in adaptive cruise control mode as well 1 . The
baseline vehicle tracks a target velocity using the MPC strategy
explained in section 2.2. Its controller minimizes (5) subject
to the same model equation (4) and inequality constraints (6),
(7), and (8). However the target velocity vtarget is always equal
to the driver set speed for the base-line vehicle. The need for
a timely stop at red light is enforced through the constraint (8)
and by fixing xi+1 to the position of the light as soon as the light
turns yellow or if an upcoming light is found to be red (thus no
advanced phase and time information).

A sequence of 8 traffic lights spaced at 1 km intervals is as-
sumed for this simulation study. Because real data for the traffic
lights’ timing is not available at the time of this simulation, the
light timing and phasing is chosen arbitrarily but in a reasonable
range. The light timing and phasing is assumed to be fixed and
independent of the incoming traffic. Future work can consider
situations of synchronized or traffic-actuated lights. Figure 4
summarizes the light timing information. Also on this graph we
show the trajectory of PCC and baseline vehicles.

In all simulations the driver set speed is 30 m/s, the maximum
speed is vmax = 30 m/s, and the minimum speed vmin is zero.
The vehicle mass is assumed to be 1000 kg. The parameters of
the supervisory level controller are summarized in Table 1.

Table 1. MPC Parameters

parameter description value units (SI)

Ts sample time 0.2 s

P prediction horizon 8 s

N control horizon 2 s

W1 penalty weight 1 3000 (m/s)−2

W2 penalty weight 2 150 N−2

α dynamic gap parameter 0.2 s

β static gap parameter 1 m

f max
acceleration max positive traction 3000 N

f max
deceleration max negative traction 6800 N

Figure 5 shows the velocity profile, control inputs, and the
distance traveled by the baseline vehicle. Zero portions of the

1 Adaptive cruise control assumption can be thought of as a systematic mean

to model a driver behavior in flowing traffic. In other words the comparison is

not limited only to ACC equipped vehicles.
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Fig. 5. Velocity, Control Inputs and the Position for a vehicle
without advanced signal information.

velocity profile show that the vehicle stops at multiple red
signals. In a period of 400 seconds, the vehicle travels the
distance of 7.59 km and passes 8 lights. The average velocity
is therefore 18.97 m/s. During the same time and with the
same initial conditions the PCC-equipped vehicle can travel
a much longer distance of 8.92 km as shown in Figure 6. By
predictive use of signal information, the PCC vehicle schedules
its velocity to a timely arrival at a green light whenever possible.
As a result the average velocity is 22.30 m/s which is a 17.5
percent improvement over the baseline vehicle. During the
simulation the minimum and maximum speed constraints as
well as all other constraints are met.
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Fig. 6. Velocity, Control Inputs and the Position for a vehicle
with advanced signal information.

Next an economy-sized passenger vehicle with the mass of
1000 kg and 5-speed automatic transmission was selected for
evaluating the fuel economy and CO2 emissions in PSAT.
The vehicle has a 1.7 L 4-cylinder gasoline engine with the
maximum power of 115 hp. The detailed vehicle modeled
is assembled in PSAT v6.2. The velocity profiles shown in
the first subplot of Figures 5 and 6 are fed as inputs to the
PSAT simulation environment. A driver-model follows this
input velocities very closely. Table 2 summarizes the statistics
of the resulting velocity and acceleration. The calculated fuel
economy and CO2 emissions are shown in Table 3. The PCC-
equipped vehicle uses 59 percent less fuel with 39 percent less

CO2 emissions than the vehicle with the conventional ACC for
the same travel time. This is while the PCC vehicle travels a
much longer distance.

Table 2. Drive-cycle statistics for PCC and base-
line vehicles.

PCC vehicle Maximum Average Standard Deviation Unit

Speed 29.97 22.30 6.07 m/s

Acceleration 2 0.28 0.59 m/s2

Deceleration -3.23 -0.35 0.65 m/s2

Baseline vehicle c Maximum Average Standard Deviation Unit

Speed 30 18.97 11.20 m/s

Acceleration 2.00 0.64 0.72 m/s2

Deceleration -2.79 -1.23 0.90 m/s2

Table 3. PSAT simulation results for an economy-
size vehicle.

Value PCC Baseline

Fuel Economy (miles/gallon) 30.00 18.77

CO2 Emissions(g/mile) 292 480

These preliminary results are encouraging. The scenario of
many consecutive traffic lights might be uncharacteristic of
rural routes, but quite common in city and suburban driving.
Of course the gain from PCC depends on timing and phasing
of traffic lights and the distance between them which will be
explored in more depth in the next step of this research. Via
multi-vehicle simulations, our future research will also inves-
tigate how PCC-equipped vehicles impact the fuel economy,
emissions, and flow of mixed traffic.

4. CONCLUSION

The Predictive Cruise Control (PCC) concept proposed in this
paper shows the potential to reduce fuel use and trip time of
future vehicles by utilizing preview information of traffic signal
timing and phase. More specifically in one simulated single-
vehicle scenario the trip time was reduced by 17.5 percent
with 59 percent less fuel when the signal information was pre-
dictively utilized. Communicating the signal state to vehicles
has been recently proposed for improving intersection safety.
The positive results in this paper demonstrate that signal-to-
vehicle communication technology can also help relieve traffic
congestion and reduce fuel consumption and greenhouse gas
emissions of future vehicles. By this, we hope to encourages
further research and innovation towards more intelligent inter-
section control systems.

From an analytical perspective, formulation of the trip opti-
mization in a model predictive control framework is novel and
lends itself well to many traffic-imposed hard constraints. The
MPC formulation allows systematic extension of this work to
the case with multiple vehicles in mixed traffic which is our
plan for future work.
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